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Abstract
Similarity measures are very effective and meaningful tool used for evaluating the closeness between any two attributes
which are very important and valuable to manage awkward and complex information in real-life problems. Therefore, for
better handing of fuzzy information in real life, Ullah et al. (Complex Intell Syst 6(1): 15–27, 2020) recently introduced the
concept of complex Pythagorean fuzzy set (CPyFS) and also described valuable and dominant measures, called various types
of distance measures (DisMs) based on CPyFSs. The theory of CPyFS is the essential modification of Pythagorean fuzzy
set to handle awkward and complicated in real-life problems. Keeping the advantages of the CPyFS, in this paper, we first
construct an example to illustrate that a DisM proposed by Ullah et al. does not satisfy the axiomatic definition of complex
Pythagorean fuzzy DisM. Then, combining the 3D Hamming distance with the Hausdorff distance, we propose a new DisM
for CPyFSs, which is proved to satisfy the axiomatic definition of complex Pythagorean fuzzy DisM. Moreover, similarly to
some DisMs for intuitionistic fuzzy sets, we present some other new complex Pythagorean fuzzy DisMs. Finally, we apply
our proposed DisMs to a building material recognition problem and a medical diagnosis problem to illustrate the effectiveness
of our DisMs. Finally, we aim to compare the proposed work with some existing measures is to enhance the worth of the
derived measures.
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Introduction

Similarity and dissimilarity are important because they are
used by a number of data mining techniques, such as clus-
tering nearest neighbor classification and anomaly detection.
The term proximity is used to refer to either similarity or dis-
similarity. The similarity between two objects is a numeral
measure of the degree to which the two objects are alike.
Consequently, similarities are higher for pairs of objects that
are more alike. Similarities are usually non-negative and are
often between 0 (no similarity) and 1 (complete similar-
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ity). The dissimilarity between two objects is the numerical
measure of the degree to which the two objects are differ-
ent. Dissimilarity is lower for more similar pairs of objects.
Frequently, the term distance is used as a synonym for dis-
similarity. Dissimilarities sometimes fall in the interval [0, 1,
but it is also common for them to range from 0 to ∞. Cer-
tain people have diagnosed the theory of similarity measures
and distance measures for classical information and because
of this reason, we loss a lot of information. For managing
with such sort of issues, Zadeh [46] introduced the concept
of fuzzy set (FS) by using a function from the universe of
discourse to [0, 1], which was called the membership degree
function, to describe the importance of an element in the uni-
verse of discourse. Then, Zadeh’s fuzzy set theory constitutes
the basis of fuzzy decision-making [10,11,19]. However, the
FS can only deal with the situation containing two oppo-
site responses. Therefore, it failed to deal with the situation
with hesitant/neutral state of “this and also that”. Accord-
ing to this, Atanassov [8] generalized Zadeh’s fuzzy set by
proposing the concept of intuitionistic fuzzy sets (IFSs), char-
acterized by a membership function and a non-membership
functionmeeting the condition that their sum at every point is
less than or equal to 1. In the theory of IFSs, the condition that
the sum of the membership degree and the non-membership
degree is less than or equal to 1 induces some decision
evaluation information that cannot be expressed effectively.
Hence, the range of their applications is limited. To overcome
this shortcoming, Yager [42–44] proposed the concepts of
Pythagorean fuzzy sets (PFSs) and q-rung orthopair fuzzy
sets (q-ROFSs). These sets satisfy the condition that the
square sum or the qth power sum of the membership degree
and the non-membership degree is less than or equal to 1.
It is determined from the aforementioned in-depth research
and DMPs that their use is restricted to handling only the
data’s uncertainty while failing to address its fluctuations at
a particular point in time. But data derived from “medical
research, a database for biometric and facial recognition”
are constantly updated in tandem with time. Thus, a range
of MD is expanded from a real subset to the unit disc of
the complex plane to cope with these kinds of difficulties,
which developed the idea of the complex fuzzy sets (CFSs)
Ramot et al. [31]. Further, Alkouri and Salleh [7] introduced
the concepts of complex intuitionistic fuzzy sets (CIFSs). To
enlarge the representing domain, Ullah et al. [36] proposed
the concept of complex Pythagorean fuzzy sets (CPyFSs),
and Liu et al. [20] introduced the concept of complex q-
rung orthopair fuzzy sets (Cq-ROFSs). Since then, CIFSs,
CPyFSs, and Cq-ROFSs have been widely applied to various
fields, such as MCDM/MADM [1–6,12,15,20–22,24,25,32,
38,40], medical diagnosis [13,27–29,32], pattern recognition
[12,13,27,36], cluster analysis [12,47], and image processing
[16].

It is necessary to gauge the degree of discriminating
between the pairs of sets due to the intricate decision-making
process. The most effective tools for this purpose are instant
messengers. The decision-maker have the ability to assess
the degree of discriminating between the sets among the
many measures like entropy, similarity, inclusion, etc. The
major goal of this work is to create some exponential-
based decision-makers to quantify the information, which
is encouraged by the CPyFS model’s characteristics and
the quality of decision-maker. In order to achieve this, the
data was designated under the CPyFS model to quantify the
data using the suggested metric for resolving the decision-
making procedures. The qualities of a few axioms are studied
in detail. Later, an algorithm was developed based on the
proposed investigation, to assess the differences for vari-
ous types of complex fuzzy sets, the normalized distance
measure (DisM) and the similarity measure (SimM), being
a pair of dual concepts, are important tools for decision-
making and pattern recognition under CPyFSs and CIFSs
frameworks. For the CIFSs, Rani and Garg [32] presented
a few two-dimensional (2D) CIFDisMs by using the Ham-
ming, Euclidean, and Hausdorff distances. Then, Garg and
Rani [12] proposed some new CIF information measures,
including SimMs,DisMs, entropies, and inclusionmeasures)
and obtained the transformation relationships among them.
Meanwhile, they [12] developed a CIF clustering algorithm.
For Cq-ROFSs, Garg et al. [13] gave the notion of Cq-ROF
dice SimM and weighted Cq-ROF dice SimM and derived
some new Cq-ROF dice SimMs. Liu et al. [21] proposed
some cosine DisMs and SimMs for Cq-ROFSs and obtained
developed a TOPSISmethod under Cq-ROFS framework. To
distinguish different Cq-ROFSs with high similarity, Mah-
mood andAli [25] obtained somenewSimMs forCq-ROFSs.
For CPyFSs, Aldring and Ajay [5] developed a MCGDM
method by introducing a new CPyF projection measure
between the alternatives and the relative CPyF ideal point.
Based on the Hamming distance and the Hausdorff distance,
Ullah et al. [36] developed two parametricDisMs forCPyFSs
and applied to a buildingmaterial recognition problem.How-
ever, because the differentweights are assigned to the degrees
of membership, non-membership, and hesitancy for the 3D
DisM D2

CPyFS of Ullah et al. [36], the may cause an unrea-

sonable result that the DisM D2
CPyFS does not satisfy the

axiomatic definition of complex Pythagorean fuzzy DisM
(seeExample 1). The geometrical shape of the proposedwork
is described in the form of Fig. 1.

