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Abstract
Formation flight of unmanned aerial vehicles (UAVs) utilizes reconfiguration procedures to handle a variety of emergencies,
such as collision avoidance, malfunctions, fuel savings, and member replacement. As UAVs have limited computing power
and energy resources, it is necessary to optimize the control inputs to reduce the distance travelled by UAVs while reducing
the computing costs during formation reconfiguration. In this paper, the problem of multi-UAV reconfiguration is decoupled
into two stages: task assignment and control input optimization of UAVs. For a solution to the above problem, we propose
an adaptive hybrid particle swarm optimization and differential evolution algorithm (AHPSODE) to optimize minimize the
distance of the total movement and reduce the computing cost of formation reconfiguration. Based on the idea of receding
horizon control (RHC) and the nonlinear model of multi-UAV formation reconfiguration, an RHC controller using AHPSODE
is designed to optimize the control input of the UAV group to obtain the shortest movement distance, and this method can
reduce the computation time. We use the CEC 2017 test suit to test the performance of our proposed AHPSODE algorithm,
and simulate the AHPSODE-based RHC controller to manage formation reconfiguration. The results show that our proposed
AHPSODE performed well in convergence and accuracy and the RHC controller is effective.

Keywords UAV · Formation reconfiguration · PSO · DE · Target assignment · Adaptive algorithm

Introduction

Multi-UAV formation flight [1] refers to the formation
arrangement with precisely defined geometries and task
assignment tomeet the requirements of different tasks.Multi-
UAV formation flights enable the onboard equipment to be
distributed to various UAVs, and a complex task can be
broken down into several relatively simple tasks performed
by different individuals. These features can make multi-
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UAV formation flights more stable, reliable, and redundant
than single UAV flights. Consequently, multi-UAV forma-
tion flight has been widely used in various areas, including
target strike, communications relay, electronic countermea-
sures, and battlefield assessment.

An mutil-UAV formation flight consists of a full process
that includes formation creation, maintenance, and reconfig-
uration, as well as the planning, organization, and execution
of tasks [2]. In the absence of reconfiguration capabili-
ties, multi-UAV formation flights would suffer from several
issues, including collisions, inability to withstand external
attacks, restricted scaling, and instabilities. Therefore, for-
mation reconfiguration is of extreme significance, since the
formation shape must be continuously reconfigured to cope
with changes in group composition, environments, and tasks.
This can enhance the robustness, reliability, and efficiency
of a formation flight. However, UAVs are a kind of flight
equipment with limited battery life and computing power.
Therefore, the main challenge for multi-UAV formation
reconfiguration is to design a controller that can optimize the
control inputs to achieve the shortest totalmovement distance
with fast computing speed and low computational overhead.
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Table 1 Comparison of
different methods for formation
reconfiguration

Method Time cost Adaptiveness Obstacles avoiding Target assignment

HPSOGA [14] ✖ ✖ ✓ ✖

PIO [15] ✖ ✖ ✓ ✖

DE [16] ✓ ✓ ✓ ✖

IDE [17] ✓ ✓ ✓ ✖

AHPSODE ✓ ✓ ✓ ✓

Research to reduce energy consumption and computing
consumption in multi-UAV formation reconfiguration can be
divided into three categories: path planning for reconfigura-
tion, improvements to UAV controllers, and optimization of
control inputs. In the path planning method, different path
planning algorithms are improved and optimized to improve
the performance of formation reconfiguration [3], such as A*
[4], Dijkstra [5], Voronoi graph [6], artificial potential [7],
and Dubin trajectory [8], etc. Despite their abilities to solve
formation reconfiguration problems, these path planning
methods cannot produce amoving trajectorywith the shortest
total distance, and are usually applied in a two-dimensional
environment. The improvement of the control algorithm can
improve the controller’s performance and thus improve the
efficiency of formation reconfiguration. The learning-based
control algorithm has become a focus of research in this
area, since it requires no complex mathematical model and
is highly adaptable [9,10]. However, learning-based con-
trol algorithms always involve considerable uncertainty and
mathematical complexity. The requirement of complexity
and abundant computational resources are limitations to the
use of learning-based control algorithms.

