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Abstract
The ant colony optimization (ACO) is one efficient approach for solving the travelling salesman problem (TSP). Here, we
propose a hybrid algorithmbased on state-adaptive slimemoldmodel and fractional-order ant system (SSMFAS) to address the
TSP. The state-adaptive slime mold (SM) model with two targeted auxiliary strategies emphasizes some critical connections
and balances the exploration and exploitation ability of SSMFAS. The consideration of fractional-order calculus in the ant
system (AS) takes full advantage of the neighboring information. The pheromone update rule of AS ismodified to dynamically
integrate the flux information of SM. To understand the search behavior of the proposed algorithm, some mathematical proofs
of convergence analysis are given. The experimental results validate the efficiency of the hybridization and demonstrate that
the proposed algorithm has the competitive ability of finding the better solutions on TSP instances compared with some
state-of-the-art algorithms.
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Introduction

The travelling salesman problem (TSP) is one of the most
intensively studied NP-hard [1] combinatorial optimization
problems, which requires a shortest path through all cities
without repetition [2,3]. Over the years, considerable bio-
inspired heuristic algorithms have been applied to address
TSPs, e.g., the ant colony optimization (ACO) [4,5], the par-
ticle swarmoptimization (PSO) [6,7], the artificial bee colony
(ABC) algorithm [8], thefirefly algorithm (FA) [9], and earth-
worm optimization [10].

Particularly, the pioneering ACO algorithm, ant system
(AS) [4], was originally developed to solve the TSP [5].
On this account, the TSP is used mostly as a benchmark
to test ACO variants. ACO is a swarm intelligence algorithm
which simulates the foraging behavior of ant colony [11].
With the characteristics of positive feedback and informa-
tion sharing among ants, it has become one effective method
for solving combinatorial optimization problems. A consid-
erable number of its variants have been designed to boost
the performance, including the popular Max–Min ant system
(MMAS) [12] and the rank-based ant system (ASrank) [13].
Meanwhile, the convergence proofs of AS and MMAS were
presented to explain the rationale behind the ACO theoreti-
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cally [14]. Recently, two modified ACO algorithms based on
fractional calculus have been proposed [15,16], which inte-
grate the long-time memory property of fractional calculus
into updating pheromones from a different perspective.

Generally, higher convergence speed and lower risk of
trapping into local optima are the main targets of these
extensions. In this context, how to make a dynamic bal-
ance between the exploration and exploitation of a swarm,
has always been an important issue worthy of study and
discussion. Considering the various advantages of different
algorithms and search techniques, researchers have pro-
posed hybrid intelligence algorithms by combining multiple
methods. In [17], a parallel cooperative hybrid algorithm,
PACO-3Opt, is developed to address the TSP, where the
main idea is generating solutions by ACO in parallel, and
then integrating the 3-Opt local search heuristic to modify
these solutions. Another hybrid method called PSO-ACO-
3Opt [18] utilizes PSO algorithm to adjust the parameters
of ACO, and applies the 3-Opt technique to avoid premature
convergence of ACO algorithm. These works show the effec-
tiveness of the hybridization experimentally. However, there
remains much room for improvement in accelerating conver-
gence and jumping out of local optimal solutions. Moreover,
they have made no attempt to provide the theoretical analysis
of the convergence.

On the other hand, recently, there have been increased
interests in slime mold (SM) model, due to its unique bio-
logical mechanism and the intelligent behavior of network
design and path finding. An SM is an amoeba-like single-
celled organismwith a tubular network structure and flowing
protoplasm, which can adaptively adjust its body shape to
construct a shortest path [19]. During foraging, the tube net-
work, which contains nutrients and chemical signals that
circulate throughout the organism, forms by connecting the
growing point to food sources. These tubes are disassembled
and reorganized according to external conditions, such as the
quantity and position of nutrient sources, the terrains, and the
light intensity distribution. In this way, the network structure
of the organism is optimized to facilitate the efficient access to
available nutrients [20]. For instance,when anSMis placed in
a maze with two nutrient sources positioned at the entrance
and exit, it modifies its body shape dynamically to absorb
nutrients efficiently, and eventually connect the entrance and
exit (a pair of food sources) with the shortest path [21].
Biological experiments have indicated that the simulation
network constructed by SM model is very similar to the
real Tokyo, Mexico, and Greece railway networks in terms
of transportation performance, robustness, and cost [22–24].
Therefore, a biologically inspiredmathematicalmodel of SM
has been developed with the positive feedback characteristic,
which means the tube diameter increases with the increase
of the protoplasm flux, and decreases otherwise [25]. There-
after, the SM model has been successfully applied to solve

combinatorial optimization, including the knapsack prob-
lem [26], traffic network optimization [27,28], load-shedding
problem [29], supply chain network design [30,31], etc.

This model attracts our attention because apparently, the
path optimization ability of SM model makes it a good can-
didate approach to solving the TSP. We noticed that a recent
research has presented a slime mold-ant colony fusion algo-
rithm (SMACFA) to deal with TSP, which uses SM model
to determine the connections of some edges before ACO is
implemented [32]. This approach is more like the initializa-
tion process beforeACO,which takes the advantage of SM in
shortest path construction. However, in this way, the variety
of path selection is limited, and the advantages of SMmodel
are not brought into full play.

The purpose of our work is to develop an effective
approach to hybridize theAS algorithmwith the SMmodel to
bring the ability of SM model of constructing shortest paths
into full play. To this end, a novel hybrid algorithm based on
state-adaptive SMmodel and fractional-order AS (SSMFAS)
is developed in this paper for addressing the TSP. Moreover,
some convergence proofs are given to ensure the feasibil-
ity of the proposed hybrid algorithm theoretically. The main
contributions of this paper are summed up as follows.

1. To make the SM model more suited for solving the TSP
cooperating with the ant colony, we have developed a
state-adaptive multi-entrance-exit SM model where each
pair of nodes is regarded as the entrance/exit of an SM
subsystem, equipped with two auxiliary strategies. The
adaptive conductivity strategy changes the contraction
rate smoothly over iterations, so that SM model shifts
its state from exploration to exploitation to achieve a
dynamic balance between local and global optimization.
The maximum–minimum flux strategy is introduced to
limit theflux through the tubeswithin an appropriate range
matching the pheromone in the AS.

2. A hybrid algorithm based on state-adaptive SM model
and fractional-order AS (SSMFAS) is proposed, where
a fractional-order neighborhood probability is used in
the node transition of ants to take the information of
the neighborhood of candidate cities into account by
fractional-order calculus, and a modified pheromone
update rule is proposed which adds the protoplasm flux
through each pipe as the pheromone on the corresponding
edge dynamically to make the ant colony obtain informa-
tion from the SM model.

3. The convergence properties of SSMFAS are analyzed in
this paper. In simple terms, first, it has been proved that the
probability of SSMFAS in finding an optimal path arbi-
trarily approaches to 1 given enough iterations. Second,
we have proved that the pheromone trails of the optimal
edges increase over iterations after the optimal solution is
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found,while the pheromone trails of other edges decrease.
In addition, the lower bound of the probability of finding
an optimal solution is given.

4. Abundant experiments have been conducted with promis-
ing results. First, ablation studies are implemented to
validate the rationality of every module of the hybridiza-
tion as well as the proposed two auxiliary strategies.
Subsequently, comparisons with several state-of-the-art
algorithms, including ACO-based hybrid algorithms and
other heuristic approaches, aremade to illustrate the effec-
tiveness of SSMFAS.

The remainder of this paper is organized as follows.
In “Background” section, we briefly introduce some algo-
rithms and theories related to our work. The details of
SSMFAS are presented in Methodology section. The the-
oretical convergence properties and the proofs are given in
Theoretical convergence proofs section. Experiments section
demonstrates the simulation results and the relevant analysis.
Finally, Conclusions section summarizes the conclusion.

