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Abstract
Lane detection is one of the key techniques to realize advanced driving assistance and automatic driving. However, lane
detection networks based on deep learning have significant shortcomings. The detection results are often unsatisfactory when
there are shadows, degraded lane markings, and vehicle occlusion lanes. Therefore, a continuous multi-frame image sequence
lane detection network is proposed. Specifically, the continuous six-frame image sequence is input into the network, in which
the scene information of each frame image is extracted by an encoder composed of Swin Transformer blocks and input into
the PredRNN. Continuous multi-frame of the driving scene is modeled as time-series by ST-LSTM blocks, and then, the
shape changes and motion trajectory in the spatiotemporal sequence are effectively modeled. Finally, through the decoder
composed of Swin Transformer blocks, the features are obtained and reconstructed to complete the detection task. Extensive
experiments on two large-scale datasets demonstrate that the proposed method outperforms the competing methods in lane
detection, especially in handling difficult situations. Experiments are carried out based on the TuSimple dataset. The results
show: for easy scenes, the validation accuracy is 97.46%, the test accuracy is 97.37%, and the precision is 0.865. For complex
scenes, the validation accuracy is 97.38%, the test accuracy is 97.29%, and the precision is 0.859. The running time is 4.4 ms.
Experiments are carried out based on the CULane dataset. The results show that, for easy scenes, the validation accuracy is
97.03%, the test accuracy is 96.84%, and the precision is 0.837. For complex scenes, the validation accuracy is 96.18%, the
test accuracy is 95.92%, and the precision is 0.829. The running time is 6.5 ms.
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Introduction

In recent years, with the rapid development of deep learn-
ing and computer vision techniques, the autonomous vehicle
technique has become possible. In this setting, lane detec-
tion is the core of the Advanced Driver Assistance System
(ADAS) to realize the active safety control of vehicle’s lat-
eral movement. It is thus one of the core techniques of
autonomous vehicles. There are many types of lane detec-
tion networks, which are mainly divided into two categories,
namely, traditional networks and networks based on deep
learning. Traditional networks use geometric models to rep-
resent lanes and energy minimization to formulate lanes. On
the other hand, networks based on deep learningmostly adopt
supervised learning strategies to segment lanes. In general,
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networks based on deep learning have shown excellent per-
formance in solving many computers vision tasks (such as
object detection [1–3], classification [4–6], and segmenta-
tion [7–9]). Deep neural networks are mainly divided into
two categories. The first one is the deep convolution neu-
ral network (DCNN), which processes scene information
through convolution modules of each layer and has an excel-
lent effect in feature extraction of image sequences and video
sequences. The second is the deep recurrent neural network
(DRNN), which divides the scene information in a multi-
frame image sequence into continuous blocks to complete
the state propagation to recurrently process the input sig-
nal and complete the spatiotemporal sequence task. Most of
these networks train the network and complete the lane detec-
tion task through a frame of the image sequence. The limited
scene information provided by is not enough for accurate
lane detection or prediction. Generally, the lanes are contin-
uous structures, and the adjacent frame image sequence can
be fused with the features extracted from the current frame
image sequence. Hence, we propose a network that uses
multi-frame image sequence feature fusion for lane detec-
tion.Due to the use ofmore scene information, the robustness
of the network is high, and it can complete the lane detec-
tion task in highly challenging scenes. Therefore, we begin to
investigate a network utilizing continuousmulti-frame image
sequences to complete the lane detection task. In this task, the
continuous driving scene images have obvious time-series
features, but the original image sequence of each frame is
used as input, and the network needs to holdmany calculation
sequences. Considering the vigorous development of trans-
former [10–14] and computer vision technology in recent
years, to reduce the computational cost and to ensure that the
lane detection task can be efficiently completed, we propose
a hybrid depth network composed of Swin Transformer and
Predictive Recurrent Neural Network (PredRNN) [15] based
on the MAE [16] network architecture for lane detection of
continuous multi-frame image sequences. The network takes
a continuous multi-frame image sequence as input and com-
pletes the lane detection task by semantic segmentation. It
contains an encoder network and a decoder network to ensure
that the final output mapping is of the same size as the input.
The PredRNN network is used to fuse the scene information
in the continuous multi-frame image sequence, which is then
used to process the time-series of encoding features, and then
input into the decoder network to finally complete the lane
detection task.

The main contributions of this paper are as follows:
When there are serious shadow sections, sections with

lane marking degradation, and vehicles blocking lanes, the
lane detection task cannot be completed using only the cur-
rent frame image sequence. To get around this, we propose a
new network for completing lane detection using continuous
multi-frame image sequences. Since multi-frame continuous

images can extract more scene information, the proposed
network can predict lanes more accurately and has high
robustness.

Second, the hybrid deep network proposed in this paper is
different from other deep neural networks. The convolution
module is replaced by the pure self-attentionmechanism, and
the effect of feature extraction by the convolution module is
achieved in a way that even better than what is by the con-
volution module. The network adopts the encoder–decoder
architecture where the encoder and decoder are composed
of Swin Transformer blocks, and PredRNN is integrated
between the encoder and the decoder. Through experiments,
it is found that Spatiotemporal LSTM (ST-LSTM) in Pre-
dRNN is very effective for the prediction of time-series
information, so that the lane detection task can be better com-
pleted.

Finally, we refer to the natural language processing (NLP)
method and design the encoder and decoder in the MAE
asymmetrically. This is conducive for reducing the compu-
tational cost. At the same time, our network reduces the size
of the multi-frame continuous image sequence through mask
technology and still can complete the detection task well.

The structure of this paper is as follows: The section
“Related work” reviews the related work. The section
“Method” introduces the proposed hybrid deep neural net-
work, including the MAE network structure, PredRNN net-
work, masking technique, and training strategy. The section
“Experiment and results” presents the experiments and ana-
lyzes the relevant experimental results. Finally, the section
“Discussion” summarizes our work and briefly discusses
future research directions.

Related work

In recent years, a gooddeal of researchhas been carried out on
lanedetection [17–21]. The resultingnetworks canbedivided
into two categories: traditional networks and deep learning
networks. In this section, we will briefly review these two
types of networks.

Traditional networks

In the lane detection task, the vehicle sensor is used to obtain
the geometric feature information of the object. Lane geo-
metric modeling is carried out by curve detection or fitting,
and the lane detection task is completed with the help of gra-
dient, color, and texture information. Borkar et al. [22] first
detected the lane edge and then realized lane detection by
curve fitting. Mohamed Aly [23] used a Gaussian filter to
extract the edge features of lanes and completed lane edge
detection by calculating the edge features in aerial views.
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McCall and Trivedi [24] designed a steerable filter for
robust and accurate detection of lanemarkings, such as circu-
lar reflectors, solid lines, and segmented lines under different
lighting and road conditions. This helped to improve the
robustness of lane detection in the presence of complex shad-
ows, overpasses, tunnel lighting changes, and road changes.
Zhou et al. [25] proposed a robust lane detection network
based on a geometric model and Gabor filter. After the cam-
era is installed and fixed on the vehicle, it only runs once, and
the camera parameters are accurately estimated by 2D cal-
ibration. The starting position, original lane direction, and
lane width are estimated by dominant direction estimation
and local Hough transform. Then, the candidate lane model
is constructed to match the final lane model. Selver et al. [26]
present a robust approach that partitions a video frame into
four regions, each of which is filtered by two-dimensional
Gabor wavelets at different scales to complete the lane detec-
tion task. Zheng et al. [27] proposed amethod to select points
in Hough space that are in line with lane parallel features,
length and angle features, and intercept features, and directly
then converted into a lane equation. Hur et al. [28] used a
conditional random field (CRF) to find the best association
ofmultilanemarkers in complex and challenging urban roads
and completed the lane detection task. Although the above-
mentioned traditional networks are relatively simple andhave
good detection effect in the case of good vehicle conditions,
they usually have poor detection effect and low robustness in
complex scenes (such as shadow occlusion area, lane mark-
ingmissing, etc.). Therefore, various lane detection networks
based on deep learning have been proposed.

