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Abstract
Unpaired image-to-image translation for the generation field has made much progress recently. However, these methods
suffer from mode collapse because of the overfitting of the discriminator. To this end, we propose a straightforward method
to construct a contrastive loss using the feature information of the discriminator output layer, which is named multi-feature
contrastive learning (MCL). Our proposed method enhances the performance of the discriminator and solves the problem
of model collapse by further leveraging contrastive learning. We perform extensive experiments on several open challenge
datasets. Our method achieves state-of-the-art results compared with current methods. Finally, a series of ablation studies
proved that our approach has better stability. In addition, our proposed method is also practical for single image translation
tasks. Code is available at https://github.com/gouayao/MCL.
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Introduction

Generative adversarial networks (GANs) [14] usually include
two models: a generator and a discriminator. The generator
aims to capture the real data distribution to generate new
samples. The discriminator aims to judge an input sample’s
realness to identify whether it is real or fake. Because of their
solid generative capability, GANs have become one of the
most promising methods in the family of generative models
[13]. It is widely applied in various sectors [9,37], especially
in the field of image generation.

Many problems can be summarized as image-to-image
translation tasks in the image generation field, such as image
denoising [5], dehazing [3,28], coloring [46], makeup [29],
and super-resolution [26,34,40]. The image-to-images trans-
lation aims to find a mapping between a source domain
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X and a target domain Y and “translate” the input image
into the corresponding output image. In general, image-to-
image translation tasks can be categorized into two groups:
paired (supervised) [20,35,39] and unpaired (unsupervised)
[19,24,27,30,43,47]. Pix2pix [20] investigated conditional
GANs (cGANs) as a general-purpose solution to image-
to-image translation problems and developed a common
framework for all these problems.Wang et al. [39] andPark et
al. [35] extended pix2pix and further improved the quality of
the generated images. These approaches require paired data
for training.However, formany tasks, paired training data are
challenging to obtain. It significantly limits the application
of image-to-image translation. To address this problem, Zhu
et al. [47] presented a Cycle-consistency GAN (CycleGAN)
for learning an inverse mapping between two domainsX and
Y to realize image-to-image translation tasks in the absence
of paired examples. Similarly, literature [24,43] also used
cycle-consistency to realize unpaired image-to-image trans-
lation.

Although cycle-consistency does not require the training
data to be paired, it assumes that the relationship between
the two domains X and Y is a bijection, which is often too
restrictive.More recently, somemethods [1,2,11,31,36] have
attempted to use one-sided mapping instead of two-sided
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mapping. In literature [36], Park et al. first applied contrastive
learning to image-to-image translation tasks by learning the
correspondence between input and output patches, achieving
a performance superior to those based on cycle-consistency.
This method is named CUT. To further leverage contrastive
learning and avoid the drawbacks of cycle-consistency, Han
et al. [16] proposed a dual contrastive learning approach to
infer an efficient mapping between unpaired data, referred to
as Dual Contrastive Learning GAN (DCLGAN). Both CUT
and DCLGAN only introduce contrastive learning into the
generator, making the discriminator prone to overfitting and
even suffering mode collapse during training.

Previous approaches either had strict restrictions on
training datasets (paired) or mapping functions (bijective),
or merely considered enhancing the performance of the
generator. In this paper, we propose a multi-feature con-
trastive learningmethod. Ourmethod is a one-sidedmapping
method for unpaired image-to-image translation, considering
enhancing the performance of the generator and discrimina-
tor. In summary, this work aims to make two contributions:

(1) Our proposed method can further enhance the perfor-
mance of the discriminator, prevent the discriminator
overfitting issue during training. This method benefits
from multi-feature contrastive learning, which is called
MCL. Large amounts of experiments show that the quan-
titative and qualitative aspects of our method are better
than those of other methods on various unpaired trans-
lation tasks. In addition, our proposed method is also
applicable to single image translation tasks, as shown in
Fig. 1.

(2) We analyze the feature information of the discrimina-
tor output layer and construct a contrastive loss using
this feature information. Our proposed loss is simple,
effective, and universally applicable, called MCL loss.