Background

In this section, we first give the definition of TSP and the
notations used in the paper. Then we briefly introduce the
framework of the AS algorithm, the mathematical model of
SM and the background knowledge related to fractional cal-
culus.

Problem definition and notations

In a TSP, assume the number of cities is N ∈ N
+ and the

cities are labeled as i = 1, 2, · · · , N . The distance between
city i and city j is given as Li j . The objective is to find the
shortest route visiting each city once and returning to the
starting point. Therefore, each solution to the problem is a
sequence with length of N, i.e.,C = (C1,C2, · · · ,CN ). The
cost function of the solution is S = LC1C2 + LC2C3 + · · · +
LCNC1 .

For the sake of the reader’s convenience, themathematical
notations used in the paper are listed in Table 1.

Ant system algorithm

Route construction and pheromone update are two critical
steps of the AS algorithm. The process of the AS is summa-
rized as follows:

1) Initialization: The population of ants is set to M ∈ N
+.

Every ant is placed at a random city as a start position. Ta
bl
e
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The initial value of pheromone on each edge is set to
τ0 > 0.

2) Route construction:Each antm (m = 1, 2, . . . , M) in the
current city i selects the next visiting city j depending
on a random proportion rule of the transition probability,
which is defined as

pmi j =
⎧
⎨

⎩

[τi j ]α[ηi j ]β∑
u∈Jmi

[τiu ]α[ηiu ]β , if j ∈ Jmi ,

0, otherwise,
(1)

where τi j represents the pheromone concentration on
edge (i, j), ηi j is called the heuristic information which
is calculated as ηi j = 1

Li j
, where Li j is the length of edge

(i, j), α and β are two preset parameters used to balance
the effects of heuristic information and the pheromone
concentration, Jmi represents the set of cities which have
not been visited by ant m.
Every ant keeps moving from one city to another guided
by this probability and records the visited cities until it
has visited all the cities.

3) Pheromone update: At time (t + 1), after each ant com-
pleting its tour, the pheromone on edge (i, j) is updated
as

τi j (t + 1) = (1 − ρ) · τi j (t) +
M∑

m=1

τmi j (t), (2)

where ρ (0 < ρ < 1) denotes the evaporation rate of the
pheromone, τmi j represents the volume of pheromone
released by ant m on edge (i, j), which is calculated as

τmi j (t) =
{

(Sm)−1 , if (i, j) is visited by ant m,

0, otherwise,

(3)

where Sm is the length of solution constructed by ant m.
4) Repeat the above steps until the termination condition is

met, and then output the optimal solution.

Slimemoldmodel

The SM model has a tube-liked network, which contains N
nodes and N (N − 1)/2 edges connecting the nodes, indicat-
ing the cytoplasmic tubules between the nodes. Each edge
has a weight, denoted by Q, which means the flux through
the edge. Figure 1 illustrates the path construction process of
an SM network. V1 and V2 are the entrance and exist nodes,
respectively. V3, V4 and V5 are transition nodes. As shown
in Fig. 1a, the classic SM model has only one growth point
(entrance node), V1, and one food source (exist node), V2.
V3 to V5 are transition nodes. The protoplasmic flux in the

(a) Initial structure (b) Final structure

Fig. 1 Penels (a) and (b) illustrates the path construction process of an
SM network with one pair of entrance/exist nodes

tube is similar to Hagen–Poiseuille flux [25,33]. Therefore,
the flux through tube (i, j), Qi j , is formulated as

Qi j = Di j · pi − p j

Li j
, (4)

where Li j is the length of edge (i, j), pi and p j denote the
pressures at nodes i and j , and Di j is used to describe the
conductivity of edge (i, j), which is determined by

Di j = πa4i j
8ω

, (5)

where ω represents the viscosity of the fluid, and ai j denotes
the radius of pipe (i, j).

Following theKirchhoff’s law [34], the total flux should be
conserved. Therefore, the outflow and inflow of each internal
node must be equal, except for the start and end nodes. Let
I0 be the fixed total flux from the entrance to the exit in the
entire network. This conservation law is modeled as

∑

i

Qi j =
∑

i

Di j

Li j

(
pi − p j

) =

⎧
⎪⎨

⎪⎩

−I0, if j = entrance,

I0, if j = exit,

0, otherwise.

(6)

Given an initial conductivity D0 for every edge, and
pexit = 0 as a fundamental pressure at the exit node, the
linear equation system with sparse symmetric matrix (6) can
be solved for the pressure value at each node, as well as the
flux Qi j through each edge.

The slime mold adapts itself when foraging in a way that
high-flow pipes are thickened, while low-flow pipes shrink
and disappear. Since the length Li j is a given constant, the
adaptive characteristic of the model can be expressed by the
variation of conductivity Di j , modeled as

d

dt
Di j = f

(|Qi j |
)− γ Di j , (7)
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where f
(|Qi j |

)
is a monotonically increasing function with

f (0) = 0, which describes the positive effect of increased
flow on conductivity, γ > 0 is the contraction rate of tubes,
which denotes the tubes contracts over time.

The discretized expression of (7) is expressed as

Dt+t
i j − Dt

i j

t
= f
(
|Qt

i j |
)

− γ Dt
i j , (8)

where t represents a time interval which is typically con-
sidered as 1. Therefore, (8) is rewritten as

Dt+1
i j = f

(
|Qt

i j |
)

+ (1 − γ )Dt
i j . (9)

From (4) and (9), it is noteworthy that there is a positive
feedback cycle between the conductivity and the flux. That
is, the conductivity of the edge, Di j , increases when a larger
amount of flux, Qi j , passes through it, and this is conducive
to the increase of flux further.

Under this mechanism, the network structure of the SM
model in Fig. 1a changes to the one in Fig. 1b after a few
iterations, where some tubes are disappeared (marked as the
dotted lines), while some other tubes are thickened and sta-
bilized (highlighted with bold black lines).

Fractional calculus

Fractional-order calculus is an extension of the integer calcu-
lus, where the order extends from an integer to a real number.
As a mathematical tool, it has been investigated intensively
and applied successfully in various areas [35]. The most
popular used definitions of fractional calculus areGrünwald–
Letnikov, Riemann–Liouville, Caputo, and Riesz [36–39]. In
this work, we employ Grünwald–Letnikov fractional form
because it can be discretized. For a differentiable func-
tion g(x) in the duration of [a, x], its Grünwald–Letnikov
fractional-order differential definition of order ν (ν > 0) is
defined as

G−L
a Dν

x g (x) = lim
H→∞

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
x − a

H

)−ν

� (−ν)

H−1∑

l=0

� (l − ν)

� (l + 1)
g

[

x − l

(
x − a

H

)]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(10)

whereG−L
a Dν

x denotes fractional differential operator,�(α) =∫∞
0 e−x xα−1dx is the Gamma function, x−a

H is the sampling
step length.

Let x = x−a
H . In the duration of [x − Hx, x], (10) is

simplified as

G−L
a Diffνx g (x)

= (x)−ν
H−1∑

l=0

�(l − ν)

�(−ν)�(l + 1)
g(x − lx)

= (x)−ν

[

g(x) +
H−1∑

l=1

�(l − ν)

�(−ν)�(l + 1)
g(x − lx)

]

,

(11)

when ν = 1, it is obvious that (11) can be revised as

G−L
a Diff1x g (x) = (x)−1 [g(x) − g(x − x)] , (12)

where G−L
a Diff1x g (x) is the first-order difference.

By comparing (11) with (12), we observe that the
fractional-order difference includes more history informa-
tion, which is generally regarded as the property of long-term
memory.

Methodology

In this section, we elaborate on the proposed SSMFAS,
including the improved SM model and details of key pro-
cedures.