To overcome the drawback of Ullah et al.’s DisM D2
CPyFS

in [36], we introduce a new 3D DisM for CPyFSs by
combining the 3D Hamming distance with the Hausdorff
distance and prove that it satisfies the axiomatic definition
of CPyFDisM. Moreover, similarly to the DisMs for IFSs in
[14,34,37,39,45], we propose some other new CPyFDisMs.
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Fig. 1 Geometrical
representation of the proposed
work

Finally, we give the comparative analysis by using our pro-
posed DisMs to a building material recognition problem and
a medical diagnosis problem to illustrate the effectiveness
of our DisMs. The comparative analysis results also indicate
the unreasonableness of Ullah et al.’s DisM D2

CPyFS
.

Preliminaries

This section gives some elements on IFS, PFS, CIFS, and
CPyFS. Throughout this paper, let O

C
= {z ∈ C | |z| ≤ 1}.

Intuitionistic fuzzy set (IFS)

Definition 2.1 ([9, Definition 1.1]). An intuitionistic fuzzy
set (IFS) I in X is defined as

I = {〈ϑ,PI (ϑ),OI (ϑ)〉 | ϑ ∈ X
}
, (1)

where the functions PI : X −→ [0, 1] and OI : X −→
[0, 1] define the degree of membership and the degree of
non-membership of the element ϑ ∈ X to the set I , respec-
tively, and for every ϑ ∈ X,PI (ϑ)+OI (ϑ) ≤ 1. Moreover,
the hesitancy degree HI (ϑ) of an element ϑ belonging
to I is defined by HI (ϑ) = 1 − PI (ϑ) − OI (ϑ). The
pair 〈PI (ϑ),OI (ϑ)〉 is called an intuitionistic fuzzy num-
ber (IFN) by Xu [41]. Let � be the set of all IFNs, i.e.,
� = {〈P,O〉 ∈ [0, 1]2 | P + O ≤ 1}.

Pythagorean fuzzy set (PFS)

Definition 2.2 ([42]). A Pythagorean fuzzy set (PFS) P in X
is defined as

P = {〈ϑ,PP (ϑ),OP (ϑ)〉 | ϑ ∈ X
}
, (2)

where the functions PP : X −→ [0, 1] and OP : X −→
[0, 1] define the degree of membership and the degree of non-
membership of the element ϑ ∈ X to the set P , respectively,
and for every ϑ ∈ X, P2

P
(ϑ) + O2

P
(ϑ) ≤ 1. Moreover, the

hesitancy degree HP (ϑ) of an element ϑ belonging to P is

defined by HP (ϑ) =
√
1 − P2

P
(ϑ) − O2

P
(ϑ).

Complex intuitionistic fuzzy set (CIFS)

Definition 2.3 ([7, Definition 3.1], [36, Definition 6]). A
complex intuitionistic fuzzy set (CIFS) C in X is defined as

C = {〈ϑ,PC (ϑ),OC (ϑ)〉 | ϑ ∈ X
}
, (3)

where the functions PC : X −→ O
C
and OC : X −→ O

C

define the degree of membership and the degree of non-
membership of the element ϑ ∈ X to the set C , respectively,
and for every ϑ ∈ X, PC (ϑ) = TC (ϑ) · e2π i·WTC

(ϑ)

and OC (ϑ) = FC (ϑ) · e2π i·WFC
(ϑ) satisfying that 0 ≤

TC (ϑ), FC (ϑ) ≤ 1, 0 ≤ WTC
(ϑ),WFC

(ϑ) ≤ 1, andTC (ϑ)+
FC (ϑ) ≤ 1, WTC

(ϑ) + WFC
(ϑ) ≤ 1. Moreover, the hesi-

tancy degreeHC (ϑ) = RC (ϑ) · e2π i·WRC
(ϑ) of the element ϑ

belonging to C is defined by RC (ϑ) = 1 − TC (ϑ) − FC (ϑ)

and WRC
(ϑ) = 1 − WTC

(ϑ) − WFC
(ϑ).
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Complex pythagorean fuzzy set (CPyFS)

Definition 2.4 ([36, Definition 7]). A complex Pythagorean
fuzzy set (CPyFS) C in X is defined as

C =

⎧
⎪⎨

⎪⎩
〈ϑ,PC (ϑ),OC (ϑ)

︸ ︷︷ ︸
C(ϑ)

〉
∣∣∣ ϑ ∈ X

⎫
⎪⎬

⎪⎭
, (4)

where the functions PC : X −→ O
C
and OC : X −→

O
C
define the degree of membership and the degree of non-

membership of the element ϑ ∈ X to the set C, respectively,
and for every ϑ ∈ X, PC(ϑ) = TC(ϑ) · e2π i·WTC (ϑ) (i =√−1) and OC(ϑ) = FC(ϑ) · e2π i·WFC (ϑ) satisfying that

0 ≤ TC(ϑ), FC(ϑ) ≤ 1, 0 ≤ WTC(ϑ),WFC(ϑ) ≤ 1,

and T 2
C(ϑ) + F2

C(ϑ) ≤ 1, W 2
TC(ϑ) + W 2

FC(ϑ) ≤ 1.

(5)

Moreover, thehesitancydegreeHC(ϑ) = RC(ϑ)·e2π i·WRC (ϑ)

of the element ϑ belonging to C is defined by RC(ϑ) =√
1−T 2

C(ϑ)−F2
C(ϑ) andWRC(ϑ)=

√
1−W 2

TC
(ϑ)−W 2

FC
(ϑ).

Let CPyFS(X) denote the set of all CPyFSs in X.

