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Abstract
Evolutionary multimodal optimization algorithms aim to provide multiple solutions simultaneously. Many studies have been
conducted to design effective evolutionary algorithms for solving multimodal optimization problems. However, optimization
problemswithmany global and acceptable local optima have not receivedmuch attention. This type of problem is undoubtedly
challenging. In this study, we focus on problems with many optima, the so-called many-modal optimization problems, and
this study is an extension of our previous conference work. First, a test suite including additively nonseparable many-
modal optimization problems and partially additively separable many-modal optimization problems is designed. Second,
an improved difficulty-based cooperative co-evolution algorithm (DBCC2) is proposed, which dynamically estimates the
difficulties of subproblems and allocates the computational resources during the search. Experimental results show that
DBCC2 has competitive performance.

Keywords Many-modal optimization · Evolutionary multimodal optimization · Cooperative co-evolution · Difficulty-based
cooperative co-evolution

Introduction

The multimodal optimization problem (MMOP) is a type of
problem that has multiple global optima (sometimes includ-
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ing acceptable local optima on request from the decision
maker). Generally, multimodal optimization (MMO) has two
goals: (1) to learn the problem landscape and the distribu-
tion of the optima and (2) to provide more alternatives for a
decision maker to choose from when the current solution is
unsatisfactory. Seeking multiple solutions can help the deci-
sion maker to change from the existing solution to another
one immediately [26]. Under these circumstances, an effi-
cient MMO algorithm is of great importance [7].

Evolutionary algorithms (EAs) and swarm intelligence
(SI) are popular algorithms for solving MMOPs. However,
both typical EAs and SI have a tendency to converge to a sin-
gle optimum, which is problematic for MMOPs [51]. There-
fore, many widespread niching methods, such as crowding
[8,39], speciation [22,47,70], and fitness sharing [14], have
been proposed to maintain the diversity of solutions. EAs
and SI embeddedwith nichingmethods are common efficient
algorithms for solving MMOPs. For example, CrowdingDE
[59] improves the performance of differential evolution (DE)
using a crowding scheme. Species-based DE [23] adopts an
efficient niching method for maintaining diversity, where
a population is divided into multiple species and DE is
performed within each species. However, the radius of the
species is a sensitive parameter,which should be set carefully.
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NSDE [54] adopts a mutation strategy based on neighbor-
hood. Therein, the neighborhood of an individual consists of
m closest individuals using the Euclidean distance, where
m is a manually fixed parameter. In [29], Lin et al. pro-
posed a variant of DE (FBK-DE). FBK-DE adopts three
strategies including species formulation, species balance,
and keypoint-based mutation to meet the convergence and
diversity requirements. In [71], DE based on the adaptive
mutation strategy, archive, and Gaussian distribution elitist
set selection was used to solve MMOPs. Wang et al. [63]
proposed a niching method with adaptive estimation distri-
bution where each individual adaptively determined its niche
radius. Niches are co-evolved using the master-slave mecha-
nism, and the local search based on probability is adopted to
enhance the accuracy of solutions. In [24], Li proposed a ring
topological particle swarm optimization (PSO). In the pro-
posed algorithm, neighbors are determined according to the
index distance. Fieldsend [11] proposed a multi-swarm PSO
algorithm, where the number of swarms was dynamically
changed in the process of searching. In addition to niching
methods, multi-objective approaches provide another way to
solveMMOPs, by transformingMMOPs intomulti-objective
optimization problems to satisfy the objectiveness of diver-
sity and convergence of the population [3,6,9].

In real-world applications, many optimization problems
require adequate knowledge of the fitness landscape to search
for all global optima and local optima. For example, urban
search and rescue (USAR)problems [31] is a research topic to
search for victims in extreme conditions, such as the drowned
city during a very short period. That is, USAR teams must
search for every area and rescue victims as soon as possible.
Lots of evolutionary algorithms and swarm intelligence are
studied, searching for the path to reach the victims as fast as
possible. In [12], Firthous and Kumar tested the performance
of different optimization algorithms on USAR problems. In
[13], Geng et al. designed a novel version of particle swarm
optimization to solve the task allocation in USAR problems.
In addition to minimizing the time, the number of rescued
victims should be maximized [2,16]. In the case of a major
natural disaster such as an earthquake or a tsunami, a large
number of areas are revolved where there may be lots of sur-
vivors to be rescued. Obviously, USAR teams cannot blindly
traverse the entire affected area, which will greatly waste
manpower and material resources. Therefore, how to design
algorithms to efficiently and accurately find every area where
there is a probability of survivors is the main challenge of
USAR problems. The USAR problem searching for lots of
victims could be modeled as a many-modal optimization
problem.

Compared with multimodal optimization, many-modal
optimization problems are a class of problems with a large
number of global optima (or acceptable local optima) and
pose a great challenge to niching methods. Although MMO

has been studied for many years, there is no work on many-
modal optimization except in our previous conference paper
[36]. In [36], we have defined and made a study of the many-
modal optimization problem, and designed an optimization
algorithm called difficulty-based cooperative co-evolution
(DBCC) to solve it. However, the previous work is prelim-
inary and does not consider complex environments. Hence,
as an extension of our previous work [36], more complex
many-modal optimization problems are considered in this
work. The contributions of this work are given as follows.

(1) We propose a new benchmark for many-modal opti-
mization problems. Among them, some are nonseparable
problems, and others are additively separable problems.
Each of them hasmany optima. In addition, test functions
are more complicated than in the previous work in [36]
owing to higher dimensions.

(2) We propose an improved version of difficulty-based
cooperative co-evolution. Difficulty-based cooperative
co-evolution (DBCC), proposed in our previous con-
ference work [36], has four steps: problem separation,
resource allocation, optimization, and solution recon-
struction. In DBCC, difficulty estimation is performed
only once and used as a guideline to allocate the compu-
tational resources. In this paper, we propose an improved
version of DBCC, which is named DBCC2. In DBCC2,
the dynamic resource allocation strategy is adopted
according to the estimated difficulty.

The remainder of this paper is organized as follows: the
next section introduces the related work, including MMOPs,
cooperative co-evolution (CC) and typical optimizers. The
third section discusses a novel many-modal benchmark of
problems. DBCC2 is proposed in the fourth section. Exper-
imental results and analysis are demonstrated in the fifth
section. Finally, the last section presents conclusions and the
future work.

Related work

Multimodal optimization problems (MMOPs)

MMOPs have been paid much attention in recent years, and
several benchmark test suites have been proposed to test the
performance of MMO algorithms. In [25], Li et al. have pro-
vided 12 test functions, where the range of dimensions is
[1, 20]. The functionwith the largest number of global optima
is F7, i.e., Vincent (3D) [25], which has 216 global optima.
In [52], Qu et al. have proposed a novel MMO benchmark.
Their benchmark contains eight extended simple functions
and seven composition functions.
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Although some problems of the above-mentioned bench-
marks have many global peaks, they are not specifically
designed for evaluating algorithms of many-modal optimiza-
tion. In this study, we design a newmany-modal optimization
benchmark, in which each problem has more than 100 global
optima. Importantly, we consider variable interactions of the
problems. Some problems designed are additively partially
separable, and others are additively nonseparable.

Cooperative co-evolution

The framework of CC [48] provides an effective divide-and-
conquer strategy for complex problems. CC has been widely
used in the large-scale optimization [43,62,68]. When prob-
lems can be decomposed into several subproblems, solutions
of complex problems can be obtained from subproblems
using co-evolving methods. The optimizer is important to
search solutions of subproblems, and many existing optimiz-
ers are used in the CC framework, such as DE [44,66], PSO
[4,28], genetic algorithms [48], evolutionary programming
[32], and clonal selection algorithms (CSAs) [36]. Besides,
two key problems should be solved in theCC framework, i.e.,
the decomposition method and the computational resource
allocation problem, which will be explained in the following
subsections.