Figure 2 shows the overall procedure of the proposed
SSMFAS. After the initialization, a state adaptive multi-
entrance-exit SM model is developed, where the positive
feedback mechanism is used to update the flux and the
conductivity. It consists of two strategies. The adaptive con-
traction strategy shifts the state of SM from exploration to
exploitation. The maximum–minimum flux strategy limits
the flux by the upper and lower bounds of AS algorithm,
making it accessible for linking with AS algorithm. For the
ant colony part, when the ants constructing solutions, the
fractional-order neighborhood transition probabilistic rule
which uses the neighboring information is introduced. After
that, the flux of SMmodel is added to pheromone update rule
as a part of adaptive pheromone. This loop continues until
the stopping criterion is satisfied.

State-adaptivemulti-entrance-exit SMmodel

We have introduced the classic single-entrance-exit SM
model in Background section. However, it may not be suit-
able for solving the TSP directly since there is no fixed pair of
entrance/exit in the TSP [40]. Therefore, we propose a state-
adaptive multi-entrance-exit SM model where each pair of
nodes is considered as a single-entrance-exit SM subsystem
to address the TSP.

Let the number of the nodes in the improved SM model
be N , which corresponds to the number of cities in AS.
Accordingly, there are N (N − 1)/2 single-entrance-exit SM
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Fig. 2 The flowchart of the
proposed SSMFAS

subsystems since each pair of nodes is considered as the
entrance/exit. Given the pressure at exit node as pexit = 0, the
pressure at any other node in the nth (n = 1, 2, · · · , N (N −
1)/2) sub-network is derived from

∑

i �= j

Dn
i j

Li j

(
pni − pnj

)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−2I0
N (N − 1)

, for j = entrance,

2I0
N (N − 1)

, for j = exit,

0, otherwise,

(13)

where I0 denotes the total flux in the model, which is fixed
during the optimization process.

Then the flux qni j (t) through the tube (i, j) in the nth sub-
system at time t is computed as

qni j (t) = Dn
i j (t)

Li j

(
pni (t) − pnj (t)

)
. (14)

The total flux Qi j through the tube (i, j) is calculated by
the sum of the flux in each subsystem, expressed as

Qi j =
N (N−1)/2∑

n=1

|qni j |. (15)

According to (9), the conductivity of tube (i, j) at time
(t + 1) in the nth sub-network is updated by:

Dn
i j (t + 1) = f

(
|qni j (t)|

)
+ (1 − γ )Dn

i j (t), (16)

where γ is the contraction rate of tubes and f (·) is a mono-
tonically increasing function.

To make the improved model more applicable to the TSP,
instead of using the two classical types of f (·) [25], we intro-
duce a function as

f (|qni j (t)|) = μ · |qni j (t)|, (17)

whereμ is a parameter which controls the influence of qi j . Its
value is optimized by orthogonal experiments inExperiments
section.

Adaptive contraction strategy

Specifically, as the intention of integrating SM model with
AS is to improve the global searching and convergence abil-
ity, we introduce an adaptive strategy, which changes the
contraction rate of tubes, r , dynamically over iterations, to
make the SM model maintain a dynamic balance between
convergence speed and global searching ability.

More specifically, at the beginning of the iteration when
the global optimal has not been found, the algorithm should
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Fig. 3 The variation of contraction rate γ over iterations

be more sensitive to various solutions, which is represented
by a larger value of the contraction rate of tubes. Subse-
quently, the contraction rate of tubes should decrease with
the number of iterations increasing, for the sake of acceler-
ating the convergence of the algorithm.

To achieve this goal, we propose a smooth decreasing
function within a range of (a, b), which is defined as

γ (t) = a

[

1 − 1
a

a−b + (c · e)T ′−t

]

, (18)

where T ′ is an inflection point when the algorithm shifts from
the period of exploration to exploitation, and c is a coefficient
to adjust the speed of the transition.

The variation of the contraction rate γ (t) over iterations
is plotted in Fig. 3, with a = 0.7, b = 0.2, and T ′ = Tmax

3 . It
shows that the value of γ is higher in the early search, which
makes the conductivities of the tubes in SM sensitive to the
flow, leading to the piping connections changing rapidly. In
this way, the SM is in a more active state to look for various
solutions at this stage. As the number of iterations increases,
the value of the contraction rate decreases, which means that
the conductivity changes slowly to form the optimal path
gradually. In other words, the SM changes from active state
to stable state over successive iterations.

Maximum–minimum flux strategy

Furthermore, there is another important point need to be con-
sider when we try to combine the SM model with AS using
the flux of SMmodel as a kind of pheromone. That is whether
flux and pheromone, the two variables belonging to different
models, keep similar orders of magnitude.

We notice that one simple but quite efficient mechanism
of MMAS [12] is limiting the values of pheromone to the
maximumandminimumranges. Inspiredby this,we consider
an upper bound and a lower bound to limit the flux through
each tube to a suitable range. More specifically, to better
integrate with AS algorithm, the bounds should be related to
the pheromone in AS, which is set to

Qi j (t) ∈ δ · [τmin, τmax], (19)

where τmin and τmax are the upper and lower bounds of the
pheromone, respectively, δ > 0 is the weight coefficient,
which is set based on some trial experiments in the algorithm.

The pseudo-code of the state adaptive multi-entrance-exit
SM model is outlined in Algorithm 1.

Algorithm 1 State Adaptive Multi-entrance-exit SM Model
Input: The length matrix L;

the maximum number of iterations Tmax ;
the number of cites N ;

Output: The total flux Qi j (t) at time t ;
1: Initialize the conductivity matrix Dn

0 ; the flow of the entire network
I0;

2: for t = 0 to Tmax do
3: for n = 1 to (N − 1) do
4: Calculate pn(t) at each node based on (13);
5: Obtain qni j (t) according to (14);
6: Update the conductivity Dn

i j using (16);
7: end for

Calculate Qi j (t) using (15);
8: end for

Fractional-order neighborhood transition
probability

In general ACO, an ant selects a movement using only the
information between two nodes, which brings about a higher
risk of trapping into local optima, as the best node for the next
step is not always the best choice for the total path. Recently,
a fractional-order ant colony algorithm (FACA) [16] has been
proposedwhich calculates the probabilities of next few steps,
and combines them with fractional-order calculus to get a
more predictable probability. Similarly, another way of com-
bined probability has been proposed in our previous work
[15]. However, these algorithms need to calculate the transi-
tion probabilities of a few more nodes ahead of the current
node. Therefore, the computational complexity is multiplied
by the number of steps that the algorithm counts in.

To overcome this limitation, our goal is to take full
account of the neighbor information without increasing too
much computational cost. Here, we propose a fractional-
order neighborhood transition probability, which combines
the moving probability of the candidate node with those of
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its neighboring nodes to form a new transition probability.
Specifically, when an ant m (m = 1, 2, . . . , M) is at the
i th node, the transition probability to the j th node at the t th
iteration is defined as

ν pmi j (t)

=

⎧
⎪⎪⎨

⎪⎪⎩

pmi j (t) +∑N ′−1
k=1 | �(k−ν)

�(−ν)�(k+1) |pmink (t)
∑N ′−1

k=0 | �(k−ν)
�(−ν)�(k+1) |

, if j ∈ Jmi (t),

0, otherwise.

(20)

where ν is the fractional order, pmi j (t) is calculated by (1),
(N ′ − 1) is the number of nodes considered in the neighbor-
hood of the node j , nk means the unvisited node which ranks
k in descending order of Euclidean distance from node j , the
denominator part is used to normalize this combination of
probabilities.

For the candidate node j , the proposed fractional-order
neighborhood transition probability considers the informa-
tion in the neighborhood of j . This modification only needs
the values of probabilities of the candidate cities for city
i , which have been calculated already. Furthermore, it is
logically reasonable that | �(k−v)

�(−v)�(k+1) | is a monotonically
decreasing function of k, meaning the effect of its informa-
tion decreases as the distance from the neighbor node to j
increases.