Experiments show thatMCL loss can be directly added to
most image-to-image translationmethods (such asCycle-
GAN, CUT, and DCLGAN) to improve the quality of
the generated images. In addition, since we did not uti-
lize additional model parameters, MCL loss adds little
additional training time and computational resources.

Related work

Unpaired translation

GANs [14] usually consist of two models: (a) a generator
G : Z → X , (b) and a discriminator D : X → [0, 1].
The generator G maps a potential variable z ∼ p (z) to X to
generate a sample G (z) of realness, where p (z) represents
a specific prior distribution. The discriminator D maps the
input sample to a probability space to distinguish between
the real and the generated sample. The training process of G
and D follows the following objective function:

min
G

max
D

V (G, D) = Ex∼pdata

[
log D (x)

]

+ Ez∼pz

[
log (1 − D (G (z)))

]

= Ex∼pdata

[
log D (x)

]

+ Ex∼pg

[
log (1 − D (x))

]
(1)

where pdata, pz , and pg represent the data distribution of real
samples, input potential variables, and generated samples,
respectively.

For unpaired image-to-image translation tasks [16,36,47],
an unpaired dataset is given: X = {x ∈ X } andY = {y ∈ Y}.
On the one hand, the generator G wants to learn a mapping
G : X → Y from the source domain X to the target domain
Y . On the other hand, the discriminator D hopes to distin-

Fig. 1 Single image translation tasks. We try to solve several different issues with the same architecture and objective from a single image. Here
the results of our approach are shown on these issues, including style transfer, makeup, dehazing, label2facade, coloring, and summer2winter
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guish the transformed image G (x) from the target domain
image Y . At this point, the objective function of training G
and D is as follows:

min
G

max
D

V (G, D) = Ey∼Y
[
log D (y)

]

+ Ex∼X

[
log (1 − D (G (x)))

]
(2)

Contrastive learning

Contrastive learning was found to be effective in state-
of-the-art unsupervised visual representation learning tasks
[6,17,21,38,42]. It aims to learn a mapping function that
makes representations of associated samples closer and keeps
representations of other samples away. These associated
samples are named positive samples, and others are named
negative. For contrastive learning, how to properly construct
positive and negative samples is crucial.

Some recentworks investigate the use of contrastive learn-
ing for image translation [1,16,31,36]. TUNIT [1] adopts
contrastive losses to simultaneously separate image domains
and translates input images into the estimated domains.
DivCo framework [31] uses contrastive losses to properly
constrain both “positive” and “negative” relations between
the generated images specified in the latent space. CUT [36]
uses a noise contrastive estimation framework to maximize
themutual information between input and output for improv-
ing the performance of unpaired image-to-image translation.
DCLGAN [16] extends one-sided mapping to two-sided

mapping to further leverage contrastive learning, performing
better in learning embeddings and thus achieving state-of-
the-art results.

Note that all the abovemethods only introduce contrastive
learning into the generator, that leads to the discriminator
overfitting issue in the training process. Our proposed MCL
is a novel contrastive learning strategy, which uses the fea-
ture information of the discriminator output layer to construct
the contrastive loss. We further demonstrate the superiority
of our method compared to several state-of-the-art meth-
ods through extensive experiments. Our method only uses
existing feature information, so almost no additional com-
puting resources and training timewill be added. The specific
method is described below.

Methods

Given a dataset of X = {x ∈ X } and Y = {y ∈ Y}, we
aim to learn a mapping that translates an image x from a
source domain X to a target domain Y . For a 70×70 Patch-
GAN discriminator [20], its output layer is a 30×30 matrix
A = (

ai, j
)
30×30-each element ai, j aims to classify whether

70 × 70 overlapping image patches are real or fake. The dis-
criminator determines whether an input image is real or fake
by the expectation of all elements.

