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Abstract
Aspect-based sentiment analysis (ABSA) aims to determine the sentiment polarity of aspects in a sentence. Recently, graph
convolution network (GCN) model combined with attention mechanism has been used for ABSA task over graph structures,
achieving promising results. However, these methods of modeling over graph structure fail to consider multiple latent infor-
mation in the text, i.e., syntax, semantics, context, and so on. In addition, the attention mechanism is vulnerable to noise in
sentences. To tackle these problems, in this paper, we construct an efficient text graph and propose amatrix fusion-based graph
convolution network (MFLGCN) for ABSA. First, the graph structure is constructed by combining statistics, semantics, and
part of speech. Then, we use the sequence model combined with the multi-head self-attention mechanism to obtain the feature
representation of the context. Subsequently, the text graph structure and the feature representation of context are fed into GCN
to aggregate the information around aspect nodes. The attention matrix is obtained by combining sequence model, GCN and
the attention mechanism. Besides, we design a filter layer to alleviate the noise problem in the sentence introduced by the
attention mechanism. Finally, in order to make the context representation more effective, attention and filtering matrices are
integrated into the model. Experimental results on four public datasets show that our model is more effective than the previous
models, demonstrating that using our text graph and matrix fusion can significantly empower ABSA models.

Keywords Aspect-based sentiment analysis · Graph convolution network · Attention mechanism · Matrix fusion

Introduction

The aspect-based sentiment analysis (ABSA) task aims to
determine the sentiment tendency of a particular aspect in a
sentence. For example, “The environment of this restaurant is
dirty, but the food is delicious.” there are two aspects “envi-
ronment” and “food”, and the user expresses negative and
positive sentiments over them, respectively. Thus, ABSA can
precisely judge the sentiment tendency of a specific aspect,
rather than simply judging sentiment polarity for a sentence.

In recent studies, various neural network models such as
Recurrent Neural Networks (RNN) [1] and Convolutional
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Neural Networks (CNN) [2,3] are widely used in aspect-
based sentiment analysis tasks. With the popularity of the
attention mechanism, more researchers [4–7] combine atten-
tion mechanism and neural network to reflect the degree of
influence of each word on the aspect. However, the atten-
tion mechanism is susceptible to the noise in the sentence
and mistakenly focuses on irrelevant words, and sequential
models modeling context semantic relationships easily lose
long-distance information.

Compared with sequential models, graph convolutional
neural networks (GCN) [8] can handle complex data struc-
tures and model information to the global level. Because
of the advantages of GCN, more researchers [9–12] com-
bined dependency trees with GCN to make better use of
syntactic dependency in sentences. However, the following
problems arise when using dependency trees in ABSA tasks:
(1) due to the establishment of the dependency tree structure
is automatically created according to other tools, the depen-
dencies will be inaccurate and uncontrollable. (2) Insensitive
to domain-specific datasets [13]. To solve the problem of the
dependency tree, researchers [13–18] makes improvements
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and enhancements based on dependency trees to solveABSA
tasks. However, these methods only consider the dependen-
cies between words, but fail to consider more important
information.

Information on the context, semantics, part of speech, and
sentiment knowledge among words are essential when con-
structingGCNfor aspect-based sentiment analysis.However,
only a limited number of researchers model multiple hidden
information via GCN for this task. For example, Yao et al.
[19] proposed a text graph-based neural network (TextGCN).
In their model, a text graph is first constructed based on
the sequential contextual relationship between words. In
[20], they combine syntax and knowledge via a GCN. More
researchers [21,22] focus on building graph structures based
on rich contextual information, such as semantic and syn-
tactic contextual information. The effective graph learning
is not only important in the ABSA field, but many scholars
have also done a lot of meaningful work [23,24] in the graph
learning in terms of multiple kernel graph-based clustering
(MKGC). It can be seen that researchers have been paidmore
and more attention to effective graph learning.