Pheromone update

Algorithm 2 SSMFAS Algorithm
Input: The length Matrix L , maximum number of iterations Tmax ;
Output: The best solution;
1: Set iteration t = 0;
2: Initialize the parameters;
3: Place ants in starting cities randomly;
4: while t ≤ Tmax do
5: Each ant completes the tour using fraction-order neighborhood

transition probability (20);
6: Local optimization and solutions sorting;
7: Use Algorithm 1 to get Qi j (t);
8: Update the pheromone on each edge according to (22);
9: t = t + 1;
10: end while
11: Local optimization;
12: Return the best solution.

When all ants have finished their loops at the t th iteration,
the pheromone trails are updated. The pheromone update rule
of SSMFAS consists of two parts: the pheromone trails left
by ant colony and the protoplasm flux of the SM model.

For the component of pheromone trails, similar to a rank-
based version of the AS (ASrank) [13], only the pheromone
trails of some elite ants with ranks count. First, we sort the

solutions constructed by M ants at the t th iteration in ascend-
ing order, written as

S1(t) ≤ S2(t) ≤ · · · ≤ SM (t). (21)

Then, only the M ′ (1 ≤ M ′ ≤ M) best ants are used to
update the pheromone trials and their effects are based on
the ranks of their solutions. We use a nonlinear decreasing
function with 1 as the largest weight instead of the smallest
used in ASrank, since the flux in SM model is also added as
the pheromone in this procedure.

The pheromone update policy of SSMFAS is given by

τi j (t + 1) = (1 − ρ)τi j (t) +
M ′
∑

m=1

e−λ(m−1) · τmi j (t) + σ(t)Qi j (t),

(22)

and

τmin ≤ τi j ≤ τmax ∀τi j , (23)

where M ′ (1 ≤ M ′ < M) is the number of chosen ants, λ

denotes a control coefficient which is set to 0.1 in the experi-
ments, σ(t) is a control parameter used to adjust the influence
of protoplasm flux, which is defined as

σ(t) = 1 − 1

1 + e
Tmax
4 −t

. (24)

Similar to (18), σ(t) is a decreasing function within the range
of (0, 1), whichmeans the effect of SMmodel decreases with
the number of iterations increasing. The reason for this is that
the addition of the flux of SMmodel changes the pheromone
distribution of the ant colony, and thus influences the edge
selections of ants. At the beginning of the iteration, the algo-
rithmneeds to use the flux of SMmodel as part of information
(pheromone) to guide ants to find some good edges. How-
ever, when the path search in SMmodel converges gradually,
the algorithm reduces the effect of the flux to prevent exces-
sive pheromone at some edges which would make it difficult
for ants to find other solutions and thus fall into the local
minimum. The adaptive hybridization of the two intelligent
algorithms is conducive to better solutions.

The general framework of SSMFAS is shown in Algo-
rithm 2.

Theoretical convergence proofs

We analyze the convergence properties of SSMFAS in this
section from several aspects, including the pheromone values
and the probability of finding the optimal solution.

123



Complex & Intelligent Systems (2023) 9:3951–3970 3959

Proposition 1 For SSMFAS, the pheromone value τi j (t) on
an arbitrary edge (i, j) at any time t satisfies that

lim
t→∞ τi j (t) ≤ τmax = max

ρ
, (25)

where max is the maximum value of pheromone (including
flux) added to an arbitrary edge, determined as

max =
M ′
∑

m=1

e−λ(m−1)

Smin
+ Qmax ≥ 0, (26)

where Smin is the theoretical shortest solution, Qmax is the
upper bound of flux.

Proof Based on (22), the maximum pheromone value on
edge (i, j) at time 1 is derived as

τmax
i j (1) = (1 − ρ)τi j (0) + max. (27)

Accordingly, the maximum pheromone value on edge (i, j)
at time 2 is obtained by

τmax
i j (2) = (1 − ρ)τi j (1) + max

= (1 − ρ)2τi j (0) + (1 − ρ)max + max.
(28)

In the same manner, the maximum pheromone value on edge
(i, j) at iteration t is derived as

τmax
i j (t) = (1 − ρ)tτi j (0) +

t∑

i=1

(1 − ρ)t−imax. (29)

As the pheromone evaporation rate, ρ, satisfies 0 < ρ < 1,
based on the formula of summation for geometric sequence,
we obtain that

lim
t→∞ τmax

i j (t) = lim
t→∞

[

(1 − ρ)tτi j (0) + 1 − (1 − ρ)t

ρ
max

]

= max

ρ
.

(30)

Thus, we have

lim
t→∞ τi j (t) ≤ lim

t→∞ τmax
i j (t) = max

ρ
. (31)

Thus, the proof is completed. 
�
Proposition 2 On the premise that an optimal solution Smin

is found at the t∗th iteration, for the pheromone value, τi j (t),
it holds that

lim
t→∞ τi j (t) = τmax

ρ
, (32)

where edge (i, j) ∈ Smin,τmax = (Smin)
−1 is themaximum

pheromone concentration added by ants.

Proof The pheromone updating expression (22) can be
rewritten as

τi j (t + 1) = τ̃i j (t) + σ(t)Qi j (t), (33)

where

τ̃i j (t) = (1 − ρ)τi j (t) +
M ′
∑

m=1

e−λ(m−1) · τmi j (t). (34)

Thus, we have

lim
t→∞ τi j (t) = lim

t→∞ τ̃i j (t−1)+ lim
t→∞ σ(t−1)Qi j (t−1). (35)

It is concluded from (24) that

lim
t→∞ σ(t − 1) = 0. (36)

Since Qi j (t − 1) has an upper bound according to (19). It
holds that

lim
t→∞ σ(t − 1)Qi j (t − 1) = 0. (37)

Next, we only need to prove limt→∞ τ̃i j (t − 1) = τmax
ρ

.
On the premise that an optimal solution Smin is found at

the t∗th iteration, the value of pheromone trail on each edge
of the optimal path at the (t∗ + 1)th iteration is given as

τ̃i j (t
∗ + 1) = (1 − ρ)τi j (t

∗) + τmax . (38)

It can be concluded from (38) that

τ̃i j (t
∗ + t) = (1 − ρ)tτi j (t

∗) +
t∑

i=1

(1 − ρ)t−iτmax. (39)

Thus, by taking the limits of both sides of (39), we have

lim
t→∞ τ̃i j (t

∗ + t)

= lim
t→∞

[

(1 − ρ)tτi j (t
∗) +

t∑

i=1

(1 − ρ)t−iτmax

]

= lim
t→∞

[

(1 − ρ)tτi j (t
∗) + 1 − (1 − ρ)t

ρ
τmax

]

= τmax

ρ
.