Different from previous methods [11,16,20,36,47], we
also consider how to use the feature information of the dis-
criminator output layer to construct the contrastive loss and
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Fig. 2 Overall architecture of our approach. We consider constrain-
ing the generator and discriminator based on contrastive learning. Our
approach includes four loss items altogether: adversarial loss, two
PatchNCE losses, and MCL loss. Adversarial loss is encouraged to

control the translation style. PatchNCE loss and MCL loss are used to
enhance the performance of the generator and discriminator, respec-
tively. We omit a similar PatchNCE loss LPatchNCE (G, H , Y ) here
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thus enhance the generalization performance of the discrimi-
nator. Figure 2 shows the overall architecture of our approach.
We combine four losses, including adversarial loss, two
PatchNCE losses, andMCL loss. The details of our objective
are described below.

Adversarial loss

We use an adversarial loss [14] to encourage the translated
images to bevisually similar enough to images from the target
domain, as described below:

LGAN (G, D, X ,Y ) = Ey∼Y
[
log D (y)

]

+ Ex∼X

[
log (1 − D (G (x)))

]
(3)

PatchNCE loss

We use a noise contrastive estimation framework [38] to
maximize the mutual information between the input and out-
put patches. That is, a generated output patch should appear
closer to its corresponding input patch and keep away from
other random patches.

Following CUT [36], a query, a positive and N negatives
are, respectively, mapped to K -dimensional vectors, which
are defined as v, v+ ∈ RK , and v− ∈ RN×K . Note that
v−
n ∈ RK represents the n-th negative. In this paper, query,
positive and negative refer to output, corresponding input,
and noncorresponding input, respectively.Our goal is to asso-
ciate positive and stay away from negatives, which can be
expressed mathematically as a cross-entropy loss [15]:

l
(
v, v+, v−) = − log

⎡

⎢⎢
⎢
⎣

exp
(
v · v+/τ

)

exp
(
v · v+/τ

) +
N∑

n=1
exp

(
v · v−

n /τ
)

⎤

⎥⎥
⎥
⎦

(4)

We normalize vectors onto a unit sphere to prevent the space
from collapsing or expanding. We use a temperature param-
eter τ = 0.07 as default.

Like CUT [36], the generator is divided into two compo-
nents: an encoder Ge and a decoder Gd , applied sequentially
to produce the output image y′ = G (x) = Gd (Ge (x)).
We select L layers from Ge (x) and send it to a small
two-layer MLP network Hl , producing a stack of features
{zl}L = {

Hl
(
Gl

e (x)
)}

L , where Gl
e (x) represents the out-

put of the lth chosen layer. Then, we index into layers
l ∈ {1, 2, . . . , L} and denote s ∈ {1, . . . , Sl}, where Sl is
the number of spatial locations in each layer. We refer to
the corresponding feature(“positive”) as zsl ∈ RCl and the

other features(“negatives”) as zS\s
l ∈ R(Sl−1)Cl , where Cl is

the number of channels at each layer. Similarly, we encode
the output image y′ into

{
ẑl

}
L = {

Hl
(
Gl

e (G (x))
)}

L . We

aim to match corresponding input-output patches at a spe-
cific location. In Fig. 2, for example, the head of the output
zebra should be more strongly associated with the head of
the input horse than the others, such as legs and grass. Thus,
the PatchNCE loss can be expressed as

LPatchNCE (G, H , X) = Ex∼X

L∑

l=1

Sl∑

s=1

l
(
ẑsl , z

s
l , z

S\s
l

)
(5)

In addition, LPatchNCE (G, H ,Y ) is computed on images
from the domain Y to prevent the generator from making
unnecessary changes.

MCL loss

PatchNCE loss enhances the performance of the generator
by learning the correspondence between input and output
image patches. We further improve the performance of the
discriminator using the feature information of the discrimi-
nator output layer, which is named MCL loss.

Generally, the discriminator estimates the realness of
an input sample using a single scalar. However, this sim-
ple mapping undoubtedly misses some important feature
information. Therefore, it is easy to overfit because the dis-
criminator is not strong enough. To make full use of the
feature information of the discriminator output layer, we use
it to construct a contrastive loss instead of simply mapping it
to a probability space. We treat the feature information of the
discriminator output layer into a n×nmatrix A = (

ai, j
)
n×n .