Inspired by these studies, we model multiple latent infor-
mation graph structures via GCN for aspect-based sentiment
analysis. In the text graph structure building module, we
integrate three different perspectives of statistics, semantics,
and part of speech to build graph structures. The learned
graph structure can fully extract the latent information in
the text. In the ABSA module, we design a matrix fusion-
based GCN for better context coding. In the ABSA field,
most researchers directly combined the output of one type of
neural network with the attention mechanism. They did not
adequately combine the sequential neural network, GCN and
attention mechanisms. Therefore, we first use the sequence
model and the multi-head self-attention mechanism to gen-
erate the feature representation of the context. Second, the
text graph and context feature matrix of graph structure are
input into the graph structure model GCN. The aspect fea-
tures that aggregate the information of adjacent nodes of the
graph structure are obtained through multi-layer GCN. Then
we calculate the attentionmatrix from the aspect features and
the context features obtained from the sequence model. The
filter matrix is obtained from the output of GCN through the
aspect irrelevant information filter layer. Finally, the aspect-
related information is enhanced using a matrix fusion layer.
Finally, the aspect-related information is enhanced using a
matrix fusion layer.

Our contributions are as follows:

• We propose a graph convolution network model with
multiple latent information for ABSA tasks. Our model
considers the statistics, semantics, and part of speech
within a sentence. We combine the graph structure
obtained by the statistical method and the graph struc-

ture obtained by semantic similarity. Then the final graph
structure is enhanced by part of speech rules.

• We use a matrix fusion-based GCN over the graph struc-
ture. First, the attention matrix is obtained by combining
the aspect feature output of GCN, the text feature output
of the sequence model LSTM and the attention mecha-
nism. Then, we use the information filter layer after GCN
to filter the irrelevant information of the aspect. Finally,
we combine the attention matrix and the filter matrix to
get the final matrix.

• Extensive experiments are conducted on four benchmark
datasets to illustrate the effectiveness of our model for
the ABSA task.

Related work

Aspect-based sentiment analysis is a fine-grained sentiment
analysis task. Recently, most research work on aspect-based
sentiment analysis (ABSA) use neural network and attention
to associate aspect and context to capture semantic infor-
mation hidden in sentences. For instance, Wang et al. [1]
and Ma et al. [6] propose a model to compute the attention
of aspects and sentences directly. Tang et al. [4] uses mul-
tiple levels of attention to the model. Chen et al. [5] adds
the weighted memory mechanism on the basis of multi-layer
attention. Fan et al. [7] propose amodel to learn the represen-
tation containing sentence and aspect-related information,
integrate it into the multi-granularity sentence modeling
process, and finally get a comprehensive sentence represen-
tation. Huang and Carley [2] propose a novel parameterized
convolutional neural network for aspect-level sentiment clas-
sification. They use parameterized filters and parameterized
gates on CNN to incorporate aspects of information. Tan et
al. [25] introduced a dual attention network to recognize con-
flicting opinions. However, these studies ignore the syntactic
dependence between words in sentences, which may lead to
ambiguity in identifying the polarity of specific targets.

In order to solve this problem, dependency trees are intro-
duced into the ABSA task. Dependency trees can capture
dependencies between words and enhances the connection
between aspect and related words. More researchers use
graph convolution neural network (GCN) to model based
on dependency trees. Sun et al. [10] present a convolution
over dependency trees model which combines Bi-directional
Long Short-Term Memory (Bi-LSTM) and GCN. Zhang et
al. [9] propose a model to combine attention mechanism and
GCN on dependency trees. Xiao et al. [12] improve the GCN
and combine a GCN with a multi-head attention mechanism
for aspect-based sentiment analysis. Although dependency
trees perform well in ABSA tasks, it also has some defects.
The methods based on dependency trees are inaccurate and
insensitive to domain-specific datasets. In order to alleviate
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Fig. 1 The overall architecture of the MFLGCN. The upper part is built for the text graph structure. It includes graph structures for statistics,
semantics, and parts of speech. The lower part is the aspect-based sentiment analysis part. It contains GCN and matrix fusion layer

these problems, more researchers have enhanced the graph
structure information on dependency trees. Chen et al. [15]
propose a model to combine dependency trees and latent
graphswhich are generated by self-attention networks.Wang
et al. [16] utilize reshaping and pruning methods to make
the ordinary dependency trees focus on the target aspect.
Zhou et al. [20] employ a new Syntax- andKnowledge-based
Graph Convolutional Network (SK-GCN) model for aspect-
level sentiment classification. Tang et al. [17] use dual graph
convolutional networks to improve the insensitivity of depen-
dency syntax trees to online reviews.