(40)

This then completes the proof. 
�
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Theorem 1 Let P∗(t) be the probability of SSMFAS finding
an optimal route Smin at least once in the first t steps. Suppos-
ing that t is sufficiently large, for an arbitrarily small positive
number 0 < ε < 1, it holds that

P∗(t) ≥ 1 − ε, (41)

and

lim
t→∞ P∗(t) = 1. (42)

Proof Since the pheromone concentration on each edge is
bounded by τi j (t) ∈ [τmin, τmax], the minimum value of the
probability of choosing an optimal edge, ν pmin has a lower
bound given by

ν pmin ≥ pmin +∑N ′−1
k=1 | �(k−ν)

�(−ν)�(k+1) |pmin
∑N ′−1

k=1 | �(k−ν)
�(−ν)�(k+1) |

, (43)

where pmin is reached theoretically when the pheromone val-
ues are τmin on the optimal edges, and τmax on all the other
edges, which is written as

pmin = τα
minη

β
min

τα
minη

β
min + (N − 1)τα

maxη
β
max

. (44)

Accordingly, the probability of finding an optimal solution
Smin is expressed as

(ν pmin)
(N−1) > 0. (45)

Thus, the maximum probability of not finding the optimal
solution Smin at the t th iteration is expressed as

P̃(t) = [1 − (ν pmin)
(N−1)]t . (46)

Therefore, the probability of SSMFAS searching out the opti-
mal route Smin at least once in the first t steps is given as

P∗(t) ≥ 1 − P̃(t)

= 1 − [1 − (ν pmin)
(N−1)]t . (47)

On the premise that t is sufficiently large, we conclude that
there exists an arbitrarily small ε such that

P∗(t) ≥ 1 − ε. (48)

Also, we obtain that

lim
t→∞ P∗(t) = 1. (49)

Therefore, the proof is completed. 
�

Theorem 2 For ∀t > t∗ + t0, where t0 = 1−ρ
ρ

, it holds that

τi j (t) > τkl(t), ∀(i, j) ∈ Smin and ∀(k, l) /∈ Smin. (50)

Proof Under theworst circumstance that the pheromone con-
centration is τi j (t∗) = τmin on optimal edge (i, j) ∈ Smin,
and τkl(t∗) = τmax on non-optimal edge (k, l) /∈ Smin at time
t∗, τi j (t∗ + t ′) is expressed as

τi j (t
∗ + t ′) = (1 − ρ)t

′
τi j (t

∗) +
t ′−1∑

i=0

(1 − ρ)imax

= (1 − ρ)t
′
τmin +

t ′−1∑

i=0

(1 − ρ)imax

> t ′(1 − ρ)t
′−1max,

(51)

and τkl(t∗ + t ′) is given as

τkl(t
∗ + t ′) = max

{
τmin, (1 − ρ)t

′
τkl(t

∗)
}

= max
{
τmin, (1 − ρ)t

′
τmax

}
.

(52)

Let τkl(t∗ + t ′) be (1−ρ)t
′
τmax for our purpose here. There-

fore, τi j (t∗ + t ′) > τkl(t∗ + t ′) holds when

t ′(1 − ρ)t
′−1max > (1 − ρ)t

′
τmax, (53)

which is equal to

t ′ >
τmax(1 − ρ)

max
= 1 − ρ

ρ
= t0. (54)

Therefore, the proof is completed. 
�

Proposition 3 After the optimal solution Smin has been dis-
covered, the value of pheromone τkl(t) on any non-optimal
edge (k, l) /∈ Smin decreases as the number of iterations
increases. It holds that

lim
t→∞ τkl(t) = τmin. (55)

Proof After the t∗th iteration when the optimal path is found,
the pheromone on the non-optimal edges evaporates without
addition. The pheromone on edge (k, l) at the (t∗ + t ′)th
iteration is derived as

τkl(t
∗ + t ′) = max

{
τmin, (1 − ρ)t

′
τkl(t

′)
}

. (56)

Thus, when t → ∞, τkl(t) → τmin. 
�
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Proposition 4 Supposing the optimal solution Smin is found
at the t∗th iteration, after (t∗ + t0) iterations, it holds that

τkl(t) = τmin ∀(k, l) /∈ Smin, (57)

where t ≥ t∗ + t0 and t0 = ln(τmin)−ln(τmax)
ln(1−ρ)

.

Proof Now suppose that t ′ is the first time such that

(1 − ρ)t
′
τkl(t

′) ≤ τmin. (58)

It is derived that

t ′ ≥ ln(τmin) − ln(τmax)

ln(1 − ρ)
= t0. (59)

This then implements the proof. 
�

Corollary 1 Suppose that the first optimal solution Smin is
found at the t∗th iteration. For the probability of ant m con-
structing the optimal route Smin at the tth iteration, P∗

m(t) ,
it holds that

lim
t→∞ P∗

m(t) ≥ C[1 − f (τmax , τmin)], (60)

where C is a constant and f (·) is a function of τmax and τmin.

Proof Known that

lim
t→∞ P∗

m(t) = [ lim
t→∞

ν p∗
i j (t)]N−1, (61)

where ν p∗
i j (t) is the transition probability for edge (i, j) ∈

Smin after the first optimal solution Smin is found, determined
by

ν p∗
i j (t) = 1

F

⎛

⎝p∗
i j (t) +

N ′−1∑

k=1

| �(k − ν)

�(−ν)�(k + 1)
|pink (t)

⎞

⎠

≥ 1

F
p∗
i j (t), (62)

where F is a constant defined as

F =
N ′−1∑

k=1

| �(k − ν)

�(−ν)�(k + 1)
|, (63)

and p∗
i j (t) satisfies that

lim
t→∞ p∗

i j (t) = τα
maxη

β
i j

τα
maxη

β
i j + (N − 1)τα

minη
β
kl

. (64)

Accordingly, the probability of ant m finding the optimal
solution Smin at the t th iteration satisfies

lim
t→∞ P∗

m(t) = [ lim
t→∞

ν p∗
i j (t)]N−1

≥
(

lim
t→∞ p∗

i j (t)

F

)N−1

≥
(
1

F

)N−1
(

τα
maxη

β
i j

τα
maxη

β
i j + (N − 1)τα

minη
β
kl

)N−1

≥
(
1

F

)N−1
(

1 + (N − 1)τα
minη

β
kl

τα
maxη

β
i j

)−(N−1)

.

(65)

Based on the binomial expansion theorem, we derive that

lim
t→∞ P∗

m(t) ≥
(
1

F

)N−1
(

1 − (N − 1)2τα
minη

β
kl

τα
maxη

β
i j

)

. (66)

Clearly, this then results in the consequence, (66), by setting

C = ( 1F
)N−1

and f (τmax, τmin) = (N−1)2τα
minη

β
kl

τα
maxη

β
i j

. 
�

The proofs of the above four propositions, two theorems
and one corollary show the convergence properties of SSM-
FAS. Proposition 1 reveals that the pheromone value on any
edge has an upper bound. Proposition 2 proves that after the
optimal path has been discovered, the pheromone concentra-
tions on edges of the optimal route increase to the maximum
with the increase of iterations. Theorem 1 demonstrates that
the probability of finding an optimal path tends to 1 with the
increase of iterations. Theorem 2 illustrates that finite times
later after the optimal solution is discovered, the value of
pheromone on any edge of the optimal route keeps larger than
that on any other edge. Proposition 3 indicates that after the
optimal path has been discovered, the value of pheromone on
the edge that does not belong to the optimal route approaches
the minimum value with the increasing number of iterations.
Proposition 4 specifically declares that finite times later after
the optimal solution is discovered, the value of pheromone
on the edge that does not belong to the optimal route main-
tains the minimum. Corollary 1 exhibits that the probability
of finding an optimal solution has a lower bound.

Experiments

This section presents extensive experimental results of the
proposed SSMFAS, as well as some advanced peer methods.
The experimental setup is given first. Then, the conver-
gence curves of SSMFAS on different TSP instances are
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Table 2 Orthogonal array L16(43)

ParaCom δ μ ν ParaCom δ μ ν

1 4 3 1 9 3 1 4

2 2 1 3 10 2 2 2

3 4 1 2 11 3 2 1

4 4 4 4 12 2 4 1

5 2 3 4 13 1 2 4

6 3 4 2 14 3 3 3

7 1 1 1 15 4 2 3

8 1 3 2 16 4 3 1

drawn. Subsequently, the effectiveness of each component
and strategy is verified by an ablation study. Finally, vari-
ous comparisons have been conducted with several advanced
algorithms on small-scale TSP instances and larger-scale
TSP instances to demonstrate the competitive performance
of SSMFAS.