In comparison with improving the control algorithm,
the method of optimizing the control input is more direct,
effective, and scalable. In this method, the formation recon-
figuration problem of UAV is transformed into a time-most
control problem [11], in which swarm intelligent optimiza-
tion methods can be an excellent choice to solve these
optimization problems [12]. Wei et al. [13] propose a hybrid
GA algorithm to solve the multi-UAV formation reconfig-
uration problem in 2D space. In the following work, Duan
et al. [14] and Zhang [15] adapt CPTD (Control Parameters
Time Discrete) method to construct an objective function
and optimize the problem with different bionic algorithms.
However, the CPTD method cannot solve the problem with
too many control parameters for substantial computational
overhead. Literature [16,17] adapt the rolling time-domain
(RHC) method to decrease the computational overhead and
improve the real-time performance of multi-UAV reconfig-
uration. Using this method, the global control problem can
be divided into several local optimization problems with the
same objective function. Consequently, by reducing the num-
ber of control parameters, the computational complexity and

computational time can be substantially reduced. However,
these two methods do not consider the problem of target
assignment of the formation final position.

As a solution to the problem of reducing computation
overhead and determining a trajectory for formation recon-
figuration with the shortest total moving distance, this paper
splits the reconfiguration process into two parts: task assign-
ment for the final positions and optimization of control
inputs. We propose an adaptive hybrid particle swarm opti-
mization and differential evolution algorithm (AHPSODE),
which is designed to solve the target assignment problem
in discrete space and create an RHC controller based on
AHPSODE to optimize the control inputs for formation
reconfiguration. Finally, to verify the validity of the pro-
posedAHPSODE algorithm, we compared the performances
of the AHPSODEwith the standard PSO, standard DE, HPP-
SOGA [14], PIO [15], and IDE [17] using the CEC 2017
test suit [18] and the experimental results show that the pro-
posed AHPSODE have good performances. Furthermore,
we simulate the AHPSODE-based RHC controller to con-
duct the multi-UAV reconfiguration. The simulation results
show that the convergence time and search precision of the
AHPSODE-based RHC are improved when achieving multi-
UAV formation reconfiguration. Table 1 shows a comparison
of some algorithms for solving multi-UAV formation recon-
figuration.

The primary contributions of this paper are as follows:

1. We propose a new adaptive hybrid intelligent algorithm
AHPSODE, which has a faster convergence speed and
better ability to jump out local optimal than standard PSO
and DE.

2. We first consider the task assignment problem of the final
position of each UAV in a multi-UAV reconfiguration
and solve this problem by a discrete AHPSODE. This
method can reduce the total movement distance of the
UAV formation.

3. We design an AHPSODE-based RHC controller to
optimize multi-UAV formation reconfiguration control
inputs’ sequence, which can significantly reduce com-
putation consumption, have higher search precision, and
can obtain a better control input sequence.
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4. We conduct a series of numerical simulation experiments
to test the performance of the AHPSODE and to sim-
ulate the effectiveness of the AHPSODE-based RCH
controller. The experiment results show that the algo-
rithm and controller are effective.

The rest sections of this paper are organized as fol-
lows. In the section “Related works”, we make a summary
of the related work. In the section “Application scenario
and algorithm principle”, the application scenarios and
some principles are introduced. In the section “Approach
overview”, the approach is overviewed. Section “Mathemat-
ical model presents the dynamics model of the quadrotor
and the mathematical description of the target assignment.
Section “AHPSODE algorithm” introduces the AHPSODE
algorithm. In the section “Design of formation reconfigura-
tion controller, the implementation of the AHPSODE-based
RHC controller is explained in detail. Section “Experimen-
tal verification” shows the experiment. Section “Conclusion”
makes a summary of this paper.

Related works

The reconfiguration of multi-UAV formations is essentially
a problem of formation control. In this section, we review
research on formation control of multi-UAV reconfiguration
from three perspectives: control structure, control mecha-
nism, and control algorithm.