Then, we process each row of elements of the matrix as a fea-

ture vector, that is A = (
α(1), α(2), . . . , α(n)

)T
, where α(i) =(

ai,1, ai,2, . . . , ai,n
)
. And we normalize each feature vec-

tor to obtain f (A) = (
f
(
α(1)

)
, f

(
α(2)

)
, . . . , f

(
α(n)

))T
.

Next, we construct theMCL loss by studying the relationship
between different feature vectors.

As shown in Fig. 2, for an output image y′ = G(x) and
an image y from the target domain Y , we have f (A(y′)) =
( f (y′(1)), f (y′(2)), . . . , f (y′(n)

))
T
and f (A(y)) = ( f (y(1)),

f (y(2)), . . . , f (y(n)))T by the discriminator (here, n=30).
Naturally, we want any feature vector f (y(i)) of y to be
as close as possible to others of y and far away from the
feature vectors of y′. We let r = {r (i)} = { f (y(i))},
f = { f (i)} = { f (y′(i))}, and r (−i) = r\r (i). Formally, the
contrastive loss is defined by

Lcon
(
r (i), f , r (−i)

)
= − 1

∣
∣r (−i)

∣
∣

∑

r ( j)∈r (−i)

log

×
exp

(
r (i) · r ( j)/ω

)

∑

r (k)∈r (−i)
exp

(
r (i) · r (k)/ω

) + ∑

f (k)∈ f
exp

(
r (i) · f (k)/ω

)

(6)
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where ω = 0.1.
According to Eq. 6, the MCL loss of the discriminator is

defined as follows:

LMCL (G, D, X ,Y ) = 1

n

n∑

i=i

Lcon

(
r (i), f , r (−i)

)
(7)

Final objective loss

Our final objective loss includes adversarial loss, two Patch-
NCE losses, and MCL loss, as follows:

L = LGAN (G, D, X ,Y ) + λX · LPatchNCE (G, H , X)

+ λY · LPatchNCE (G, H ,Y ) + λM · LMCL (G, D, X ,Y )

(8)

If not specified, we choose λX = λY = 1 and λM = 0.01.
Comparedwith the existingmethods,MCLachieves state-

of-the-art results. In addition, to further reduce the model
training parameters and improve the training speed, we also
propose a lighter and faster version, named FastMCL. In
FastMCL, we no longer consider the effect of LPatchNCE

(G, H ,Y ) on the training process, that is to make λY = 0.
Surprisingly, even so, FastMCL achieves slightly worse per-
formance compared to CUT [36]. All experimental results
are shown in Sect. 3.3.

Experiments

We evaluated the performance of different methods on sev-
eral datasets.Andwe introduced the training details, datasets,
and evaluation protocols of the experiments in turn. Extensive
experiments were performed on unpaired image translation
tasks. Furthermore, our proposed method was extended to
single image translation tasks. Finally, we performed an abla-
tion study and analyzed the influence of different loss terms
on the experimental results. All the experimental results
prove that our proposed method is superior to existing meth-
ods.

Training details

In this paper, we mainly follow the setup of CUT [36] for
training. Our full model MCL is trained up to 400 epochs,
while the fast variant FastMCL is trained up to 200 epochs.
Both MCL and FastMCL include a ResNet-based generator
with 9 residual blocks [22] and a PatchGAN discriminator
[20]. We choose the LSGAN loss [33] as an adversarial loss
and train models at 256 × 256 resolution. The learning rate
is set to 0.0002 and starts to decay linearly after half of the
total epochs.

For a single image translation task, we adopt StyleGAN2-
based architecture [23] for training, named SinMCL. The
generator of SinMCL consists of 1 downsampling block of
StyleGAN2discriminator, 6 StyleGAN2 residual blocks, and
1 StyleGAN2 upsampling block. The discriminator of Sin-
MCL has the same architecture as StyleGAN2. Since we do
not use style code, the style modulation layer of StyleGAN2
was removed. Note that the coefficient of MCL loss λM is
set to 0.03.