In this paper, the text graph structure is generated by
combining different methods. The statistic-based graph can
consider the co-occurrence frequency between words in
the text. The semantic-based graph can consider the rich
semantic relationship of context in text and well-build graph
structure in different domain datasets. The part of speech
rules-based graph can enrich the relationship of specific
aspects and strengthen the importance of aspects in the graph.

We combine the aspect word feature output of GCN, the text
feature output of the sequence model and the attention mech-
anism based on the constructed graph structure to extract
attentionmatrix.We also useGCNand aspect informationfil-
ter layer to extract aspect-related informationmatrix. Finally,
we integrate the attention matrix considering the importance
between aspect and other words and the matrix filtering irrel-
evant aspect information to obtain the final representation.

Ourmodel

Figure 1 gives an overviewof ourmodel. It contains the graph
building part and the aspect-based sentiment analysis part. In
the graph building part, we first use statistical methods to cal-
culate the co-occurrence between words and use it as a basis
for forming each edge in the statistic-based graph G1. Sec-
ond, we construct the semantic-based graph G2 using the
semantic similarity between words as a basis. Thirdly, we
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Fig. 2 Semantic-based graph construction model

keep the common edges in G1 and G2 and delete the rest
to get a graph. Finally, we process the nodes corresponding
to the edges around the aspect and other edges correspond-
ing to these nodes based on the part of speech rules. The
edges that conform to the set part of speech rules are added
and those that do not conform are deleted, thus obtaining the
graph G3. In the aspect-based sentiment analysis part, we
first utilize Bi-LSTM to extract hidden contextual represen-
tations Ht . Then these hidden representations Ht are fed into
GCN as features of the graph nodes. The vector representa-
tions Hl that aggregates relevant information after GCN is
obtained. We use the multi-head self-attention mechanism to
link words more effectively to get Hm . The attention matrix
M1 is obtained by calculating the aspect vector in aspect and
Hm for attention. The aspect-related information matrix M2

is obtained by passing the Hl and the aspect vector through
the filtering information layer. Finally, the matrix fusion of
M1 and M2 is performed to obtain the final text representa-
tions.

Construction of the text graph

The statistic-based graph integrates the co-occurrence infor-
mation between words. We combine the sliding window
strategy and point-wise mutual information (PMI) to express
the degree of association between words. The basis for the
existence of edges between nodes in the graph can be formu-
lated as

Tst
(
wi , w j

) = log
p

(
wi , w j

)

p (wi ) p
(
w j

) (1)

p
(
wi , w j

) = N(wi ,w j)

Ntotal
(2)

p (wi ) = N(wi )

Ntotal
(3)

p
(
w j

) = N(w j)

Ntotal
. (4)

Statistic-based graph

p(wi , w j ) is co-occurrence of wi and w j is the total number
of the sliding windows over the whole dataset. N(wi ) is the
number of occurrences that the word wi occurs in the sliding
windows over the whole dataset. The weight between the
word nodes wi and w j is defined as

Msti j

⎧
⎨

⎩

1, Tst
(
wi , w j

)
> thresholdst

1, i = j
0, Tst

(
wi , w j

)
< thresholdst

(5)

where Mst ∈ R
n×n is the adjacency matrix representation

of the statistic-based graph. Msti j represents whether the i th
node is connected to the j th node in the graph.The thresholdst
is the standard to judge whether nodes are connected.

Semantic-based graph

Bert can fine-tune and act as a feature extractor according
to the needs of the task to obtain high-quality word vector
representation. LSTM can capture context semantic relation-
ships. We use the Bert-LSTM model to represent the word
vector of the text (shown in Fig. 2) and then calculate the
cosine similarity between words to construct the edges in the
semantic graph. The weight calculation formula of semantic
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Fig. 3 Part of speech rules

relationship between words is as follows:

Tse
(
wi , w j

) = cos〈vi , v j 〉 = vi · v j

‖vi‖ × ∥∥v j
∥∥ (6)

where vi and v j are the vectors of words wi and w j , respec-
tively. The weight between the word nodes wi and w j is
defined as

Mse i j

⎧
⎨

⎩

1, Tse
(
wi , w j

)
> thresholdse

1, i = j
0, Tse

(
wi , w j

)
< thresholdse

(7)

where Mse ∈ R
n×n is the adjacency matrix representation

of the semantic-based graph. Msei j represents whether the
i th node is connected to the j th node in the graph. The
thresholdse is the standard to judge whether nodes are con-
nected.