Decomposition methods

In [67], variables are randomly divided into multiple groups.
The variables in one group dynamically change in differ-
ent cycles to enhance the variable interaction. Although the
grouping method is sufficiently simple, full detection of the
intrinsic interaction of the variables is neglected. Differ-
ential grouping (DG) [43] adopts the differential method
to detect the variable interactions. Interactive variables are
grouped into one group. The method of detecting the inter-
action between two variables is shown in Formulas (1) and
(2), where �1 and �2 are differential values, v1 and v2 are
different values of variable x j , and δ is a perturbation. Two
variables xi and x j are interactive if Formula (2) holds, where
τ is a preset threshold:

�1 = f (. . . , xi + δ, . . . , v1, . . . ) − f (. . . , xi , . . . , v1, . . . )

�2 = f (. . . , xi + δ, . . . , v2, . . . ) − f (. . . , xi , . . . , v2, . . . ). (1)
|�1 − �2| > τ. (2)

There is an issue that DG cannot detect indirect inter-
actions. Global differential grouping (GDG) [40] uses an
interaction-related matrix to identify overlapping groups.
Another issue of DG is that the threshold τ needs to be pre-
defined and has an effect on the sensitivity of the detection.
Thus, DG2 provides a method to estimate an appropriate τ ,
where the lower and upper bounds of roundoff errors are used
[46].

An improved version, recursive differential grouping
(RDG), is considered an efficient DG method [58], where
the interactions between variables are recursively identified.
RDG uses O(nlog(n)) fitness evaluations to decompose the
problem, which is better than the aforementioned methods.
InRDG, the interactive detection occurs in a test set T of vari-
ables and an unprocessed set U . If U is detected to interact
with variables in T ,U is divided into two equal parts,U1 and
U2. The detection is performed recursively inU1 andU2, and
the interactive variables are included in T . In another case,
there is no variable interaction with T . Then, T is grouped
into a separable set if only one variable exists in T . Other-
wise, T is identified as a new independent group.When RDG
starts, the first variable in U is moved into the empty T , and
the next round of detection starts until there are no variables
inU . Besides, other grouping strategies have been proposed
based on the interaction identification between variables like
[15,57].

Computational resource allocation

ClassicalCCmethods use the round-robin strategy to allocate
computational resources to each component [33,49], which
is called RBCC. RBCC does not consider the imbalanced
nature of components and allocates the same computational
resources for each component. Contribution-based cooper-
ative co-evolution (CBCC) [42,45] prefers to allocate more
resources to the components that have more contributions
to the fitness value, and there are three versions of CBCC,
i.e., CBCC1, CBCC2, and CBCC3. In CBCC1, after com-
ponents are sorted by the contributions, the component with
the maximum contribution is optimized in only a one-time
slice. However, CBCC2 tends to optimize the subcompo-
nent with the maximum contribution until no improvement.
Hence, CBCC1 and CBCC2 have the problems of over-
exploration and over-exploitation, respectively [42]. CBCC3
considers both exploration and exploitation, and achieves a
more reasonable allocation. In addition to CBCC, Ren et al.
[55] proposed a fine-grained contribution-aware CC frame-
work,which allocate computational resources to components
based on their contribution expectations. In [20], a CC frame-
work called bandit-based CC was proposed, which allocates
computational resources to components from the perspective
of the dynamic multi-armed bandit. Moreover, Jia et al. [17]
proposed DCCA with the aim of allocating more processors
to the components with the larger contribution.

There have been also CC frameworks developed for other
types of complex problems. For example, Xu et al. [65] pro-
posed a constraint-objective CC framework for large-scale
constrained optimization, which allocates computational
resources to components with larger contributions or larger
corrections based on the constraint violation of the optimal
solution. Jia et al. [18] proposed a CC framework for the
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overlapping problems, which included a contribution-based
decomposition method and a contribution-based resource
allocation method. Liu et al. [30] proposed a variable
importance-based resource allocation mechanism for large-
scale multi-objective optimization problems, which priori-
tizes the allocation of more computational resources to the
group of variables with higher importance.

Nevertheless, the above-mentioned resource allocation
strategies do not consider that components have different
search difficulties. In general, the more difficult components
need to obtainmore resources to find solutions than the easier
ones.

Optimizer

In this part, three optimizers are introduced, which are used
in our experiments.

Differential evolution

DE and its variants are widespread techniques for solving
MMOPs. Here, a variant of DE for MMO in [10] is intro-
duced, which is used in experiments. In [10], the information
of the neighborhood is considered in the mutation strategy.
As shown in Formulas (3)∼(4), two methods are adopted to
generate a mutant zi of xi , which both use the nearest indi-
vidual according to the Euclidean distance:

zi = xnni + F1(xr1 − xr2), (3)

zi = xnni + F1(xr1 − xr2) + F2(xr3 − xr4), (4)

where zi denotes the mutant individual of xi . xnni is the indi-
vidual nearest to xi . F1 and F2 are the scaling factors to
control the step of mutation. xr1, xr2, xr3, and xr4 are ran-
domly selected different individuals, which are also different
from the i-th individual xi . After the mutant is generated, the
crossover operation is performed according to the following
formula:

u j
i =

{
z ji if rand j

i < CR or j = jrand

x j
i otherwise,

(5)

where CR is used to control the selected probability from
the mutant, rand j

i ∈ [0, 1] is a random value from the uni-
form distribution. In addition, jrand is the randomly chosen
dimensional index. Hence, it ensures that at least one dimen-
sion comes from z ji if all random numbers are greater than
CR.

Algorithm 1 shows the working mechanism at one gen-
eration. In line 3, the function rand() generates a random
number in the range of [0, 1] which follows the uniform dis-
tribution.

Algorithm 1 Evolution in a generation using DE
Input: Current population Pcur
Output: Evolved population Pevo

1: for each individual xi ∈ Pcur do
2: Find the nearest individual xnni in the Pcur ;
3: if rand() < 0.5 then
4: Perform the mutation by Formula (3);
5: else
6: Perform the mutation by Formula (4);
7: end if
8: Perform the crossover by Formula (5);
9: Evaluate fitness of offspring ui ;
10: Select the best one from xi and ui and put it into the Pevo;
11: end for

Particle swarm optimization

PSO is a representative algorithm of SI, which has received
much attention in MMO [24,53]. PSO usually has two cate-
gories, lbestPSO and gbestPSO according to the source of
social information. Particles take the global best individual
as their information source of social cognition in gbestPSO,
whereas lbestPSOuses the information of the local best indi-
vidual. In this study, we choose lbestPSO as our optimizer
because of better diversity.

In lbestPSO with a constriction factor [56], the j-th
dimension of the velocity vi of the i-th particle is updated as
follows:

v
j
i (t + 1) = K ∗ (v

j
i (t)+c1 ∗ rand j

i ∗ (pbest ji (t)−x j
i (t))

+c2 ∗ rand j
i ∗ (lbest ji (t) − x j

i (t))), (6)

where K is a constriction factor, c1, c2 are learning factors,
pbesti denotes the historical best position of the i-th particle,
and lbesti is the historical best position of the particles in the
neighborhood. The j-th dimension of the solution xi in the
(t + 1)-th iteration is updated according to the following
formula:

x j
i (t + 1) = x j

i (t) + v
j
i (t + 1). (7)

Algorithm 2 shows the iteration of individuals in the same
species, where f is the fitness of x . pbest and pbestCost
are historical best locations and their fitness, respectively.

Clonal selection algorithm

CSA simulates the behaviors of cloning and selecting in the
immune system [34,61], which clones and mutates antibod-
ies and conducts the selection operation among the current
individual and its offspring.

In [35], two methods of mutation are adopted in CSA:
DE-like mutation and conventional Gaussian mutation. The
step size of Gaussianmutation is set according to the distance
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Algorithm 2 Particles perform an iteration in the same
species
Input: x, f , v, pbest, pbestCost
Output: x, f , v, pbest, pbestCost

1: Find the best position lbest according to pbest ;
2: for each individual xi ∈ x do
3: Update the velocity vi by Formula (6);
4: Update the position xi by Formula (7);
5: Calculate the fitness fi of xi ;
6: end for
7: for each individual xi ∈ x do
8: if xi is better than pbesti then
9: pbestCosti = fi ;
10: pbesti = xi ;
11: end if
12: end for

between the two farthest individuals in the species. DE-like
mutation produces a mutant ai of xi , as shown in the follow-
ing formula:

ai = 0.5(besti − xi ) + xi , (8)

where besti denotes the best individual in the same species.
Algorithm 3 presents the process of reproducing the next
generation antibodies in the same species. In line 2, the set
Pooli stores copies of the i-th individual. In line 7, the first
copy xc1 adopts DE-like mutation with a probability of 0.5.
In lines 13 and 14, each antibody is evaluated, and the best
individual is chosen from xi and its variants including the
Gaussian variants and the DE-like variant. Note that the fit-
ness is called affinity in CSA.