In [36], the pair (TC(ϑ) ·e2π i·WTC (ϑ), FC(ϑ) ·e2π i·WFC (ϑ))

satisfying the condition in (5) is called a complexPythagorean
fuzzy set (CPyFN). For convenience, use C = (TC ·
e2π i·WTC , FC ·e2π i·WFC ) to represent a CPyFNC, which satis-
fies 0 ≤ TC, FC ≤ 1, 0 ≤ WTC ,WFC ≤ 1, and T 2

C + F2
C ≤ 1,

W 2
TC

+ W 2
FC

≤ 1. Let CPyFN denote the set of all CPyFNs,

i.e., CPyFN = {(TC · e2π i·WTC , FC · e2π i·WFC ) | 0 ≤ TC, FC ≤
1, 0 ≤ WTC ,WFC ≤ 1, and T 2

C+F2
C ≤ 1, W 2

TC
+W 2

FC
≤ 1}.

Meanwhile, Ullah et al. [36] introduced the following
basic operations for CPyFSs and CPyFNs.

Definition 2.5 ([36, Definition 8]). (1) Let C1 = (TC1 ·
e
2π i·WTC1 , FC1 · e2π i·WFC1 ) and C2 = (TC2 · e2π i·WTC2 , FC2 ·
e
2π i·WFC2 ) be two CPyFNs. Define

(i) (Inclusion) C1 ⊆ C2 if and only if TC1 ≤ TC2 , FC1 ≥
FC2 , and WTC1

≤ WTC2
, WFC1

≥ WFC2
;

(ii) C1 = C2 if and only if TC1 = TC2 , FC1 = FC2 , and
WTC1

= WTC2
, WFC1

= WFC2
;

(iii) (Complement) (C1)
� =(FC1 ·e2π i·WFC1 , TC1 ·e2π i·WTC1 ).

(2) Let C1 and C2 be two CPyFSs in X. Define

(i) (Inclusion) C1 ⊆ C2 if and only if, for any ϑ ∈ X,
C1(ϑ) ⊆ C2(ϑ);

(ii) C1 = C2 if and only if, for any ϑ ∈ X, C1(ϑ) = C2(ϑ);
(iii) (Complement) (C1)

� = {〈ϑ, (C1(ϑ))� | ϑ ∈ X〉}.

Distance and similarity measures on CPyFSs

Definition 2.6 A function D : CPyFS(X) ×CPyFS(X) −→
R is a normalized distance measure (DisM) on CPyFS(X)

if it satisfies the following conditions: for any C1, C2, C3 ∈
CPyFS(X),

(1) 0 ≤ D(C1,C2) = D(C2,C1) ≤ 1;
(2) D(C1,C2) = 0 if and only if C1 = C2;
(3) D(C1,C3) ≤ D(C1,C2) + D(C2,C3);
(4) If C1 ⊆ C2 ⊆ C3, then D(C1,C3) ≥ D(C1,C2) and

D(C1,C3) ≥ D(C2,C3).

Definition 2.7 A function S : CPyFS(X) × CPyFS(X) −→
R is a similarity measure (SimM) on CPyFS(X) if it satisfies
the following conditions: for any C1, C2, C3 ∈ CPyFS(X),

(1) 0 ≤ S(C1,C2) = S(C2,C1) ≤ 1;
(2) S(C1,C2) = 1 if and only if C1 = C2;
(3) If C1 ⊆ C2 ⊆ C3, then S(C1,C3) ≤ S(C1,C2) and

S(C1,C3) ≤ S(C2,C3).

Drawback of DisM of Ullah et al. [36]

LetX = {ϑ1, ϑ2, . . . , ϑ�} andC1 = {(TC1(ϑ j )·e2π i·WTC1
(ϑ j )

,

FC1(ϑ j ) · e2π i·WFC1
(ϑ j )

) | 1 ≤ j ≤ �} and C2 = {(TC2(ϑ j ) ·
e
2π i·WTC2

(ϑ j )
, FC2(ϑ j ) · e2π i·WFC2

(ϑ j )
) | 1 ≤ j ≤ �} be two

CPyFSs on X. Recently, Ullah et al. [36] introduced two
DisMs D1

CPyFS
and D2

CPyFS
for CPyFSs as follows (see [36,

Definition 12]):

D1
CPyFS

(C1,C2) = 1

2�

�∑

j=1

[
a1 · |T 2

C1

(
x j

) − T 2
C2

(
x j

) |

+ b1 · |F2
C1

(
x j

) − F2
C2

(
x j

) | + c1 · max{|T 2
C1

(
x j

)

− T 2
C2

(
x j

) |, |F2
C1

(
x j

) − F2
C2

(
x j

) |}
a2 · |W 2

TC1

(
x j

) − W 2
TC2

(
x j

) |
+ b2 · |W 2

FC1

(
x j

) − W 2
FC2

(
x j

) |
+ c2 · max

{|W 2
TC1

(
x j

) − W 2
TC2

(
x j

) |,
|W 2

FC1

(
x j

) − W 2
FC2

(
x j

) |}],
(6)

and

D2
CPyFS

(C1,C2) = 1

2�

�∑

j=1

[
a1 · |T 2

C1

(
x j

) − T 2
C2

(
x j

) |

+ b1 · |F2
C1

(
x j

) − F2
C2

(
x j

) |
+ r1 · |R2

C1

(
x j

) − R2
C2

(
x j

) |
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+ c1 · max{|T 2
C1

(
x j

) − T 2
C2

(
x j

) |,
|F2

C1

(
x j

) − F2
C2

(
x j

) |,
× |R2

C1

(
x j

) − R2
C2

(
x j

) |}a2 · |W 2
TC1

(
x j

)

− W 2
TC2

(
x j

) | + b2 · |W 2
FC1

(
x j

) − W 2
FC2

(
x j

) |
+ r2 · |W 2

RC1

(
x j

) − W 2
RC2

(
x j

) |
+ c2 · max{|W 2

TC1

(
x j

) − W 2
TC2

(
x j

) |,
|W 2

FC1

(
x j

) − W 2
FC2

(
x j

) |,
|W 2

RC1

(
x j

) − W 2
RC2

(
x j

) |}], (7)

where 0 ≤ ai , bi , ci , ri ≤ 1 and ai + bi + ci + ri = 1.
Meanwhile, Ullah et al. [36] proved that DisM D2

CPyFS
has

the following property.

Property If C1 ⊆ C2 ⊆ C3, then D2
CPyFS

(C1,C3) ≥
D2

CPyFS
(C1,C2) and D2

CPyFS
(C1,C3) ≥ D2

CPyFS
(C2,C3).