Experimental setup

All experiments have been implemented in MATLAB 2019a
environment in Window 10 on the PC equipped with an Intel
Core i5 processor and 8GB of RAM.

Evaluation metrics

TSP instances obtained from TSPLIB of Heidelberg Uni-
versity1 are used in the experiments. The number in each
instance’s name represents the number of cities. Each algo-
rithm is tested 20 runs for one instance with random
initialization, and each run includes 300 iterations.

The minimal, maximal and average solutions acquired
from 20 runs are recorded as the crucial indicators to evaluate
the overall performance of algorithms.

The standard deviation (SD) is adopted in parameter tun-
ing to evaluate the dispersion of the solutions, which is
computed as

SD =
√
√
√
√ 1

R

R∑

i=1

(Si − SAVE)2, (67)

where R (R = 20) is the number of runs, Si and SAVE are the
solution in the i th run and the average solution of 20 runs,
respectively. SD is considered as a measure of the robustness
of algorithms since it is sensitive to data outliers. The smaller
SD indicates that the algorithm is more robust.

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

Table 3 Results of the OED

ParaCom δ μ ν Ave

1 1.00 1.05 0.9 428.20

2 0.75 0.30 0.9 427.90

3 0.25 0.30 0.8 427.60

4 0.25 1.05 1.0 428.85

5 0.75 0.80 1.0 428.00

6 0.50 1.05 0.8 428.95

7 1.00 0.30 0.7 428.60

8 1.00 0.80 0.8 426.85

9 0.50 0.30 1.0 429.00

10 0.75 0.55 0.8 427.15

11 0.50 0.55 0.7 428.30

12 0.75 1.05 0.7 427.70

13 1.00 0.55 1.0 429.15

14 0.50 0.80 0.9 427.10

15 0.25 0.55 0.9 426.50

16 0.25 0.80 0.7 427.25

z1 428.2 428.28 427.96 –

z2 427.69 427.78 427.64 –

z3 428.34 427.30 427.43 –

z4 427.55 428.43 428.75 –

Table 4 Results of the additional experiments

Instance δ μ ν Ave

eil51 0.25 0.80 0.9 426.8

0.25 0.55 0.9 426.5

eil76 0.25 0.80 0.9 542.1

0.25 0.55 0.9 539.8

st70 0.25 0.80 0.9 679.45

0.25 0.55 0.9 678.05

rat99 0.25 0.80 0.9 1218.65

0.25 0.55 0.9 1214.20

kroA100 0.25 0.80 0.9 21305.80

0.25 0.55 0.9 21309.75

The relative error (ER) is used to reflect the reliability of
the results, which is defined as

ER = SAVE − SMIN

SMIN
× 100%, (68)

where SAVE and SMIN are the average and minimal solutions
of 20 runs, respectively.

Parameter settings

For SSMFAS, α, β and ρ are set to 1, 5 and 0.1, respectively,
referring to [41]. N ′ and M ′ are set to 8. The upper and lower
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(a) eil51 (b) berlin52 (c) st70

(d) eil76 (e) rat99 (f) kroA100

(g) eil101 (h) lin105 (i) ch150

(j) kroA200

Fig. 4 The values of solutions of SSMFAS on ten TSP instances over iterations
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bounds of pheromone are computed by τmax = ∑M ′
m=1 |

�(m−ν−1)
�(−ν)�(m)

| 1
S∗ and τmin = 2τmax/N , respectively, where S∗

is the approximate estimated shortest route length.
The fractional order, ν, the coefficient in conductivity

update rule, μ, and the weight coefficient in maximum–
minimumflux strategy, δ, are searched to get appropriate val-
ues, since the performance of SSMFAS is sensitive to them.
To determine an appropriate combination of values of these
parameters, four alternative values are tested for each param-
eter, i.e., ν ∈ {0.7, 0.8, 0.9, 1.0}, μ ∈ {0.3, 0.55, 0.8, 1.05},
and δ ∈ {0.25, 0.50, 0.75, 1.00}. Accordingly, a four-level
and three-factor orthogonal experimental design (OED) is
utilized to choose a good combination of values of the param-
eters.

Let La(bc) represent the orthogonal array, where a is
the number of tests performed, b and c are the level and
number of parameters, respectively. Therefore, an orthogo-
nal array L16(43) is procured, where 16 typical combinations
are shown in Table 2.

One small-sizedTSP instance, eil51, is used for this exper-
iment. The average solutions of 16 combinations are listed in
Table 3, where the best solutions are marked in bold font. We
note that z1 − z4 represent the average of the results from 20
runs employing some certain parameters with specific val-
ues. For example, as δ = 1.00 is obtained by calculating
(428.2 + 428.6 + 426.85 + 429.15)/4 = 428.2, the result
428.2 is placed in the corresponding position (z1, δ). From
Table 3, it is clear that the best result is obtained when the
parameter combination is δ = 0.25, μ = 0.8, and ν = 0.9.

Then, the optimal combination obtained by orthogonality,
{0.25, 0.80, 0.9}, is compared with the parameter combina-
tion that obtains the smallest average result, {0.25, 0.55, 0.9},
on 5 TSP instances. The results are recorded in Table 4 where
the best solutions are emphasized in bold font. It is obvi-
ous that the combination of {0.25, 0.80, 0.9} wins on 4 of 5
instances. Therefore, we set δ = 0.25, μ = 0.8, and ν = 0.9
in later experiments.

Convergence property

The convergence curves of SSMFAS on 10 TSP instances are
displayed in Fig. 4. It can be seen that the minimum solutions
are reached within 150 iterations for all instances, which
verifies the convergence of the algorithm experimentally.

Effectiveness of hybridization

An ablation experiment is designed to prove the effectiveness
of the hybridization of AS, SM model and fractional-order
difference components. Different versions of SSMFAS is
developed for comparison. By setting the fractional order
to ν = 1, SSMFAS degrades into an integer-order version,

Table 5 The average solutions of AS, FAS, SSMAS, and SSMFAS on
different TSP instances

Instance BKS AS FAS SSMAS SSMFAS

eil51 426 430.00 427.85 428.00 426.50

berlin52 7542 7556.2 7542.0 7542.0 7542.0

st70 675 679.05 679.10 678.65 678.05

eil76 538 546.55 541.50 542.60 539.45

rat99 1211 1219.10 1216.40 1215.25 1214.20

kroA100 21282 21349.30 21312.75 21315.25 21309.75

eil101 629 647.85 637.65 641.50 635.95

lin105 14379 14404.10 14398.10 14399.20 14390.50

ch150 6528 6570.80 6566.40 6563.55 6562.90

kroA200 29368 29558.75 29511.50 29527.20 29506.30

marked as SSMAS. By setting the parameter to σ(t) =
0, SSMFAS degrades into a version without SM model
involved, marked as FAS. By setting both ν = 1 and
σ(t) = 0, SSMFAS degrades into a version without the frac-
tional calculus and SM model, marked as AS.

The average solutions as well as the best known solutions
(BKS) are reported in Table 5, where the best solutions are
marked in bold font. SSMFAS achieves the best solutions
on all instances compared to other versions, which verifies
the success of hybridization in SSMFAS. Furthermore, the
results also show that both FAS and ASMAS perform better
than AS, while there is no significant difference between
them.

On the other hand, Table 6 presents the computation
time of AS, FAS, SSMAS, and SSMFAS on different TSP
instances. As can be seen from the table, insertions of the
fractional calculation and SM model make the calculation
time longer. This may be due to the long-term memory char-
acter of fractional-order difference is more computationally
intensive, along with the fact that parallel computation has
not been adopted in SM module. This limitation will be a
major issue for future improvement.