Networks based on deep learning

In recent years, with the rise of deep learning and its success-
ful application in the field of computer vision, many lane
detection networks based on deep learning have been pro-
posed. Such networks can be divided into four categories.

CNN based on encoder–decoder architecture

This network is often used in semantic segmentation tasks
[29, 30]. Wang et al. [31] proposed a network named
LaneNet. First, the lane edge suggestion network was used
to classify the pixel-level lane edge, and then, the lane edge
suggestion was used to detect the lane through the lane local-
ization network.

Networks based on FCN architecture

The optimized network framework based on FCN is also
widely used in lane detection tasks. Liu et al. [32] pro-
posed an end-to-end network, which directly outputs the
parameters of the lane network and uses the network with

Transformer to learn more abundant structures and contexts
to complete lane detection. Tabelini et al. [33] proposed a
deep lane detection network called LaneATT, which uses
anchor points based on an attention mechanism that aggre-
gates global information to complete lane detection tasks.
Hou et al. [34] proposed a lane detection network called
self-attention distillation (SAD),which allows the network to
make substantial improvements using its own learning abil-
ity without any additional supervision or labels. Qin et al.
[35] proposed a simple but effective network by regarding
lane detection as a row-based selection problem with global
characteristics. Through row-based selection, the computa-
tional cost can be significantly reduced. Moreover, they also
proposed a structural loss to explicitly model the structure
of lanes. Using a large receptive field on global features.
Challenging scenarios could also be handled. Lo et al. [36]
proposed two techniques, namely, Feature Size Selection
(FSS) and Degressive Dilation Block (DD Block). The FSS
allows a network to extract thin lane features using appropri-
ate feature sizes. To acquire fine-grained spatial information,
the DD block is made of a series of dilated convolutions with
degressive dilation rates.

Networks based on CNN十十RNN architecture

Li et al. [37] proposed a network combining Convolu-
tion Neural Network (CNN) and Recurrent Neural Network
(RNN). This network can simultaneously detect the exis-
tence of the target and the geometric properties (position and
direction) of the target relative to the region of interest, and
the recursive neuron layer can be used for structured visual
detection.Amultitask convolutional neural network provides
auxiliary geometric information to facilitate the subsequent
modeling of a given lane structure. The recursive neural net-
work automatically detects the lane boundary, including the
area without any marks, and can complete the lane detection
task without any clear prior knowledge or secondary model-
ing.

Networks based on GAN architecture

A generative adversarial network (GAN) [38] is composed
of a generator and an identifier, which can be used for
lane detection. Ghafoorian et al. [39] proposed EL-GAN, a
GAN framework, to mitigate the discussed problem using an
embedding loss. With EL-GAN, one can discriminate based
on learned embeddings of both the labels and the prediction at
the same time. This results in much more stable training due
to having better discriminative information, benefiting from
seeing both ‘fake’ and ‘real’ predictions at the same time.
This substantially stabilizes the adversarial training process.

Although the performance of the lane detection net-
works based on deep learning proposed above is significantly
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improved compared with the traditional lane detection net-
work, the computational cost is greatly increased. Moreover,
in the process of feature extraction, the scene informationwill
be missing due to the feature extraction of a single-frame
image. This greatly hinders the improvement of network
performance through pretraining. To solve the above short-
comings, this paper proposes robust lane detection method
for continuous multi-frame driving scenes based on a deep
hybrid network.

Method

System overview

A lane is composed of solid or dotted lines on the road.
The lane detection task can be completed by geometric
modeling or semantic segmentation based on the scene infor-
mation in an image. However, due to the poor robustness of
these networks under challenging scenarios, such as severe
shadow, mark degradation, and vehicle occlusion, the net-
works reviewed above cannot be applied to the actual ADAS
system. Furthermore, the information present in a single
image is not sufficient to support robust lane detection. In
fact, in the actual driving scene, the images captured by the
vehicle camera are continuous. Hence, the lanes in the cur-
rent frame image sequence usually overlap with those in the
previous frame. This makes it possible to detect the lanes via
the spatiotemporal sequence prediction. To solve the problem
of lane detection in challenging scenarios, PredRNN is very
suitable for multi-frame image lane detection tasks due to
its ability to perform continuous signal processing, sequence
feature extraction, and integration. The network architecture
based on the MAE encoder–decoder has great advantages in
dealing with large-scale image tasks. Therefore, the integra-
tion of the two greatly enhances the ability of the network
in semantic segmentation. We propose a new deep hybrid
network that takes the masked autoencoders (MAE) as the
main framework and integrates the predictive recurrent neu-
ral network (PredRNN). The detection task of a continuous
multi-frame image sequence of a driving scene can then be
realized.

The improved MAE encoder–decoder network and Pre-
dRNN network are integrated into an end-to-end trainable
network. The network architecture is shown in Fig. 1. First,
each input image is patched out. Then, wemask a large quan-
tity of random image block subsets out in each image. A
small portion of the visible patch is utilized in the encoder.
The mask token is introduced after the encoder. The full
set of encoded patches and mask tokens are processed by
a small decoder, which reconstructs the original image in
pixels. Finally, the decoder is discarded, and the encoder uti-
lizes the uncorrupted images to produce a representation for
the recognition task.

Network design

Optimized MAE network

The lane detection network is based on the framework of
the masked autoencoders (MAE) and optimized. MAE is
a simple autoencoding network that reconstructs the origi-
nal signal based on some observations of the original signal.
Similar to all autoencoding networks, the MAE includes an
encoder and a decoder. The function of the encoder is to map
the observed signal to the latent variable, and the function of
the decoder is to reconstruct the original signal from the latent
variable. However, unlike the classical autoencoding net-
work, MAE adopts an asymmetric design, which allows the
encoder to operate only on some observed signals (without
mask tokens) and uses a lightweight decoder to reconstruct
the signal, which utilizes the latent variable andmask tokens.

Masking

Pictures (size: 1280× 720) are divided into regular nonover-
lapping patches. Then, some patches are sampled, and the
remaining patches are masked (i.e., removed). Random
sampling without replacement and following uniform distri-
bution is called "random sampling". Random samplingwith a
high masking rate largely eliminates redundancy. Therefore,
creating a task that cannot be easily solved by extrapolation
from visible neighboring patches and uniform distribution
can prevent potential center bias (i.e., more mask patches
near the center of the images). Finally, the highly sparse input
creates an opportunity to design an efficient encoder, and the
effect is shown in Fig. 2.

