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Abstract
To accelerate the performance estimation in neural architecture search, recently proposed algorithms adopt surrogate models
to predict the performance of neural architectures instead of training the network from scratch. However, it is time-consuming
to collect sufficient labeled architectures for surrogate model training. To enhance the capability of surrogate models using
a small amount of training data, we propose a surrogate-assisted evolutionary algorithm with network embedding for neural
architecture search (SAENAS-NE). Here, an unsupervised learning method is used to generate meaningful representation of
each architecture and the architectures with more similar structures are closer in the embedding space, which considerably
benefits the training of surrogatemodels. In addition, a newenvironmental selection based on a reference population is designed
to keep diversity of the population in each generation and an infill criterion for handling the trade-off between convergence and
model uncertainty is proposed for re-evaluation. Experimental results on three different NASBench and DARTS search space
illustrate that network embedding makes the surrogate model achieve comparable or superior performance. The superiority
of our proposed method SAENAS-NE over other state-of-the-art neural architecture algorithm has been verified in the
experiments.
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Introduction

Deep neural networks (DNNs) have achieved significant suc-
cess in tackling various tasks such as classification [1], object
detection [2], and natural language processing [3]. The effect
of a neural network depends on its architecture and network
weights. There are several methods used to solve the weight
optimization problem, such as Adagrad [4], Adadelta [5],
and Adam [6]. However, the development of a new state-of-
the-art architecture often requires a vast amount of domain
knowledge and repetitive trials. Neural architecture search
(NAS) seeks to automate this process and can be formulated
as an optimization problem:

max
a∈A
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s.t . W ∗
a = argmin
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L (

Wa;Dtrn) , (1)

where A denotes the search space of neural architecture, the
architecture a is evaluated on the validation set Dval, W ∗

a is
the weight of a which is trained on the training set Dtrn.

According to different optimization methods, NAS can
be divided into three categories, namely evolutionary algo-
rithm (EA) based, reinforcement learning (RL) based, and
gradient-basedmethods. In EA-basedNAS [7–12], the archi-
tectures are regarded as the individuals via encoding scheme,
and iteratively evolve for the optimal architecture. RL-based
NAS [13,14] uses the controller to sample new architectures
from the pre-defined search space, and trains the networks
to obtain the final performance as reward. Unlike EA-
based and RL-based methods, learning over a discrete and
non-differentiable search space, gradient-based NAS [15,16]
relaxes the search space to be continuous and jointly opti-
mizes the architecture and network weights with gradient
descent.

Although the experiments in the previous work [8] show
that EAs have a stronger search ability than RL, they suffer
from high computational demands because each network in
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the population needs to be trained from scratch. For exam-
ple, the LargeEvo algorithm [7] requires a total of 3150
GPU days to complete one search. To tackle the high com-
putational cost, surrogate-assisted evolutionary algorithms
(SAEAs) [17–20] use the trained surrogate models to replace
the process of training the network from scratch, i.e., Sun
et al. [21] propose an end-to-end performance predictor to
accelerate the fitness evaluation in EA, Lu et al. [22] propose
adaptive switching, which can adaptively selects among four
types of surrogate models via cross-validation, Rawal et al.
[23] speed up the search process by estimating performance
of candidate structures through a trained long short-term
memory (LSTM).

Although SAEAs greatly reduce the computational cost
of NAS, the surrogate models still require a vast amount
well-trained networks for supervised learning. The reason
for this is that supervised learning requires a large amount
of labeled samples to extract features. For the classification
task onCIFAR-10, Peephole [24] samples over 800 networks
as the training data of the surrogate model. To overcome
this drawback, there are a few recent methods [25–27] that
integrate unsupervised learning into NAS. The embedding
of each architecture is obtained through unsupervised rep-
resentation learning and used to train the surrogate model.
Since unsupervised learning can obtain informative represen-
tation of each architecture with unlabeled data, the amount
of labeled data required for surrogate models training can be
reduced using these representations as input to the surrogate
models [26].

Unfortunately, these work also have some shortcomings.
Arch2vec [25] assumes that the embeddings of architectures
follow the Gaussian distribution and reconstructs the input
neural architectures using a variational autoencoder, but this
assumption is not guaranteed [27]. NASGEM [26] uses an
autoencoder tomap the architectures to the embedding space,
and improves the feature representation by minimizing the
reconstruction loss and the similarity loss. However, NAS-
GEMonly vectorizes the adjacencymatrix of the input neural
architecture to an embedding space and ignores the node
operations, which is crucial to the performance of the net-
work.Unlike the two previousmethods that use antoencoders
for unsupervised learning, the work in [27] proposes two
self-supervised learning methods to pre-train the architec-
ture embedding part of the surrogate model, namely SS-RL
and SS-CCL. SS-RL takes predicting the graph edit distance
(GED) between two architectures as a pretext task. SS-CCL
is a central contrastive learning algorithm,which usesGED to
construct positive sample set and negative sample set. GED
is calculated based on position-aware path-based encoding
(PAPE), which is a coding strategy that records the posi-
tion of each operation by assigning each node with a unique
index. However, different index orders on the same network
architecture may result in completely different encodings. It

causes a large GED between isomorphic network architec-
tures whereas the real GED should be zero.

To reduce the number of labeled data required for the sur-
rogate model, another approach is to use online learning.
Online learning actively identify more new valuable solu-
tions to be evaluated using the expensive fitness function
and uses these solutions to update the surrogate model [28].
This process is called infill criterion in SAEAs and it should
consider both convergence and uncertainty of each candidate
solution [29]. On the one hand, the solutionswith better accu-
racy are selected to update the surrogate model can improve
the prediction performance in the promising region of search
space. On the other hand, the solutions with greater uncer-
tainty can not only encourage exploration but also improve
the effectiveness of the surrogate model in the region of
high uncertainty. Nevertheless, some work on NAS so far
has not considered on both. The work in [30] obtains the
uncertainty estimation by calculating the standard deviation
of m predictions and uses independent Thompson sampling
(ITS) choose new individuals to update the surrogate model.
However, solutions with high uncertainty in ITS do not have
high probability of being selected, which is inconsistent with
our expectations. Another infill criterion is proposed in [22],
which chooses solutions with high diversity on the Pareto
front, without considering the uncertainty.

Furthermore, environmental selection is a critical step
in SAEAs. It should trade-off exploitation and exploration,
namely, the search process can not only exploit the known
information to speed up the convergence, but also explore
the uncertain regions in the search space. There is some
work using clustering to increase the diversity of popula-
tions to balance exploitation and exploration, such as [31,32]
uses k-means to partition the population and select solutions
from each cluster into the next generation. However, themain
drawback of k-means algorithm is that the initialization of
centroid is not easy to be determined. In addition, the number
of solutions in each cluster is unbalanced, which will cause
outliers with poor quality to be erroneously retained because
they belong to a cluster of their own.

To sumup, the SAEAs forNAS have three open issues: (1)
an efficient embedding method is needed to extract the inher-
ent characteristics of neural architecture which can enhance
the performance of surrogate model, (2) an infill criterion
is needed to efficiently update the surrogate models and take
into account both the convergence and uncertainty, (3) a sim-
ple and effective environmental selection strategy is need to
trade-off between exploitation and exploration.