Strategy evaluation

Two strategies proposed in the paper, adaptive conductivity
strategy andmaximum–minimumflux strategy, are evaluated
separately to verify the effectiveness. The results are sum-
marized in Table 7, where SSMFAS0 represents the version
without two strategies, SSMFAS1 represents the versionwith
the adaptive conductivity strategy butwithout themaximum–
minimumflux strategy, and SSMFAS2 is the opposite version
to SSMFAS1. The best results in each case are emphasized
in bold font.

From the data in Table 7, it is apparent that SSMFAS
achieves the best performances in terms of all evaluation
metrics on the four TSP instances and has significant advan-
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Table 6 The computation time (second) of AS, FAS, SSMAS, and
SSMFAS on different TSP instances

Instance AS FAS SSMAS SSMFAS

eil51 13.78 25.14 28.19 37.44

berlin52 15.09 24.63 26.29 35.43

st70 30.63 53.29 57.94 76.19

eil76 38.18 59.81 85.89 92.38

rat99 76.13 126.05 129.92 187.58

kroA100 78.45 126.23 132.87 201.32

eil101 83.25 128.4 136.64 209.86

lin105 90.39 151.62 169.14 225.57

ch150 259.89 443.75 473.6 649.9

kroA200 606.25 1030.02 1073.89 1504.68

tages than the others. It validates that the two specifically
designed strategies improve the optimization capability and
robustness of SSMFAS significantly.

Second, the respective positive effects of the two strategies
are evaluated by comparing SSMFAS1 and SSMFAS2 with
SSMFAS0, respectively. SSMFAS1 is superior to SSMFAS0

in all TSP instances, which illustrates that the adaptive
conductivity strategy has a positive impact on SSMFAS
for solving TSPs. The comparison between SSMFAS2 and
SSMFAS0 draws a similar conclusion.

Therefore, the employment of the two auxiliary strategies
is beneficial to improve the performance of SSMFAS.

Comparison to other ACO-based hybrid approaches

To further investigate the efficiency of SSMFAS, several
advancedACO-based hybrid algorithms are used for compar-

Table 8 Common parameter settings

Algorithm α β ρ Maximum
Iteration

SSMFAS 1 5 0.1 300

FACA [16] 1 5 0.2 300

HAACO [41] 1 5 0.1 1000

PACO-3Opt [17] [0,2] [0,2] 0.1 1000

PSO-ACO-3Opt [18] [0,2] [0,2] 0.1 1000

MMAS1 [41] 1 5 0.1 1000

MMAS2 [41] 1 5 0.1 1000

ison, including fractional-order ant colony algorithm (FACA)
[16], heterogeneous adaptive ACO with 3-Opt local search
(HAACO) [41], parallel cooperative hybrid ACOwith 3-Opt
local search [17], new hybrid PSO and ACOwith 3-Opt [18],
and two variants ofMMASalgorithm [41]which are the stan-
dardMMAS incorporated 3-Opt and greedy, and only 3-Opt,
respectively.

We note that like the proposed SSMFAS, the six compared
algorithms also include the 3-Opt local search procedure.
The results of competitors are taken from the corresponding
references. For a fair comparison, we set the values of the
common parameters in our algorithm to be the same as those
in [41]. Table 8 presents the common parameter settings of
the algorithms. Other specific parameters are set following
the original setting.

Table 7 The performance of
using or not using two strategies
separately

Instance Version Min Max Ave SD ER(%)

SSMFAS0 426 431 428.15 1.27 0.5047

SSMFAS1 426 430 427.60 1.04 0.3873

eil51 SSMFAS2 426 429 427.70 1.08 0.3991

SSMFAS 426 428 426.50 0.76 0.1174

SSMFAS0 538 548 542.05 3.19 0.7528

SSMFAS1 538 548 540.45 2.30 0.2695

eil76 SSMFAS2 538 545 541.30 2.25 0.6134

SSMFAS 538 544 539.45 1.67 0.2695

SSMFAS0 676 691 681.90 4.43 0.8728

SSMFAS1 675 685 680.00 3.39 0.7407

st70 SSMFAS2 676 684 680.05 2.65 0.5991

SSMFAS 675 682 678.05 2.19 0.4519

SSMFAS0 21282 21569 21371.45 91.17 0.4203

SSMFAS1 21282 21480 21346.25 67.50 0.3019

kroA100 SSMFAS2 21282 21379 21315.70 40.76 0.1583

SSMFAS 21282 21379 21309.75 38.77 0.1304
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Table 9 The minimal solutions and the corresponding ranks of different methods on 10 small-scale TSP instances

Instance BKS SSMFAS FACA [16] HAACO [41] PACO-3Opt [17] PSO-ACO-3Opt [18] MMAS1 [41] MMAS2 [41]

eil51 426
426 426 426 426 426 427 426
(3.5) (3.5) (3.5) (3.5) (3.5) (7) (3.5)

berlin52 7542
7542 7542 7542 7542 7542 7542 7542
(4) (4) (4) (4) (4) (4) (4)

st70 675
675 675 675 676 676 675 682
(2.5) (2.5) (2.5) (5.5) (5.5) (2.5) (7)

eil76 538
538 538 538 538 538 538 538
(4) (4) (4) (4) (4) (4) (4)

rat99 1211
1211 1211 1211 1213 1224 1212 1212
(2) (2) (2) (6) (7) (4.5) (4.5)

kroA100 21282
21282 21379 21282 21282 21301 21315 21379
(2) (6.5) (2) (2) (4) (5) (6.5)

eil101 629
629 629 630 629 631 631 631
(2) (2) (4) (2) (6) (6) (6)

lin105 14379
14379 14379 14379 14379 14379 14379 14379
(4) (4) (4) (4) (4) (4) (4)

ch150 6528
6528 6528 6566 6570 6538 6554 6566
(1.5) (1.5) (5.5) (7) (3) (4) (5.5)

kroA200 29368
29380 29464 29483 29533 29464 29485 29488
(1) (2.5) (4) (7) (2.5) (5) (6)

Average rank 2.65 3.25 3.55 4.5 4.35 4.6 5.1

Performance evaluation on small-scale problems

First, SSMFASare evaluatedon10Small-scaleTSP instances.
Tables 9 and 10 present the minimal and average solutions of
SSMFAS and other algorithms, respectively. For the purpose
of analyzing the performance of the algorithms, the ranks of
the solutions are computed and listed in the parentheses in
those tables. We note that if any values are tied, we compute
their average rank. Furthermore, the average ranks of each
algorithm on the 10 instances are also computed and reported
in the last lines of tables. The best solutions in each case are
written in bold and highlighted in gray, and the second-best
results are also written in bold font.

As shown in Table 9, the minimal solutions of SSMFAS
on all TSP instances are the shortest over seven algorithms.
As a result, SSMFAS obtains the smallest average rank of
2.65, and FACA with an average rank of 3.25 comes next.
And, perhaps more tellingly, in terms of the average solu-
tions, Table 10 indicates that SSMFAS outperforms other
algorithms with an average rank of 2.20, followed by PACO-
3Opt with 3.15.

Now we check whether the solutions constructed by these
algorithms are significantly different. A common statistical
method, Analysis of Variance (ANOVA) [42], is utilized to
test if there is significant differences in these algorithms.

The null-hypothesis is tested and the generated p-value
is 9.95e − 8, which is less than the significance level of
0.1. Thus, the null-hypothesis is rejected. The Wilcoxon
signed-ranks test [43] is then used to verify the significant
improvement of the proposed SSMFAS in pairs. The results
are reported in Table 11. As can be seen, the generated p-
values are all less than the significance level of 0.1 except
for FACA. This may due to the fact that the two algorithms
are tied on two instances. More specifically, Fig. 5 shows the
shape of distribution of ranks in terms of average solution.
The distribution of SSMFAS is more concentrated with the
smallest median, which clarifies the effectiveness and robust-
ness of the proposed SSMFAS.