The control structure of UAV formation

The control approaches for formation reconfiguration can
be classified into centralized and decentralized approaches
based on their control structure. Each UAV is controlled by
a single controller in the former method. The latter method
involves eachUAVacquiring information about its local envi-
ronment from its neighbors to control itself.

Brandao [19] designed amulti-layer control scheme based
on centralized formation control to guide a UAV group
in desired trajectory tracking missions. After that, in [20],
a centralized management structure of UAVs in the form
of triangles was proposed to solve the intragroup collision
problem for the UAV group. Obviously, centralized con-
trol is more efficient when there are fewer UAVs in the
group. In formations with a large number of members, how-
ever, the decentralized formation control strategy offers the
advantages of reducing the computing burden, improving
computation efficiency, and increasing the real-time perfor-
mance of the formation control. In [21], an adaptive full-order
sliding mode control framework was proposed for robust
multi-UAV synchronized formation motion under uncer-
tainty. A robust 3D UAV formation flight can be achieved

with this control framework, as demonstrated in experiments.
In a decentralized UAV formation flight, [22] proposed two
control techniques for rejecting time-varying disturbances,
PID, and integral sliding modes. In [23], a decentralized
behavior-based control algorithm for UAV formation was
designed. In this method, only the information of the relative
position between neighboring group members is used.

The control mechanism of UAV formation

Control approaches for the formation reconfiguration can
be categorized based on control mechanisms into leader–
followermethods, virtual structures, andbehavioral behavioral-
based approach. Leader–follower approaches have been
widely used in the control and management of UAV forma-
tions, and this approach has been shown to reduce the energy
consumption of reconfiguring formations. Sajad Mousavi
[24] designed a formation control algorithm based on the
leader follower method to solve the multi-objective opti-
mization problem of coalition formation in large-scale UAV
networks. This method is inspired by quantum evolution-
ary algorithms and has better performance than NSGA-II.
In [25], the focus is on the control problem of fixed-wing
UAV formations in three-dimensional space. They discussed
control law convergence using a Lyapunov stability tool,
proposed an adaptive disturbance observer, and used an artifi-
cial potential method to solve the collision problem. Despite
its versatility, the leader–follower method has very strin-
gent requirements for security and safety on the leader UAV.
Additionally, if the leader UAV suffers serious damage, the
whole formation will be destroyed. Consequently, the visual
structure method is proposed. Cezary Kownacki [26] com-
bined the navigator algorithm and virtual structure method to
improve the reliability and throughput of information sharing
between UAVs in formation flight. A command generation
method forUAV formationswas proposed in [27] to solve the
problem of wind disturbance and obstacle avoidance. Using
thismethod, position control can be improved in the presence
of wind and collisions can be avoided. Behavioral control
defines several basic behaviors without the involvement of
human operators, including following to avoid obstacles and
composing formations, etc. Fan et al. [28] proposed an adap-
tive null-space-based behavioral (NSB) method to deal with
the inadaptability of the NSB method in a formation con-
trol situation. The method can effectively improve formation
performance. Based on the idea of method behavior-based
formation control, Ferik [29] designed a behavioral adap-
tive fuzzy-based cluster space intelligent controller, which
canwell solve the formationmaintenance problem.Although
behavior-based approaches are very flexible in dealing with
obstacle avoidance problems, they can interfere destructively
in a formation group, and they can be difficult to analyze
mathematically.
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The control algorithms of UAV formation