In order to address these issues, we propose a novel algo-
rithm for NAS, called surrogate-assisted evolutionary neural
architecture search with network embedding (SAENAS-
NE). SAENAS-NE uses graph2vec [33] to map each neural
architecture to the embedding space. Graph2vec learns rep-
resentations for entire network by predicting whether a
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subgraph exists and networks with more identical subgraphs
have more similar representations. It dose not require prior
assumptions about the distribution of architecture represen-
tations, nor does it require a unique index to each operation.
Further, to reduce the number of real evaluations required,
we use RankNet [34] as surrogate model and design a novel
infill criterion that determines new architectures to evalu-
ate. In addition, we propose a novel environmental selection
strategy which choose individuals to form the next popula-
tion. The main contributions of this paper are the following:

• To enhance the performance of surrogate model with less
training data, graph2vec is applied to NAS to obtain the
embedding of each architecture, which encourages the
neural architectures with similar topologies to cluster
together. In addition, different initialization of graph2vec
in the process of generating embeddings can get different
but similar embeddings. Based on this trait, the surro-
gate model calculates different embeddings of the same
architecture, and obtains the standard deviation of the
estimated fitness value as its uncertainty estimation.

• To effectively update the surrogate model, we adopt
a novel infill criterion to choose individuals for re-
evaluation.The infill criterion takes the estimatedvalueof
the individual and themodel uncertainty as twoobjectives
and use nondominated sorting to choose new individu-
als for real evaluation. It considers both convergence and
uncertainty, and gives the updated surrogate model better
prediction performance throughout the search process.

• To balance the exploitation and exploration in the opti-
mization process, a novel environmental selection strat-
egy is proposed to keep diversity among the solutions in
the obtained population. It clusters all candidate mem-
bers based on their distances from the reference solution,
and selects the best individual in each cluster to enter
the next population. It does not require additional cen-
troids, while the number of solutions in each cluster is
consistent.

The remainder structure of this paper takes the form of
five sections. We first introduce the background of NAS in
Section “Related work”. Section “Preliminaries: graph2vec”
gives a brief review of graph2vec. Then, in Section “Method-
ology”, the proposed algorithm, a surrogate-assisted ENAS
with network embedding, is described in detail. Experimental
settings and results are presented in Section “Experiments”.
Finally, a summary containing conclusions and future work
is in Section “Conclusions”.

Related work

Evolutionary algorithm-based neural architecture
search

Over the past years, EAs have gradually become popular
in NAS and many popular EA-based optimizers have been
employed recently in NAS.

Genetic algorithm (GA) is themost widely used optimizer
in EA-based NAS. LargeEvo [7] uses the binary tournament
selection for mating and does not require human participa-
tion. Genetic CNN [10] uses a fixed-length binary string
to represent the architecture, which makes various genetic
operations easier. The work in [35] encodes three differ-
ent building blocks (the convolutional layer, the pooling
layer, the full connection layer) into one chromosome and
uses crossover and mutation to create offspring. In particu-
lar, it designs a method called unit alignment for crossover
with variable length encoding. REA [8] removes the oldest
individual from population to guarantee the diversity of the
population andhas achieved the state-of-the-art performance.

Genetic programming (GP) approach is also used for
NAS. CGP-CNN [36,37] uses the Cartesian genetic pro-
gramming (CGP) encoding scheme and adopts the highly
functional modules for searching the optimal architectures.
GPCNN [38] is the first research which uses tree-based GP
to design CNN architectures with a novel crossover opera-
tor called partial subtree crossover. AutoML-Zero [39] uses
basic mathematical operations as building blocks to design
the architectures instead of sophisticated expert-designed
layers.

Particle swarm optimization (PSO) is another popular
evolutionary algorithm for NAS. Junior et al. [40] present
a novel PSO algorithm called psoCNN with a new differ-
ence operator and a new velocity operator, and it updates
the particle based on the type of layers, independent of
the hyperparameters. Wang et al. [41] focus on searching
the optimal hyperparameters of dense blocks and performs
multi-objective optimization where two objectives are con-
sidered: classification accuracy and computational cost.

Apart from the above methods, there are other EAs for
NAS. For example, DE-NAS [42] applies canonical differ-
ential evolution (DE) to obtain the better architectures after
making the discrete or categorical parameters continuous.
DeepSwarm [43] uses ant colony optimization (ACO) [44] to
search for the optimal architectures through progressive neu-
ral architecture search, which explores the full search space
using small incremental steps. Sharaf et al. [45] use a fire-
fly algorithm based on the k-nearest neighborhood attraction
firefly and produce satisfying solutions.
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Encoding schemes

In addition to the optimizer, another factor that affects the
search performance is encoding schemes. Recent studies
have demonstrated the significant effect of encoding schemes
on NAS [30,46]. The encoding schemes can be categorized
into two broad categories: the adjacency matrix and path-
based encodings [47].

The adjacency matrix encoding represents the network
architecture through vectorized adjacency matrix and a list
of operation labels of each node [13,15,46]. In addition, some
work presents several variants of adjacency matrix encoding,
i.e., a categorical-valued variant in [47] where the features
are a list of the indices specifying the corresponding edges
in the adjacency matrix. In order to address the challenge of
discrete coding to the optimization algorithm, the work [46]
defines a real value in [0,1] for each edge, rather than just
{0,1} in the previous work.

Path-based encoding treats the neural architecture as a
directed acyclic graph (DAG), and encodes each path of
the DAG from the input to the output. Compared to the
adjacency matrix encoding, the path-based encoding can
reduce the dependency among the features and increase
the performance of neural predictors [47]. As far as we
know, BANANAS [30] adopts path-based encoding for the
first time. The encoding is one-hot vector whose length is∑n

i=0 q
i = (qn+1 − 1)/(q − 1), where n is the number

of nodes, q is the number of possible operations. Given an
architecture, all paths in this architecture are first found out
and the feature corresponding to each path is set to 1. Like
the adjacency matrix encoding mentioned above, the path-
based encoding also has the categorical-valued variant and
the continuous-valued variant [47]. In contrast to [27,30] pro-
poses a novel encoding scheme termed PAPE. Different from
the previous path encoding, PAPE records the position of
each operation in the path, then encodes each path by the
position and type of operations, and finally concatenates all
path encoding in the order of path length to form the encoding
to the architecture.

In addition to the above encoding schemes, different
schemes exist in the recent studies. Some work factorizes
an architecture into unique blocks and encode each block by
its kernel size, expansion rate, number of layers [22,48,49].
Inspired by the gene expression process, a novel encoding
scheme called action command encoding (ACEncoding) is
proposed in [50]. ACEncoding uses seven action commands
which composed of three integers and encodes these action
commands into a variable-length sequence and it can repre-
sent more complex neural architectures.

Performance estimation strategy

After generating the new architectures, one significant bottle-
neck of NAS is how to efficiently evaluate them. Early work
(e.g., [7,13]) trains all candidate networks from scratch and
use the accuracy of corresponding networks as the evaluation
value, which is the simplest but very time-consuming perfor-
mance estimation strategy. To alleviate this problem, many
methods for speeding up performance estimation have been
proposed. Below we review three different types of acceler-
ated evaluation methods, namely the low fidelity estimation,
weight sharing mechanism and surrogate model technique.

Many studies estimate the performance of networks in a
low fidelity level. For example, some work trains each net-
work on shorter training time [51,52]; Some work trains the
networks on a subset of the training data [53] or lower resolu-
tion images [54]. While low fidelity approximation reduces
the computational cost, its underestimation of the perfor-
mance brings a bias to the selection of better architectures
[55].

In recent years, there has been an increasing amount
of literature that adopt the weight sharing mechanism in
one-shot architecture search to reduce the computational
cost. SMASH [56] first trains a hypernetwork which can
dynamically generate the weights of the networks, and then
compares the validation performance of candidate networks
with hypernetwork-generated weights. Besides, some work
pre-trains the supernet, and then all candidate networks as
sub-networks inherit the weight of supernet. One-Shot [57]
uses a dynamic dropout rate to randomly zero out a sub-
set of the operations at supernet training time. To alleviate
the weight co-adaption problem, SPOS [58] assumes that all
architectures are single paths of the supernet and trains the
supernet by uniform path sampling. Because of the inher-
ent unfairness in the supernet training, FairNAS [59] trains
the supernet with a fairness perspective, namely, it makes
each block be activated and updated only once. In Land-
mark Regularization [60], a regularization term is defined by
leveraging a set of stand-alone performance and guide the
supernet training. Different from the above methods divide
the training hypernetwork and search candidate architecture
into two stages, Darts [15] adopts the gradient-based method
and optimizes the weights together with the architecture.