Algorithm 3 Evolution in a generation using the CSA
Input: Current population Pcur
Output: Evolved population Pevo

1: for each individual xi ∈ Pcur do
2: Clone nc times and include into set Pooli ;
3: if xi has the highest affinity then
4: All copies in Pooli use the Gaussian mutation;
5: else
6: if rand() < 0.5 then
7: Take the first copy xc1 from Pooli ;
8: xc1 performs the DE-like mutation;
9: Pooli = Pooli\{xc1};
10: end if
11: Copies in Pooli perform the Gaussian mutation;
12: end if
13: Evaluate the affinities of the antibodies;
14: Include the best one from xi and variants into Pevo;
15: end for

Many-modal optimization problems

Many-modal optimization problems are a type of multi-
modal problems which havemany global optima (sometimes
including acceptable local optima). Herein, we design a
benchmark that could be used to test the performance of
many-modal optimization algorithms. Similar to the prob-
lem construction method in [27], this paper adopts different
subcomponents to construct many-modal problems. In par-
ticular, the problems designed in this paper take the difficulty
differences between subcomponents into consideration. All
test problems aremaximization problems and havemore than
100 global optima.

Structure of the proposed functions

The many-modal optimization problems designed can be
divided into the following two categories.

(1) Partially additively separable problems: such many-
modal optimization problems are constructed by the
following formula:

F(X)=
N∑
i=1

gi (Xi ),

N⋃
i=1

Xi = X , Xi ∩ X j =∅ (i �= j),

(9)

where N is the number of subproblems and gi is a non-
separable function.

(2) Additively nonseparable problems: decision variables are
transformed according to the following formula:

Y = XM, (10)

where M is the rotation matrix. Specifically, suppose the
i-th dimension in X is xi , and the i th dimension yi in
Y is obtained by Formula (11), where D denotes the
dimension of the problem. Then, F(Y ) is constructed
using Formula (9), and the variables yi replace the xi
in the same dimensions. Here, X = {x1, x2, ..., xD} =⋃N

i=1 Xi .

yi = mi1x1 + mi2x2 + · · · + miDxD . (11)

The search rangeof all test functions is set to [−100,100]D ,
and the total fitness evaluations are set to 105 · D. The test
suite is shown in Table 1, where MF1 and MF2 are nonsepa-
rable functions, and others are partially additively separable
functions. In Table 1, rmm is used to eliminate the redundant
solutions close to the same peak. The way to construct the
subproblems in Formula (9) will be introduced in the follow-
ing part.
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Table 1 Details of the benchmark of many-modal optimization problems

Function Subproblems Properties nopt Dimension rmm

MF1 CF1(2D), CF3(2D), CF5(2D), CF7(2D), CF9(2D) Nonseparable 360 10 0.5

MF2 CF2(2D), CF4(2D), CF6(2D), CF8(2D), CF10(2D) Nonseparable 480 10 0.5

MF3 CF3(2D), CF4(2D), CF6(2D), CF6(2D), CF7(2D) Partially separable 108 10 0.5

MF4 CF3(2D), CF4(2D), CF5(2D), CF6(2D), CF8(2D) Partially separable 144 10 0.5

MF5 CF1(3D), CF2(3D), CF3(2D), CF5(2D) Partially separable 150 10 0.5

MF6 CF5(2D), CF6(3D), CF6(2D), CF8(3D) Partially separable 108 10 0.5

MF7 CF6(2D), CF7(3D), CF8(2D), CF9(3D) Partially separable 144 10 0.5

MF8 CF1(3D), CF5(2D), CF6(2D), CF7(3D) Partially separable 135 10 0.5

MF9 CF2(2D), CF3(3D), CF5(2D), CF8(3D) Partially separable 120 10 0.5

MF10 CF2(2D), CF5(3D), CF5(2D), CF9(3D) Partially separable 180 10 0.5

MF11 CF1(3D), CF4(2D), CF8(2D), CF9(3D) Partially separable 160 10 0.5

MF12 CF1(2D), CF2(3D), CF8(2D), CF10(3D) Partially separable 400 10 0.5

MF13 CF2(2D), CF8(3D), CF9(2D), CF10(3D) Partially separable 320 10 0.5

MF14 CF1(4D), CF2(2D), CF3(2D), CF8(2D) Partially separable 200 10 0.5

MF15 CF2(4D), CF8(2D), CF9(2D), CF10(2D) Partially separable 320 10 0.5

Composition functions

The subproblems in Formula (9) are all designed using the
composition functions with at least two global optima. We
used a method similar to [25] to formulate these composition
functions. The following formula shows the details of the
construction of a composite function:

CF(x) =
n∑

i=1

ωi f̂i

(
x − o

λi
Mi + biasi

)
+ fbias, (12)

where o denotes the optimal solution, n is the number of basic
functions and n ≥ 2, Mi represents the rotation matrix of the
i-th component, biasi is the bias value of the i-th component
which is set to 0, and fbias controls the global peak height
of the composite function. Without loss of generality, fbias
is set to 0. λi is implemented to compress or stretch the i-th
component. Similar to [25], f̂i estimates the normalization
value of fi , which is calculated by the C multiplying a ratio
between the fitness at the current location fraction and the
absolute fitness of the fixed position. Here, the fixed position
x = [100, 100, . . . , 100] and C = 1000. Herein, fi is the
fitness obtained by the i-th basic function.

The parameter ωi determines the weight of the i-th basic
function according to the following formulas:

ωi = exp

(
−

∑D
i=1

(
x j − oi j

)2
2Dσ 2

i

)
, (13)

ωi =
{

ωi ωi = max(ωi )

ωi (1 − max(ωi )
10) otherwise.

(14)

The oi j is the j-th dimension of the optimum of the i-th com-
ponent, and D is the dimension of the composition function
to be constructed. It is worth noting that σi controls the cov-
erage range of the i-th basic function. ωi is normalized after
being obtained according to Formulas (13) and (14).

In addition, all composite functions are transformed into
maximization problems. The basic functions for each com-
position function are given in Table 2, and all composition
functions are scalable.

Improved difficulty-based cooperative
co-evolution

It has been shown that CC works well for complex opti-
mization problems by decomposing them into several sub-
problems [38]. CC provides the basic guideline for us to
implement the divide-and-conquer methods for many-modal
optimization problems. The subproblems could have dif-
ferent difficulties in searching, but this fact received little
attention in the existing CC frameworks. Hence, we have
proposed a new framework of DBCC in [36], and propose its
improved version (DBCC2) in this section. The framework
includes the following steps namely: problem separation,
resource allocation, optimization, and solution reconstruc-
tion.

Framework process of DBCC2

Algorithm 4 shows the framework process of DBCC2, where
different optimizers can be embedded into this framework.
In line 2, the problem is separated into several subproblems
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Table 2 Composite functions
(CF1-CF10) used in the
benchmark

No. Subproblems Properties

CF1 f 1: Griewank function n = 5

f 2: Rastrigin function λ = {1, 10, 20, 1, 1}, σ = {10, 20, 60, 20, 10}
f 3: Weierstrass function Global peaks: 5

f 4: Sphere function

f 5: Sum Squares function

CF2 f 1: Ackley function n = 5

f 2: Modified periodic function * λ = {10, 10, 10, 10, 20}, σ = {30, 20, 10, 10, 40}
f 3: Sphere function Global peaks: 5

f 4: Salomon function

f 5: Weierstrass function

CF3 f 1- f 2: Ackley function n = 2

λ = {200, 200}, σ = {10, 20}
Global peaks: 2

CF4 f 1: Sphere function n = 2

f 2: Ackley function λ = {10, 40}, σ = {100, 100}
Global peaks: 2

CF5 f 1- f 2: Sphere function n = 3

f 3: Griewank function λ = {1, 1, 10}, σ = {15, 15, 15}
Global peaks: 3

CF6 f 1: Sphere function n = 3

f 2: Modified Periodic function* λ = {1, 10, 60}, σ = {30, 20, 40}
f 3: Weierstrass function Global peaks: 3

CF7 f 1: Griewank function n = 3

f 2: Rastrigin function λ = {1, 10, 10}, σ = {60, 80, 80}
f 3: Modified Periodic function* Global peaks: 3

CF8 f 1: Griewank function n = 3

f 2: Rastrigin function λ = {10, 20, 10, 30}, σ = {60, 20, 20, 50}
f 3: Sphere function Global peaks: 4

CF9 f 1- f 2: Griewank function n = 4

f 3: Weierstrass function λ = {1/4, 1/4, 80, 30}, σ = {50, 60, 70, 80}
f 4: Ackley function Global peaks: 4

CF10 f 1: Ackley function n = 4

f 2: Modified Periodic function * λ = {10, 10, 50, 30}, σ = {100, 20, 40, 80}
f 3- f 4: Weierstrass function Global peaks: 4

* Modified Periodic function: f (x1...xn) = ∑n
i=1 sin

2(xi ) − 0.1e−(
∑n

i=1 x
2
i ) + 0.1

according to the grouping strategy, and set Xi contains the
variable indexes of subproblem SPi . The details of problem
separation are referred to in Sect. Problem separation.