Encoder–decoder network based on MAE architecture

Inspired by SegNet, U-Net, and LaneNet [41]’s successful
use of encoder–decoder architecture in semantic segmenta-
tion and the development of self-attention mechanism Trans-
former, the Swin Transformer and Masked Auto Encoder
have often been used in the field of computer vision in recent
years. Based on the MAE framework, this paper proposes an
encoder–decoder network by embedding the Swing Trans-
former block into the encoder–decoder network to replace the
original transformer block. To realize lane detection,webuild
a deep hybrid network based on the encoder–decoder frame-
work to complete the task of semantic segmentation. Because
the encoder–decoder network supports the input and output
sizes being the same, the whole network can be trained in an
end-to-end manner. In the encoder part, Swin Transformer
blocks are used for image extraction and feature extraction.
In the decoding part, another Swin Transformer block is used
to complete the upsampling technique to obtain and highlight
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Fig. 1 Network framework.Duringpretraining,wefirst patch each input
image. Then, we mask a large quantity of random image block subsets
out in each image. A small portion of the visible patch is utilized in the
encoder. The mask token is introduced after the encoder. The full set

of encoded patches and mask tokens are processed by a small decoder,
which reconstructs the original image in pixels. Finally, the decoder is
discarded, and the encoder utilizes the uncorrupted images to produce
a representation for the recognition task

the object information and carry out spatial reconstruction to
realize lane detection.

Encoder: As shown in Fig. 3, we propose an encoder based
on a Swin Transformer [41], and the masked image patches
(size: “180 × 160”) are input. After patch partitioning, the
size of the image patches is "45 × 40 × 48". Through lin-
ear embedding, we set the dimension C of the vector to 96,
and the image size to "45 × 40 × 48". To capture mul-
tiscale features, a hierarchical Swin Transformer block is
constructed, and the operation of patch merging as proposed
by us. Through a tensor, the adjacent patches are combined
into a larger patch to achieve the effect of a downsampling
featuremap. At this time, the same signals in thewindowwill
be merged. Through the above operations, the spatial size is
halved, and the number of channels is doubled.

To improve the efficiency of feature extraction and reduce
the complexity of calculation, Swin Transformer computes
self-attention based on the shift-window. The Swin Trans-
former block is shown in Fig. 4. Because the computation
of global self-attention will lead to the quadratic increase of

complexity, the computation cost will be too high when com-
pleting the downstream tasks, especially the dense prediction
or high-resolution pictures. The global self-attention compu-
tation is replaced by shifted-window computation. Patch the
picture evenly into windows without overlap, as shown in the
figure below. Patch is the smallest computation unit. There
are "M × N" patches in each window. M and N are 5 by
default. And these 72 windows were computer self-attention.
The computation equation of self-attention is as follows:

�(MSA) = 4hwC2 + 2(hw)2C , (1)

�(W - MSA) = 4hwC2 + 2MNhwC . (2)

Equation (1) is the standard self-attention computation,
the number of patches is "h × w" for each image, and C
is the feature dimension. Equation (2) is computed based
on window self-attention. Through a standard self-attention
head, the input is transformed into three matrices: q (i.e.,
query), k (i.e., key) and v (i.e., value), and the original input
vector is multiplied by three coefficient matrices. After the
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Fig. 2 Masking: we show the
masked image (a), the ground
truth (b), and our optimized
MAE reconstruction (c). The
masking rate is 70%. When no
loss is computed on visible
patches, the model output on
visible patches is qualitatively
worse. This result, however, does
not affect the lane detection
tasks. It also reduces the cost of
calculation

(a) original (b) mask 70% (c) reconstruction

q and k matrices are obtained, the two matrices are multi-
plied to obtain the self-attention matrix, and then, the matrix
is multiplied by the v matrix, which is equivalent to weight-
ing. Finally, the original vector dimension is projected to the
target dimension through linear projection. This is shown in
Fig. 5.

Input vector (i.e., size: h × w × C) multiplied by three
coefficient matrices to obtain q, k, and v matrices; the com-
plexity of this layer is 3 × hw × C2 . Then, the q and k
matrices are multiplied to obtain the self-attention A (i.e.,
attention) matrix with dimensions of hw × hw , and the
complexity is 2(hw)2 × C . When the self-attention matrix
A is multiplied by the v matrix, the complexity remains

unchanged. Therefore, the complexity of this layer is 2(hw)2

× C. The complexity of the last projection linear layer is hw

× C2 . Therefore, the total complexity is 4hwC2 +2(hw)2C.
Since each window computes the multi-head self-

attention, it is directly substituted into Eq. (1). The height
and width of the feature map have changed, h changes M,
w changes N , and Eq. (1) is used to obtain 4M × N × C2

+ 2(MN )2 × C. The complexity of self-attention is com-
puted in one window, and the number of windows is h

M ×
w
N . Finally, the complexity of computation self-attention in
the total window is ( h

M × w
N ) × [4M × N × C2 + 2(MN )2

× C] = 4hwC2 + 2MNhwC .
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It is found that the computational complexity of Eqs. (1)
and (2) varies greatly. However, self-attention computation
based on windows solves the problem of high computational
complexity, but there is no intersection among windows.
This results in a lack of global modeling capacity. There-
fore, the shifted-window computation not only controls the
complexity of computation but also has the capacity of global
modeling. The computation equations of the shifted window
are as follows:

ẑl = W-MSA
(
LN

(
zl−1

))
+ zl−1, (3)

zl = MLP
(
LN

(
ẑl

))
+ ẑl , (4)

ẑl+1 = SW - MSA
(
LN

(
zl

))
+ zl , (5)

zl+1 = MLP
(
LN

(
ẑl+1

))
+ ẑl+1, (6)

where ẑl and zl represent the output features of (S)WMSA
and MLP of block l, respectively. However, the shifted win-
dow has the problem that the size of the window partitioned
by shifted-window computation is different from the size of
the window partitioned by window computation. If all com-
putation windows are combined into a batch to complete fast
computation, self-attention cannot be computed directly. If
the windows with different sizes are filled with the same size
as the largest window in the middle, the cost and complex-
ity of computation will increase significantly. Therefore, to
reduce the computation cost and ensure that the number of
computation windows remains unchanged, the computation
is carried out in the form of a mask, as shown in Fig. 6.