From the perspective of the control algorithms, the exist-
ing UAV flight controllers can be classified into linear
flight control algorithms, model-based nonlinear flight con-
trol algorithms, and learning-based control algorithms. To
solve the UAV formation rearrangement problem, Mahfouz
[30] designed a PID controller combined with the concept of
backstepping. Vlahakis [31] improved the distributed LQR
control methods to solve heterogeneous UAV formation sta-
bility problems. However, these linear control approaches
easily suffer from performance degradation when the UAV
departs from the nominal conditions. Some nonlinear flight
control algorithms have been developed to overcome the lim-
itations of linear algorithms based on the nonlinear model of
quadrotor dynamics. Zhang [32] presented a backstepping
approach that could be used to accomplish the reconfig-
uration of Multi-UAV formations and formation keeping.
To improve the computational efficiency of the traditional
MPC method, a Virtual Target Guidance (VTG)-based dis-
tributed MPC scheme for formation control of multi-UAV
was proposed by CAI Zhihao [33], and the numerical sim-
ulation confirms the expectations of this proposed scheme.
Learning-based control algorithms are usually independent
of the UAV system model. However, these algorithms need
a large amount of data to train the UAV flight control sys-
tem. Examples include fuzzy logic (FL), neural networks
(ANN), and reinforcement learning (RL). Quesada [9] pro-
posed an algorithm based on a fuzzy logic approach capable
of guiding a robot swarm to keep a leader–follower forma-
tion. A distributed optimal control methodwas also proposed
using the idea of reinforcement learning to address the hetero-
geneous multi-UAV formation trajectory tracking problem.
In [10]. This method can predict the optimal control input
online without any knowledge of the dynamics of other fol-
lower UAVs. Although learning-based control algorithms
do not depend on the mathematical model, these methods
always involve considerable uncertainty and mathematical
complexity. The requirement of complexity and abundant
computational resources are limitations to the use of learning-
based control algorithms.

Application scenario and algorithm principle

Application scenario

The multi-UAV formation reconfiguration problem can be
described as follows: during a formation flight mission, the
geometry shape of the UAV formation needs to change
according to its environmental and mission requirements
to avoid attacks or obstacles and improve the mission
success rate. Meanwhile, the process of formation reconfig-

uration usually needs to consider some constraints, such as
the computational overhead, energy consumption, obstacle
avoidance, and air disturbance.

Figure 1 shows a simplified application scenario formulti-
UAV formation flight and reconfiguration. In this example,
both threeUAVs are in landedmode at departure pointsA and
B, respectively. Then, the procedure of multi-UAV formation
reconfiguration can then be described as follows:

S1: The ground station receives the mission instructions
from the operators and sends these instructions to corre-
sponding UAVs landed in departure points A and B.

S2:After receiving themission instructions, theUAVswill
fly to the target area and complete the formation assembling.

S3: The assembled UAVs will form a formation first.
Then, this UAV formation will take the corresponding flight
strategy flying to the mission area to execute its task (the
leader–follower method is adopted in Fig. 1).

S4: The UAV will perform tasks, such as traffic control,
data collection, and communication assistance after entering
the task area.

S5: After mission completion, all UAVs will assemble
according to their mission requirements during the return
process and maintain this flight formation.

Due to the possibility of UAV malfunction or damage
during the execution of the mission, and changes in the envi-
ronment, the UAVs’ flight formations need to be changed
during each of the five flight sessions. Some cases that
need formation reconfiguration, such as obstacle avoidance,
adjustment of formation members, and UAV malfunction,
are shown at the bottom of Fig. 1.

In this paper, the AHPSODE-based RHC method is used
to optimize UAVs’ control input, so the reconfiguration of
multi-UAV formations can take the shortest time possible.
Furthermore, all constraints can be met, such as preventing
the UAVs from collisions and maintaining their communica-
tion distance.

Principle of PSO algorithm

PSO algorithm was first proposed by Kennedy and Eberhart
in 1995 from the perspective of social and cognitive behavior
[34] and has been widely applied in the engineering field.
In the standard PSO algorithm, each particle will fly in the
solution space and calculate the value of the current position’s
objective function to determine the next move according to
the optimal position of the individual particle history and the
whole group’s optimal position. Ultimately, the swarm, as
a whole, the same as a flock of birds working together to
find food, is likely to move in the direction that can obtain
the best value of the target function. In the continuous space
coordinate system, the mathematical description of the PSO
algorithm is as follows:
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Fig. 1 Application scenario for
multi-UAV formation
reconfiguration

Agroupcomposedofm particlesmoves in aD-dimensional
search space, and each particle has a certain speed. When the
group is searching for the best position, each particle will
consider the historical best position that it has searched for
and the historical best position of the other particles in the
group. Then, each particle will update its position and speed.