The population initialization steps of the subproblems are
in lines 3–7. The problems are black-box optimization prob-
lems, where the structure of subproblems can not be obtained
directly. Hence, the variables whose indices are not in Xi are
set to fixed values. In line 5, the lower bound of search space
is set for these variables, and the initial fitness of the popu-
lation in SPi can be obtained according to line 5. The other
supplemental information for the optimizer is updated in line

6. For example, in PSO, the velocity, best historical position,
and best historical fitness of particles are updated in this line.

DBCC2 includes two steps to optimize the subproblems.
First, the subproblems are optimized for base generations
in line 8, which makes sure that the basic optimization is
performed for each subproblem. Next, the difficulty of the
subproblem is calculated, and the computational resources
are allocated according to the estimated difficulty. In lines
13–25, the remaining resources are dynamically allocated.At
the end of the cycle, the current difficulties of the subprob-
lems are re-estimated, which guides the next allocation of
computational resources. The number of cycles c is updated
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Algorithm 4 DBCC2
1: Randomly initialize a population pop;
2: Separate the problem into SP1, SP2, . . . , SPn , where the corre-

sponding variable indexes are X1, X2, . . . , Xn ; // Problem Sepa-
ration (in Section Problem separation)

3: for i = 1 : n do
4: subPi .pop = pop[Xi ];
5: subPi . f i t = f (subPi .pop, Xi , lbounds);
6: Update the supplemental information of subPi ;
7: end for
8: Optimize the base generations for each subproblem;
9: Estimate the difficulties of the subproblems by (18); // in Section

Estimated difficulty of subproblems
10: Obtain the remaining generations remainGen of the problem;
11: maxGen = remainGen;
12: c = 1;
13: while remainGen > n do
14: Allocate resources according to Formula (20); // in Section Com-

putational resource allocation
15: for i = 1 : n do
16: curgen = 1;
17: while curgen ≤ geni do
18: subPi = optimizer(subPi ); // Algorithm5 inSectionOpti-

mizer using BI-NBC
19: curgen = curgen + 1;
20: end while
21: end for
22: Re-estimate the difficulties of subproblems by (18);
23: c = c + 1;
24: Get the remaining generations remainGen;
25: end while
26: Choose the best solution set Bi from subPi ; // in Section Solution

reconstruction
27: Return the Cartesian set F = B1 × B2 × ... × Bn as the final

solutions;

in line 23. The resource allocation can be referred to in sec-
tion Resource allocation.

When the computational resources are exhausted, each
subproblem gets a solution set subPi , and the selection strat-
egy shown in section Solution reconstruction is implemented
to choose a suitable subset Bi . The final solutions are formed
based on the Cartesian set, which is shown in line 27.

In the following contents, the components adopted in
DBCC2 are illustrated in detail, including the problem sep-
aration, resource allocation, optimizers and solution recon-
struction.

Problem separation

The first step of DBCC2 is to detect the structure of the prob-
lem and decompose the problem into subproblems. In the
existing methods of problem separation, RDG in [58] has
a good performance to detect interactive variables. In this
study, we adopt RDG with minor modifications for problem
separation. Each separable variable is included in an inde-
pendent group. In addition, the choice of detecting points is
the same as in DG2 [46]. The estimation of the upper bound

of the roundoff error is also similar to DG2, which uses the
absolute fitness values of the detecting points to estimate the
roundoff error.

Resource allocation

Resource allocation is critical for CC, and various strategies
have been proposed. Different from the existing work, we
suggest that the difficulty of subproblems can be used to
guide resource allocation,while the difficulty of subproblems
could be estimated by the fitness-distance correlation.

The fitness-distance correlation [19] can obtain prior
knowledge about the landscape using statistical correlation of
the sample points. Specifically, the correlation is calculated
according to the following formula:

r =
∑

t∈P ( ft − fP )(dt − dP )√∑
t∈P ( ft − fP )2

√∑
t∈P (dt − dP )2

, (15)

where P denotes the collection of the sampling points, ft is
the fitness of point t , dt is the distance between point t and
the best point, dP and fP are the mean values for all points
in P . Ideally, there is strong correlation between fitness and
distance in a linear function [41].

However, in a landscape with multiple peaks, the correla-
tion can be weakened dramatically owing to the distribution
of points at the other peaks. To handle such cases, we
proposed a novel method to estimate the difficulty of sub-
problems as follows.

Estimated difficulty of subproblems

In the previous conference work in [36], we proposed
a scheme of resource allocation based on the estimated
difficulty. However, the estimation of the difficulty of sub-
problems is performed only once at the beginning of the
algorithm, and the change of difficulty for the optimizer dur-
ing the evolutionary search is not considered. In fact, the
difficulties of subproblems for the algorithm are different
from the initial difficulties. Furthermore, the species with
poor performance are less likely to locate the peaks with
high quality, which should be ignored in estimating the sta-
tus of the entire population. Especially, in the later search
process, the species with better performance should receive
more attention.

Hence, based on the considerations above, an improved
version that dynamically estimates the difficulty is proposed
here.

First, in each cycle of the estimation, for subproblem f i ,
each selected species Si for difficulty estimation are required
to satisfy the following two conditions.
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1. Si should have at least two individuals.
2. The fitness of the seed of Si , i.e., f (Si .seed), should

satisfy the following formula:

f (Si .seed) ≥ f imin + ( f imax − f imin)(1 − e−c), (16)

where f imin and f imax are the minimum and maximum fitness
values, respectively, of all the individuals in the population
for the i-th subproblem, and c denotes the current evolution-
ary cycle.

Second, without loss of generality, suppose the species
Si1, · · · , SiK are selected; r i1, · · · , r iK are calculated according
to Formula (15). Next, the weakest fitness-distance correla-
tion in the selected species could be obtained by the following
formula:

μi = min{
∣∣∣r i1∣∣∣ , ∣∣∣r i2∣∣∣ , . . . , ∣∣∣r iK ∣∣∣}. (17)

Third, the difficulty of the i-th subproblem, di , is not lin-
early dependent on μi . For example, μi = 1 is permanent
when all picked species have two individuals. For another
example, the value of μi close to 0 does not always indicate
that the problem is very difficult, especially when individuals
of the species gather to a peak. Therefore, we implement the
following formula as a nonlinear mapping between μi and
di , where ρ is a manual parameter:

di = ρ(1 − μi )e
−ρ(1−μi ). (18)

Computational resource allocation

Computational resources are divided into twoparts, i.e., basic
resources and flexible resources. In the previous resource
allocation scheme in [36], basic resources are averagely
allocated to each subproblem, and the remaining flexible
computational resources are allocated at once according to
the difficulties of the subproblems.

Herein, basic resources are also averagely allocated to
each subproblem. However, the remaining flexible resources
are allocated dynamically for each evolutionary cycle. In
each evolutionary cycle, the difficulty of each subproblem is
estimated according to the current status of species. Suppose
subproblems SP1, SP2, . . . , SPn have the estimated difficul-
ties d1, d2, . . . , dn according to Formula (18). The relative
difficulty of the i-th subproblem is normalized according to
the following formula:

pi = di∑n
i=1 di

, i = 1, 2, . . . , n. (19)

In addition, p is fixed at 1 if the problem cannot be decom-
posed by the decomposition method.

Finally, the number of generations (i.e., computational
resources) allocated to each subproblem in this cycle is cal-
culated by the following formula:

geni = 
pi ∗ (min{
maxGen ∗ α�, remainGen})�, (20)

where geni is the number of generations allocated to the i-th
subproblem in the current cycle. maxGen is the maximum
generations for dynamical allocation, i.e., flexible resources.
remainGen denotes the remaining generations, which is
updated at the end of each cycle. Parameter α controls the
times of rounds in the dynamic resource allocation step.