As a consequence, the weight sharing mechanism can
reduce the evaluation cost. However, some work shows that
there are a large gap between supernet predicted accuracies
and that of stand-alone model which trained from scratch
[15,46]. Therefore, the approach that the expensive eval-
uation of all candidate architectures replaced by surrogate
models gets more and more attention. Some work estimates
the performance of candidate architectures by extrapolating
the model training curve [23,61,62]. The alternative way to
build surrogate models is supporting prediction performance
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(a) (b)

Fig. 1 a doc2vec samples 5 words from the document. b graph2vec
samples 5 rooted subgraph from the full graph

based on architecture instead of partial learning curves. There
are various surrogate models adopted in different NASmeth-
ods, such as multilayer perceptron [30], LSTM [63], and
random forest [21].

Preliminaries: graph2vec

Graph embedding [64,65] projects graphs into a continuous
vector space, which preserves graphs’ properties. Graph2vec
is a neural embedding approach that learns representations of
the graphs. Inspired by doc2vec which is a document embed-
ding method, graph2vec views an entire graph as a document
and the rooted subgraphs as words, and then learns the repre-
sentations of graphs through the doc2vec skip-gram training
process [66]. As shown in Fig. 1a, the document composed
of words and the graph composed of rooted subgraphs in Fig-
ure 1b. Graph, rooted subgraphs and the detailed algorithm
are introduced below.

Let G = (N , E) represent a graph, where N as a set of
nodes and E as a set of edges. Each node is associated with a
label to indicate different node types. Graph2vec represents
each graph by a fixed-length features which is trained to pre-
dict the rooted subgraphs in the full graph, and the rooted
subgrphs are defined as following:

Definition 1 Rooted subgraphs are a specific class of sub-
graphs. In a given graph G, sgdn = (Nsg, Esg) is a rooted
subgraph of degree d around node n, so long as Nsg ∈
N , Esg ∈ E and all the nodes in the rooted subgraphs are
reachable in d hops from n.

Figure 1b shows that a graph containingfivenodes extracts
five rooted subgraphs with d = 1. Given a set of graphs,
graph2vec learns their embeddings in three steps:

1. extract the rooted subgraphs from all graphs to produce a
vocabulary;

2. build the skip-gram model with negative sampling;
3. use the stochastic gradient descent (SGD) optimizer [67]

to optimize the parameters.

Algorithm 1 graph2vec
Require: G = {G1,G2, ...,Gn}: Set of graphs to be learnt and Gi =
(N , E);
λ: a function that maps a node to its label;
D: Maximum degree of the rooted subgraphs;
δ: dimension of embedding;
e: number of epochs;
α: learning rate.
1: function graph2vec(G, D, λ, e, α)
2: Initialize the �(G): �(G) is the embedding of G
3: for e = 1 to e do
4: G = Shuffle(G)

5: for Gi in G do
6: for n ∈ Ni do
7: for d = 0 to D do
8: sgdn = getrootedgraph(n,Gi , d)
9: J (�) = − log Pr(sgdn |�(G))

10: � = � − α ∂ J
∂�

11: return �

12: function getrootedgraph(n,G, d)
13: // n is the root of the subgraph
14: sgdn = {}
15: if d = 0 then
16: sgdn = {λ(n)}
17: else
18: N = {n′ |(n, n

′
) ∈ E}

19: Md
n = {getrootedgraph(n

′
,G, d − 1)|n′ ∈ N}

20: sgdn = sgdn ∪ getrootedgraph(n,G, d − 1) ⊕ sort(Md
n )

21: return sgdn

The whole process is elaborated in Algorithm 1.
As described before, we should extract the rooted sub-

graphs from the graphs (see lines 12–21 of Algorithm 1).
The procedure takes the root node n, graph G and the degree
d as the inputs and return the rooted subgraphs sgdn . For cases
where d = 0, the root node is returned. Otherwise, we first
get the degree d − 1 rooted subgraphs of all neighbors of
the root node and sort them, then concatenate them with the
degree d − 1 rooted subgraphs of the root node. Given a
sequence of the rooted subgraphs sgdn = {sg1, sg2, ..., sgl}
extracted from G, we intend to maximize the following log
likelihood:

l∑
j=1

log Pr (sgi |G) . (2)

As shown in Fig. 2, in order to maximize Eq. (2), the
skip-gram model builds l classifers. In each classifer, the
probability Pr(sgi |G) is defined as follows:

Pr
(
sgi |G

) = exp
(
�(G) · wsgi

)
∑

sg∈V exp
(
�(G) · wsg

)
,

(3)

where �(G) is the embedding vector of G, wsg and wsgi
are the network weights corresponding to sg and sgi , respec-
tively, V is the vocabulary containing all rooted subgraphs.
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Fig. 2 The skip-gram model: the graph embedding is trained to predict
the rooted subgraphs

As can be seen fromEq. (3), it is prohibitively expensive if the
whole vocabulary are considered. To alleviate this problem,
graph2vec adopts negative sampling which selects a small
subset of rooted graphs at random that are not in the target
graph to train the model.

At the beginning of training the skip-gram model, the
embeddings of all the graphs in G are randomly initialized
and then they are updated with SGD (see lines 3–10 of Algo-
rithm 1). For prediction, the embedding of a new graph is
obtained by gradient descent. In this step, in addition to
the graph embedding, the rest parameters of the model have
been trained and fixed, and the graph embedding is updated
through the gradient descent.

Methodology

Overall framework

In this section, the proposed SAENAS-NEusing an SAEA
to search for the optimal architecture in the network embed-
ding space is given in detail. As shown in Fig. 3, it can be
divided into three components: network embedding, surro-
gate model and EA-based NAS. In SAENAS-NE, we first
train the graph2vec model which maps the architectures into
the embedding space and then employs RankNet as the sur-
rogate model to guide the search of EA. Particularly, we
propose an effective environmental selection and infill cri-
terion in SAENAS-NE. Algorithm 2 lists the framework of
the SAENAS-NE.

To begin this algorithm, we use an architecture dataset
to train a graph2vec model which maps architectures into
the embedding space (line 1). Then, we initialize a training
data Arch consisting of N randomly generated architectures,
where each architecture is trained. In addition, the training
data constitute the initial population PFE and is used to train
the surrogate model RankNet (lines 3–4). Finally, we repeat
the following steps until the maximum number of real eval-
uations is reached (lines 5–18).