For each particle xid(t), its velocity and position update
formula in d dimension (1 ≤ d ≤ D) is shown as below

vid(t + 1) = wvid(t) + c1 · r1 · (pid(t) − xid(t))

+c2 · r2 · (
pgd(t) − xid(t)

)

xid((t + 1)) = xid(t) + vid(t), (1)

where pid(t) is individual optimal position, pgd(t) is global
optimal position, and the acceleration constant c1 and c2
are two non-negative values. These constants can help each
particle self-summarize and learn from excellent individuals
to approach its own historical best position and the group’s
global best position. c1 and c2 are usually equal to 2, and r1
r2 are two random number ranging from [0,1].

Principle of DE algorithm

Differential evolutionary algorithm (DE) is an evolutionary
algorithm based on population differences proposed by Storn
and Price [35] to solve Chebyshev polynomials. The basic

idea of DE is to use the differences between the individu-
als of the current population to recombine the population
to obtain the intermediate population and then use the com-
petition between the parent and the offspring to obtain the
next-generation population.

In the process of mutation, three individuals are chosen
randomly from the population, symbolized as xr1, xr2, xr3,
and these three individuals must be different from those
selected from xi . We can then define the mutated individ-
ual vi as follows:

vi = xr1 + F × (
xr2 − xr3

)
, (2)

where F is the magnification factor and usually valued from
[0, 2]. Figure 2 is the mutation process diagram: Using
mutated individuals vi and target individual xi , the reorgani-
zation process can be expressed as follows:

ui j =
{

vi j , if randb ≤ CR or j = randr
xi j , otherwise

(3)

where randb is a random number between [0,1], and CR
is the crossover factor used to control the crossover proba-
bility. randr is a random integer between [1,D], which can
be used to guarantee that at least one-dimension value of
reconstituted individual u ji comes from the mutant individ-
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Fig. 2 Mutation process of DE

Fig. 3 Recombination process of DE

ual v j i . Figure 3 shows the detail process of crossover. This
recombination process can be described by Fig. 3.

During selection, the offspring is determined by the fitness
values of the initial individual xi and the mutant recombi-
nation individual ui . Equation (4) describes this selection
principle

xi (t + 1) =
{
ui, if f (ui ) < f (xi )
xi , else .

(4)

Receding horizon control (RHC)

Receding horizon control (RHC) is also called model predic-
tive control (MPC).At each discretemoment of sampling, the
system’s current state is used as the initial condition to solve
a finite-time-domain open-loop optimal control problem and
obtain the optimal control sequence.

For each time-domain, the cost function of local opti-
mization is the same as global optimization. Figure 4 shows
a simple generation process of control inputs’ sequences
through RHC. In Fig. 4, each time horizon will calculate
p inputs, but only the first several m inputs can be applied to
the actual system.

Fig. 4 Generation process of control input sequences through RHC

Approach overview

During multi-UAV formation reconfiguration, each UAV’s
target formation must be determined, which is equivalent
to a task assignment problem. A successful assignment can
reduce the overall moving distance and time cost of recon-
figuring a formation. At the same time, the optimization of
the controller’s control inputs at every moment is also impor-
tant for reconfiguring a multi-UAV formation. In this paper,
the AHPSODE algorithm is proposed to optimize the target
assignment problem.The control inputs of eachUAVcan also
be optimized using an AHPSODE-based RHC controller.

Figure 5 shows a complete process for multi-UAV for-
mation reconfiguration. The process is mainly composed of
three parts: reconfiguration determination, task assignment
optimizing, and control input optimizing.