After partitioning the window, a cyclic shifted window is
made to move the position of the original windows 1 and 3 to
the position shown in the figure. After cyclic displacement,
the position of the original window rotates 180° counter-
clockwise. The number of windows remains the same before
and after the shift. The computational complexity is also con-
trolled. To solve the problem of computing self-attention
between two adjacent windows, self-attention is computed
bymasking. The computation is completed and restored back
to avoid information loss. The visualization of the window
mask calculation is shown inFig. 7.Two lines are drawn in the
middle to evenly divide the picture into four windows. The
patch in window 0 can compute the self-attention between
two. Since the patch parts in Windows 1, 2 and 3 come from
different regions, it is impossible to complete the computa-
tion of self-attention between two. Therefore, we cover the
patches from different regions and then calculate them. After
the computation, we operate through SoftMax.
Decoder The decoder is used to reconstruct the pixel infor-
mation of the masked patches. The image patches without
masking are converted into latent variables by the encoder.
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Fig. 3 The structure of the encoder. Themasked imagepatches are input.
After patch partitioning. Through linear embedding, we set the dimen-
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Fig. 5 Standard self-attention computation
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Window 1

Window 2 Window 3

Window 0

Fig. 7 Visualization of window mask computation

All masked patches are represented by a shared vector that
can be learned; that is, each masked patch is represented as
the same vector, and the value of this vector can be learned.
The decoder is another Swin Transformer block, that adds
location information to distinguish the corresponding mask.
Using a relatively small decoder size, the computational over-
head is less than 10% of that of the encoder. The last layer
of the decoder is the linear layer. Its function is to project
the pixels in a patch to a dimension and then reconstruct the
original size to obtain the original pixel information. The
loss function adopts the mean squared error (MSE) (i.e., nor-
malization only once) to make the mean value of pixels in
each blocked image block to become 0 and the variance to
become 1, which is more stable. As a result, the loss function
makes the new pixel be different from the original pixel, it
sums the squares, and it uses MSE only on the masked patch.
Some token columns are generated. The token column is a
linear projection of each patch, plus the location information.
Next, the random information is scrambled, and the last piece
is removed to complete random sampling. When completing
the decoding task, one needs to attach mask tokens with the
same length as before, which is a vector with learning ability,
and add location information. Then, through the unshuffled
operation, it is restored to the original order. This is to facil-
itate one-to-one correspondence with the previous original
(i.e., no operation has been done) patch when computing the
error.
PredRNN The multiple consecutive frames of the driving
scene are modeled as time-series. The PredRNN block in the
proposal network accepts the feature map extracted by the
encoder Swin Transformer on each frame as input. To pro-
cess various time-series data, different network types ofRNN
have been proposed, such as LSTM [42] and GRU [43]. We
use a spatiotemporal LSTM(ST-LSTM) network,which uses
the cells in the network to judge whether the information is

important. The ability to forget unimportant information and
remember basic features is usually better than the traditional
RNN network. Due to the general computational capabilities
of the traditional fully connected LSTM (FC-LSTM), it leads
to low efficiency. This paper uses double-layer ST-LSTM in
the proposed network, which is widely used in end-to-end
training and feature extraction of time-series. The activation
of the ST-LSTM cell at time t can be expressed as

gt = tanh
(
Wxg × Xt + Whg × Hl

t−1 + bg
)

it = σ
(
Wxi × Xt + Whi × Hl

t−1 + bi
)

ft = σ
(
Wx f × Xt + Whf × Hl

t−1 + b f

)

Cl
t = ft � Cl

t−1 + it � gt

g′
t = tanh

(
W ′

xg × Xt + Wmg × Ml−1
t + b′

g

)

i ′t = σ
(
W ′

xi × Xt + Wmi × Ml−1
t + b′

i

)

f ′
t = σ

(
W ′

x f × Xt + Wmf × Ml−1
t + b′

f

)

Ml
t = f ′

t � Ml−1
t + i ′t � g′

t

ot = σ
(
Wxo × Xt + Who × Hl

t−1 + Wco × Ml
t + b0

)

Hl
t = ot � tanh

(
W1×1 ×

[
Cl
t , M

l
t

])
.

(7)

Both C and M units are reserved, and Ct is the standard
time unit, which is propagated from the previous node t - 1
to the current time step in each ST-LSTM unit. The Mt of
layer L is the spatiotemporal memory described, which is
vertically propagated from layer L - 1 to the current node in
the same time step. M of the last layer at time t - 1 will be
propagated to the first layer at time t. Another group of door
structures is constructed for Mt while retaining the original
door control mechanism of Ct . Finally, the final hidden state
of the node depends on the fused spatiotemporal memory.
These memories from different directions are connected and
1 × 1 is applied. The dimension of the convolution layer is
reduced, so that the hidden state Ht has the same dimension
as the memory cell. Different from simple memory splic-
ing, the ST-LSTM unit uses a shared output gate for the two
memory types to achieve seamless memory fusion, which
can effectively model the shape deformation and motion tra-
jectory in the spatiotemporal sequence. In the network, the
input and output sizes of the ST-LSTM are equal to the size
of the feature map generated by the encoder.

Training strategy

To achieve the effect of accurate prediction, an end-to-end
trainable deep hybrid neural network is established, and the
network is trained through the backpropagation process. In
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the process of backpropagation, the weight parameters of the
deep hybrid network are updated.

First, the proposed network is pretrained on ImageNet
[44], and the pretraining weight is used for initialization.
This not only saves training time but also propagates the
appropriate weight to the proposed network. The test accu-
racy of training without pretraining weight initialization is
very close to that of training with pretraining weight initial-
ization, but the former takes more time. In this paper, the
input of the network is N continuous images of various driv-
ing scenes. Therefore, in backpropagation, the coefficient of
each weight update of ST-LSTM should be divided by N . In
our experiment, we set N = 6.

Second, a loss function is constructed based on weighted
cross-entropy to solve the discriminative segmentation task
with the following:

εloss =
∑
X∈�

ω(X) log
(
pl(X)(X)

)
, (8)

where l: � → {1, . . . , K } is the real label of each pixel,
and w: � → R is the weight of each level, which is used to
balance the lane level and is set as the ratio of the number
of pixels in the two categories in the training set. SoftMax is
defined as follows:

pk(X) = exp(ak(X))∑K
k′=1 exp

(
a′
k(K )

) , (9)

where ak(X) represents the activation in characteristic chan-
nel k at the pixel position. χ ∈ �, � ∈ Z2, where k is the
number of classes. We use different optimizers in different
training stages to make the training network better. First, the
adaptivemotion estimation (Adam) optimizer [45] is adopted
to make the gradient descent rate faster. Because it is easy
to fall into local minima and difficult to converge, when the
network is trained to a relatively high accuracy, we turn to
the stochastic gradient descent (SGD) [46] optimizer and use
the fine step size to find the global optimum. When chang-
ing the optimizer, to avoid the confusion or stagnation of the
convergence process caused by the interference of different
learning steps during training, it is necessary to match the
learning rate. The matching equation of the learning rate is
as follows:

ωksgd = ωkAdam ,

ωk−1sgd = ωk−1Adam ,

ωksgd = ωk−1sgd − αk−1sgd∇̂ f
(
ωk−1sgd

)
,

(10)

where ωk represents the weights in the kth iteration, αk rep-
resents the learning rate, and ∇̂ f (·) is a random gradient
calculated by the loss function f (·) . In the experiments, the

0 1 2 3 4 5 6 7 8
0.80

0.85

0.90

0.95

1.00

 Accuracy
 Precision
 Recall

Frames

Fig. 8 Test of whether the number of frames in the input image affects
network performance based on our designed network. Among them,
we select accuracy, precision, and recall as evaluation indicators. The
number of frames increases from 1 to 8

initial learning rate is set to 0.01, and the optimizer is changed
when the training accuracy reaches 90%.

Experiment and results

In this section, we report the experiments that were carried
out to verify the accuracy and robustness of the proposed
network. The performance of the proposed networkwas eval-
uated in different scenarios and compared with different lane
detection networks, and the influence of parameters was ana-
lyzed. This section is divided into four parts: (1) Datasets;
(2) Hyperparameter Settings andHardware Environment; (3)
Performance Evaluation; (4) Visualization.