Algorithm 2 SAENAS-NE
Require: A = {a1, a2, ..., ak}: architecture dataset;
λ: a function that maps a node to its label;
D: Maximum degree of the rooted subgraphs;
δ: dimension of embedding;
e: number of epochs;
α: learning rate;
N : size of population;
r : number of offspring members associated with each reference solu-
tion;
K : number of new architectures are selected fro Ptmax ;
FEmax: the maximum number of the real evaluations.
Return: the best neural network architecture.
1: g2v ← Graph2vec(A, D, λ, e, α)
2: Generate an initial training data set Arch = {a1, a2, ..., aN } using

random sampling,
3: PFE = Arch, FE = |Arch|
4: Train the surrogate model RankNet by Arch
5: while FE ≤ FEmax do
6: Pt = PFE , t = 1
7: while t < tmax do
8: Generate offspring Qt
9: Rt = Pt ∪ Qt
10: Surrogate Assisted Evaluation
11: Pt+1 = Environmentalselection(Rt , N )

12: t = t + 1
13: Select K individuals using infill criterion from Ptmax and obtain

their accuracy, recorded as Pinfill
14: FE = FE + |Pinfill|
15: Arch = Arch ∪ Pinfill
16: Use Arch to update the surrogate model RankNet
17: Rt = PFE ∪ Pinfill
18: PFE = Environmentalselection(Rt , N )

In each generation, there is a surrogate-assisted evaluation
phase where the predicted value of the RankNet will be used
to replace the real evaluation of the individual (lines 7–12)
and the initial population of surrogate-assisted evaluation is
set as PFE . Subsequently, an infill criterion is adopted to
select several individuals Pinfill for real evaluations, that is,
to fully train the network corresponding to each individual
andobtain their validation accuracy (line 13).After that, these
real evaluated individuals are collected in the Arch and the
surrogate model is updated (lines 15–16). At last, we select
the parent population of the next generation from the mixed
population of PFE and Pinfill (lines 17–18).

In the following subsections, we elaborate on the detail of
network embedding, surrogate model, environmental selec-
tion and infill sampling.

Network embedding

As described in Section “Preliminaries: graph2vec”, we
train the skip-gram model to get the architecture embedding
by predicting whether the substructures are present in the
architecture and expect that architectures withmore identical
substructures will be closer to each other in the embedding
space. In our work, the substructures are the rooted sub-

123



Complex & Intelligent Systems (2023) 9:3313–3331 3319

Fig. 3 The overall framework of SAENAS-NE

Fig. 4 An example of network embedding

graphs and a classifier will be constructed for each rooted
subgraph. Figure 4 provides an example to illustrates how
the network is embedded into a fixed-length vector. Figure 4a
depicts a neural network in the NASBench-101 search space.
The extracted rooted subgraphs with d = 0 or 1 are shown
in Fig. 4b. In Fig. 4c, we demonstrate the process of net-
work embedding in graph2vec. If we consider the vocabulary
that contains all rooted subgraphs, the output and weights of

the classifier are huge. In order to offer a computationally
efficient classifier, T. Mikolov et al. [68] propose negative
sampling by the following formula:

log σ
(
�(G) · wsgi

)

+
k∑
j=1

Esg j∼Pn(sg)

[
log σ(−�(G) · wsg j

)
]
, (4)
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where σ is sigmoid function, Pn(sg) is the noise distribution
where there are k negative samples 1 of sgi . Equation (4) is
used to replace every log Pr(sgi |G) in Eq. (2). For each clas-
sifier, the meaning expressed by the formula is to distinguish
the target rooted subgraph sgi from the k negative samples
which are not included in the graph.

After training the skip-gram model, the model saves the
embedding of all graphs �(G) and the weights correspond-
ing to all rooted subgraphs wsg in the training. When we
require the embedding of a new architecture, we can fix the
weights corresponding to the rooted subgraphs in the skip-
gram model, and continuously update the embedding of the
new architecture through the gradient descent.

Surrogate model

Unlike previous work [21,30,69] that use regression mod-
els as the surrogate model, we use RankNet to evaluate the
individual architectures. The advantage of RankNet is that
the goal of model training is to directly rank each individual
architecture instead of predicting their accuracy. In RankNet,
we use feedforward neural networkwith two hidden layers as
the underlyingmodelwhichmaps an input vector x ∈ 
n to a
real number si = f (xi ). For each pair of architectures given,
their embedding xi , x j is presented to the RankNet, which
compute their scores si = f (xi ) and s j = f (x j ). Then we
use the sigmoid function to calculate the probability that xi
is better then x j :

Pi j = P
(
xi � x j

) = 1

1 + e−(si−s j).
(5)

Finally, RankNet trains the underlyingmodel byminimiz-
ing the following cost function:

C = −P̄i j log Pi j − (
1 − P̄i j

)
log

(
1 − Pi j

)
. (6)

where P̄i j ∈ {0, 1} is the target label.
After training the RankNet, we can compute the score of

each individual architecture instead of the accuracy as its
fitness. To leverage the confidence level of the predictions
of surrogate models to preform a global search, the surro-
gate models need to output an uncertainty estimation for
the predictions. In our work, the embedding of the network
is continuously updated through the gradient descent in the
skip-gram model and different random vector initializations
will eventually get different but similar embedding vectors,
as shown in surrogate model diagram in Fig. 3. Thus, we
can obtain several embedding of network and their predic-
tions, and compute the mean and standard deviation of these

1 We set k to 5, which is recommended in https://github.com/RaRe-
Technologies/gensim.

s(x)

Fig. 5 TheKendall Taumetric under different s(x). The horizontal axis
indicates the neural architectures within a certain percentage range after
the architectures sorted in ascending order of s(x)

predictions as their fitness f̂ (x) and uncertainty estimation
s(x). In our experiments, we compute the Kendall Tau (τ )
[70] metric as the correlation between the predictions rank-
ings and the ground truth. As shown in Fig. 5, we report the
change of the Kendall Tau metric of 2000 random networks
under different s(x) across 20 different runs. We can see that
the Kendall tau metric are reduced by increasing s(x). The
lower theKendall Tau the higher the true uncertainty, thus our
method of calculating the uncertainty estimation is effective.

Environmental selection based on reference
population

The selection of the individuals with benefits on convergence
and diversity for the next population brings improvements to
SAEAs. That is, the selected individuals need a high fitness
and try to stay as far away as possible between different
individuals. In order to solve the problem of centroid initial-
ization and the imbalance of the number of individuals in
each cluster, we propose a new method called environmental
selection based on reference population. More specifically,
the reference population is parent solutions, and candidate
solutions with a shorter distance from a reference solution
p will be preferentially associated with p unless the num-
ber of solutions in the cluster represented by p reaches a
pre-specified number.

In order to cluster all candidates, we need to compute
distances between children and reference solutions. After
obtaining their embeddings, we compute the distance by

θi, j = 1 − xi · x j
||xi || · ||x j || , (7)
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Fig. 6 Using clustering in environmental selection

where xi and x j are the embeddings and the second item is the
cosine similarity of two vectors. θi, j ∈ [0, 2] and the closer
the θi, j is to zero, the more similar the two architecture.

There are two environmental selection operators in Fig. 3.
One selects the next population Pt+1 from the mixed pop-
ulation of Pt and Qt in the phase of surrogate-assisted
evaluation, and the other selects the individuals from the par-
ent population PFE and the new evaluated offspring Pinfill to
form the next population in the phase of real evaluation. The
two environmental selection operators are similar and their
reference population are parent population and the worst k
individuals in PFE , respectively.

The details about environmental selection are presented
in Algorithm 3. We first cluster the candidates based on the
distance between the reference population and the offspring,
and then we select the best member in each cluster for next
population. Let 
 ∈ RN ,r×N be the distance matrix that is
build from Eq. (7), N is the number of reference population
and r is the number of offspring members associated with
each reference solution (the r is 2 in Fig. 6). An element θi, j
in 
 represents the distance between the i-th reference solu-
tion and j-th child. After obtaining 
, we find the smallest
distance from the matrix 
, suppose it is θi, j , associate the
i-th reference solution and j-th child and set the distance
from all reference solutions to the j-th child to infinity. If the
number of associated children of the i-th reference solution
reaches r , the distance from the reference solution to all chil-
dren is set to infinity. Repeat this process until all elements
of the matrix 
 are infinite.