Reconfiguration determination In multi-UAV formation
flight, formation reconfiguration is usually required when
there occur changes in the external environment or mis-
sion instruction. These situations include obstacle avoidance,
malfunction of formation members, adjustment of forma-
tion members, and reducing energy consumption. The UAVs
can acquire external environment information through the
onboard sensors to judgewhether the current formation needs
to reconfigure. Each UAV will transmit its current status
parameters to the ground station through theMavLink proto-
col. Then, the ground station will determine the shape of the
formation and analyze the UAV group’s status information
to select the leader UAV.

Optimizing task assignment After determining the UAV
formation’s initial state and the target position, the target
assignment problem in the reconfiguration process will be
solved by the discretized AHPSODE algorithm. In the target
assignment’s optimization process, the UAV group’s match-
ing relationship is optimized with the goal of the shortest
total length. Then, the UAVs’ relative coordinates, relative to
the leader UAV, Xre f can be determined, where Xre f plays
an essential role in optimizing the cost function.

Optimizing control input This paper uses receding hori-
zon control (RHC) to divide the global control problem into
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Fig. 5 Process of multi-UAV
formation reconfiguration

several local optimization problems with the same objective
function. The complexity of computation and the amount of
computation can be reduced by reducing the number of opti-
mized control inputs. Additionally, as the reconfiguration of
multi-UAV formations is a complex nonlinear problem, the
RHC control method uses existing optimization techniques
to generate the optimal sequence of control inputs. Therefore,
theAHPSODEalgorithmproposed in this paper is adopted to
quickly calculate the optimal control input sequence in each
time-domain. After optimization, the control input sequence
is sent to the UAV group for execution. Afterward, each UAV
will provide feedback on its current status to the RHC con-
troller. The formation reconfiguration will be terminated if
the current UAV group’s status information meets the termi-
nation condition. Otherwise, roll the time-domain and repeat
the above optimization process until the termination condi-
tion is satisfied.

Mathematical model

In this paper, we focus on the optimization of control inputs
formulti-UAV formation reconfiguration in 3D space. There-
fore, in this section, we analyze the dynamic model of the
quadrotor and determine the cost function. Finally, the target
assignment problem is mathematically explained.

Fig. 6 Force model of UAV

The dynamic model of UAV

The quadrotor in the experimental environment consists of
four fixed-pitch rotors mounted at the four ends of a simple
cross frame, as shown in Fig. 6.

whereφ, θ, ψ are, respectively, roll angle, pitch angle, and
yaw angle, which are the main control variables for attitude
control. F1, F2, F3, F4 are the forces generated from these
fourmotors.mg is theweight of the quadrotor, andoxyz is the
body-fixed coordinate system. Transform matrix from body-
fixed coordinate (oxyz) to ground-fixed coordinate (OXY Z )
is shown in Eq. (5)

R(φ, θ, ψ) =
⎡

⎣
cosθ cosψ sin φ sin θ sinψ − cosφ sinψ cosφ sin θ cosψ + sin φ sinψ

cos θ sinψ sin φ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sin φ cosψ

− sin θ cos θ sin φ cos θ cosφ

⎤

⎦ . (5)
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The lifting forces F1, F2, F3, and F4 in body-fixed coor-
dinate (oxyz) are as follows:

FB =
⎡

⎣
Fx
Fy

Fz

⎤

⎦ =
⎡

⎣
0
0

F1 + F2 + F3 + F4

⎤

⎦ . (6)

Then, we need to transform the lifting forces FB from the
body-fixed coordinate to the ground-fixed coordinate FG by
rotation matrix R

FG =
⎡

⎣
FX
FY
FZ

⎤

⎦ = R(φ, θ, ψ) · FB

=
⎛

⎝
4∑

i=1

Fi

⎞

⎠

⎡

⎣
cosφ sin θ cosψ + sin φ sinψ

cosφ sin θ sinψ − sin φ cosψ

cos θ cosφ

⎤

⎦ .

(7)

According to the motion equations and Eq. (7), we can
deduce the following equation:

⎧
⎨

⎩

ẍ = Fx/m = (cosφ sin θ cosψ + sin φ sinψ)U1/m
ÿ = FY /m = (cosφ sin θ sinψ − sin φ cosψ)U1/m
z̈ = Fz/m = (cos θ cosφ)U1/m − g.