Datasets

A dataset is constructed based on the TuSimple [47] lane
dataset. The TuSimple Dataset is divided into a training set
and a test set. The training set contains 3626 image sequences
(i.e., the front view of the driving scene on the highway)
with each sequence containing 20 continuous frames. The
test set contains 2944 image sequences with each sequence
containing 20 continuous frames. We label an additional 10
frames of images in each sequence to expand the dataset. We
study the frame number of the input picture, and select the
different frame number of the picture frame number input to
our network. The experimental results are shown in Fig. 8.
When the number of frames in the input picture increases
from 1 to 6, the performance of the network is improved
significantly.When the frame number of input picture ismore
than 6, the improvement of network performance is limited.
Therefore, considering the equipment performance and the
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Table 1 Sampling methods of continuous input images

Stride Sampled frames Ground truth

1 11th 12th 13th 14th 15th 16th 16th

2 6th 8th 10th 12th 14th 16th 16th

3 1th 4th 7th 10th 13th 16th 16th

1 13th 14th 15th 16th 17th 18th 18th

2 8th 10th 12th 14th 16th 18th 18th

3 3th 6th 9th 12th 15th 18th 18th

computational cost, we choose 6 consecutive frames as the
input.

In the training process, 6 consecutive frames and the
ground truth value of the last frame are used as inputs, and
the lane is detected in the last frame. The training set is con-
structed based on the ground truth labels in the 16th and 18th
frames. At the same time, tomake the proposed network fully
adapt to lane detection at different driving speeds, we sample
the input image with three different steps (i.e., at intervals of
1, 2, and 3 frames). There are three sampling methods for
real labels on the ground, as shown in Table 1.

In the test, we use 6 continuous images to identify the
lane in the last frame and compare it with the real situation
of the ground in the last frame. Testset#1 and Testset#2 are
constructed. Testset #1 is built based on the TuSimple test
set and used for the normality test. Testset #2 consists of
samples collected under different vehicle conditions and is
used to evaluate the robustness of network detection. The
dataset settings are shown in Table 2. To further evaluate the
robustness of network detection, we also built Testset#1 and
Testset#2 based on CULane. Testset#1 is used for normal-
ity test, and Testset#2 is used to evaluate the robustness of
network detection. The dataset settings are shown in Table 3.

Hyperparameter settings and hardware
environment

In the experiments, the sampling resolution of the lane detec-
tion image is adjusted to 368 × 640 to save memory, make
up for some blurred lane boundaries and to protect the net-
work from the complex texture in the background around the
vanishing point. To verify the applicability of low-resolution
images and the performance of the proposed lane detection
network, different test conditions are used for wet, the cloudy
and sunny scenes. In the training phase, the batch size is
32, the number of epochs is 8000, the activation function is
LReLu, and the network framework is Pytorch 1 7.1. The
running time is recorded using a GPU (RTX3080 GPU), and
the final value of the running time is obtained after averag-
ing the running time of 1000 samples. All experiments were

completed on the i7-11700k platform equipped with a dual
NVIDIARTX3080GPUand11thGen IntelCore i7-11700K.

Performance evaluation and comparison

In this section, we describe two main experiments. First, the
performance of the network is evaluated quantitatively. Sec-
ond, the robustness of the network is verified based on the
effect of completing the test task in various scenarios.

Overall performance The proposed networks, i.e., UNet-
ST-LSTM, SegNet-ST-LSTM, LaneNet_ST-LSTM, and ST-
MAE_ST-LSTM, are comparedwith their original baselines,
as well as somemodified versions. To be specific, the follow-
ing methods are included in the comparison.

SCNN Replace traditional deep layer-by-layer convolutions
with slice-by-slice convolutions. Segment with backbone
+ SCNN structure, LargeFOV (Deeplabv2) is selected for
backbone.

ResNet 18, ResNet 34 The residual network is composed of a
series of residual blocks. The input is convoluted many times
and then added to the input. 18 and 34 represent the number
of weight layers.

ENet The network structure of ENet refers to ResNet, and
its structure is described as a main branch and an additional
branch with convolution kernel. Finally, the pixel level of
addition and fusion is carried out.

SegNet It is a classical encoder–decoder architecture neural
network for semantic segmentation. The encoder is the same
as VGGNet.

SegNet_ST-LSTM It is a hybrid neural network we proposed,
using spatiotemporal LSTM (ST-LSTM) after the encoder
network.

Six UNet-based networks, LaneNet-based networks, and ST-
MAE-based networks Replacing the encoder and decoder of
SegNetwith that of amodifiedU-Net, LaneNet andST-MAE,
as introduced in “Method”, it generates another six networks
accordingly.

After completing the training of the above deep hybrid
network, the results obtained are compared on the test set.
Through quantitative comparison, it is shown that the pro-
posed framework is excellent and that the network can
correctly detect the number of lanes in the image sequence. In
the lane detection task, two kinds of detection errors should
be avoided (the number of detected lanes is inconsistent
with the real number of lanes). One is missed detection. The
real lane object is used as the background of the predicted
image sequence, so the number of lanes cannot be detected
correctly. The second is overdetection, which detects other
objects in the image sequence as lanes. When the network
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Table 2 Structure and content of
the original dataset based on
TuSimple

Part of
dataset

Including Resolution #Lane Environment Labeled
frames

Labeled
images

Train TuSimple 1280 × 720 ≤ 4 Highway 16th and
18th

7252

Test Testset #1 1280 × 720 ≤ 4 Highway 16th and
18th

2944

Testset #2 1280 × 720 ≤ 4 Highway All frames 598

Table 3 Structure and content of
the original dataset based on
CULane

Part of
dataset

Including Resolution #Lane Environment Labeled
frames

Labeled
images

Train CULane 1640 × 590 ≤ 4 City, rural,
highway

16th and
18th

9458

Test Testset #1 1640 × 590 ≤ 4 City, rural,
highway

16th and
18th

3840

Testset #2 1640 × 590 ≤ 4 City, rural,
highway

All frames 780

meets the above conditions, the problems of serious discon-
nection and fuzzy areas in the detection diagram and the
large difference in position and length between the lane and
the ground should be avoided. The experimental results show
that the network achieves the above two objectives, as shown
in Figs. 8, 10, and the comparison detection with other net-
works is shown in Figs. 9, 11. The network can detect each
lane in the input image sequence in different scenes (includ-
ing complete lane marking lines, shaded lane marking lines,
and lane marking lines blocked by other objects), without
missing detection and overdetection. Through the compar-
ative experiment, the position of the lane detected by the
network designed in this paper is consistent with the real
lane position, and lane detection by other networks is incom-
plete or at a certain distance from the real lane position. By
comparing the lane detection results in this paper with others,
the lane detection results in this paper appear as thin white
lines, with fewer fuzzy areas, and are not in the area of severe
shadow occlusion and the fuzzy prediction caused by driving
vehicle occlusion. In scenes involving incomplete road lane
marks, our network can complete the task of lane detection.