In the phase of surrogate-assisted evaluation, the r is 6 and
in order to prevent individualswhich have been real evaluated

Algorithm 3 Environmental Selection Based on Reference
Population
Require: P : the reference population;
Q : the offspring population;
r : the number of offspring members associated with each reference
solution;
Return: pop : the selected individual
1: Initial the distance matrix 


2: n1 = |P|, n2 = |Q|
3: pop = Φ, clusters = Φ

4: for pi in Pt do
5: clusters.append([pi ])
6: for θi, j in 
 do
7: Compute θi, j through Eq. (7)

8: while ∃θi, j �= inf do
9: Find the smallest distance θi, j
10: Associate the child q j with the reference solution pi
11: Set θw, j = inf,∀w ∈ [1, n1]
12: if |clusters[i]| == r + 1 then
13: Set θi,w = inf,∀w ∈ [1, n2]
14: if the phase is the surrogate-assisted evaluation then
15: for C in clusters do
16: Delete the individuals which have been real evaluation in C .
17: for C in clusters do
18: p = best(C)

19: pop.append(p)
return pop

from being repeatedly interviewed, these individuals will be
deleted from the cluster. In the phase of real evaluation, the r
is 1 and the reference population consists of theworst K indi-
viduals in PEF . An example of candidate clustering is shown
in Fig. 6, θ3,6 is the smallest distance, so associate child q6
with reference solution p3 and set θi,6 = inf,∀i ∈ [1, 3].
Then, the children q1 and q3 are, respectively, associate with
p1 and p2. Similarly, we set θi,1 = θi,3 = inf,∀i ∈ [1, 3].
Next, q4 is associated to p2, and set θi,4 = inf,∀i ∈ [1, 3].
Particularly, the number of offspring members associated
with p2 reaches r = 2, so θ2, j = inf,∀ j ∈ [1, 6]. Finally,
q2 and q5 are also associated with p1 and p3, respectively,
in the same way. Because each reference solution has only
r children associated with it, q5 is associated with p3 even
though it is closer to p2.

Infill sampling based onmulti-objective selection

The approximated fitness f̂ (x) and the uncertainty s(x)
can measure the new solution’s merit [71], in order to con-
sider both for all candidate architectures in infill sampling,
inspired by multi-objective optimization [72], we consider
f̂ (x) and s(x) as two separate objectives and choose K new
architectures from Ptmax by utilizing nondominated sorting.
Given two individuals x and y, x dominates y if and only if
f̂ (x) > f̂ (y), s(x) ≥ s(y) or f̂ (x) ≥ f̂ (y), s(x) > s(y).
The candidate architectures are sorted into several nondomi-
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The first 

Front

ˆ ( )f x

( )s x

The last 

Front

Front 2

Front 3

Front q

Fig. 7 All nondominated fronts sorted according to the approximated
fitness f̂ (x) and the uncertainty s(x)

nated fronts according to the domination relationships, Fig. 7
illustrates this process.

The candidate architectures have a higher selection pri-
ority in the lower rank nondominated front. First, we select
the candidates from the front 1. If the size of the front 1 is
smaller then K , all members of front 1 will be selected for
real evaluation. The remaining members for real evaluations
are chosen from subsequent nondominated fronts in order
of their ranks. Assume that front q is the last chosen front,
that is, if all members in front q are selected, the number of
candidates which are real evaluated will be greater than K .
In this case, we sort the members in the front q according to
the approximated fitness f̂ (x), and then select the member
with the larger f̂ (x) until the number of candidates for real
evaluations reaches K .

Since we sort all the members in Ptmax by the nondom-
inated sorting according to f̂ (x) and s(x), the selected
solutions have either a higher approximated fitness, a greater
uncertainty, or both. Finally, these selected solutions are used
to update the surrogate model. In addition, the infill sampling
strategy is implemented after environment selection, thus the
diversity of the selected solutions can be guaranteed.

Experiments

In this section, we conduct experiments on three commonly
used NASBench search spaces [46,73] and DARTS search
space [15]. The experiments consist of three parts. First, the
performance of the proposed SAENAS-NE is quantified on

the three commonly used NASBench and DARTS search
spaces, and compared to the existing NAS algorithms. Sec-
ond, the effectiveness of graph2vec is verified by comparing
it with the existing network embedding method. Lastly, we
perform the ablation experiments to validate the effective-
ness of the new environmental selection and infill sampling
strategies, and the effectiveness of the hyper-parameter r .
All the experiments are conducted using one NVIDIA GTX
2080Ti GPU and one Intel Xeon Gold 4210R CPU.

NASBench search space

NASBench-101,NASBench-201 andNASBench-301 are the
commonly usedNASBench search spacewhere variousNAS
algorithms can be compared with each other. Next, we intro-
duce the three NASBench search space, respectively.

• NASBench-101 [46] consists of 423k unique convo-
lutional architectures and all architectures are trained
and evaluated three times on CIFAR-10 with different
random initializations. For each architecture, its valida-
tion accuracies and test accuracies corresponding to the
three independent trainings are reported. NASBench-101
builds the architecture by stacking cells and restrict the
search space to a cell. The cells are defined by directed
acyclic graphs on V nodes, where each node represents
the operations and the adjacency matrix represents the
connection of different operations. In order to limit the
size of the search space, only 3 × 3 convolution, 1 × 1
convolution and 3 × 3 max-pool are allowed to be used
and the maximum number of edges is 9.

• NASBench-201 [73] contains 15,625 architectures and
each architecture generated by 4 nodes and 5 associated
options (zeroize, skip-connect, 1 × 1 convolution, 3 × 3
convolution and 3 × 3 avg-pool). Each node and edge
represent the feature map and operation, respectively.
NASBench-201 provides the training, validation, and test
accuracy on CIFAR-10, CIFAR-100 and ImageNet-16-
120.

• NASBench-301 [74] is the first surrogate NAS bench-
mark which contains 1018 architectures. Different from
NASBench-101, NASBench-201 and other tabular NAS
benchmark, NASBench-301 fits various regression mod-
els on CIFAR-10 and provide a predicted accuracy of
each architecture. NASBench-301 has the same search
space as inDARTS [15], the architectures contain the nor-
mal and reduction cell, which is defined as a DAG with
2 input nodes, 4 intermediate nodes, and 1 output node.
The nodes represent the featuremap and are connected by
directed edges representing one of the following 7 opera-
tions: separable convolution 3× 3, separable convolution
5× 5, dilated convolution 3× 3, dilated convolution 5×
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5, dilated convolution 3 × 3, max-pool 3 × 3, avg-pool
3x3 and skip connection.

Peer competitors

The compared algorithms in our experiment are summarized
as follows.

• Random search is the simplest but competitive baseline
for NAS algorithms. It randomly selects n architectures
from the search space and uses the architecture with the
highest validation accuracy as the final result.

• REA [8] adopts EA as the optimizer and introduces an
age property to favor the younger individuals in each
generation.

• BANANAS [30] is a Bayesian optimization algorithm
which proposes a path-based encoding scheme for the
architectures and uses an ensemble of feedforward neu-
ral networks as surrogate model.

• GP_bayesopt is another algorithm provided in the work
[30] which sets up Bayesian optimization with Gaussian
process model and UCB acquisition function.

• Deep Networks for Global Optimization (DNGO) [75]
performs Bayesian optimization with basis function
extracted from the neural network.

• Bohamiann is a Bayesian optimization with Hamiltonian
Monte Carlo artificial neural networks [30]. It uses a
Bayesian neural network as the surrogate model.

• GCN_predictor [30] uses Bayesian optimization as its
optimizer and a graph convolutional networks as the sur-
rogate model.

• BONAS [76] is a Bayesian optimization which uses GCN
as a surrogate model to discover the optimal architecture
and design aweighted loss focusing on architectures with
high performance.

• Arch2vec-RL and Arch2vec-BO [25] 2 use reinforcement
learning andBayesian optimization, respectively, as opti-
mizer to search the optimal architecture, and employ the
embedding method arch2vec which adopts variational
autoencoder to learn the architecture representations.