Datasets

Horse→Zebra contains 2401 training and 260 test images,
all collected from ImageNet [10]. It was introduced in Cycle-
GAN [47].

Cat→Dog contains 5000 training images and 500 test
images for each domain from the AFHQ dataset [7].

CityScapes [8] contains 2975 training and 500 test images
for each domain, a city label dataset.

Monet→Photo [36] contains only a high-resolution image
in each domain, which is used for single image translation.

VanGogh→Photo contains only a high-resolution image in
each domain, which is also used for single image translation.

Evaluation protocol

Fréchet InceptionDistance (FID) [18] is an evaluationmetric
mainly used in this paper. FID was proposed by Heusel et
al. and is used to measure the distance between two data
distributions. That is, a lower FID indicates better results. For
cityscapes, we leverage its corresponding labels to calculate
the semantic segmentation scores.We use a pre-trained FCN-
8smodel [20,32] and score threemetrics including pixel-wise
accuracy (pixAcc), average class accuracy (classAcc), and
mean class Intersection over Union (IoU). In addition, we
compare themodel parameters and training times of different
methods.

We compare our proposed method with current state-
of-the-art unpaired image translation methods, including
CycleGAN [47], GcGAN [11], FastCUT [36], CUT [36],
SimDCL [16], and DCLGAN [16]. All the experimental
results show that the quality of the images generated by
our method is superior to others. Moreover, our method can
produce better results with a lighter computational cost of
training.

Unpaired image translation

Table 1 shows the evaluation results of our proposed
method and all baselines on Horse→Zebra, Cat→Dog, and
CityScapes datasets, and their visual effects are shown in
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Table 1 Comparison with all baselines

Method Horse→Zebra Cat→Dog CityScapes

sec/iter↓ Model parameters↓ FID FID FID pixAcc↓ classAcc↓ IoU↓
CycleGAN [47] 0.40 28.286M 77.2 85.9 76.3 0.52 0.17 0.11

GcGAN [11] 0.26 16.908M 86.7 96.6 105.2 0.55 0.20 0.13

FastCUT [36] 0.15 14.703M 73.4 94.0 68.8 0.65 0.21 0.15

CUT [36] 0.24 14.703M 45.5 76.2 56.4 0.70 0.24 0.17

SimDCL [16] 0.47 28.852M 47.1 65.5 51.3 0.69 0.21 0.15

DCLGAN [16] 0.41 28.812M 43.2 60.7 49.4 0.74 0.22 0.17

FastMCL(ous) 0.15 14.703M 46.5 88.8 55.3 0.76 0.25 0.19

MCL(ous) 0.25 14.703M 40.7 70.2 47.3 0.78 0.26 0.21

Best values are in bold
We compared our approach on several open datasets, primarily using FID [18] evaluation metric. For CityScapes, we leverage its corresponding
labels to show the semantic segmentation scores (pixAcc, classAcc, IoU). MCL produces state-of-the-art results, and takes equal or slightly worse
resources than CUT [36] in model parameters and training speed (seconds per sample). Our variant FastMCL also produced desirable results

Fig. 3 Visual results of differentmethods. CycleGAN [47] andGcGAN
[11] are cycle-consistency methods. CUT [36], FastCUT [36], DCL-
GAN [16], and SimDCL [16] introduce contrastive learning into the
generator. Our versionsMCL and FastMCL further leverage contrastive

learning to enhance the performance of the discriminator. The last two
rows show failing cases of other methods, and our method yielded rel-
atively satisfactory results

Fig. 3. It is clear that our algorithms perform superior to
all the baselines. As shown in Table 1, our MCL version
produces state-of-the-art results, and takes equal or slightly

worse resources than CUT [36] in model parameters and
training speed (seconds per sample). Our variant FastMCL
also produced desirable results. The last two rows of Fig. 3
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Fig. 4 Example results of our MCL compared to DCLGAN [16] and
CUT [36] on the cityscapes dataset with 256 × 256 resolution. The
left column represents the ground truth and label, and the right three
columns represent generated images and semantic labels by different

methods. MCL achieves generated images more like the ground truth,
and the semantic labels obtained through the pre-trained FCN-8s model
are more like the real labels

Fig. 5 Example results of our MCL compared to DCLGAN [16] and
CUT [36] on the cityscapes dataset with 256 × 256 resolution. The
left column represents the ground truth and label, and the right three
columns represent generated images and semantic labels by different

methods. MCL achieves generated images more like the ground truth,
and the semantic labels obtained through the pre-trained DRN model
[45] are more like the real labels

show failing cases of other approaches, and our approach
yielded relatively satisfactory results.