The following example shows that Property 3 does not
hold, and thus the DisM D2

CPyFS
does not satisfy the axiomatic

definition of complex Pythagorean fuzzy DisM.

Example 1 Let X = {ϑ} and C1 = (0 · e2π i·0, 1 · e2π i·0),
C2 = (0 · e2π i·0, 0 · e2π i·0), and C3 = (1 · e2π i·0, 0 · e2π i·0)
be three CPyFSs on X and choose a1 = a2 = b1 = b2 =
c1 = c2 = 0.1 and r1 = r2 = 0.7. Clearly, C1 ⊆ C2 ⊆ C3.
By direct calculation, we have

D2
CPyFS

(C1,C2) = 0.1 × 0 + 0.1 × 1 + 0.7 × 1 + 0.1 × 1 = 0.9,

and

D2
CPyFS

(C1,C3) = 0.1 × 1 + 0.1 × 1 + 0.7 × 0 + 0.1 × 1 = 0.3,

implying that D2
CPyFS

(C1,C3) < D2
CPyFS

(C1,C2). This means
that Property 3 does not hold because C1 ⊆ C2 ⊆ C3.

A new complex Pythagorean fuzzy DisM

A novel DisM onCPyFN

Let C1 = (TC1 · e2π i·WTC1 , FC1 · e2π i·WFC1 ) and C2 = (TC2 ·
e
2π i·WTC2 , FC2 ·e2π i·WFC2 ) be two CPyFNs. Define the DisM
DWu between C1 and C2 by

DWu (C1,C2) = 1

2

[
1

4
·
(
|T 2

C1
− T 2

C2
| + |F2

C1
− F2

C2
|

+|R2
C1

− R2
C2

|
)

+1

2
· max{|T 2

C1
− T 2

C2
|, |F2

C1
− F2

C2
|,

|R2
C1

− R2
C2

|}

+1

4
·
(
|W 2

TC1
− W 2

TC2
| + |W 2

FC1
− W 2

FC2
|

+|W 2
RC1

− W 2
RC2

|
)

+1

2
· max{|W 2

TC1
− W 2

TC2
|, |W 2

FC1
− W 2

FC2
|,

|W 2
RC1

− W 2
RC2

|}
]
. (8)

Proposition 4.1 0 ≤ DWu(C1,C2) ≤ 1.

Proof From T 2
C1

+ F2
C1

+ R2
C1

= 1, T 2
C2

+ F2
C2

+ R2
C2

= 1,

W 2
TC1

+W 2
FC1

+W 2
RC1

= 1, and W 2
TC2

+W 2
FC2

+W 2
RC2

= 1,

it follows that |T 2
C1

− T 2
C2

| + |F2
C1

− F2
C2

| + |R2
C1

− R2
C2

| ≤
2, max{|T 2

C1
− T 2

C2
|, |F2

C1
− F2

C2
|, |R2

C1
− R2

C2
|} ≤ 1,

|W 2
TC1

−W 2
TC2

|+ |W 2
FC1

−W 2
FC2

|+ |W 2
RC1

−W 2
RC2

| ≤ 2, and

max{|W 2
TC1

−W 2
TC2

|, |W 2
FC1

−W 2
FC2

|, |W 2
RC1

−W 2
RC2

|} ≤ 1,

and thus DWu(C1,C2) ≤ 1 by Eq. (8). ��
Proposition 4.2 (1) DWu(C1,C2) = DWu(C2,C1).
(2) DWu(C1,C2) = 0 if and only if C1 = C2.

Proof It follows directly from Eq. (8). ��
Proposition 4.3 For C1, C2, C3 ∈ CPyFN , DWu(C1,C3) ≤
DWu(C1,C2) + DWu(C2,C3).

Proof It follows directly from Eq. (8) and triangle inequality.
��

Proposition 4.4 Let C1, C2, C3 ∈ CPyFN . If C1 ⊆ C2 ⊆
C3, then DWu(C1,C3) ≥ DWu(C1,C2) and DWu(C1,C3) ≥
DWu(C2,C3).

Proof By C1 ⊆ C2 ⊆ C3, it follows that T 2
C1

≤ T 2
C2

≤
T 2
C3

and F2
C1

≥ F2
C2

≥ F2
C3
. To prove DWu(C1,C3) ≥

DWu(C1,C2), we consider the following four cases:
(i) If R2

C2
≥ R2

C1
and R2

C3
≥ R2

C1
, then

|R2
C1

− R2
C2

| = (
1 − T 2

C2
− F2

C2

) − (
1 − T 2

C1
− F2

C1

)

= (
F2
C1

− F2
C2

) + (
T 2
C1

− T 2
C2

)

≤ F2
C1

− F2
C2

,

|R2
C1

− R2
C3

| = (
1 − T 2

C3
− F2

C3

) − (
1 − T 2

C1
− F2

C1

)

= (
F2
C1

− F2
C3

) + (
T 2
C1

− T 2
C3

)

≤ F2
C1

− F2
C3

,

|T 2
C1

− T 2
C2

| + |F2
C1

− F2
C2

| + |R2
C1

− R2
C2

|
= T 2

C2
− T 2

C1
+ F2

C1
− F2

C2
+ R2

C2
− R2

C1

= T 2
C2

− T 2
C1

+ F2
C1

− F2
C2

+(
1 − T 2

C2
−F2

C2

)

− (
1 − T 2

C1
− F2

C1

)

= 2
(
F2
C1

− F2
C2

)
,
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and

|T 2
C1

− T 2
C3

| + |F2
C1

− F2
C3

| + |R2
C1

− R2
C3

|
= T 2

C3
− T 2

C1
+ F2

C1
− F2

C3
+ R2

C3
− R2

C1

= T 2
C3

− T 2
C1

+ F2
C1

− F2
C3

+
(
1 − T 2

C3
− F2

C3

)

−
(
1 − T 2

C1
− F2

C1

)

= 2
(
F2
C1

− F2
C3

)
.