Optimizer using BI-NBC

TheNBC [50,51] is an efficient clusteringmethod, which has
attracted much attention [5,29,35]. The core idea is to con-
struct a search tree, and each edge links the individual and its
nearest better individual. Then, the edges of the tree are cut
if the weights are larger than the distance threshold. Thus,
multiple sub-trees are created, and individuals in a sub-tree
form a population. NBC has a good performance as it uses
the information about the fitness values and distances reason-
ably. However, the accuracy of clustering is easily affected
by outliers [37].

In this study, NBC based on the better individuals is
adopted, which is called BI-NBC [36]. In BI-NBC, a control
strategy is adopted that only better individuals are divided
into different species with NBC. Specifically, individuals
with higher quality are chosen before clustering. After that,
the outliers are included in their nearest cluster.

Here,we use a simplemethod to identify better individuals
based on the fitness. The i-th individual is chosen if its fitness,
fi , is greater than the cutoff value fc, and fc is calculated
according to the following formula:

fc =
∑N P

i=1 fi
N P

− ε, (21)

where ε is a small value, which is set to 10−10. Since floating
point operations have rounding errors, ε ensures that the set
of better individuals is not empty. The pseudo-code of BI-
NBC is shown in Algorithm 5. In line 3, the temporary set
T P contains the individuals except for the outliers. In line 6,
the Euclidean distance is used.

After the population is divided into species, the optimizer
is performed in each species. The pseudo-code of the opti-
mizerwithBI-NBC is shown inAlgorithm6,which is similar
to our previous conference work in [36]. In Algorithm 6, Sij
is the j-th species of the i-th subproblem.
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Algorithm 5 BI-NBC [36]
Input: Population P
Output: Species S

1: Calculate the cutoff value, fc, according to Formula (21);
2: Pick out the set of outliers O = {O1, . . . , Om};
3: T P = P\{O};
4: T S = NBC(T P); //Divided by NBC
5: for i = 1 to m do
6: Calculate the distance between Oi and seeds of T S;
7: Find the nearest species T Sj of Oi ;
8: S j = T Sj ∪ {Oi };
9: end for

Algorithm 6 Optimizer with BI-NBC
Input: Current population of the i-th subproblem subPi
Output: Next population subPi

1: Si = BI-NBC(subPi ); // call for Algorithm 5
2: K = length(S); //K is the number of species
3: for j = 1 : K do
4: Sij = optimizer(Sij );
5: end for
6: subPi = Si1 ∪ Si2 ∪ · · · ∪ SiK ;

Solution reconstruction

The framework of CC generates a set of solutions subPi
for the i-th subproblem, and |subPi | denotes the size of
subPi . However, if all solutions participate in construct-
ing the final solutions, the number of solutions will be
|subP1| ∗ |subP2| ∗ ... ∗ |subPn|, which increases exponen-
tiallywith n (the number of subproblems). On the other hand,
the diversity will be lost if only the best solution of the sub-
problem is chosen to construct the final solution, which is
not suitable for many-modal optimization problems. There-
fore, it is necessary to reduce the number of solutions used in
constructing the final solutions, maintain diversity, and find
a suitable subset Bi from set subPi . Then the number of the
final solutions can reduce to |B1| ∗ |B2| ∗ ... ∗ |Bn|.

Theway to select Bi is the same as [36]. First, all solutions
in subPi are arranged in descending order of fitness. The
individual with the best quality bi is removed from subPi ,
and is added into Bi . Next, we determine if the remaining
solutions of subPi are included in the set Bi or not. The
solution xk will be added to the Bi if two conditions are
satisfied.

Condition 1: | f (bi ) − f (xk)| < ξ , where ξ is set to 0.1.
Condition 2: the distance between xk and all existing indi-

viduals in Bi is greater than the distance
threshold γ , which is set to 0.1.

The selection loop continues until the end of subPi .

Experiments

Metrics

We utilize the same method as in [25] to measure the number
of the found peaks, and the error between the fitness values of
the foundpeaks and the real global optima are not greater than
the manual threshold. Here, the threshold is fixed at 1.0E-04.
The distance threshold to identify the different found global
peaks is greater than the radius, rmm , which is shown in Table
1 and set to 0.5. The peak ratio (PR) is used to measure the
overall performance of the algorithm in solving the problem.
The PR can be mathematically described as the following
formula:

PR =
∑T R

Run=1 FPRun

nopt ∗ T R
, (22)

where T R is the total number of runs, FPRun is the found
peaks in a run, and nopt shown in Table 2 is the number of
global optima of the test function.

In addition, we use the standard deviation (Std) of PR as
another metric, which counts the standard deviation of the
ratio of the found global optima.

Experimental setting

In the experiments, the four CC frameworks are used includ-
ing DBCC2, DBCC, CBCC3, and RBCC. DBCC is our
previous framework. RBCC allocates the same computa-
tional resources to each subproblem using the round-robin
method, and CBCC3 allocates the resources based on the
contributions.

In each CC framework, there are three choices of the opti-
mizers given in section Optimizer, i.e., DE, PSO, and CSA.
The size of the population (N P) in all algorithms is fixed to
500. Each algorithm is run independently 50 times.

Parameter settings are shown in Table 3. In DBCC2 and
DBCC, the basic generations for each subproblem are set to
100. At the step of dynamic allocation in DBCC2, α is set to
0.1 and ρ is set to 5.0. The default parameter values are used
in CBCC3. The operation of exploration is performed with
a probability Pt which is set to 0.05. The contribution of the
subproblem is calculated after i tergap generations, which is
set to 100.

In DE, two mutant strategies are used with a probability
of 0.5 each. The crossover rate (CR) of recombination is set
to 0.9. The constriction factorK and c1, c2 in PSO are all set
to the default values. Each antibody copies twice in the CSA.
The scaling factor ϕ in BI-NBC is fixed at 2.0.
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Table 3 Parameter setting

Algorithms Parameters

DBCC2 base = 100 α = 0.1 ρ = 5.0

DBCC base = 100 – –

CBCC3 Pt = 0.05 i tergap = 100 –

RBCC – – –

DE F1= 0.5 F2 = 0.5 CR = 0.9

PSO K = 0.729 c1 = 2.05 c2 = 2.05

CSA nc = 2 – –

BI-NBC ϕ = 2.0 ε = 10−10 –

Experimental results

The results of DE, PSO, and CSA in the different frame-
works are shown in Tables 4, 5, 6. In these tables, BPR

denotes the number of the best results of PR obtained using
the algorithms, which are used to measure the comprehen-
sive performance of the algorithms on the test functions. It
can be seen that DBCC2 has higher BPR values than other
CC frameworks under comparison.

As for nonseparable problems (MF1 and MF2), all the
algorithms have poor performances. Specifically, DE in the
different CC frameworks can find a few solutions, whereas
PSO and CSA can not find solutions.

In the separable problems (MF3-MF15), DBCC2 per-
forms better than the other three frameworks. Table 4 shows
that DBCC2-DE and DBCC-DE have significant advan-
tages in solving the following separable problems: MF3,
MF4, MF9, MF10, and MF14. Moreover, DBCC2-DE per-
forms better than DBCC-DE in solving 8 separable problems
among all 13 separable problems. In Table 5, DBCC2-PSO

Table 4 Results of DE at an
accuracy level of 1.0E-04

Function DBCC2-DE DBCC-DE CBCC3-DE RBCC-DE

MF1 PR 0.005 0.005 0.005 0.005

Std 0.002 0.002 0.002 0.002

MF2 PR 0.005 0.005 0.005 0.005

Std 0.001 0.001 0.001 0.001

MF3 PR 0.786 0.600 0.512 0.518

Std 0.240 0.183 0.160 0.122

MF4 PR 0.905 0.873 0.685 0.717

Std 0.235 0.166 0.239 0.117

MF5 PR 0.469 0.462 0.349 0.398

Std 0.133 0.087 0.145 0.091

MF6 PR 0.302 0.305 0.187 0.289

Std 0.099 0.122 0.099 0.104

MF7 PR 0.543 0.564 0.384 0.524

Std 0.157 0.153 0.142 0.148

MF8 PR 0.440 0.524 0.355 0.496

Std 0.165 0.156 0.146 0.120

MF9 PR 0.798 0.854 0.345 0.599

Std 0.155 0.131 0.158 0.112

MF10 PR 0.675 0.582 0.369 0.483

Std 0.117 0.123 0.109 0.076

MF11 PR 0.594 0.583 0.534 0.588

Std 0.030 0.068 0.105 0.041

MF12 PR 0.151 0.120 0.109 0.118

Std 0.059 0.025 0.049 0.024

MF13 PR 0.124 0.129 0.087 0.113

Std 0.067 0.036 0.033 0.029

MF14 PR 0.695 0.641 0.499 0.507

Std 0.179 0.130 0.184 0.106

MF15 PR 0.132 0.126 0.172 0.126

Std 0.087 0.048 0.087 0.050

BPR 7 5 1 0
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Table 5 Results of PSO at an
accuracy level of 1.0E-04