For cityscapes, Table 1 reports the semantic segmenta-
tion metrics on a pre-model FCN-8s model [20,32], and
our method achieves the highest performance on three met-
rics (pixAcc, classAcc, IoU) compared to all the baselines.
Figures 4 and 5 show qualitative comparison results of
our method with the two most advanced unpaired methods
[16,36] on semantic labels to real tasks (Cityscapes dataset).
Our MCL achieves generated images more similar to the
ground truth, and the semantic labels obtained through the
pre-trained FCN-8s model are more similar to the real labels.

We further compare our methods with three popular
paired(supervised) methods, Pix2Pix [20], photo-realistic
image synthesis system CRN [4] and discriminative region
proposal adversarial network DRPAN [41] on the Cityscapes
dataset. The quantitative comparison results of our method
with other baselines are shown in Table 2. We leverage a pre-

trained FCN-8s model [20,32] to calculate three semantic
segmentation metrics. Our two versions outperform super-
vised methods and even approach the ground truth on three
metrics (pixAcc, classAcc, IoU). It shows the superiority of
our method for semantic labels to real tasks.

Single image translation

Although SinCUT, another variant of CUT [36], has beaten
current methods [12,25,44] in the single image translation
tasks, the detailed textures of the generated images do not
seem realistic enough.

Like SinCUT, our method is also suitable for single image
translation, named SinMCL. Experiments are performed on
the Monet→Photo and Van Gogh→Photo datasets. Figure 6
shows a qualitative comparison between SinMCL and Sin-
CUT. It is not difficult to find that our generated image
has superior visual performance. For example, SinCUT gen-
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Table 2 Quantitative comparison of ourMCL and FastMCLwith other
models [4,20,41] on semantic labels to real tasks (Cityscapes dataset)
by FCN-8s score

Method pixAcc classAcc IoU

Pix2Pix [20] 0.66 0.23 0.17

CRN [4] 0.69 0.21 0.20

DRPAN [41] 0.72 0.22 0.19

FastMCL(ous) 0.76 0.25 0.19

MCL(ous) 0.78 0.26 0.21

Ground Truth 0.80 0.26 0.21

Best values are in bold
Our two versions outperform supervisedmethods and even approach the
ground truth in three metrics, indicating the superiority of our method

erated some redundant noises in the red box area on the
Monet→Photo dataset, but our application can eliminate
these noiseswell.On theVanGogh→Photo dataset, SinMCL
successfully translated it into a real pear tree.Moreover,more
details can be seen after magnification.

Ablation study

Compared with all baselines, our proposed method achieves
superior performance on image translation tasks. Next, we
consider the influence of different loss terms on the exper-
imental results. To save computing resources and training
time, we performed an ablation study on the Horse→Zebra
dataset. The final objective loss in this paper consists of four
loss items, including one adversarial loss, two PatchNCE
losses, and oneMCL loss, as shown in Eq. 8. The coefficients
of these four loss terms are 1, λX , λY , and λM , respectively.
When λM = 0, our proposed method degenerates into CUT.

Fig. 7 Training curves of different methods in terms of FID on
the Horse→Zebra dataset. When the MCL loss is not consid-
ered, our method degenerates into CUT [36]. If the PatchNCE loss
LPatchNCE (G, H , Y ) is not considered, it degrades to FastCUT [36]. It
is not difficult to see how adding theMCL loss can stabilize the training
process

When λM = λX = 0, the method degenerates into Fast-
CUT. When λM = λX = λY = 0, the method degenerates
into standard GAN, which can no longer adapt to image
translation tasks. Figure 7 shows the training curves of dif-
ferent methods on the Horse→Zebra dataset, and it shows
that increasing the MCL loss term can stabilize the training
process.