(8)

Then, we can deduce attitude change from Newton–Euler
formula

∑
M =

⎡

⎣
Mx
My
Mz

⎤

⎦ = I ω̇ − ω × (Iω), (9)

where I = diag(Iφ, Iθ , Iψ) are, respectively, equivalent
moment of inertia about the roll axis, pitch axis, and yaw axis.
ω = (θ̇ , φ̇, ψ̇)

T
is the torque, which consists of the torque Mi

generated by lifting forces. Then, according to Eq. (9), we
can deduce Eq. (10)

∑
M =

⎡

⎣
Ix φ̈ + θ̇ ψ̇

(
Iy − Iz

)

Iy θ̈ + φ̇ψ̇ (Iz − Ix )
Izψ̈

⎤

⎦ . (10)

According to the mechanic principle, we can get Eq. (11)

∑
M =

⎡

⎣
Mx
My
Mz

⎤

⎦ =
⎡

⎣
l ( f4 − f2)
l ( f3 − f1)

M1 − M2 + M3 − M4

⎤

⎦ . (11)

Here, we define the input variables of the UAV as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U1 = F1 + F2 + F3 + F4
= Kt

(
�2

1 + �2
2 + �2

3 + �2
4

)

U2 = F4 − F2 = Kt
(
�2

4 − �2
2

)

U3 = F3 − F1 = Kt
(
�2

3 − �2
1

)

U4 = −M1 + M2 − M3 + M4

= Kd
(−�2

1 + �2
2 − �2

3 + �2
4

)
,

(12)

whereU1,U2,U3, andU4 are the control variables of vertical
speed, roll angle, pitch angle, and yaw angle, respectively.�i

is the rotating speed of the i th rotor. Kt is the coefficient of
lifting forces; Kd is the coefficient of torques.

Considering Eqs. (7)–(12), the mathematical model of a
quadrotor can be finally presented as Eq. (13)

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

ẍ
ÿ
z̈
φ̈

θ̈

ψ̈

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

U1
m

(
cφsθ cψ + spsφ

)

U1
m

(
cφsθ sψ − sφcψ

)

−g + U1
m cφcθ

Iy−Iz
Ix

θ̇ ψ̇ + lU2
Ix

Uz
Iy

φ̇ψ̇ + lU3
Iy

U4
Iz

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

. (13)

To simplify the problem, this paper only considers UAVs’
the position in three-dimensional space, and does not con-
sider the state change of attitude angle. Therefore, the control
inputs of i th UAV can be defined as ui = [θi , ψi , φi , vBi ]T

(vBi is the velocity of UAV i th under body coordinates),
and the state variable can be expressed as xi = [xi , yi , zi ]T.
Therefore, the dynamic equation of the i th UAV in a UAV
formation can be described as follows:

ẋi (t) = f (xi (t),Ui (t)) , i = 1, 2, . . . , N . (14)

According to Eq. (14), we can know that if control input
ui and initial state x0 are provided, the state of i th UAV at
any time t can be obtained as follows:

xi (t) = x0 +
∫ t

0
f (xi (τ ),ui (τ )) dτ. (15)

Fig. 7 Structure of leader–follower method
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This paper adopts the centralized control structure and the
leader–follower method as our control mechanism (Fig. 7).
The state vector of the leader UAV is expressed as xL . Then,
the relative state of the i th UAV in the formation relative to
the leader can be expressed as Xref ,i = xi − xL , and we set
the initial time as t = 0 and the termination time as t = T
during a formation reconfiguration process. The formation
reconfiguration process in this paper can be regarded as a
control optimization problem. The goal of this optimization
problem is to find a set of continuous control inputs U =
(u1, u2, . . . , un) that can achieve formation reconfiguration
and make the cost function minimum. The quadratic form of
the cost function is as follows:

min J (U) =
N∑

i=1

(
xre f ,i (t) − (xi (T |ui ) − xL (T |uL))