These, together with T 2
C1

≤ T 2
C2

≤ T 2
C3

and F2
C1

≥ F2
C2

≥
F2
C3
, imply that

|T 2
C1

− T 2
C2

| + |F2
C1

− F2
C2

| + |R2
C1

− R2
C2

|
≤ |T 2

C1
− T 2

C3
|

+|F2
C1

− F2
C3

| + |R2
C1

− R2
C3

|,

and

max{|T 2
C1

− T 2
C2

|, |F2
C1

− F2
C2

|, |R2
C1

− R2
C2

|}
=max{T 2

C2
− T 2

C1
, F2

C1
− F2

C2
}

≤max{T 2
C3

− T 2
C1

, F2
C1

− F2
C3

}
=max{|T 2

C1
− T 2

C3
|, |F2

C1
− F2

C3
|, |R2

C1
− R2

C3
|}.

And thus, 1
4 · (|T 2

C1
− T 2

C2
| + |F2

C1
− F2

C2
| + |R2

C1
− R2

C2
|)

+ 1
2 · max{|T 2

C1
− T 2

C2
|, |F2

C1
− F2

C2
|, |R2

C1
− R2

C2
|} ≤ 1

4 ·
(|T 2

C1
− T 2

C3
| + |F2

C1
− F2

C3
| + |R2

C1
− R2

C3
|) + 1

2 ·max{|T 2
C1

−T 2
C3

|, |F2
C1

−F2
C3

|, |R2
C1

−R2
C3

|}. Similarly, it canbeverified

that 1
4 · (|W 2

TC1
−W 2

TC2
|+ |W 2

FC1
−W 2

FC2
|+ |W 2

RC1
−W 2

RC2
|)

+ 1
2 ·max{|W 2

TC1
−W 2

TC2
|, |W 2

FC1
−W 2

FC2
|, |W 2

RC1
−W 2

RC2
|}

≤ 1
4 · (|W 2

TC1
− W 2

TC3
| + |W 2

FC1
− W 2

FC3
| + |W 2

RC1
− W 2

RC3
|)

+ 1
2 ·max{|W 2

TC1
−W 2

TC3
|, |W 2

FC1
−W 2

FC3
|, |W 2

RC1
−W 2

RC3
|}.

Therefore,

DWu(C1,C3) ≥ DWu(C1,C2).

(ii) If R2
C2

≤ R2
C1

and R2
C3

≤ R2
C1
, similarly to the proof

of (i), it can be verified that

|R2
C1

− R2
C2

| ≤ T 2
C2

− T 2
C1

, |R2
C1

− R2
C3

| ≤ T 2
C3

− T 2
C1

,

|T 2
C1

− T 2
C2

| + |F2
C1

− F2
C2

| + |R2
C1

− R2
C2

|
= 2(T 2

C2
− T 2

C1
),

and

|T 2
C1

− T 2
C3

| + |F2
C1

− F2
C3

| + |R2
C1

− R2
C3

|
=2

(
T 2
C3

− T 2
C1

)
.

These, together with T 2
C1

≤ T 2
C2

≤ T 2
C3

and F2
C1

≥ F2
C2

≥
F2
C3
, imply that

|T 2
C1

− T 2
C2

| + |F2
C1

− F2
C2

| + |R2
C1

− R2
C2

|
≤ |T 2

C1
− T 2

C3
|

+|F2
C1

− F2
C3

| + |R2
C1

− R2
C3

|,

and

max{|T 2
C1

− T 2
C2

|, |F2
C1

− F2
C2

|, |R2
C1

− R2
C2

|}
=max{T 2

C2
− T 2

C1
, F2

C1
− F2

C2
}

≤max{T 2
C3

− T 2
C1

, F2
C1

− F2
C3

}
=max{|T 2

C1
− T 2

C3
|, |F2

C1
− F2

C3
|, |R2

C1
− R2

C3
|}.

And thus, it can be similarly verified that

DWu(C1,C3) ≥ DWu(C1,C2).

(iii) If R2
C2

≥ R2
C1

and R2
C3

≤ R2
C1
, i.e., 1− T 2

C2
− F2

C2
≥

1 − T 2
C1

− F2
C1

and 1 − T 2
C3

− F2
C3

≤ 1 − T 2
C1

− F2
C1
, then,

by F2
C1

≥ F2
C2

≥ F2
C3
, we have F2

C1
− F2

C2
≥ T 2

C2
− T 2

C1
and

F2
C1

− F2
C2

≤ F2
C1

− F2
C3

≤ T 2
C3

− T 2
C1
. Meanwhile, by (i)

and (ii), we have

|R2
C1

− R2
C2

| ≤ F2
C1

− F2
C2

,

|R2
C1

− R2
C3

| ≤ T 2
C3

− T 2
C1

,

|T 2
C1

− T 2
C2

| + |F2
C1

− F2
C2

| + |R2
C1

− R2
C2

|
= 2

(
F2
C1

− F2
C2

)
,

and

|T 2
C1

− T 2
C3

| + |F2
C1

− F2
C3

| + |R2
C1

− R2
C3

|
= 2(T 2

C3
− T 2

C1
).

These, together with F2
C1

− F2
C2

≤ T 2
C3

− T 2
C1

and T 2
C1

≤
T 2
C2

≤ T 2
C3

and F2
C1

≥ F2
C2

≥ F2
C3
, imply that

|T 2
C1

− T 2
C2

| + |F2
C1

− F2
C2

| + |R2
C1

− R2
C2

| ≤ |T 2
C1

− T 2
C3

|
+|F2

C1
− F2

C3
| + |R2

C1
− R2

C3
|,

and

max{|T 2
C1

− T 2
C2

|, |F2
C1

− F2
C2

|, |R2
C1

− R2
C2

|}
= max{T 2

C2
− T 2

C1
, F2

C1
− F2

C2
}

≤ max{T 2
C3

− T 2
C1

, F2
C1

− F2
C3

}
= max{|T 2

C1
− T 2

C3
|, |F2

C1
− F2

C3
|, |R2

C1
− R2

C3
|}.
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And thus, it can be similarly verified that

DWu(C1,C3) ≥ DWu(C1,C2).

(iv) If R2
C2

≤ R2
C1

and R2
C3

≥ R2
C1
, similarly to the

proof of (iii), it is not difficult to check that DWu(C1,C3) ≥
DWu(C1,C2). ��

Summing Propositions 4.1–4.4, we have the following
result.

Theorem 4.1 (1) The function DWu defined by Eq. (8) is a
normalized distance measure on CPyFN .

(2) The function SWu defined by SWu(C1,C2) = 1 −
DWu(C1,C2) is similarity measure on CPyFN .