Graph enhancement

In order to integrate statistical and semantic information
simultaneously, we build a graph that contains the common
edges of the semantic-based graph and statistic-based graph.
The weight between the word nodes wi and w j is defined as

Mfusioni j

⎧
⎨

⎩

1, Msti j = 1 and Msei j = 1
1, i = j
0, Msti j = 0 or Msei j = 0

(8)

where Mfusion ∈ R
n×n is the adjacency fusion matrix repre-

sentation of statistic-based graph and semantic-based graph.
In order to enrich the information associated with aspect
nodes in the graph, we use part of speech rules to enhance
the graph structure, as shown in Fig. 3.

In the graph structure, if the part of speech of node w(i+1)

directly connected with aspectwi is an adverb or verb, it will
enter the next stage of part of speech judgment. if the part of
speech of node w(i+2) directly connected with aspect w(i+1)

is an adjective, add an edge between wi and w(i+2).
Overall, the graph structure we built is a graph with prop-

erties, such as the following: (1) captures the co-occurrence

Fig. 4 Calculation process of MHSA

between words; (2) integrates rich contextual semantic rela-
tions; (3) considers the relationship between aspects and
other words at the part of speech level.

Contextualized word representation

A sentence s = {wt
1, w

t
2, w

t
3, . . . , w

t
n} containing aspects

a = {wa
1 , w

a
2 , w

a
3 , . . . , w

a
m+1} is given, where n is the length

of the sentence and m + 1 is the length of the aspect. We
use a Bi-LSTM encoder to capture contextual semantic rela-
tionships and obtain the contextualized word representations
Ht = {ht1, ht2, ht3, . . . , haβ, haβ+1, h

a
β+2, . . . , h

a
β+m, . . . , htn}

∈ R
n×dn , where dh is the dimension of the hidden state vec-

tors.

Multi-head self-attention (MHSA)

Multi-head self-attention (MHSA) is an attentionmechanism
that can parallelly operate in space. Compared with self-
attention, the MHSA can extract more abundant semantic
features, as shown in Fig. 4. First, we initialize Q, K and V
to make them equal to the input Ht , respectively. The differ-
ent weight matrices W is then used to map Q, K and V to
different subspaces. The subspacemapping formula is shown
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in the following formula:

⎧
⎪⎨

⎪⎩

Qi = QWQ
i

Ki = KWK
i (i = 1, 2, 3, . . . , n)

Vi = VWV
i

(9)

whereWQ
i ,WK

i andWV
i are the learning parameter matrices

of the i-th head, respectively. n is the number of the heads.
In each subspace, the output is calculated according to the
attention functionwith K , Q and V as inputs. The calculation
formula of attention is shown in the following formula:

Attention(Q, K , V ) = softmax (tanh (Wm · [K ; Q])) V
(10)

The formula (10) is essentially theweighted calculation of V .
Theweight is obtained by a softmax function. In the softmax,
the tanh function is used to calculate the correlation between
K and Q. Wm is the learning weight matrix. After obtaining
the output of each subspace, they are concatenated to obtain
the final output:

headi = Attention (Qi , Ki , Vi ) (i = 1, 2, 3, . . . , n) (11)

Hm = MHSA(Q, K , V ) = Concat (head1, . . . , headn)

(12)

where headi is the output of i-th head attention calculation
and Hm = {hm1 , hm2 , hm3 , . . . , hmn } ∈ R

n×de is the final output
of the MAMS. de is the dimension of MHSA.