Function DBCC2-PSO DBCC-PSO CBCC3-PSO RBCC-PSO

MF1 PR 0.000 0.000 0.000 0.000

Std 0.000 0.000 0.000 0.000

MF2 PR 0.000 0.000 0.000 0.000

Std 0.000 0.000 0.000 0.000

MF3 PR 0.829 0.778 0.649 0.787

Std 0.196 0.194 0.244 0.184

MF4 PR 0.913 0.893 0.823 0.900

Std 0.148 0.157 0.192 0.154

MF5 PR 0.577 0.575 0.578 0.549

Std 0.118 0.097 0.120 0.117

MF6 PR 0.411 0.394 0.374 0.381

Std 0.170 0.163 0.161 0.171

MF7 PR 0.612 0.600 0.538 0.585

Std 0.150 0.140 0.144 0.165

MF8 PR 0.564 0.600 0.524 0.590

Std 0.178 0.169 0.188 0.171

MF9 PR 0.800 0.781 0.796 0.766

Std 0.107 0.098 0.103 0.102

MF10 PR 0.445 0.435 0.439 0.422

Std 0.074 0.076 0.073 0.055

MF11 PR 0.577 0.576 0.574 0.558

Std 0.073 0.063 0.069 0.068

MF12 PR 0.318 0.346 0.344 0.350

Std 0.121 0.089 0.088 0.087

MF13 PR 0.345 0.348 0.347 0.355

Std 0.088 0.072 0.081 0.087

MF14 PR 0.610 0.606 0.608 0.611

Std 0.090 0.076 0.091 0.084

MF15 PR 0.297 0.294 0.290 0.300

Std 0.040 0.042 0.048 0.037

BPR 7 1 1 4

performs better than the other algorithms in solving 7 sepa-
rable problems. Compared to the other CC frameworks using
the CSA, DBCC2-CSA has 8 better results among all sepa-
rable functions.

In addition, the choice of the optimizers for the CC frame-
work has a great influence on the numbers of the found global
optima. It can be seen that CSA performs worse than DE and
PSO for most test functions.

Comparisons with other MMO algorithms

Several state-of-art MMO algorithms are chosen for the
comparisons, including FBK-DE [29], EMO-MMO [6], and
MOMMOP [69]. In FBK-DE, the size of the population is
set to the suggested value. In EMO-MMO, the population
size is fixed at 500 and the cutting ratio in the peak detection

is set to 0.1. In MOMMOP, the size of the population is set
to 500, and other settings are set to the default values.

Table 7 shows the detailed results of PR and Std for all
test functions. In the separable problems, DBCC2-DE and
DBCC2-PSO have obvious advantages over the other algo-
rithms. In addition, Table 8 shows the average ranks based on
PR by the above algorithms as well as DBCC-DE, CBCC3-
DE, and RBCC-DE in the Friedman test, which is obtained
by the software tool KEEL 3.0 [1,60]. It can be seen that
DBCC2-DEhas thebest performance andMOMMOPis inef-
ficient in the test suite.

Furthermore, the boxplots of the found global optima in
partial problems (MF3, MF7, MF10, and MF13) are shown
in Fig. 1. DBCC2-DE, DBCC2-PSO, andDBCC2-CSA have
higher median values in solving all four problems. Besides,
amongFBK-DE,EMO-MMO,andMOMMOP,EMO-MMO
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Table 6 Results of CSA at an
accuracy level of 1.0E-04

Function DBCC2-CSA DBCC-CSA CBCC3-CSA RBCC-CSA

MF1 PR 0.000 0.000 0.000 0.000

Std 0.000 0.000 0.000 0.000

MF2 PR 0.000 0.000 0.000 0.000

Std 0.000 0.000 0.000 0.000

MF3 PR 0.462 0.462 0.453 0.444

Std 0.061 0.076 0.077 0.063

MF4 PR 0.687 0.682 0.669 0.640

Std 0.080 0.110 0.057 0.132

MF5 PR 0.213 0.203 0.206 0.216

Std 0.071 0.070 0.071 0.068

MF6 PR 0.168 0.162 0.154 0.166

Std 0.020 0.022 0.026 0.016

MF7 PR 0.333 0.332 0.326 0.314

Std 0.049 0.033 0.042 0.050

MF8 PR 0.207 0.197 0.205 0.188

Std 0.057 0.055 0.059 0.056

MF9 PR 0.451 0.465 0.409 0.431

Std 0.092 0.080 0.103 0.096

MF10 PR 0.301 0.291 0.298 0.295

Std 0.050 0.053 0.053 0.045

MF11 PR 0.303 0.319 0.308 0.322

Std 0.101 0.093 0.108 0.116

MF12 PR 0.082 0.091 0.085 0.085

Std 0.018 0.024 0.020 0.020

MF13 PR 0.088 0.086 0.075 0.084

Std 0.011 0.013 0.020 0.013

MF14 PR 0.160 0.149 0.158 0.145

Std 0.065 0.050 0.053 0.051

MF15 PR 0.113 0.146 0.137 0.161

Std 0.065 0.049 0.061 0.053

BPR 8 3 0 3

has the highest median value, and FBK-DE performs more
robustly than EMO-MMO.

Convergence analysis

In this section, we compare the differences in the behavior
of DBCC2-DE, DBCC2-PSO, and DBCC2-CSA by con-
vergence analysis. In global optimization, the radius of the
population is generally used to analyze the convergence trend
of the population [21,64]. However, considering that the pop-
ulation is divided intomultiple species by the niching strategy
in multimodal optimization, the mean of the radius of each
species is used to analyze the convergence trend of the pop-
ulation in this paper.

Figure 2 shows the trend of the mean of the species radius
of DBCC2-DE, DBCC2-PSO, and DBCC2-CSA on func-

tions MF3, MF7, MF10, and MF15. It can be seen that
the convergence of PSO is the strongest and the conver-
gence of CSA is the weakest. Also, experimental results in
Table 7 show that DBCC2-PSO is the best among all the
compared algorithms, while DBCC2-CSA performs worse
thanDBCC2-PSO andDBCC2-DE. Therefore, experimental
results could support that the convergence of the optimization
operator and the algorithm performance are correlated. How-
ever, the fast convergence tends to deteriorate the algorithm
performance by converging the species to the local optima.
As shown in Fig. 2c,DBCC2-PSOconverges rapidly after the
2nd cycle such that it is unable to explore new regions in the
subsequent evolutionary process. Therefore, for MF10, the
performance of DBCC2-PSO is weaker than that of DBCC2-
DE.
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Table 7 Results of the algorithm comparison at an accuracy level of 1.0E-04

Function DBCC2-DE DBCC2-PSO DBCC2-CSA FBK-DE EMO-MMO MOMMOP

MF1 PR 0.005 0.000 0.000 0.000 0.000 0.002

Std 0.002 0.000 0.000 0.001 0.000 0.001

MF2 PR 0.005 0.000 0.000 0.000 0.000 0.000

Std 0.001 0.000 0.000 0.001 0.000 0.000

MF3 PR 0.786 0.829 0.462 0.095 0.343 0.000

Std 0.240 0.196 0.061 0.018 0.083 0.000

MF4 PR 0.905 0.913 0.687 0.073 0.462 0.000

Std 0.235 0.148 0.080 0.015 0.066 0.000

MF5 PR 0.469 0.577 0.213 0.105 0.198 0.013

Std 0.133 0.118 0.071 0.014 0.053 0.015

MF6 PR 0.302 0.411 0.168 0.029 0.142 0.001

Std 0.099 0.170 0.020 0.011 0.056 0.008

MF7 PR 0.543 0.612 0.333 0.075 0.170 0.009

Std 0.157 0.150 0.049 0.013 0.095 0.019

MF8 PR 0.440 0.564 0.207 0.058 0.132 0.006

Std 0.165 0.178 0.057 0.011 0.075 0.015

MF9 PR 0.798 0.800 0.451 0.107 0.372 0.000

Std 0.155 0.107 0.092 0.019 0.097 0.000

MF10 PR 0.675 0.445 0.301 0.090 0.235 0.000

Std 0.117 0.074 0.050 0.014 0.059 0.000

MF11 PR 0.594 0.577 0.303 0.102 0.227 0.009

Std 0.030 0.073 0.101 0.016 0.050 0.017

MF12 PR 0.151 0.318 0.082 0.037 0.069 0.005

Std 0.059 0.121 0.018 0.006 0.019 0.004

MF13 PR 0.124 0.345 0.088 0.047 0.079 0.001

Std 0.067 0.088 0.011 0.006 0.025 0.003

MF14 PR 0.695 0.610 0.160 0.101 0.152 0.007

Std 0.179 0.090 0.065 0.014 0.069 0.011

MF15 PR 0.132 0.297 0.113 0.033 0.087 0.001

Std 0.087 0.040 0.065 0.006 0.029 0.002

Table 8 Average rankings of the algorithms (Friedman) according to the values of PR