• NPENAS-SSRL and NPENAS-SSCCL [27], respectively,
use evolutionary algorithms as optimizers and two self-
supervised learning model for pre-training the architec-
ture embeddings.One learns the architecture embeddings
by introducing the pretext task which predicts the dis-
tance between architectures. Another first constructs
positive samples and negative samples, and then proposes

2 The algorithms in the [25] use the same cell for both normal and
reduction cell. In our experimentswe use the casewhere the two cells are
different, which is more commonly used, and the matrix representation
of its architectures refers to [30].

a contrastive learning algorithm to learn the architecture
embeddings.

Parameter settings

The common parameter settings of all algorithms are the
same as in [27,30].

• The size of the architecture embedding is set to 32 for
NASBench-101, NASBench-201 and NASBench-301,
which is the same as the hidden layer size of GIN layer
in [27].

• Themaximumnumber of the real evaluations is set to 150
for NASBench-101, 100 for NASBench-201, and 300 for
NASBench-301.

Furthermore, we use the code directly from the open-
source repositories 3 and the parameter settings are hardly
changed. The specific parameter settings in SAENAS-NE
are shown as below.

• The maximum degree of the rooted subgraphs is 2. A
subgraph of degree 2 can represent up to 5 network layers
in a cell, which is sufficient in the search space we use.

• The initial learning rate is 0.025 and the cosine learning
rate schedule is adopted.

• The number of epochs for training graph2vec model is
40, which makes the graph2vec train well.

• The number of new architectures (K ) are selected from
Ptmax is set to 10, the same as the value set in [27].

• The size of population is set to 20 for NASBench-101
and NASBench-201, 30 for NASBench-301.

Neural architecture search performance

In order to discuss the behavior of the SAENAS-NE, we
compare it with other algorithms described in Section 5.2 on
NASBench-101, NASBench-201 and NASBench-301.

Results on NASBench-101

The performance of different NAS algorithms over 200
independent runs on NASBench-101 are reported in Table 1.
In Table 1, the top two algorithms in order use real evalua-
tions, namely, the accuracy of each candidate architecture is
obtained by training the network from scratch. The middle
six algorithms construct surrogate models from the orig-
inal encoding of the architectures while the bottom five

3 https://github.com/naszilla/naszilla for Random search BONAS,
https://github.com/MSU-MLSys-Lab/arch2vec for Arch2vec-RL and
Arch2vec-BO, https://github.com/auroua/SSNENAS for NPENAS-
SSRL and NPENAS-SSCCL.
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Table 1 The performance of the 12 compared algorithms and SAENAS-NE on NASBench-101

Methods Search budget Validation Test Architecture embedding

Random Search 150 94.33±0.12 (+) 93.68±0.19 (+) –

REA 150 94.40±0.18 (+) 93.81±0.26 (+) –

BANANAS 150 94.65±0.14 (+) 94.05±0.18 (≈) Supervised

GP_bayesopt 150 94.67±0.15 (≈) 94.05±0.19 (≈) Supervised

DNGO 150 94.54±0.16 (+) 93.94±0.20 (+) Supervised

Bohamiann 150 94.53±0.17 (+) 93.92±0.23 (+) Supervised

GCN_Predictor 150 94.33±0.11 (+) 93.72±0.19 (+) Supervised

BONAS 150 94.63±0.12 (+) 94.04±0.17 (≈) Supervised

Arch2vec_RL 150 94.35±0.14 (+) 93.74±0.17 (+) Unsupervised

Arch2vec_BO 150 94.44±0.25 (+) 93.77±0.24 (+) Unsupervised

NPENAS-SSRL 150 94.76±0.19 (–) 94.16±0.12 (–) Self-supervised

NPENAS-CCL 150 94.72±0.17 (≈) 94.15±0.14 (–) Self-supervised

SAENAS-NE 150 94.72±0.14 94.08±0.15 Unsupervised

+/≈/– 9/2/1 7/3/2

The bold values is the best results for each instance
The last row of the table is the result of Wilcoxon signed rank test (the significance level is 0.05). The symbols ‘+’, ‘–’, and ‘≈’ indicate that
SAENAS-NE is statistically significantly superior to, inferior to, and almost equivalent to the compared algorithm, respectively

algorithms map the architectures into the embedding space
through unsupervised or self-supervised algorithms.

Our proposed method SAENAS-NE achieves comparable
performance on NASBench-101. The results of Wilcoxon
rank-sum (WRS) test show that SAENAS-NE significantly
superior to nine algorithms
(Random Search, REA, BANANAS, DNGO, Bohamiann,
GCN_Predictor, BONAS, Arch2vec_Rl, Arch2vec_BO),
almost equivalent to twoalgorithms (GP_bayesopt,NPENAS-
CCL), and inferior to NPENAS-SSRL in terms of validation
accuracy.According to [69], well-performing neural network
does not have a strong correlation between the validation
accuracy and the test accuracyonNASBench-101.Thus, both
NPENAS-SSRL and NPENAS-CCL outperform SAENAS-
NE in test accuracy, which is not exactly the same as its
validation accuracy.

Results on NASBench-201

Table 2 shows the results obtained from the 200 independent
runs of the 12 compared algorithms and SAENAS-NE on
NASBench-201. Ourmethod SAENAS-NE achieves the best
performance on both the validation accuracy and test accu-
racy on CIFAR-10. On CIFAR-100, SAENAS-NE obtains
slightly lesser validation accuracy and test accuracy than
NPENAS-SSRL and NPENAS-CCL. Specifically, the vali-
dation accuracy of SAENAS-NE differs from the accuracy of
NPENAS-SSRL and NPENAS-CCL by 0.01% and 0.02%,
respectively, and the test accuracy of SAENAS-NE differs
by 0.01% and 0.03%, respectively. On ImageNet-16-120,
SAENAS-NE is only 0.03% lower than NPENAS-CCL in

validation accuracywhile achieves the best result in test accu-
racy.

In addition, it can be seen from the Table 2 that except the
validation accuracy on CIFAR-100, SAENAS-NEmaintains
the lowest standard deviation in all accuracy, thus it can be
proved that ourmethodhas good stability onNASBench-201.

Results on NASBench-301

As shown in Table 3, SAENAS-NE achieves the best
performance compared with other 11 NAS algorithms. As
NPENAS-SSRL [27] is less suitable for a large search space
and is not used on DARTS-like search space, it is not com-
pared here.

Except for GP_bayesopt, other compared algorithms are
at least 0.09% less accurate than SAENAS-NE. Although
GP_bayesopt performs the closest to SAENAS-NE, it is still
significantly inferior to SAENAS-NE in WRS test. Figure 8
provides the validation accuracy of the best neural network
during the search process of all algorithms. It is apparent
from this figure that SAENAS-NE outperforms all methods
except GP_bayesopt when the search budget exceeds 50 and
outperforms GP_bayesopt when search budget exceeds 200.