Graph convolution network (GCN)

Graph convolutional network (GCN) [8] uses convolution
operation to encode graph structure data. The output is the
node representation that aggregates the information around
the node. We use GCN to model our constructed text graph
structure incorporatingmultiple latent information. The adja-
cency matrix representation of the graph and the feature
matrix of the graph nodes are first passed into GCN. After
multi-layer training, the obtained node feature representa-
tion then aggregates the surrounding information. Finally,
the mask layer is used to extract the aspect-specific represen-
tation. A graph G = {V , A} is given, where V is the set of
nodes in the graph, and A ∈ R

n×n is the adjacency matrix
representation of a graph. n is the number of nodes. hli is the
node hidden state representation of l-layer. The node hidden
state representation is updated by

hli = σ

⎛

⎝
n∑

j=1

Ai jW
lhl−1

j + bl

⎞

⎠ (13)

whereWl is a learning weight matrix, bl is a bias term, σ and
is a nonlinear function (e.g., ReLU). Ai j represents whether
the i th node is connected to the j th node in the graph. Ai j = 1
if node is connected to node j, otherwise Ai j = 0.

In order to make the GCN learn aspect-specific repre-
sentations. We use aspect mask on the output of GCN Hl =
{hl1, hl2, hl3, . . . , hln}. The aspecta = {wα

β,wα
β+1, w

α
β+2, . . . ,

hα
β+m} is given. The output weightmatrix is calculated as fol-

lows:

oi =

⎧
⎪⎨

⎪⎩

1 − β−i
n , 1 ≤ i < β

0, β ≤ i < m

1 − i−m
n , m < i ≤ n

(14)

where oi is the weight of the hli . The weight and GCN output
are calculated as follows:

hloi = oi h
l
i (15)

where hloi ∈ R
d is a hidden representation of the i th node

and Hlo = {hlo1 , hlo2 , hlo3 , . . . , hlon } denotes hidden represen-
tations.

Aspect-aware attention

GCN aggregates the information of nodes around aspect,
which enriches the aspect representation. In order to fully
associate aspect with other words, we combine the feature
output of the aspect after GCN aggregation extracted by the
masking layer, the text feature output of the sequence neu-
ral network model LSTM and the attention mechanism. This
operation allows the fusion of the rich features hidden by
aspect in the text graph structurewith the text features learned
from the sequence model for attention calculation, so as to
fully integrate the vital information in aspect into the atten-
tion matrix obtained. We extract the aspect representation
alo = {0, . . . , hloβ , hloβ+1, h

lo
β+2, . . . , h

lo
β+m, . . . , 0} from the

sentence representation output by GCN, and then calculate
the attention mechanism with the sentence feature represen-
tation Hm by

αt =
β+m∑

i=β

hm
T

t hloi (16)

M1 =
n∑

t=1

exp (αt ) hmt∑n
i=1 exp (αi )

(17)

where M1 is the output of aspect-aware attention. We use
the dot product to calculate the semantic similarity between
aspect and other words.
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Aspect irrelevant information filter layer (AIIFL)

The attention mechanism may introduce noise (irrelevant
information) in the ABSA task. It may cause the model to
capture irrelevant sentimental information, thus reducing the
accuracy of the analysis. In order to alleviate this problem,we
designed an aspect irrelevant informationfilter layer (AIIFL).
The calculation formula is as follows:

h f
i = fi h

lo
i (18)

fi = tanh
(
Ws · hloi + Wa · alo + b f

)
(19)

where Ws and Wa are the weight matrix. b f is a bias term.

M2 = {h f
1 , h f

2 , h f
3 , . . . , h f

n } is the output matrix of the filter
layer.

Matrix fusion layer (MFL)

In order to effectively integrate the attention matrix M1 and
the aspect information correlation matrix M2, we designed a
matrix fusion layer to improve the feature representation of
sentences. The fusion formula is as follows:

M ′
1 = softmax

(
M1W1 (M2)

T
)
M2 (20)

M ′
2 = softmax

(
M2W2 (M1)

T
)
M1 (21)

M =
[
M

′
1, M

′
2

]
(22)

where W1 and W2 are learning weight matrix.
Finally, the obtained representation M is input to a linear

layer and the sentiment probability distribution is assigned
using the softmax function:

p(e) = softmax(WpM + bp) (23)

whereWp and bp are the learning weight matrix and the bias.

Loss function

The loss function of MFLGCN uses cross entropy and L2-
regularization: The input format for the above table is as
follows:

Loss = −
∑

(d,e)∈D
log p(e) + λ‖θ‖2 (24)

where D is the training dataset, e is the true label and p(e)
is the label of model prediction. θ represents all trainable
parameters, and λ is the coefficient of the regularization term.