In Table 3, we further show the quantitative results of
different methods on the Horse→Zebra dataset. We calcu-
lated the minimum, maximum, mean, and standard deviation
of FID during the training process. The mean and standard
deviation of FID obtained by our proposed method are the
smallest, which indicates that our method has better stability.
Although during the first 200 epochs of the training process,
FastCUT achieved the best FID with a score of 40.8. How-

Fig. 6 Single painting to photo
translation. We transferred the
paintings of Claude Monet and
Van Gogh to a nature
photograph. There is only one
high-resolution image per
domain in the dataset used. Our
approach shows superior
performance in detail. More
details can be seen after
magnification
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Table 3 Minimum (min), maximum (max), mean and standard devia-
tion (SD) of FID on the Horse→Zebra dataset, calculated at 105, 110,
... , 200 epochs

Method Min Max Mean SD

FastCUT [36] 40.8 116.9 75.6 21.7

CUT [36] 44.0 78.2 56.8 10.7

MCL(ous) 41.4 68.8 51.9 7.6

Best values are in bold
Our method achieves a slightly worse minimum of FID than FastCUT
[36] over the first 200 epochs. However, MCL obtains a much smaller
SD of FID compared to CUT [36] and FastCUT. This shows that our
method is more stable than others

ever, its training process is volatile, and the next FID would
jump to a large value, as shown in Fig. 7. Compared to Fast-
CUT, our method achieves a slightly worse FID with a score
of 41.4. Nevertheless, our training process is more stable.

As shown in Fig. 8, we further provide a visual evaluation
of the best FID achieved by different methods. During the
115th training process, CUT received the best FID with a
score of 44.0. However, as shown in the red box, it appears
unnatural of the head and buttock of the generated zebra by
CUT. The generated zebra has no eyes on its head, and the
stripes of the buttock do not match those of its body. During
the 140th training process, FastCUT received the best FID
with a score of 40.8. It has similar problems, such as the
stripes of the head do not match those on other parts of its
body. During the 195th training process, MCL received the

Table 4 Influence of different values of hyperparameters on experi-
mental results. We conducted an ablation study on the Horse→Zebra
dataset

Model λX λY λM FID

FastCUT [36] 1 × × 73.4

FastMCL 1 × 0.1 70.0

FastMCL (ours) 1 × 0.01 46.5

CUT [36] 1 1 × 45.5

MCL 1 1 0.1 43.9

MCL(ours) 1 1 0.01 40.7

Best values are in bold
Experiments show that the best results are obtained when λX = λY = 1
and λM = 0.01

best FID with a score of 41.4. Compared to other methods,
the generated zebra by MCL looks more realistic.

Next, we explained the value of hyperparameter in this
paper. First of all, in Eq. 6, ω aims to scale the distance
between feature vectors, which is directly set to 0.1. Then,
to ensure the balance between each loss term, we conducted
an ablation study for the values of λX , λY , and λM , as shown
in Table 4 and Fig. 9. It is not difficult to find that adding
our MCL loss can effectively improve the FID value and
the quality of the generated images, and the effect is best
when λX , λY , and λM are 1, 1, 0.01, respectively. Therefore,
unless otherwise specified, we choose λX = λY = 1 and
λM = 0.01.