Remark 1 (1) Park et al. [30] propose a similar distance for-
mula to Eq. (8) for IFNs as follows: for α1 = 〈P1,O1〉,
α2 = 〈P2,O2〉 ∈ �,

dP (α1, α2) = 1

4
(|P1 − P2| + |O1 − O2| + |H1 − H2|)

+ 1

2
max{|P1 − P2|, |O1 − O2|, |H1 − H2|},

whereH1 = 1−P1−O1 andH2 = 1−P2−O2, and proved
that dP is a DisM on � (see [30, Theorem 1]). In the proof
of [30, Theorem 1], they claimed that, for α1, α2, α3 ∈ �

with α1 ⊆ α2 ⊆ α3, one has H1 ≥ H2 ≥ H3. However,
the claim does not hold, leading to the result that the proof
of [30, Theorem 1] is not right. In fact, choose α1 = 〈0, 1〉,
α2 = 〈0, 0〉, and α3 = 〈1, 0〉. Clearly, α1 ⊆ α2 ⊆ α3 and
H2 > H1 = H3, which contradicts the claim.

(2) If we consider the imaginary part as zero in Eq. (8) and
replace the constraintP2 +O2 ≤ 1 byP+O ≤ 1, then the
distance DWu reduces to IF environment. By Theorem 4.1,
we know that dP is a DisM on �.

Motivated by the DisMs for IFNs in [14,34,37,39,45], we
introduced the following new DisMs for CPyFNs.

Let C1 = (TC1 · e2π i·WTC1 , FC1 · e2π i·WFC1 ) and C2 =
(TC2 ·e2π i·WTC2 , FC2 ·e2π i·WFC2 )be twoCPyFNs.Then, define

(1) Szmidt and Kacprzyk’s complex Pythagorean fuzzy
DisMs ( [34]):

DH
SK

(C1,C2) = |T 2
C1

− T 2
C2

| + |F2
C1

− F2
C2

| + |R2
C1

− R2
C2

|
4

+
|W 2

TC1
− W 2

TC2
| + |W 2

FC1
− W 2

FC2
| + |W 2

RC1
− W 2

RC2
|

4
,

(9)

and

DE
SK

(C1,C2) =

√
|T 2

C1
−T 2

C2
|2+|F2

C1
−F2

C2
|2

2

2

+

√
|W 2

TC1
−W 2

TC2
|2+|W 2

FC1
−W 2

FC2
|2

2

2
.

(10)

(2) Wang and Xin’s complex Pythagorean fuzzy DisMs
([37]):

DWX1 (C1,C2) = 1

2

[
1

4
·
(
|T 2

C1
− T 2

C2
| + |F2

C1
− F2

C2
|
)

+ 1

2
· max{|T 2

C1
− T 2

C2
|, |F2

C1
− F2

C2
|}

+ 1

4
·
(
|W 2

TC1
− W 2

TC2
| + |W 2

FC1
− W 2

FC2
|
)

+1

2
· max{|W 2

TC1
−W 2

TC2
|, |W 2

FC1
−W 2

FC2
|}
]

,

(11)

and

DWX2 (C1,C2) = |T 2
C1

− T 2
C2

| + |F2
C1

− F2
C2

|
4

+
|W 2

TC1
− W 2

TC2
| + |W 2

FC1
− W 2

FC2
|

4
.

(12)

(3) Grzegorzewski’s complex Pythagorean fuzzy DisM
([14]):

DG(C1,C2) = 1

2

[
max{|T 2

C1
− T 2

C2
|, |F2

C1
− F2

C2
|}

+max{|W 2
TC1

− W 2
TC2

|, |W 2
FC1

− W 2
FC2

|}
]
,

(13)

(4) Yang and Chiclana’s complex Pythagorean fuzzy DisM
( [45]):

DYC (C1,C2)

= max{|T 2
C1

− T 2
C2

|, |F2
C1

− F2
C2

|, |R2
C1

− R2
C2

|}
2

+
max{|W 2

TC1
− W 2

TC2
|, |W 2

FC1
− W 2

FC2
|, |W 2

RC1
− W 2

RC2
|}

2
.

(14)

(5) Wu et al.’s complex Pythagorean fuzzy DisM
([39]):
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D(1)
Wu

(C1,C2)

=

√
1
2

(
L

(
1 − T 2

C1
, 1 − T 2

C2

)
+ L

(
F2
C1

, F2
C2

))

2√
1
2

(
L

(
1 − W 2

TC1
, 1 − W 2

TC2

)
+ L

(
W 2

FC1
,W 2

FC2

))

2
,

(15)

where L(p, q) = p · log2 2p
p+q + q · log2 2q

p+q .

According to the proof in [14,34,37,39,45], by Proposi-
tions 4.1–4.4, it can be verified that the above DisMs DH

SK
,

DE
SK
, DWX1 , DWX2 , DG , DYC, and D(1)

Wu
are normalized dis-

tance measures on CPyFN .

A novel DisM on CPyFSs

Let X = {ϑ1, ϑ2, . . . , ϑ�} and C1 = {C1(ϑ j ) = (TC1(ϑ j ) ·
e
2π i·WTC1

(ϑ j )
, FC1(ϑ j ) · e2π i·WFC1

(ϑ j )
) | 1 ≤ j ≤ �}

and C2 = {C2(ϑ j ) = (TC2(ϑ j ) · e2π i·WTC2
(ϑ j )

, FC2(ϑ j ) ·
e
2π i·WFC2

(ϑ j )
) | 1 ≤ j ≤ �} be two CPyFSs on X. Define a

DisM D̃Wu for CPyFSs as follows:

D̃Wu (C1,C2) =
�∑

j=1

ω j · DWu

(
C1

(
ϑ j

)
,C2

(
ϑ j

))
, (16)

where ω = (ω1, ω2, . . . , ωn)
 is the weight vector of ω j

( j = 1, 2, . . . , �) with ω j ∈ (0, 1] and ∑�
j=1 ω j = 1.

By Theorem 4.1, we have the following result.

Theorem 4.2 (1) The function D̃Wu defined by Eq. (16) is a
normalized distance measure on CPyFS(X).

(2) The function S̃Wu defined by SWu(C1,C2) = 1 −
D̃Wu(C1,C2) is similarity measure on CPyFS(X).

Applications

Buildingmaterial recognition problem

Example 2 ([36, Example 1]). Consider the following 4
building materials: M1–sealant; M2–floor varnish; M3–
wall paint, and M4–polyvinyl chloride flooring, which are
expressed by CPyFNs for attribute set denoted by A =
{A1,A2,A3,A4,A5,A6,A7} in Table 1. Given an unknown
building materialM , which is expressed by CPyFNs for the
above 7 attributes in Table 1. We want to determine to which
building material the unknown material M belongs.