Table 1 The details of the experimental datasets

Datasets Positive Neutral Negative

Train Test Train Test Train Test

Twitter 1561 173 3127 346 1560 173

Rest14 2164 728 637 196 807 196

Lap14 994 341 464 169 870 128

MAMS 3380 400 5042 329 2761 607

Experiments

Datasets

We conduct experiments on four public datasets in different
domains: Twitter [26], Restaurant, Laptop [27] and MAMS
[28]. These datasets have three sentiment polarities: positive,
negative, and neutral. The details of the experimental datasets
are shown in the Table 1.

Evaluationmetrics

We use accuracy and F1-score to evaluate the performance
of eachmodel. The evaluationmetrics are defined as follows:

Accuracy = (TN + TP)

(TN + TP + FN + FP)
(25)

Recall = TP

(FN + TP)
(26)

Precision = TP

(FP + TP)
(27)

F-measure = 2 (Precision ∗ Recall)

(Precision + Recall)
(28)

where TP, TN, FP and FN denote true positive, true negative,
false positive and false negative, respectively.

Implementation details

For our text graph construction, we set the number of words
in the sliding window to 5. In the semantic-based graph,
the initial word embeddings are pre-trained with Bert, and
the dimension is 768. Our experiment uses 300-dimensional
Glove vectors to initialize the word embeddings. The Bi-
LSTM hidden size is set to 300. We set the parameter of the
regulation to 0.00001. The batch size is set to 32. To allevi-
ate overfitting, we apply dropout at a rate of 0.5. We set the
number of GCN layers for the GCNmodel to 2. The number
of multi-head self-attention heads was 8. Adam optimizer is
used.
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Table 2 Comparison of
different experimental results on
public datasets

Model Twitter Lap14 Rest14 MAMS

ACC F1 ACC F1 ACC F1 ACC F1

ATAE-LSTM 69.65 67.40 69.14 63.18 78.60 67.02 77.56 73.03

MEMNET 71.48 69.88 69.90 65.71 79.61 69.64 64.57 62.70

IAN 72.50 70.81 72.05 67.38 79.26 70.09 76.60 71.17

RAM 69.36 67.30 74.49 71.35 80.23 70.80 – –

GCAE – – 71.98 68.71 75.74 62.45 77.59 73.25

MGAN 72.54 70.81 75.39 72.47 81.25 71.94 – –

AOA – – 72.62 67.52 79.97 70.42 77.26 72.29

TD-GAT 72.20 70.45 75.63 70.74 81.32 71.72 – –

ASGCN-DT 71.53 69.68 74.14 69.24 80.86 72.19 78.12 76.87

ASGCN-DG 72.15 70.40 75.55 71.05 80.77 72.02 78.84 77.23

kumaGCN 72.45 70.77 76.12 72.42 81.43 73.64 – –

BiGCN 74.16 73.35 74.59 71.84 81.97 73.48 – –

AEGCN 73.16 71.82 75.91 71.63 81.04 71.32 79.72 77.93

MFLGCN 74.42 73.33 76.33 72.57 83.25 74.54 80.98 79.93

The bold value is the highest value in this column

Comparison with the state-of-the-art

Comparison models

We use ASGCN and AEGCN as our main baseline models,
and we also compare our proposed model (MFLGCN) with
the following methods:

• ATAE-LSTM [1] combines aspect embedding and atten-
tion mechanism to ABSA.

• MEMNET [4] employs multi-hops attention level to rep-
resent the features of context.

• IAN [6] uses the combination of LSTM and interactive
attention mechanism to express the context and aspect.

• RAM [5] designs a model combining multiple attention
and memory networks to learn the sentence representa-
tion.

• GCAE [29] utilizes the gating units to combine the output
of CNN with two convolutional layers.

• MGAN [7] proposes a multi-grained attention mecha-
nism to capture the relationship between context and
aspect.

• AOA [2] obtains the corresponding representation of the
context and aspect through the interactive learning of
attention.

• TD-GAT [11] proposes a graph attention network over
the dependency tree to solve ABSA tasks.

• ASGCN [9] propose a model to combine attention mech-
anism and GCN on the dependency tree.