Algorithm Ranking Algorithm Ranking Algorithm Ranking Algorithm Ranking

DBCC2-DE 2.3333 DBCC2-PSO 2.4333 DBCC-DE 2.5 RBCC-DE 3.5667

CBCC3-DE 4.7333 DBCC2-CSA 5.9667 EMO-MMO 6.9667 FBK-DE 7.9

MOMMOP 8.6 – – – – – –

Analysis of mechanism

In this part, the strategies adopted in DBCC2 and the
parameter settings are discussed detailed. That is, problem
separation, resource allocation strategy, and two parameters
α, ρ are tested to illustrate the influence of the performance.

Influence of problem separation

Problem separation is firstly executed in DBCC2 to decom-
pose the many-modal optimization problems into subprob-
lems, which can reduce the difficulty of finding a huge
amount of optimal solutions. Here, the problem separation
mechanism is tested. The algorithmwithout problem separa-
tion is denoted asDBCC2-xx-NPS, where xx is the optimizer
adopted in DBCC2. For example, DBCC2-DE-NPS repre-

123



Complex & Intelligent Systems (2023) 9:4403–4423 4417

Fig. 1 Results of the found
global optima on functions
MF3, MF7, MF10, and MF13
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Fig. 2 Convergence trend of
DBCC2 combining DE, PSO,
and CSA on functions MF3,
MF7, MF10, and MF13
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Table 9 Results of DBCC2 with and without problem separation

Function DBCC2-DE DBCC2-DE-NPS DBCC2-PSO DBCC2-PSO-NPS DBCC2-CSA DBCC2-CSA-NPS

MF1 PR 0.005 0.005 0.000 0.000 0.000 0.000

Std 0.002 0.002 0.000 0.000 0.000 0.000

MF2 PR 0.005 0.005 0.000 0.000 0.000 0.000

Std 0.001 0.002 0.000 0.000 0.000 0.000

MF3 PR 0.786 0.054 0.829 0.040 0.462 0.000

Std 0.240 0.007 0.196 0.010 0.061 0.000

MF4 PR 0.905 0.042 0.913 0.025 0.687 0.000

Std 0.235 0.008 0.148 0.010 0.080 0.000

MF5 PR 0.469 0.046 0.577 0.024 0.213 0.000

Std 0.133 0.008 0.118 0.011 0.071 0.000

MF6 PR 0.302 0.001 0.411 0.013 0.168 0.000

Std 0.099 0.003 0.170 0.008 0.020 0.002

MF7 PR 0.543 0.030 0.612 0.018 0.333 0.000

Std 0.157 0.009 0.150 0.008 0.049 0.000

MF8 PR 0.440 0.030 0.564 0.015 0.207 0.000

Std 0.165 0.007 0.178 0.006 0.057 0.001

MF9 PR 0.798 0.058 0.800 0.034 0.451 0.000

Std 0.155 0.008 0.107 0.016 0.092 0.000

MF10 PR 0.675 0.053 0.445 0.025 0.301 0.000

Std 0.117 0.006 0.074 0.007 0.050 0.000

MF11 PR 0.594 0.042 0.577 0.021 0.303 0.000

Std 0.030 0.008 0.073 0.006 0.101 0.000

MF12 PR 0.151 0.018 0.318 0.009 0.082 0.000

Std 0.059 0.003 0.121 0.004 0.018 0.000

MF13 PR 0.124 0.022 0.345 0.012 0.088 0.000

Std 0.067 0.004 0.088 0.005 0.011 0.000

MF14 PR 0.695 0.045 0.610 0.024 0.160 0.000

Std 0.179 0.006 0.090 0.009 0.065 0.000

MF15 PR 0.132 0.013 0.297 0.008 0.113 0.000

Std 0.087 0.003 0.040 0.004 0.065 0.000

NBR 15 2 13 0 13 0

sents the proposed DBCC2 with DE optimizer and without
the problem separation mechanism.

Table 9 shows the mean and standard deviation of PR
results ofDBCC2and its versionwithout problemseparation.
The experiment results show that problem separation per-
forms powerfully in the many-modal optimization problems,
especially in the partially separable benchmarks. In detail, in
the comparisonwith theDEoptimizer, DBCC2-DEperforms
much better than DBCC2-DE-NPS. On MF4, DBCC2-DE
almost finds all the optima (i.e., 0.905) but DBCC2-DE-NPS
obtains less than 10% optimal solutions. This huge gap also
exists in the comparisons of PSO and CSA optimizers. It is
noted that without problem separation, DBCC2-CSA-NPS
hardly finds any optimal peaks.

Overall, the problem separation mechanism is useful in
solving many-modal optimization problems with the sepa-
rable property. For DE optimizer, DBCC2-DE gets the best
performance on all benchmarks and the versionwithout prob-
lem separation performs the best only on MF1 and MF2. For
the PSOandCSAoptimizers,DBCC2obtainsmore powerful
performance on all separable benchmarks in the correspond-
ing comparisons.

Influence of resource allocation

The dynamic resource allocation strategy is proposed in
DBCC2, and it can dynamically allocate the computing
resources to the subproblemswith different difficulties. Here,
the performance of the resource allocation strategy is tested.
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Table 10 Results of DBCC2 with and without resource allocation strategy

Function DBCC2-DE DBCC2-DE-NRA DBCC2-PSO DBCC2-PSO-NRA DBCC2-CSA DBCC2-CSA-NRA

MF1 PR 0.005 0.005 0.000 0.000 0.000 0.000

Std 0.002 0.002 0.000 0.000 0.000 0.000

MF2 PR 0.005 0.005 0.000 0.000 0.000 0.000

Std 0.001 0.002 0.000 0.000 0.000 0.000

MF3 PR 0.786 0.624 0.829 0.829 0.462 0.449

Std 0.240 0.185 0.196 0.196 0.061 0.071

MF4 PR 0.905 0.768 0.913 0.913 0.687 0.680

Std 0.235 0.154 0.148 0.147 0.080 0.066

MF5 PR 0.469 0.398 0.577 0.582 0.213 0.210

Std 0.133 0.008 0.118 0.120 0.071 0.073

MF6 PR 0.302 0.317 0.411 0.411 0.168 0.167

Std 0.099 0.138 0.170 0.170 0.020 0.014

MF7 PR 0.543 0.587 0.612 0.612 0.333 0.322

Std 0.157 0.151 0.150 0.150 0.049 0.059

MF8 PR 0.440 0.552 0.564 0.567 0.207 0.197

Std 0.165 0.161 0.178 0.176 0.057 0.057

MF9 PR 0.798 0.669 0.800 0.800 0.451 0.449

Std 0.155 0.149 0.107 0.107 0.092 0.073

MF10 PR 0.675 0.549 0.445 0.445 0.301 0.308

Std 0.117 0.099 0.074 0.074 0.050 0.040

MF11 PR 0.594 0.593 0.577 0.580 0.303 0.304

Std 0.030 0.060 0.073 0.071 0.101 0.104

MF12 PR 0.151 0.116 0.318 0.350 0.082 0.082

Std 0.059 0.029 0.121 0.086 0.018 0.020

MF13 PR 0.124 0.119 0.345 0.351 0.088 0.086

Std 0.067 0.030 0.088 0.079 0.011 0.011

MF14 PR 0.695 0.505 0.610 0.610 0.160 0.144

Std 0.179 0.100 0.090 0.090 0.065 0.046

MF15 PR 0.132 0.117 0.297 0.299 0.113 0.134

Std 0.087 0.044 0.040 0.039 0.065 0.043

BPR 12 5 7 13 10 4

Wedenote the proposed algorithmswithout the resource allo-
cation strategy as DBCC2-xx-NRA, where xx represents the
selected optimizer from DE, PSO and CSA.