If we take the weight vector ω of 7 attributes as ω =
(0.11, 0.14, 0.1, 0.18, 0.21, 0.10, 0.16), the SimMs calcu-
lated by Eq. (16) are given in Table 2. By the principle of the

maximum degree of SimMs, the unknown building material
belongs to the classM4–polyvinyl chloride flooring.

The pattern classification results by using different
DisMs/SimMs are listed in Table 3. Observing from Table 3,
we know that (1) our result listed in Table 1 is consistent with
the results obtained by the DisMWD1

CPyFS
in [36] and DisMs

defined by Eqs. (9)–(15); (2) because the DisM WD2
CPyFS

in
[36] does not satisfy the axiomatic definition of complex
Pythagorean fuzzy DisM, the pattern classification result
obtained by this DisM is M1–sealant, which is unreason-
able.

Observing from Table 3, we notice that the existing mea-
sures are provided the different ranking results such as M1

and M4. But, we also notice that the proposed all mea-
sures are given the same ranking measures. Further, we aim
to consider some measures which was proposed by dif-
ferent scholars, for this, Rani and Garg [32] presented a
few two-dimensional (2D) CIFDisMs by using the Ham-
ming, Euclidean, and Hausdorff distances. Then, Garg and
Rani [12] proposed some new CIF information measures,
including SimMs, DisMs, entropies, and inclusion measures
and obtained the transformation relationships among them.
Meanwhile, they [12] developed a CIF clustering algorithm.
But these all measures are not able to resolve our selected
information because of their limitations, where the computed
measures of Rani and Garg [32] have been failed because
these measures are the particular case of the proposed mea-
sures.

Amedical diagnosis problem

The medical diagnostic data in the following example comes
from [32, Example 4.2], which were equivalently expressed
by using CIFNs.

Example 3 ([32, Example 4.2]). Consider a medical diag-
nosis problem for a patient P with the symptoms S =
{Temperature, Headache, Stomach pain, Cough} represented
by using CPyFNs, as listed in Table 4. The symptom charac-
teristics for diagnosis D = {Viral fever, Malaria, Typhoid,
Stomach problem} are represented by using CPyFNs, as
shown in Table 5.

By the principle of the maximum degree of SimMs,
observing from Table 6, we know that the diagnostic result
is that P suffers from ‘Viral fever’, which is consistent with
the result in [32, Example 4.2].

Observing from Table 6, we notice that the existing mea-
sures are provided the same ranking results such as Vf. But,
we also notice that the proposed all measures are given the
same ranking measures. Further, we aim to consider some
measures which was proposed by different scholars, for this,
Rani and Garg [32] presented a few two-dimensional (2D)
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Table 1 CPF information about known and unknown materials in Example 2

M1 M2 M3 M4 M

A1
(
0.8e2π i·(0.7), 0.3e2π i·(0.4)

) (
0.7e2π i·(0.5), 0.4e2π i·(0.7)

) (
0.5e2π i·(0.6), 0.7e2π i·(0.5)

) (
0.7e2π i·(0.6), 0.3e2π i·(0.5)

) (
1 · e2π i, 0)

A2
(
0.7e2π i·(0.6), 0.5e2π i·(0.6)

) (
0.6e2π i·(0.7), 0.6e2π i·(0.5)

) (
0.6e2π i·(0.5), 0.5e2π i·(0.6)

) (
0.8e2π i·(0.5), 0.4e2π i·(0.6)

) (
1 · e2π i, 0)

A3
(
0.9e2π i·(0.4), 0.2e2π i·(0.7)

) (
0.8e2π i·(0.8), 0.3e2π i·(0.3)

) (
0.3e2π i·(0.6), 0.3e2π i·(0.6)

) (
0.7e2π i·(0.6), 0.5e2π i·(0.3)

) (
1 · e2π i, 0)

A4
(
0.6e2π i·(0.6), 0.5e2π i·(0.5)

) (
0.8e2π i·(0.9), 0.3e2π i·(0.1)

) (
0.5e2π i·(0.7), 0.5e2π i·(0.5)

) (
0.4e2π i·(0.8), 0.7e2π i·(0.2)

) (
1 · e2π i, 0)

A5
(
0.5e2π i·(0.3), 0.6e2π i·(0.7)

) (
0.6e2π i·(0.3), 0.5e2π i·(0.6)

) (
0.6e2π i·(0.7), 0.6e2π i·(0.3)

) (
0.7e2π i·(0.6), 0.5e2π i·(0.2)

) (
1 · e2π i, 0)

A6
(
0.4e2π i·(0.6), 0.7e2π i·(0.6)

) (
0.2e2π i·(0.7), 0.8e2π i·(0.2)

) (
0.8e2π i·(0.6), 0.3e2π i·(0.5)

) (
0.6e2π i·(0.8), 0.5e2π i·(0.3)

) (
1 · e2π i, 0)

A7
(
0.2e2π i·(0.2), 0.5e2π i·(0.8)

) (
0.1e2π i·(0.6), 0.9e2π i·(0.5)

) (
0.2e2π i·(0.5), 0.8e2π i·(0.5)

) (
0.8e2π i·(0.7), 0.3e2π i·(0.4)

) (
1 · e2π i, 0)

Table 2 SimMs between Mi (i = 1, 2, 3, 4) and M in Example 2 using S̃Wu

S̃Wu (M1,M ) S̃Wu (M2,M ) S̃Wu (M3,M ) S̃Wu (M4,M ) Ranking Classification

0.3031 0.3981 0.3278 0.4532 M4 � M2 � M3 � M1 M4

Table 3 Comparative analysis by different SimMs/DisMs in Example 2

Method Similarity measure Ranking Classification

1 − dis (M1,M ) 1 − dis (M2,M ) 1 − dis (M3,M ) 1 − dis (M4,M )