• kumaGCN [14] designs a latent graph structure to capture
aspect representations with syntactic information.

• BiGCN [13] propose a novel architecture which convo-
lutes over hierarchical syntactic and lexical graphs.

• AEGCN [12] utilizes a variety of attention mechanisms
and GCN to ABSA on the dependency tree structure.

Experimental results

Table 2 shows the comparison results on four benchmark
datasets, which demonstrate that the proposed MFLGCN
model is better than all comparison models. Accuracy and
F1-score are used to evaluate these models. Compared to the
traditional sequential model combined with attentionmecha-
nism such as ATAE-LSTM, MEMNET, IAN, RAM, GCAE,
MGAN, and AOA, graph convolution network (GCN) com-
bined with dependency trees such as ASGCN and AEGCN
are making use of the rich dependencies between words
and can avoid noises introduced by the attention mech-
anism, so its performance has been improved. However,
the methods based on dependency trees are inaccurate and
insensitive to domain-specific datasets. Compared with the
method of directly using dependency trees, the performance
of GCN combined with the improved dependency tree struc-
ture such as kumaGCN and BiGCN are higher than ASGCN
and AEGCN. In order to model multiple latent informa-
tion, we combined statistics, semantics, and part of speech to
construct the graph structure and built our sentiment classi-
fication model. Compared with the previous optimal model,
our proposed MFLGCN model achieves the best results in
terms of accuracy on all datasets and obtains the best macro-
averaged F1-score onLap14, Rest14 andMAMSdatasets. In
order to more vividly and concretely show the performance
of ourmodel, we average the accuracy of the sequencemodel
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Fig. 5 Comparison of average accuracy of different models

(ATAE-LSTM,MEMNET, IAN), the dependency tree-based
GCN model (ASGCN-DT, ASGCN-DG, AEGCN) and our
model (MFLGCN)on the four datasets. The results are shown
in Fig. 5. The green in the figure represents the sequence
model, the orange represents the dependency tree-based
model and the blue is our model. From the Fig. 5, we can
find that the proposed model obtains higher accuracy than
other models.

Ablation study

To further investigate the impact of each component of the
model on the experimental results, we make some ablation
experiments. The results are shown in Table 3.

In order to prove the effectiveness of part of speech graph
structure enhancement, MFLGCN w/o GE experiment is set
up. MFLGCN w/o GE means that we remove the graph
enhancement (GE) in the composition stage. It can be seen
from the results that the experimental results on the four
datasets have decreased after removing GE. Compared with
the complete model on the four datasets, when the GE was
ablated, the accuracy of themodel decreased by0.9%, 0.19%,

Fig. 6 Component performance comparison

0.07% and 0.66%, respectively. The attention matrix M1

obtained by combining the sequence model, GCN and atten-
tionmechanism canmake the feature representation of aspect
more relevant to the context in the model. The aspect-related
information matrix M2 obtained through the combination
of GCN output and aspect irrelevant information filter layer
(AIIFL) not only aggregates the rich information around
aspect nodes, but also alleviates the impact of noise in sen-
tences on aspect feature generation. In order to reflect the
effectiveness of ourmatrix fusion layer in fusing the attention
matrix and the information filtering matrix, we set experi-
ment w/o MFL_M1, which means ablation of M1 only uses
M2 for testing, and experiment w/o MFL_M2, which means
ablation of M2 only uses M1 for testing. Compared with
the complete model on the four datasets, when the attention
matrix M1 was ablated, the accuracy of the model decreased
by 2.3%, 1.31%, 1.9% and 1.05%, respectively. When the
aspect-related information matrix M2 was ablated, the accu-
racy of the model decreased by 1.03%, 1.12%, 0.93% and
0.81%, respectively. Based on the results, we can find that
the interaction of GE, Attention, and AIIFL is significant in
our model.

From Fig. 6, we can find that different components have
different effects on the performance of the model. The influ-
ence degree of each component on the model ranges from
high to low: Attention, AIIFL, and GE.