Results on the real-world search space

To further demonstrate the effectiveness of our algorithm,
we conduct experiments on the DARTS search space. The
search space consists of convolutional cells and reduction
cells. For each cell, two input nodes and four nodes contain
two edges as input form aDAG. The final network is obtained

123



Complex & Intelligent Systems (2023) 9:3313–3331 3325

Ta
bl
e
2

T
he

pe
rf
or
m
an
ce

of
th
e
12

co
m
pa
re
d
al
go
ri
th
m
s
an
d
SA

E
N
A
S-
N
E
on

N
A
SB

en
ch
-2
01

M
et
ho
ds

Se
ar
ch

bu
dg
et

C
IF
A
R
-1
0

C
IF
A
R
-1
00

Im
ag
eN

et
-1
6-
12
0

V
al
id
at
io
n

Te
st

V
al
id
at
io
n

Te
st

V
al
id
at
io
n

Te
st

R
an
do
m

Se
ar
ch

10
0

91
.0
7
±0

.2
7
(+
)

93
.8
2
±0

.2
4
(+
)

71
.4
4
±0

.8
3
(+
)

71
.4
0
±0

.8
3
(+
)

45
.3
7
±0

.6
3
(+
)

45
.3
6
±0

.6
7
(+
)

R
E
A

10
0

91
.3
7
±0

.2
5
(+
)

94
.0
6
±0

.2
9
(+
)

72
.7
9
±0

.6
9
(+
)

72
.7
2
±0

.7
2
(+
)

46
.1
5
±0

.4
5
(+
)

45
.9
9
±0

.5
1
(+
)

B
A
N
A
N
A
S

10
0

91
.5
0
±0

.1
5
(+
)

94
.2
3
±0

.3
0
(+
)

73
.2
7
±0

.5
7
(+
)

73
.2
5
±0

.6
3
(+
)

46
.4
5
±0

.2
5
(+
)

46
.3
1
±0

.3
1
(≈

)

G
P_

ba
ye
so
pt

10
0

91
.4
5
±0

.2
3
(+
)

94
.1
6
±0

.3
1
(+
)

73
.1
1
±0

.6
5
(+
)

73
.0
5
±0

.7
5
(+
)

46
.5
1
±0

.2
5
(+
)

46
.2
5
±0

.3
4
(+
)

D
N
G
O

10
0

91
.4
1
±0

.1
7
(+
)

94
.0
8
±0

.2
6
(+
)

72
.7
1
±0

.6
6
(+
)

72
.6
6
±0

.6
7
(+
)

46
.1
1
±0

.4
4
(+
)

46
.0
0
±0

.4
8
(+
)

B
oh
am

ia
nn

10
0

91
.4
1
±0

.1
8
(+
)

94
.0
9
±0

.2
6
(+
)

72
.7
3
±0

.6
4
(+
)

72
.6
5
±0

.6
6
(+
)

46
.1
5
±0

.4
5
(+
)

46
.0
3
±0

.4
8
(+
)

G
C
N
_P

re
di
ct
or

10
0

91
.0
2
±0

.3
2
(+
)

93
.7
4
±0

.3
3
(+
)

71
.4
3
±0

.7
2
(+
)

71
.4
3
±0

.7
7
(+
)

45
.4
7
±0

.7
2
(+
)

45
.3
6
±0

.7
8
(+
)

B
O
N
A
S

10
0

91
.5
6
±0

.1
0
(≈

)
94
.3
2
±0

.1
5
(+
)

73
.3
2
±0

.4
0
(+
)

73
.3
0
±0

.4
6
(+
)

46
.5
6
±0

.1
9
(≈

)
46
.3
1
±0

.3
0
(≈

)

A
rc
h2
ve
c_
R
L

10
0

91
.4
3
±0

.2
8
(+
)

94
.2
3
±0

.2
6
(+
)

73
.1
2
±0

.6
6
(+
)

73
.0
6
±0

.8
7
(+
)

46
.3
2
±0

.2
0
(+
)

46
.3
5
±0

.3
5
(≈

)

A
rc
h2
ve
c_
B
O

10
0

91
.5
1
±0

.1
3
(+
)

94
.3
1
±0

.1
4
(+
)

73
.3
8
±0

.3
4
(+
)

73
.4
4
±0

.2
2
(+
)

46
.3
3
±0

.2
1
(+
)

46
.3
5
±0

.2
7
(≈

)

N
PE

N
A
S-
SS

R
L

10
0

91
.5
6
±0

.1
4
(+
)

94
.3
2
±0

.1
9
(+
)

73
.4
7
±0

.2
2
(-
)

73
.4
7
±0

.3
0(
-)

46
.5
3
±0

.3
3
(+
)

45
.8
3
±0

.6
0
(+
)

N
PE

N
A
S-
C
C
L

10
0

91
.5
7
±0

.1
3
(+
)

94
.3
2
±0

.1
9
(+
)

73
.4
8
±0

.1
5
(-
)

73
.4
9
±0

.2
3
(-
)

46
.6
2
±0

.3
4
(-
)

45
.6
1
±0

.4
1
(+
)

SA
E
N
A
S-
N
E

10
0

91
.5
8
±0

.0
9

94
.3
4
±0

.1
2

73
.4
6
±0

.1
8

73
.4
6
±0

.2
0

46
.5
9
±0

.1
4

46
.3
6
±0

.2
6

+
/≈

/–
11

/1
/0

12
/0
/0

10
/0
/2

10
/0
/2

10
/1
/1

7/
5/
0

T
he

bo
ld

va
lu
es

is
th
e
be
st
re
su
lts

fo
r
ea
ch

in
st
an
ce

T
he

la
st
ro
w
of

th
e
ta
bl
e
is
th
e
re
su
lt
of

W
ilc
ox
on

si
gn
ed

ra
nk

te
st
(t
he

si
gn
ifi
ca
nc
e
le
ve
li
s
0.
05
).
T
he

sy
m
bo
ls
‘+
’,
‘-
’,
an
d
‘≈

’
in
di
ca
te
th
at
SA

E
N
A
S-
N
E
is
st
at
is
tic

al
ly

si
gn

ifi
ca
nt
ly

su
pe
ri
or

to
,

in
fe
ri
or

to
,a
nd

al
m
os
te
qu
iv
al
en
tt
o
th
e
co
m
pa
re
d
al
go
ri
th
m
,r
es
pe
ct
iv
el
y

123



3326 Complex & Intelligent Systems (2023) 9:3313–3331

Table 3 The performance of the
11 compared algorithms and
SAENAS-NE on
NASBench-301

Methods Search budget Validation Architecture embedding

Random Search 300 94.34±0.10 (+) –

REA 300 94.86±0.11 (+) –

BANANAS 300 94.89±0.11 (+) Supervised

GP_bayesopt 300 94.98±0.11 (+) Supervised

DNGO 300 94.85±0.10 (+) Supervised

Bohamiann 300 94.85±0.10 (+) Supervised

GCN_Predictor 300 94.35±0.11 (+) Supervised

BONAS 300 94.91±0.10 (+) Supervised

Arch2vec_RL 300 94.48±0.08 (+) Unsupervised

Arch2vec_BO 300 94.43±0.12 (+) Unsupervised

NPENAS-CCL 300 94.92±0.12 (+) Self-supervised

SAENAS-NE 300 95.01±0.07 Unsupervised

+/≈/– 11/0/0

The bold values is the best results for each instance
The last row of the table is the result of Wilcoxon signed rank test (the significance level is 0.05). The symbols
‘+’, ‘–’, and ‘≈’ indicate that SAENAS-NE is statistically significantly superior to, inferior to, and almost
equivalent to the compared algorithm, respectively

Table 4 The performance of the
7 compared algorithms and
SAENAS-NE on DARTS search
space. The test accuracy is
averaged over 5 seed

NAS methods Test Acc (Avg) Test Acc (Best) Params (M) GPU days

Random Search 96.9±0.18 97.29 3.2 4

ENAS [77] – 97.11 4.6 –

RS WS [78] 97.15±0.08 97.29 2.7 8.7

DARTS [15] 97.24±0.09 – 3.3 5

BANANAS [30] 97.36 97.43 3.6 11.8

arch2vec-RL [25] 97.35±0.05 97.4 3.3 9.5

arch2vec-BO [25] 97.44±0.05 97.52 3.6 10.6

SAENAS-NE 97.48±0.08 97.55 2.9 9

The bold values is the best results for each instance

Fig. 8 Performance comparison of NAS algorithms onNASBench-301

by stacking these two cells. For simplicity, we search for the
same convolutional cells and reduction cells as in [25]. The

implementations of SAENAS-NE on DARTS is available at
https://github.com/HandingWangXDGroup/SAENAS-NE.