In addition, to accurately evaluate the network perfor-
mance, we use quantitative analysis to test the superiority
of network performance. Accuracy, Precision, and Recall are
used as evaluation indices tomake a fair and reasonable com-
parison. In addition, the false-positive, false-negative, true-
positive, true-negative, true-positive rate and false-positive
rate are also reported. Among them, the TPR, FPR, accuracy,
precision, and recall calculation methods, such as Eqs. (11),
(12), (13), (14), and (15), show the following:

TPR =
True Positive

True Positive + False Negative
, (11)

Fig. 9 Visual comparison of network lane detection results in this paper.
Line 7: ground truth. The rest: lane semantic segmentation diagram

FPR =
False Positive

False Positive + True Negative
, (12)

Accuracy =
True Positive + True Negative

Total Number of Pixels
, (13)

Preccison =
True Positive

True Positive + False Positive
, (14)

Recall =
True Positive

True Positive + False Negative
. (15)

In the lane detection task, the negative class and positive
class are defined as the background and lane, respectively.
True positives are defined as the number of lane pixels cor-
rectly predicted, false-positive positives are defined as the
number of background pixels incorrectly predicted, and false
negatives are defined as the number of lane pixels incorrectly
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Fig. 10 Comparison of lane detection tasks completed by this network
andother networks in the same scenario basedonTuSimple dataset.Col-
umn 1 and Column 2: network comparison diagram between ENet and
our network; Columns 3 and 4: comparison diagram between LaneNet
and our network; Columns 5 and 6: comparison diagram between
ResNet-34 and our network

Fig. 11 Performance of ST-MAE based on the CULane test set. Six
most challenging scenarios were selected for test. Among them, the
first column: Arrow, the second column: Crowded, the third column:
Curve, the fourth column: Dazzle light, the fifth column: Night, and the
sixth column: No line. The last row of the figure denotes inputs, and the
first row to the sixth row, respectively, denotes instance segmentations
after clustering from the selected six consecutive image sequences

predicted as the background. After adding ST-LSTM, the
accuracy is improved, and the recall rate is approximately the
best. Comparedwith the original version, the accuracy of ST-
LSTM is improved by 7%, and the recall rate is only reduced
by 3%. After adding ST-LSTM to SegNet, the accuracy is
improved by 6%, and the recall rate is slightly improved.

By observing the experimental results in Figs. 9 and 10,
it can be concluded that the reduction of the fuzzy adhesion
area, high robustness of detection in various scenes and more
detailed detection results are the main reasons for the high
accuracy of the network designed in this paper. The network
mainly reduces the possibility of misclassifying the back-
ground pixels close to the ground into lanes and reduces the

Fig. 12 Comparison of lane detection tasks completed by this network
and other networks in the same scenario based on CULane dataset.
Column 1 and Column 2: network comparison diagram between our
network and ENet; Columns 3 and 4: comparison diagram between our
network and LaneNet; Columns 5 and 6: comparison diagram between
our network and ResNet-34

fuzzy area around the vanishing point and vehicle occlusion
area to reduce the false alarm rate. Figures 11, and 12 show
that after using the network in this paper to complete the lane
detection task, the problem of other boundaries being incor-
rectly detected as lanes by ENet [48] and ResNet-34 [46] is
improved.

Because all pixels in an area predicted by the network
are lane categories, this will form adhesions, and all lane
pixels will be correctly classified, leading to a high recall
rate. In this case, even if the recall is very high, there will
be serious misclassification of background classes, and the
accuracy is very low. Considering that the accuracy or recall
rate only reflects one aspect of lane detection performance,
the evaluation is not comprehensive. Therefore, we introduce
the F1 measure as an evaluation index of the overall matrix
for evaluation. F1 is calculated as follows:

F1 = 2 × Precision × Recall

Precision + Recall
. (16)

In Eq. (16), the weight of Accuracy is the same as
that of recall. As shown in Tables 4, 5, 6 and 7 com-
pared with the original version of the network in this paper,
the measured value of network F1 with added ST-LSTM
increases by approximately 2%.The inputmulti-frame image
sequence can better predict the lane than the input single-
frame image sequence, and ST-LSTM can better process
continuous sequence images in the semantic segmentation
framework. Therefore, the introduction of ST-LSTM can
accept high-dimensional tensors as input and is improved
based on the original baseline.

To evaluate the performance of this network, based on
the TuSimple dataset and CULane dataset, we compare this
network with other networks through experiments further
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Table 4 Comparison of
true-positive rate and
false-positive rate based on
TuSimple dataset

Algorithm TPR FPR

Easy lanes Hard lanes Easy lanes Hard lanes

ResNet-18 0.921 0.912 0.078 0.082

ResNet-34 0.934 0.925 0.064 0.069

SCNN 0.945 0.936 0.053 0.058

ENet 0.947 0.938 0.049 0.054

UNet 0.953 0.945 0.042 0.046

SegNet 0.956 0.947 0.039 0.045

LaneNet 0.962 0.949 0.034 0.041

ST-MAE 0.967 0.954 0.031 0.035

UNet_ST-LSTM 0.964 0.953 0.032 0.033

SegNet_ST-LSTM 0.968 0.957 0.031 0.032

LaneNet_ST-LSTM 0.972 0.961 0.027 0.029

ST-MAE_ST-LSTM 0.975 0.971 0.024 0.025

Table 5 Comparison of
true-positive rate and
false-positive rate based on
CULane dataset

Algorithm TPR FPR

Easy lanes Hard lanes Easy lanes Hard lanes

ResNet-18 0.902 0.897 0.102 0.115

ResNet-34 0.913 0.908 0.084 0.078

SCNN 0.929 0.914 0.072 0.063

ENet 0.938 0.918 0.061 0.057

UNet 0.941 0.929 0.052 0.059

SegNet 0.944 0.931 0.047 0.056

LaneNet 0.957 0.942 0.034 0.041

ST-MAE 0.961 0.949 0.033 0.037

UNet_ST-LSTM 0.949 0.936 0.049 0.052

SegNet_ST-LSTM 0.948 0.939 0.044 0.049

LaneNet_ST-LSTM 0.962 0.948 0.032 0.038

ST-MAE_ST-LSTM 0.964 0.961 0.029 0.031

objectively in Tables 8 and 9. Different from the pixel-level
test standard used, the prediction points are sparsely sam-
pled. Because the clipping and resizing operations are used
in the preprocessing step of building the dataset, the predic-
tion points obtained by sparse sampling should be consistent
with the corresponding points in the original image.

Running time With the image sequence as the input and the
addition of ST-LSTM, the running time may be greater. As
seen from the last column of Table 6, processing images of
all six frames shows more time consumption than processing
images of only one frame. However, in this paper, the net-
work can complete the lane detection task online. Because
the previous framehas been extracted, the encoder only needs
to process the current frame, and hence, the running timewill
not increase. ST-LSTM can run in parallel mode on the GPU,

and the running time is almost the same. After adding the ST-
LSTM block in this network, if all six frames are processed
as new input, the running time is approximately 21 ms. If
the first five frames are stored and reused, the running time
is 4.4 ms which is slightly longer than the original network
running time of 3.1 ms.