Performance evaluation on larger-scale problems

Furthermore, to illustrate the ability of the proposed SSM-
FAS to handle large-scale TSPs, 11 lager-scale TSP instances
from TSPLIB whose numbers of cities are between 400 and
800 are used in this subsection.

Tables 12 and 13 present the minimal and average solu-
tions of SSMFAS and its competitors, respectively. The best
solutions in each case is highlighted in bold. It can be seen
from the data in Table 12 that SSMFAS wins on 8 of 11
instances. From the average solutions in Table 13 we can see
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Table 10 The average solutions and the corresponding ranks of different methods on 10 small-scale TSP instances

Instance BKS SSMFAS FACA [16] HAACO [41] PACO-3Opt [17] PSO-ACO-3Opt [18] MMAS1 [41] MMAS2 [41]

eil51 426
426.5 427.4 427.5 426.35 426.45 429.4 428.5
(3) (4) (5) (1) (2) (7) (6)

berlin52 7542
7542 7542 7542 7542 7543.2 7542 7542
(3.5) (3.5) (3.5) (3.5) 7 (3.5) (3.5)

st70 675
676.65 680.1 676.5 677.85 678.2 683.8 685.2
(2) (5) (1) (3) (4) (6) (7)

eil76 538
539.45 541.0 542 539.85 538.3 542.8 543.5
(2) (4) (5) (3) (1) (6) (7)

rat99 1211
1213.0 1213.0 1214.1 1217.1 1227.4 1216.9 1219.4
(1.5) (1.5) (3) (5) (7) (4) (6)

kroA100 21282
21309.75 21379.0 21364.2 21326.8 21445.1 21528.3 21513.7

(1) (4) (3) (2) (5) (7) (6)

eil101 629
635.9 630.6 632.5 630.55 632.7 640.4 640.9
(5) (2) (3) (1) (4) (6) (7)

lin105 14379
14379 14392.4 14411.8 14393 14379.15 14429.2 14433
(1) (3) (5) (4) (2) (6) (7)

ch150 6528
6560.5 6537.0 6578.8 6601.4 6563.95 6603.9 6581
(2) (1) (4) (6) (3) (7) (5)

kroA200 29368
29506.3 29680.5 29633.2 29644.05 29646.05 29799.9 29760.3

(1) (5) (2) (3) (4) (7) (6)

Average rank 2.20 3.30 3.45 3.15 3.90 5.95 6.05

Table 11 The p-values of the Wilcoxon signed-ranks test

FACA [16] HAACO [41] PACO-3Opt [17] PSO-ACO-3Opt [18] MMAS1 [41] MMAS2 [41]

p-value 0.3125 0.0547 0.0547 0.0840 0.0039 0.0039

win(+)/tie(≈) (≈) (+) (+) (+) (+) (+)

SSMFAS FACA HAACO PACO-3 PSO-A-3 MMAS1 MMAS2
Algorithm

1

2

3

4

5

6

7

R
an

k

Fig. 5 Box-plot of the ranks of average solutions of 7 algorithms

that SSMFAS obtains the best results on 9 of 11 instances.
The results demonstrate the effectiveness of SSMFAS for
solving larger-scale TSPs.

It is worth mentioning that the superiority of the proposed
SSMFAS becomes more obvious compared with the com-
petitors when the problem size becomes larger. This may
illustrate the proposed SSMFAS has good robustness and
adaptability to large-scale problems.

Comparison to other heuristic approaches

In addition to ACO-based hybrid methods, some advanced
heuristicmethods are involved in the comparison, including a
discrete stochastic population-based optimization algorithm
(DJAYA) [44], an approach of improvement heuristics based
on 2-opt operators by deep reinforcement learning [45],
and an open source software for combinatorial optimiza-
tion, Google OR-Tools [46], which includes 2-opt and LKH
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Table 12 The minimal solutions
of different methods on 11
larger-scale TSP instances

Instance BKS SSMFAS HAACO [41] PACO-3Opt [17] PSO-ACO-3Opt [18]

rd400 15281 15511 15603 15578 15594

fl417 11861 11933 11960 11972 11947

pr439 107217 108481 108730 108482 108530

pcb442 50778 51976 51780 51962 52131

d493 35002 35918 – 35735 35789

u574 36905 38094 – 37981 37818

rat575 6773 6871 – 7003 6987

p654 34643 34756 – 35045 35052

d657 48912 49561 – 50206 50291

u724 41910 42565 – 42764 43172

rat783 8806 8939 – 9111 9128

HAACO lacks results on some instances because it was only performed on the first four TSP instances in [41]

Table 13 The average solutions
of different methods on 11
larger-scale TSP instances

Instance BKS SSMFAS HAACO [41] PACO-3Opt [17] PSO-ACO-3Opt [18]

rd400 15281 15530.5 15644.2 15613.9 15691.3

fl417 11861 11947.65 11979.5 11987.4 11980.4

pr439 107217 108535 108950.6 108702 108965.4

pcb442 50778 52171 52179.8 52202.4 52368.1

d493 35002 35971.4 – 35841 35973.8

u574 36905 38195.2 – 38030.7 38112.9

rat575 6773 6923 – 7012.4 7018.6

p654 34643 34779.1 – 35075 35098.2

d657 48912 49587.8 – 50277.5 50475.5

u724 41910 42580.67 – 43122.5 43300.3

rat783 8806 8950 – 9127.3 9138.1

HAACO lacks results on some instances because it was only performed on the first four TSP instances in [41]

Table 14 Performance of
SSMFAS and other heuristic
approaches on TSP instances

Instance BKS SSMFAS DJAYA [44] [45] OR-Tools [45]

eil51 426 426.5 440.15 427 439

berlin52 7542 7542 7580.3 7974 7944

st70 675 676.65 702.3 680 683

eil76 538 539.45 573.17 552 548

rat99 1211 1213 – 1388 1284

kroA100 21282 21309.75 21735.31 23751 21960

eil101 629 635.9 677.37 635 650

lin105 14379 14379 – 16156 15363

ch150 6528 6560.5 6638.63 6597 6733

kroA200 29368 29506.3 – 32522 29874

(Lin–Kernighan–Helsgaun) [47] as improvement heuristics
[45,48]. The results are reported on Table 14, where the best
result in each instance is highlighted in bold. We note that
the results of SSMFAS are the average solutions of 20 runs,
and the results of competitors are taken directly from the
corresponding references.

As can be seen fromTable 14, SSMFASoutperforms other
approaches on 9 of 10 instances. It further verifies the supe-
riority of the proposed SSMFAS in addressing TSPs.
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Conclusion

In this paper, we proposed a novel algorithm called SSMFAS
combining a state adaptive multi-entrance-exit SM model
and a fractional-order based AS algorithm for solving TSPs.

The adaptive conductivity strategy is developed to shift the
state of SM in different periods. The maximum–minimum
flux strategy limits the upper and lower bounds of the flux
to match with the concentration of pheromone of AS algo-
rithm. Fractional-order neighborhood transition probability
which uses the neighbor information is introduced for path
construction by ants to improve the performance. Varying
degrees of flux in SM model are added as pheromone in the
pheromone update process to provide more information.

The convergence properties of the SSMFAS have been
verified. A multitude of experiments are carried out on TSP
instances. First, the effect of the hybridization ofAS, SM, and
fractional-order calculus is verified. Then, the effectiveness
of two auxiliary strategies is demonstrated. At last, compar-
isons with several state-of-the-art algorithms illustrate the
competitive performance of SSMFAS.

In the future work, we plan to optimize the combination
of SM model and AS algorithm, and improve the com-
putation cost through some parallel strategies, to address
some dynamic multi-objective TSPs. More broadly, further
research could also be conducted to explore the potential of
combining other path planning methods and metaheuristic
algorithms.
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