Many experiments show that our method is superior to
previousmethods in image-to-image translation tasks. This is

Fig. 8 Visual evaluation of
different methods on the
Horse→Zebra dataset. We show
the visual effects of each
approach in turn on three crucial
epochs. When CUT [36] or
FastCUT [36] reaches the
minimum of FID, the generated
image does not look realistic, as
shown in the red box. Instead,
our approach achieves a more
realistic image. Furthermore,
only the FID of our approach
decreases with epochs, while the
FID of other methods fluctuates
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Fig. 9 Visual results of different
values of hyperparameters on
the Horse→Zebra dataset.
(λX , λY , λM ) represents the
values of the hyperparameters
λX , λY , and λM . It can be seen
that when λX = λY = 1 and
λM = 0.01, the generated
image’s quality is superior to
others, specifically reflected in
its zebra stripes are clearer and
more realistic

Table 5 FID values of different
methods on the Horse→Zebra
dataset

Method sec/iter↓ Model Parameters↓ FID

CycleGAN [47] 0.40 28.286M 77.2

CycleGAN + MCL loss 0.41 28.286M 70.1

DCLGAN [16] 0.41 28.812M 43.2

DCLGAN + MCL loss 0.42 28.812M 39.6

SimDCL [16] 0.47 28.852M 47.1

SimDCL + MCL loss 0.48 28.852M 39.7

Best values are in bold
When our MCL loss was directly added to CycleGAN, DCLGAN and SimDCL, the FID value increased by
7.1, 3.6 and 7.4, respectively. Simultaneously, the training time and model parameters are hardly increased

Fig. 10 Visual evaluation of
different methods on the
Horse→Zebra dataset. When
our MCL loss was directly
added to CycleGAN, DCLGAN,
and SimDCL, the visual effects
of the generated images were
significantly improved. In
general, adding MCL loss
resulted in varying degrees of
more realistic zebra stripes in
the generated images

mainly due to our proposedMCL loss.We skillfully construct
MCL loss using the feature information of the discriminator
output layer, which already exists, so the MCL loss hardly
increases the training time and computing resources. MCL
loss is simple and efficient, and to verify this, we conducted
experiments on theHorse→Zebra dataset.We directly added
MCL loss to the existing methods. All experimental results
showed that adding our MCL loss could effectively improve
the quality of the generated images, as shown in Table 5 and
Fig. 10.

Conclusion

We propose a straightforward method to construct a con-
trastive loss using the feature information of the discriminator
output layer, which is named MCL. Our proposed method
enhances the performance of the discriminator and solves
the problem of model collapse effectively. Extensive experi-
ments show that our method achieves state-of-the-art results
in unpaired image-to-image translation by making better use
of contrastive learning.Moreover, ourmethod performs com-

123



Complex & Intelligent Systems (2023) 9:4111–4122 4121

parably or superior to paired methods on semantic labels to
real tasks. In addition, we also propose two MCL variants,
namely FastMCL and SinMCL. The former is a faster and
lighter version for unpaired image-to-image translation tasks,
and the latter is suitable for single image translation tasks.
FastMCL and SinMCL have achieved great results in their
tasks, respectively.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Pseudo-code

Here, we provide the pseudo-code of MCL loss in the PyTorch
style.
import torch
import torch.nn.functional as F
# real, fake and netD represent real image, fake image, and
discriminator, respectively.
pred_real = netD(real)
pred_fake = netD(fake.detach())
mcl_fake = F.normalize(pred_fake.view(-1, 30))
mcl_real = F.normalize(pred_real.view(-1, 30))
loss_mcl = mcl(mcl_fake, mcl_real, ω)
# Input: mcl_fake is f

(
A(y′)

)
.

# Input: mcl_real is f
(
A(y)

)
.

# Input: ω is the hyperparameter used in MCL loss.
# Output: MCL loss.
def mcl(mcl_fake, mcl_real, ω)
N = mcl_fake.size(0)
_out = [mcl_fake, mcl_real]
outputs = torch.cat(_out, dim = 0)
sim_matrix = outputs @ outputs.t()
sim_matrix = sim_matrix / ω
sim_matrix.fill_diagonal_(-5e4)
mask = torch.zeros_like(sim_matrix)
mask[N:, N:] = 1
mask.fill_diagonal_(0)
sim_matrix = sim_matrix[N:]
mask = mask[N:]
mask = mask / mask.sum(1, keepdim = True)
lsm = F.log_softmax(sim_matrix, dim = 1)
lsm = lsm ∗ mask
d_loss = -lsm.sum(1).mean()
return d_loss
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