Robustness We have achieved good accuracy in the test set,
but we still need to test the robustness of the lane detec-
tion network; that is, whether the lane detection network can
complete the lane detection task well in various scenes and
vehicle conditions. In the robustness test experiment, new
datasets are used, including various driving scenes, such as
daily driving scenes involving urban roads and highways,
as well as challenging driving scenes such as incomplete or
even no lane identification, poor line of sight, and vehicle
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Table 6 Comparison of recall,
F1-measure, and running time
based on TuSimple dataset

Algorithm Recall F1-measure Running time

ResNet-18 0.921 0.792 0.0078

ResNet-34 0.934 0.803 0.0064

SCNN 0.945 0.816 0.0053

ENet 0.947 0.854 0.0049

UNet 0.953 0.867 0.0053

SegNet 0.956 0.861 0.0046

LaneNet 0.962 0.884 0.0042

ST-MAE 0.967 0.893 0.0031

UNet_ST-LSTM 0.964 0.897 0.0065

SegNet_ST-LSTM 0.968 0.901 0.0069

LaneNet_ST-LSTM 0.972 0.914 0.0055

ST-MAE_ST-LSTM 0.975 0.919 0.0044

The best performance of Recall, Runing time and F1-Measure of each networks in the experiment are shown
in bold

Table 7 The performance of different algorithms on the CULane test set

Category ResNet-
18

ResNet-
34

UNet LaneNet SCNN ST-
MAE

UNet_
ST-
LSTM

SegNet_
ST-
LSTM

LaneNet_
ST-
LSTM

ST-MAE_
ST-LSTM

Normal 90.5 90.2 91.1 91.7 90.6 94.2 92.3 93.1 93.6 95.3

Crowded 65.6 67.5 68.2 70.3 69.7 75.1 69.1 70.4 72.2 78.9

Dazzle light 67.7 60.1 61.2 60.3 58.5 71.5 61.9 62.3 62.7 73.2

Shadow 65.9 68.2 67.1 67.5 66.9 79.2 68.3 68.9 69.4 80.4

No line 40.7 42.5 43.3 44.6 43.4 54.3 45.1 45.7 46.7 57.4

Arrow 83.7 84.3 85.4 85.2 84.1 86.1 86.7 87.2 87.9 89.2

Curve 61.2 62.4 63.7 65.1 64.4 66.7 64.5 65.2 66.8 68.1

Crossroad 1848 1981 2044 2005 1990 1901 2051 2018 2013 1952

Night 64.5 65.7 67.3 67.4 66.1 71.8 68.1 69.2 70.3 73.2

Total 70.7 71.2 72.3 73.7 71.3 77.9 74.2 75.4 78.7 83.3

Frames per
second (fps)

25.8 37.1 50.1 48.8 8.2 64.8 49.3 46.9 47.3 64.2

blocking lanes. Experiments show that Validation–Accuracy
is 97.46%, Test–Accuracy is 97.37%, and Precision is 0.865
in simple scenes. Validation–Accuracy is 97.38%, Test–Ac-
curacy is 97.29%, and Precision is 0.859 in complex scenes.
Therefore, the detection network proposed in this paper has
strong robustness.

F1 values are shown for different categories of scenarios
in Table 7. FP values are shown for the scenario of crossroad.
As there is no straight line at the scenario of crossroad, any
prediction point is a false positive.

Ablation study

We investigate the effects of the model with only ST-MAE
(shown in Table 10) and perform extensive experiments to

investigate the effects of different locations of double-layers-
ST-LSTM (shown in Table 11), e.g., embedding double-
layers-ST-LSTM into before encoder or after decoder.

The performance of the model with only ST-MAE,
LaneNet, and embedding double-layers-ST-LSTM into ST-
MAE, LaneNet is discussed, which to demonstrate that the
double-layer ST-LSTM has the positive improvement on the
continuous multi-frame lane detection network. The experi-
mental results show the following: (1) the performance of
same time interval is better than the different time inter-
val. The reason may be that equal interval between frames
makes the missing information present regularity and sta-
bility, which enables double-layers-ST-LSTM to look back
in the past better and predict the future frame well. How-
ever, the sequential and unequal interval between frames
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Table 8 Comparison of accuracy
and precision based on TuSimple
dataset

Algorithm Val_Acc (%) Test_Acc (%) Precision

Easy
lanes

Hard
lanes

Easy
lanes

Hard
lanes

Easy
lanes

Hard
lanes

ResNet-18 92.85 91.42 92.68 91.45 0.671 0.659

ResNet-34 93.15 92.63 93.22 92.58 0.695 0.672

SCNN 94.12 92.85 94.25 93.12 0.712 0.695

ENet 94.98 93.62 94.73 93.74 0.724 0.708

UNet 95.42 94.14 95.53 94.08 0.763 0.749

SegNet 95.76 94.57 95.61 94.52 0.784 0.765

LaneNet 96.56 95.35 96.48 95.42 0.812 0.803

ST-MAE 96.82 96.69 96.85 96.72 0.843 0.835

UNet_ST-LSTM 96.38 95.95 96.19 95.82 0.851 0.847

SegNet_ST-LSTM 96.51 96.12 96.43 95.98 0.863 0.854

LaneNet_ST-LSTM 97.04 96.45 96.94 96.46 0.872 0.865

ST-MAE_ST-LSTM 97.46 97.38 97.37 97.29 0.865 0.859

Table 9 Comparison of accuracy
and precision based on CULane
dataset

Algorithm Val_Acc (%) Test_Acc (%) Precision

Easy
lanes

Hard
lanes

Easy
lanes

Hard
lanes

Easy
lanes

Hard
lanes

ResNet-18 92.15 90.38 91.92 90.27 0.612 0.598

ResNet-34 92.56 91.58 92.42 90.26 0.618 0.602

SCNN 93.03 91.74 92.97 91.63 0.626 0.612

ENet 93.72 92.21 93.54 91.98 0.659 0.643

UNet 94.21 93.03 93.89 92.74 0.686 0.648

SegNet 94.54 93.42 94.13 93.51 0.702 0.681

LaneNet 95.69 94.57 95.08 94.64 0.753 0.742

ST-MAE 96.17 95.85 95.72 95.41 0.819 0.795

UNet_ST-LSTM 94.87 93.89 94.51 93.27 0.715 0.694

SegNet_ST-LSTM 95.04 94.32 94.83 93.79 0.729 0.741

LaneNet_ST-LSTM 96.37 95.05 95.41 95.84 0.824 0.809

ST-MAE_ST-LSTM 97.03 96.18 96.84 95.92 0.837 0.829

Table 10 Performance
comparison of different module
in network on TuSimple dataset
and CULane dataset

Location TuSimple dataset CULane dataset

Acc (%) Pre Rec F1-M Acc (%) Pre Rec F1-M

ST-MAE 95.75 0.835 0.967 0.893 94.67 0.795 0.765 0.779

LaneNet 95.42 0.812 0.962 0.881 94.64 0.753 0.721 0.737

LaneNet_
ST-LSTM

96.46 0.865 0.965 0.912 95.84 0.824 0.753 0.787

ST-MAE_
ST-LSTM

97.29 0.859 0.975 0.913 95.92 0.819 0.847 0.833
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Table 11 Performance
comparison of different locations
of double ST-LSTM in ST-MAE
on TuSimple dataset and
CULane dataset

Location TuSimple dataset CULane dataset

Acc (%) Pre Rec F1-M Acc (%) Pre Rec F1-M

Encoder (front) 91.35 0.756 0.812 0.783 85.64 0.718 0.795 0.755

Encoder (behind) 95.42 0.828 0.895 0.860 89.87 0.794 0.813 0.803

Decoder (front) 97.29 0.859 0.975 0.913 95.92 0.819 0.847 0.833

Decoder (behind) 96.84 0.835 0.943 0.886 94.97 0.759 0.814 0.786

fluctuates greatly and destroys the regularity and stability of
information. (2) Under the same conditions, the performance
of the model with embedding double-layers-ST-LSTM into
ST-MAE is better than that of the model with only ST-MAE.
The possible reason is that double-layers-ST-LSTM can try
its best to memorize and retain the most likely features of
lane.