Table 3 Experimental results of
ablation study

Model Twitter Lap14 Rest14 MAMS

ACC F1 ACC F1 ACC F1 ACC F1

MFLGCN w/o GE 73.52 71.90 76.14 72.48 83.18 74.47 80.32 79.84

MFLGCN w/o MFL_M1 72.12 70.13 75.02 72.12 81.35 72.32 79.93 78.15

MFLGCN w/o MFL_M2 73.36 71.87 75.21 72.33 82.32 73.36 80.17 78.82

MFLGCN 74.42 73.33 76.33 72.57 83.25 74.54 80.98 79.93

The bold value is the highest value in this column
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Table 4 Experimental results of
different graph structures

Model Twitter Lap14 Rest14 MAMS

ACC F1 ACC F1 ACC F1 ACC F1

ASGCN-DG—our graph 72.03 71.91 75.61 71.23 81.16 73.52 79.07 77.82

ASGCN-DG—dependency tree 72.15 72.04 75.55 71.05 80.77 72.02 78.84 77.23

AEGCN—our graph 73.21 71.84 76.05 72.32 82.14 74.26 79.87 78.03

AEGCN—dependency tree 73.16 71.82 75.91 71.63 81.04 71.32 79.72 77.93

MFLGCN—dependency tree 73.35 71.88 76.07 72.45 82.20 73.83 79.96 78.72

MFLGCN 74.42 73.33 76.33 72.57 83.25 74.54 80.98 79.93

The bold value is the highest value in this column

Impact of different graph structures

In order to verify the effectiveness of our graph structure,
we use our graph to replace the dependency tree on ASGCN
and AEGCN, and use the dependency tree to do experiments
on our model. Table 4 shows the results of different graph
structures.

As can be seen from Table 4, when the baseline mod-
els (ASGCN and AEGCN) use our graph, the performance
is higher than that using the dependency tree. On Lap14,
Rest14 and MAMS datasets, the performance of ASGCN
model was improved by 0.06%, 0.39% and 0.23%, respec-
tively. On the Twitter dataset, our graph is inferior to the
dependency tree. After our research and analysis, the rea-
sons are as follows: (1) the design of the ASGCN model is
initially aimed at the dependency tree structure, so its data
processing and model components are more suitable for the
dependency tree structure and less adaptable to our graph
structure. (2) Twitter is an online social comment data, its
grammatical structure and verbal expression are relatively
irregular. On Twitter, Lap14, Rest14 and MAMS datasets,
the performance of AEGCNmodel was improved by 0.05%,
0.02%, 1.1% and 0.15%, respectively.We also use our model
to experiment on the dependency tree. The experimental
results show that our graph combined with our model has
better performance. On Twitter, Lap14, Rest14 and MAMS
datasets, the performance of our model was improved by
1.07%, 0.26%, 1.05% and 1.02%, respectively. From these
comparative experiments, it can be seen that the accuracy of
sentiment analysis is improved using our graph structure.

Impact of GCN layer number

To investigate the impact of number of GCN layer, we set the
number of GCN layer from one to five to evaluate our model
on four datasets, respectively.

From Figs. 7, 8, 9 and 10, we can see with the increase of
GCN layers, the performance of the model increases first and
then decreases. Thus, the performance of the model does not
always get improved with the increasing number of layers.

Fig. 7 Impact of GCN layer number on the Lap14

Fig. 8 Impact of GCN layer number on the Rest14

This is because a large layer number makes it hard to train
the model. Moreover, a larger layer number introduces more
parameters and results in a less generalizablemodel. To avoid
problems caused by large layers, the best GCN with two
layers is applied to train the model.
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Fig. 9 Impact of GCN layer number on the Twitter

Fig. 10 Impact of GCN layer number on the MAMS

Conclusion

In this paper, we propose a matrix fusion-based graph convo-
lution network (MFLGCN) over multiple latent information
graph structures to solve aspect-based sentiment analysis
tasks. The learned graph structure combines semantic, statis-
tic, and part of speech information to incorporate more latent
information into the graph structure. MFLGCN can gen-
erate efficient and informative word coding. Experiments
show that our graph structure leads to a more efficient
node representation. Comprehensive experiments illustrate
the effectiveness of our model. The proposed model outper-
forms the baseline models on four public datasets: Twitter,
Lap14, Rest14, andMAMS. In addition, we performed abla-
tion experiments on our model to prove the indispensable
and effectiveness of each component of our model.
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