Similar to [25], we set the maximum number of the real
evaluations to 100. When an individual needs to be real eval-
uated, the individual will be decoded into a neural network
and trained from scratch for 50 epoch, then the average val-
idation accuracy of the last 5 epochs is used as the real
evaluation value of the individual. As shown in Table 4, our
algorithm achieves comparable classification accuracy with
fewer parameters.

Effects of network embedding and surrogate model

To verify the effectiveness of the graph2vec applied to the
network embedding, we compare it with other embedding
methods. The comparison is performed on NASBench-101,
NASBench-201,NASBench-301 under the search budgets of
20, 50, 100 and 200. To be fair, all the embedding methods
use RankNet as the predictor and the prediction performance
of the architecture embeddings is used as the metric which
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Fig. 9 Predictive performance of embedding methods with different search budget

measures how well the embedding methods. The result with
Kendall’s Tau coefficient is plotted in Fig. 9.

On the NASBench-101, the performance of graph2vec
is slightly inferior to SS-CCL but significantly better than
that of other embedding methods, including original encod-
ing, path encoding, arch2vec and SS-RL. SS-RL shows the
worst performance. Unlike the work in [27], the weights
of the embedding part of the neural network in SS-RL and
SS-CCl are not updated after the self-supervised learning is
completed, which ensures that architecture embedding is not
affected by subsequent supervised training.

On the NASBench-201, graph2vec achieves its best per-
formance in three different dataset, namely CIFAR-10,
CIFAR-100 and ImageNet-16-120. Path encoding performs
close to graph2vec when the search budget is more than 100,
but it is significantly worse than graph2vec when the search
budget is less than 100. Arch2vec has similar performance to
graph2vec at the search budget of 20 and 50 on CIFAR-100
and ImageNet-16-120, but the gap with graph2vec increases
as the search budget increases. Except for path encoding
and arch2vec, other embedding methods including original
encoding, SS-RL and SS-CCL all have clear performance
gaps with graph2vec in all search budget across three differ-
ent datasets.

On the NASBench-301, graph2vec and SS-CCL have
comparable performance and both outperform other embed-

ding methods
(original encoding, path encoding and arch2vec). SS-CCL
has better performance when the search budget is 20 and 50,
whereas graph2vec achieves the best performance with the
search budget exceeds 50. SS-RL is less suitable for the large
search space [27], thus we do not compare the performance
of SS-RL in NasBench-301.

In summary, graph2vec achieves a superior performance
on all three NASBench search spaces. Original encod-
ing and SS-RL have poor performance. A decent perfor-
mance of path encoding is maintained in three different
dataset of NASBench-201 but decreased on NASBench-
101 and NASBench-301 with larger search spaces con-
taining more architectures. Arch2vec achieves moderate
performance among all embedding methods on the three
NASBench search space. SS-CCL shows the best perfor-
mance on NASBench-101, but the performance decreases
on NASBench-201 and NASBench-301.

Effects of environmental selection and infill
sampling

To further analyze the behavior of our environmental
selection strategy and infill criterion, we set baseline as
SAENAS-NE-w/o-S&I, which is SAENAS-NE without the
proposed environmental selection and the infill criterion.
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Table 5 Performance
comparison of three version of
SAENAS-NE

Methods Search budget Validation (%) AVG Test (%) STD

SAENAS-NE-w/o-S&I 300 94.96 0.09

SAENAS-NE-w/o-I 300 94.99 0.08

SAENAS-NE 300 95.01 0.07

The bold values is the best results for each instance

Another compared method is SAENAS-NE-w/o-I, which is
a version of SAENAS-NE with only the proposed environ-
mental selection strategy. As NASBench-301 is the largest
among the three NASBench search space, SAENAS-NE-
w/o-S&I, SAENAS-NE-w/o-I and SAENAS-NE are run
independently over 200 times, respectively, and compared
their validation accuracy on NASBench-301 for analyzing
the effect of the proposed environmental selection and infill
sampling strategies. The results of performance compari-
son are summarized in Table 5. As can be seen from the
table, SAENAS-NE-w/o-S&I achieves validation accuracy
of 94.96%.After adopting the proposed environmental selec-
tion strategy, the validation accuracy of SAENAS-NE-w/o
reaches 94.99% (0.03% improvement over the baseline).
SAENAS-NE contains both the environmental selection and
infill criterion, and its validation accuracy reaches 95.01%
(0.05% improvement over the baseline). In addition, from
the standard deviation of the validation accuracy of the three
algorithms, the proposed environmental selection and infill
sampling can improve the stability of the algorithm.

The proposed environmental selection strategy and infill
criterion can improve the diversity of the population to avoid
local optima. To verify this, the average diversity value
(ADV) are defined as a measure of population diversity,

ADV(P) =
∑

i �= j θi, j

N × (N − 1)/2
, (8)

where P is the population and θi, j is calculated by Eq. (7) to
represent the distance between the i-th individual and the j-th
individual in the embedding space in the population P . The
ADVs of SAENAS-NE-w/o-S&I, SAENAS-NE-w/o-I and
SAENAS-NE are presented in Fig. 10. As can be seen from
the figure, the proposed environmental selection strategy and
infill criterion slow down the deterioration of diversity to
increase the possibility of finding a better individual.

Effects of parameter r in the environmental selection

The parameter r is the number of offspring members
associated with each reference solution in environmental
selection. In the phase of real evaluation, the update of the
population is a one-to-one competition between the par-
ent individual and the child individual, thus the value of
r is fixed to 1. To investigate the influence of the r in the

Fig. 10 Average diversity value plots for three version of SAENAS-NE
under over 200 independent runs on NASBench-301

phase of surrogate-assisted evaluation , we set the parameter
r = 2, 4, 6, 8, 10 and compare their performance under 20
independent runs on NASBench-301. The change of valida-
tion accuracy of the best individual in the population over the
search cost for different r are plotted in Fig. 11a. From these
results, the best performance on NASBench-301 is achieved
when r = 6. A larger r means more offspring and more indi-
viduals in each cluster, which can enhance the convergence
of the optimization. However, it can be seen from Fig. 11b
that a larger r makes the population diversity decay more
severely. Therefore, r = 6 is a suitable value, which can
balance the convergence and diversity of the population, and
thus obtain better performance.

Conclusions

This paper presents a novel surrogate-assisted evolutionary
algorithm with network embedding for neural architecture
search, where a graph2vec model is proposed to gener-
ate meaningful representation of each architecture and a
RankNetmodel is trained to approximate the true accuracy of
the neural network. The graph2vec model enables the vector
representations of similar topologically structured architec-
tures to be closer in the embedding space. Furthermore, to
enhance the search ability of the algorithm and efficiently
update the surrogate model, a new environmental selec-
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(a)

(b)

Fig. 11 Effects of parameter r in the environmental selection: a per-
formance comparison of different r values. b Average diversity value
plots for SAENAS-NE with different r values

tion strategy and infill criterion are designed. Our proposed
method SAENAS-NE achieves competitive performance on
three different NASBench search space. Extensive experi-
ments demonstrate that the proposed embedding method can
offer informative representations and improve the accuracy
of the surrogate model. In addition, the environmental selec-
tion and infill sampling strategy improves the performance
of the algorithm by enhancing the diversity of the population
and updating the surrogate model efficiently.

For the futurework, the generalization ability ofSAENAS-
NE requires further investigation by applying it on more
search spaces or extending it to other tasks including object
detection and natural language processing. In addition, more
methods to improve the quality of the network embedding
are worthy of research , such as contrastive learning [79].
In addition, designing adaptive environmental selection and
infill sampling strategies to adapt to different search spaces
is also a promising future research direction.
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