We have discussed the experimental results of different
locations of the double-layers-ST-LSTM in our proposed
model, as shown in Table 10. The experimental results
show the following: (1) When trying to embed the double-
layers-ST-LSTM into the lowest layer (front encoder), the
performance of the corresponding model is not ideal. The
possible reason is that the lowest layer contains local informa-
tion. (2) When trying to embed the double-layers-ST-LSTM
into the highest layer (behind decoder), the performance of
the corresponding model is not ideal. The possible reason
is that the highest layer mainly contains global information.
(3)When trying to embed the double-layers-ST-LSTM close
to a middle-level layer (behind encoder), the performance
of the corresponding model is also not ideal. The possible
reason is that the double-layers-ST-LSTM contains limited
global information that not conducive to obtaining location
information. (4) When trying to embed the double-layers-
ST-LSTM close to a middle-level layer (front decoder), the
performance of the corresponding model is ideal. The possi-
ble reason is that the double-layers-ST-LSTM may act as a
connector between the local and global information. There-
fore, we set the double-layers-ST-LSTM at a layer (front
decoder) in our work.

Discussion

Parameter analysis The number of frames of the input
image sequence and the sampling step size will affect
the performance of the proposed network. When inputting
a multi-frame image sequence, more information can be
obtained in the prediction graph, which is helpful for the final
detection result. However, using too many previous frames
may lead to poor final detection results. In particular, the
scene information in the previous frame that is far away from

the current frame may differ greatly from the current frame
and thiswill have anegative influenceon thedetection results.
Therefore, it is necessary to analyze the impact of the num-
ber of input image sequences on lane detection. First, the
number of input image sequences is set to range from 1 to 6,
and the results obtained are compared with the sampling step
size. The test is conducted on test set #1, and the test results
are shown in Tables 12, 13. In the top row of Tables 12, 13
the two numbers in each parenthesis are the sampling step
size and the number of image frames (i.e., the number of
image sequences). When inputting more consecutive frame
images with the same sampling step, the accuracy and F1
measurement value are improved. Compared with inputting
only the current frame image, multiple consecutive frame
images will be more conducive to completing the lane detec-
tion task. When the step size increases, the test performance
tends to be stable. The test results of inputting images from
the fifth frame to the sixth frame are not as good as those of
inputting images from the second frame to the third frame.
This may be because the information from the farther previ-
ous frame is not as helpful for lane prediction and detection
as the information from the closer previous frame. When
we focus on the sampling step size, as shown in Tables 12,
13, when the number of frames of the input image sequence
remains unchanged, the test results of our network under
different sampling steps show little difference. In summary,
when inputting a multi-frame image sequence, ST-LSTM
integrates the feature mapping extracted from the continu-
ous image sequence, which can obtain more complete lane
information and better complete the lane detection task.

Conclusions

In this paper, the masked autoencoders (MAE), Swin Trans-
former, and PredRNN are designed together, and a deep
hybrid network structure that can complete the task of lane
detection in various driving scenes is proposed. The network
is based on the MAE framework, takes multiple continuous
frame image sequences as input, and completes the task of
lane detection by semantic segmentation. We input the con-
tinuous six-frame image sequence into the network, in which
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Table 12 Results of different hyperparameter settings based on CULane dataset

(Stride,
frames)

(3,
6)

(3,
5)

(3,
4)

(3,
3)

(3,
2)

(2,
6)

(2,
5)

(2,
4)

(2,
3)

(2,
2)

(1,
6)

(1,
5)

(1,
4)

(1,
3)

(1,
2)

Single

Total
range

15 12 9 6 3 10 8 6 4 2 5 4 3 2 1 –

Accuracy 0.970 0.965 0.966 0.960 0.957 0.970 0.968 0.965 0.961 0.956 0.969 0.968 0.966 0.958 0.957 0.943

Precision 0.854 0.845 0.849 0.837 0.821 0.856 0.845 0.839 0.837 0.821 0.856 0.844 0.838 0.837 0.821 0.804

Recall 0.964 0.949 0.958 0.956 0.953 0.964 0.951 0.946 0.944 0.942 0.964 0.949 0.947 0.945 0.942 0.936

F1-
measure

0.908 0.886 0.883 0.878 0.876 0.908 0.886 0.883 0.877 0.875 0.904 0.886 0.882 0.875 0.876 0.842

Table 13 Results of different hyperparameter settings based on TuSimple dataset

(Stride,
frames)

(3,
6)

(3,
5)

(3,
4)

(3,
3)

(3,
2)

(2,
6)

(2,
5)

(2,
4)

(2,
3)

(2,
2)

(1,
6)

(1,
5)

(1,
4)

(1,
3)

(1,
2)

Single

Total
range

15 12 9 6 3 10 8 6 4 2 5 4 3 2 1 –

Accuracy 0.981 0.979 0.977 0.971 0.968 0.981 0.979 0.977 0.971 0.968 0.981 0.979 0.977 0.971 0.968 0.954

Precision 0.867 0.856 0.851 0.848 0.832 0.867 0.856 0.851 0.848 0.832 0.867 0.856 0.851 0.848 0.832 0.815

Recall 0.975 0.961 0.958 0.956 0.953 0.975 0.961 0.958 0.956 0.953 0.975 0.961 0.958 0.956 0.953 0.947

F1-
measure

0.919 0.897 0.894 0.889 0.887 0.919 0.897 0.894 0.889 0.887 0.919 0.897 0.894 0.889 0.887 0.851

the scene information of each frame image is extracted by an
encoder composed of a Swin Transformer block and then
input into PredRNN.Multiple continuous frames of the driv-
ing scene are modeled as time-series by the ST-LSTM block
to effectively model the shape deformation and motion tra-
jectory in the spatiotemporal sequence. Finally, through the
decoder composed of Swin Transformer blocks, the features
are obtained and reconstructed to complete the detection task.
Many experiments were carried out based on the Tusimple
dataset to complete the performance evaluation. The results
show that compared with the baseline architecture using
a single-frame image sequence as input, this architecture
achieves better results. The results also verify the effective-
ness of using multiple continuous frame image sequences as
input. Compared with other networks, our proposed network
has higher accuracy, recall, and excellent detection perfor-
mance. In addition, tests were also carried out in the face of
challenging driving scenes to check its robustness. The test
results show that the network can stably complete the task
of lane detection in various scenarios. Finally, in the param-
eter analysis, it is found that the input multi-frame image
sequence can improve the lane detection results, which fur-
ther proves that the continuous multi-frame image sequence
is more conducive to the completion of the lane detection
task than the single-frame image sequence.

Currently, the network training strategy based on deep
learning mostly adopts supervised learning. In the future, we
plan to train the network through self-supervised learning. It
simplifies the network training process, improves the training
performance, and has higher robustness in the face of various
tasks.
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