Table 10 shows the mean and standard deviation of PR
results of DBCC2 with and without the resource allocation
strategy, respectively. It can be seen that the resource alloca-
tion strategy performs better in the algorithms with DE and
CSA optimizers, but gets a poor performance with PSO opti-
mizer. For example, on MF10, DBCC2-DE obtains 0.675
PR results, while DBCC2-DE-NRA finds a 0.549 ratio of
the optimal peaks. On MF14, DBCC2-CSA achieves 0.160
results, performing better than DBCC2-CSA-NRA, which
gets 0.144 PR results.

In summary, the resource allocation strategy is useful in
DBCC2 framework with DE and CSA optimizers. In the cur-

rent experiment, DBCC2-DE obtains the best results on 12
benchmark problems, while the version without the resource
allocation strategy obtains the best results on 5 problems. As
for the CSA optimizer, DBCC2-CSA obtains the best results
on 10 benchmarks than DBCC2-CSA-NRA, which obtains
the best results only on 4 problems. However, the reason
that DBCC2-PSO-NRA is better DBCC2-PSO is worthy of
further studying.

Influence of˛

In DBCC2, α controls the cycles in the step of dynamic
resource allocation. The values of α are chosen from the
set {0.05, 0.1, 0.2, 0.3, 0.5}. The smaller the value of α, the
more the cycles of DBCC2. Here, DE is used as the opti-
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Table 11 Results of DBCC2-DE taking different values of α

Function α = 0.05 α = 0.1 α = 0.2 α = 0.3 α = 0.5

MF1 PR 0.005 0.005 0.005 0.005 0.005

Std 0.002 0.002 0.002 0.002 0.002

MF2 PR 0.005 0.005 0.005 0.005 0.005

Std 0.001 0.001 0.001 0.001 0.001

MF3 PR 0.729 0.786 0.653 0.659 0.604

Std 0.271 0.240 0.252 0.221 0.220

MF4 PR 0.890 0.905 0.822 0.832 0.767

Std 0.232 0.235 0.244 0.219 0.205

MF5 PR 0.461 0.469 0.428 0.429 0.402

Std 0.172 0.133 0.112 0.125 0.118

MF6 PR 0.273 0.302 0.298 0.314 0.274

Std 0.088 0.099 0.113 0.154 0.114

MF7 PR 0.517 0.543 0.542 0.543 0.476

Std 0.156 0.157 0.175 0.165 0.185

MF8 PR 0.435 0.440 0.464 0.491 0.440

Std 0.180 0.165 0.154 0.191 0.184

MF9 PR 0.679 0.798 0.763 0.735 0.742

Std 0.262 0.155 0.199 0.202 0.179

MF10 PR 0.671 0.675 0.668 0.660 0.642

Std 0.141 0.117 0.113 0.125 0.122

MF11 PR 0.592 0.594 0.578 0.588 0.582

Std 0.051 0.030 0.055 0.041 0.049

MF12 PR 0.091 0.151 0.134 0.130 0.120

Std 0.081 0.059 0.049 0.028 0.032

MF13 PR 0.036 0.124 0.141 0.145 0.134

Std 0.066 0.067 0.049 0.034 0.037

MF14 PR 0.653 0.695 0.661 0.592 0.568

Std 0.182 0.179 0.187 0.190 0.146

MF15 PR 0.102 0.132 0.147 0.138 0.153

Std 0.076 0.087 0.058 0.063 0.055

BPR 0 10 0 3 1

mizer of DBCC2 to illustrate the influence. Table 11 shows
the results for different values of α. Overall, DBCC2-DE has
the best performance when α is equal to 0.1.

The algorithm requires more rounds to allocate the
resources when α is set to 0.05. However, it can be seen
that the performance is worse than that of DBCC2-DE with
α = 0.1. The experimental result indicates that more rounds
of difficulty estimation do not always produce better perfor-
mance.

The performance of DBCC2-DE with α = 0.5 is worse
than that with α = 0.1. The former has only one better result
in solving the separable problems, which shows that a small
number of the difficulty estimation rounds cannot reflect the
population status in time.

Table 12 Results of DBCC2-DE taking different values of ρ

Function ρ = 1.0 ρ = 2.0 ρ = 3.0 ρ = 5.0 ρ = 10.0

MF1 PR 0.005 0.005 0.005 0.005 0.005

Std 0.002 0.002 0.002 0.002 0.002

MF2 PR 0.005 0.005 0.005 0.005 0.005

Std 0.001 0.001 0.001 0.001 0.001

MF3 PR 0.663 0.734 0.786 0.786 0.620

Std 0.265 0.287 0.270 0.240 0.278

MF4 PR 0.765 0.833 0.895 0.905 0.815

Std 0.292 0.271 0.241 0.235 0.257

MF5 PR 0.474 0.486 0.496 0.469 0.387

Std 0.170 0.158 0.159 0.133 0.156

MF6 PR 0.267 0.286 0.306 0.302 0.270

Std 0.096 0.093 0.130 0.099 0.114

MF7 PR 0.425 0.509 0.608 0.543 0.487

Std 0.128 0.175 0.138 0.157 0.170

MF8 PR 0.484 0.494 0.527 0.440 0.356

Std 0.144 0.165 0.128 0.165 0.153

MF9 PR 0.870 0.880 0.903 0.798 0.476

Std 0.177 0.177 0.125 0.155 0.311

MF10 PR 0.585 0.687 0.718 0.675 0.561

Std 0.133 0.113 0.079 0.117 0.167

MF11 PR 0.591 0.580 0.595 0.594 0.576

Std 0.075 0.069 0.047 0.030 0.068

MF12 PR 0.063 0.096 0.131 0.151 0.108

Std 0.072 0.073 0.059 0.059 0.049

MF13 PR 0.030 0.092 0.149 0.124 0.092

Std 0.058 0.089 0.064 0.067 0.056

MF14 PR 0.604 0.635 0.701 0.695 0.567

Std 0.201 0.187 0.172 0.179 0.234

MF15 PR 0.044 0.075 0.096 0.132 0.135

Std 0.058 0.063 0.075 0.087 0.058

BPR 0 0 10 3 1

Influence of�

The parameter ρ has an impact on the difficulty estimation.
Here, the value of ρ is taken from the set {1.0, 2.0, 3.0,
5.0, 10.0}, and the results are shown inTable 12. The parame-
ter ρ plays a key role in themapping from the fitness-distance
correlation to the estimated difficulty. As discussed in Sec-
tion Improved difficulty-based cooperative co-evolution, the
fitness-distance correlation does not reflect the difficulty lin-
early. In Formula (18),ρ intrinsically determineswhich value
of μ will lead to the maximum value of the estimated dif-
ficulty. For example, ρ = 2.0 indicates that μ = 1/2 in
Formula (18) results in the maximum estimated difficulty.

The experimental results show that there are significant
advantages when ρ is set to 3.0, where the maximum value
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of the estimated difficulty is achieved with μ = 2/3. There
are 10 better results among the 13 separable problems.

Furthermore, in a majority of the problems, DBCC2-DE
tends to achieve better performance when ρ is increased
from 1.0 to 3.0 and performs worse performance when ρ is
decreased from 3.0 to 10.0. For example, in MF5, the value
of PR increases from 0.474 to 0.496 when the value of ρ

is increased from 1.0 to 3.0. The value of PR decreases to
0.387 when ρ is set to 10.0.

Finally, for all separable problems, except for MF15,
DBCC2-DE achieves better performance when ρ is set to 3.0
or 5.0. As for MF1 and MF2, the algorithms have the same
results for different values of ρ as they are nonseparable.

Conclusion

In this paper, many-modal optimization problems are investi-
gated. A new benchmark and an improved DBCC (DBCC2),
which dynamically estimates the difficulty of subproblems
in the search process, are proposed. DBCC2 shows better
performance as compared to other typical MMO algorithms.
However, much remains to be done in the future. Optimizers,
resource allocation strategies, and CC frameworks of many-
modal optimization problems still deserve further study.
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