WD1
CPyFS

in [36] 0.432 0.923 0.921 0.933 M4 � M2 � M3 � M1 M4

WD2
CPyFS

in [36] 0.730 0.718 0.725 0.712 M1 � M3 � M2 � M4 M1

DisM DH
SK

0.3031 0.3981 0.3278 0.4532 M4 � M2 � M3 � M1 M4

DisM DE
SK

0.5319 0.6125 0.5917 0.7346 M4 � M2 � M3 � M1 M4

DisM DWX1 0.0717 0.1706 0.0819 0.2948 M4 � M2 � M3 � M1 M4

DisM DWX2 0.4861 0.5594 0.5207 0.6330 M4 � M2 � M3 � M1 M4

DisM DG 0.3031 0.3981 0.3278 0.4532 M4 � M2 � M3 � M1 M4

DisM DYC 0.3031 0.3981 0.3278 0.4532 M4 � M2 � M3 � M1 M4

DisM D(1)
Wu

0.2956 0.3597 0.3144 0.4034 M4 � M2 � M3 � M1 M4

SimM S̃Wu 0.3031 0.3981 0.3278 0.4532 M4 � M2 � M3 � M1 M4

Table 4 CPF representation of symptoms for the patient

Patient Temperature Headache Stomach pain Cough

P

(√
0.8e2π i·

√
0.6,

√
0.1e2π i·

√
0.2

) (√
0.9e2π i·

√
0.7,

√
0.1e2π i·

√
0.2

) (√
0.7e2π i·

√
0.8,

√
0.2e2π i·

√
0.1

) (√
0.6e2π i·

√
0.5,

√
0.2e2π i·

√
0.4

)

Table 5 CPF representation of symptom characteristics for diagnosis

Disease Temperature Headache Stomach pain Cough

Viral fever
(Vf)

(√
0.8e2π i·

√
0.7,

√
0.1e2π i·

√
0.2

) (√
0.9e2π i·

√
0.6,

√
0.1e2π i·

√
0.2

) (√
0.7e2π i·

√
0.8,

√
0.2e2π i·

√
0.1

) (√
0.8e2π i·

√
0.7,

√
0.2e2π i·

√
0.1

)

Malaria (Ma)
(√

0.6e2π i·
√
0.4,

√
0.1e2π i·

√
0.5

) (√
0.4e2π i·

√
0.9,

√
0.5e2π i·

√
0.1

) (√
0.5e2π i·

√
0.5,

√
0.3e2π i·

√
0.3

) (√
0.4e2π i·

√
0.9,

√
0.5e2π i·

√
0.1

)

Typhoid (Ty)
(√

0.3e2π i·
√
0.8,

√
0.3e2π i·

√
0.1

) (√
0.8e2π i·

√
0.3,

√
0.1e2π i·

√
0.6

) (√
0.7e2π i·

√
0.6,

√
0.2e2π i·

√
0.2

) (√
0.2e2π i·

√
0.7,

√
0.8e2π i·

√
0.2

)

Stomach
problem (Sp)

(√
0.5e2π i·

√
0.3,

√
0.4e2π i·

√
0.6)

) (√
0.3e2π i·

√
0.1,

√
0.6e2π i·

√
0.3

) (√
0.8e2π i·

√
0.3,

√
0.1e2π i·

√
0.5

) (√
0.1e2π i·

√
0.3,

√
0.6e2π i·

√
0.5

)
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Table 6 Diagnostic results by different SimMs/DisMs with ω = (0.25, 0.25, 0.25, 0.25) in Example 3

Method Similarity measure Ranking Classification

1 − dis (Vf,P) 1 − dis (Ma,P) 1 − dis (Ty,P) 1 − dis (Sp,P)

WD1
CPyFS

in [36] 0.9313 0.7375 0.7625 0.6312 Vf � Ty � Ma � Sp Vf

DisM DH
SK

0.9125 0.7000 0.7250 0.6000 Vf � Ty � Ma � Sp Vf

DisM DE
SK

0.9832 0.8948 0.8833 0.7967 Vf � Ty � Ma � Sp Vf

DisM DWX1 0.9031 0.5688 0.5938 0.4219 Vf � Ty � Ma � Sp Vf

DisM DWX2 0.9437 0.7562 0.7750 0.6625 Vf � Ty � Ma � Sp Vf

DisM DG 0.9125 0.7000 0.7250 0.6000 Vf � Ty � Ma � Sp Vf

DisM DYC 0.9125 0.7000 0.7250 0.6000 Vf � Ty � Ma � Sp Vf

DisM D(1)
Wu

0.9254 0.7190 0.7649 0.6633 Vf � Ty � Ma � Sp Vf

SimM S̃Wu 0.9125 0.7000 0.7250 0.6000 Vf � Ty � Ma � Sp Vf

CIFDisMs by using the Hamming, Euclidean, and Haus-
dorff distances. Then, Garg and Rani [12] proposed some
new CIF information measures, including SimMs, DisMs,
entropies, and inclusion measures) and obtained the trans-
formation relationships among them. Meanwhile, they [12]
developed a CIF clustering algorithm. But these all measures
are not able to resolve our selected information because of
their limitations, where the computed measures of Rani and
Garg [32] have been failed because these measures are the
particular case of the proposed measures.

Conclusion

Complex Pythagorean fuzzy set is very effective and realistic
for evaluating awkward and complex information in real-life
problems. Keeping the advantages of the CPyFS, the main
theme of this analysis is described below:

(1) Ullah et al. [36] introduced the notion of CPyFS to
deal with uncertain information and proposed a 2D
CPyFDisM D1

CPyFS
and a 3D CPyFDisM D2

CPyFS
.

(2) The DisM D2
CPyFS

does not satisfy the axiomatic defini-
tion of CPyFDisM (see Example 1).

(3) To overcome the drawback of the DisM D2
CPyFS

in [36],

we constructed a novel 3D DisM D̃Wu for CPyFSs based
on the 3DHamming distance and the Hausdorff distance
for IFSs and show that it satisfies the axiomatic definition
of CPyFDisM.

(4) Based on the DisMs for IFSs in [14,34,37,39,45], we
proposed some other new CPyFDisMs.

(5) We illustrated the effectiveness of our DisMs, we give
the comparative analysis by using our proposed DisMs
to a buildingmaterial recognition problem and amedical
diagnosis problem.

In the future, we aim to develop some new ideas such as
averaging or geometric aggregation operators [26], Maclau-
rin symmetric mean operators [35], Aczel–Alsina operators
[18], information measures [33], similarity measures [23],
Einstein aggregation operators, Hamacher aggregation oper-
ators, improved Dombi aggregation operators [17], inter-
action aggregation operators, similarity measures, distance
measures, many techniques based on CPyFSs and try to jus-
tify it with the help of some suitable applications such as road
signals, computer networks, game theory, artificial intelli-
gence, and decision-making theory.
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