)T

Q
(
xre f ,i (t) − (xi (T |ui ) − xL (T |uL))

)

st xi (t |ui ) = xi (0) +
∫ t

0
f (xi (τ ), ui (τ )) dτ

Umin < U < Umax, (16)

where Xref(t) = [xref,1(t), . . . , xref,N (t)] is the vector of the
relative states of the all UAV in the formation relative to the
leader UAV at time t . xi (t |ui ) is the state of i th UAV at time t
under the control inputs sequentialui (t). For eachUAV, given
initial state xi (t0), the state xi (t) will be deduced by ui . The
control input uiwill be limited according to the performance
of UAV and Q = diag(q1, q2, q3, q4) is a positive definite
matrix.

di j (t) , i, j = 1, . . . , N represents the distance between
any two UAVs in the formation of UAVs, and its calculation
formula is as follows:

di j (t)

=
√(

xi (t) − x j (t)
)2 + (

yi (t) − y j (t)
)2 − (

zi (t) + z j (t)
)2

.

(17)

To prevent collisions within the formation during the for-
mation of reconfiguration, it is required that di j (t) must be
greater than the safe distance Dsafe in the period of reconfig-
uration

di j (t) ≥ Dsafe, ∀t ∈ [0, T ], ∀i �= j i, j ∈ 1, 2, . . . , N . (18)

At the same time, to guarantee the communication
between UAVs in formation, we need di j (t) less than the
communication distance Dcom between UAVs during the
whole time-period of reconfiguration

di j (t) ≤ Dcom, ∀t ∈ [0, T ], ∀i �= j i, j ∈ 1, 2, . . . , N . (19)

By combining the Eqs. (16–19), a new cost function can
be obtained as follows:

min Jextend (U)

= J (U) + ω ·
∫ T

0

∑

i �= j

[
max

(
0, Dsaft − di, j (t)

)

+max
(
0, di, j (t) − Dcom

)]
dt, (20)

where ω is the penalty coefficient of distance, which is usu-
ally a large constant.

Mathematical description of target assignment

Target assignment of multi-UAV formation reconfiguration
problem is equivalent to a task assign problem (TAP). Stone
first proposes TPA in 1997 [36], which assigns more than
one processor in a distributed system and minimizes the exe-
cution cost of task allocation and communication cost under
the constrained system resource condition. In this paper, we
attempt to solve a target assignment problem similar to TAP,
in which the main objective is to allocate the initial posi-
tion of each UAV to a position in the target formation. This
assignment needs to minimize the total moving distance dur-
ing formation reconstruction without considering resource
constraints.

The process of multi-UAVs formation reconfiguration can
be divided into two stage. In the first stage, the geometry
shape of target formation and its position are determined
according to changes in the external environment or mission
requirements. This stage also deals with the tasks assignment
problemmentioned in this article The second stage is to con-
trol the movement of the UAV group to realize the change
of the formation. This stage is related to the control parame-
ter optimization problem mentioned in this paper, that is, the
motion planning.

We decouple the formation reconfiguration problem into
these two stages for two main reasons:

1. For multi-UAV formation reconfiguration, besides using
the shortest path as the optimization goal formotion plan-
ning, it is also necessary to determine the moving targets
of each UAV in the initial formation when determining
the geometries of the target formation. Here is a straight-
forward example. Suppose there are three UAVs, each of
which is positioned as follows: a[0 0 0], b[10 0 0], and
c[10 0 0]. The positions of target formation are A[0 0 20]
B[−10 0 10]C[10 0 10], andwe expect that the initial line
formation will transform into the target V formation. In
this study, UAV heterogeneity is not taken into account,
so both a-Ab-Bc-Cand a-Cb-Ac-Bcan achieve the same
target formation. Obviously, the total movement distance
of the former assignment is smaller than that of the lat-
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Table 2 A set of target assignment

Initial formation UAV number 1 2 3 4 5

Target formation UAV position number 1 3 5 4 2

ter. Therefore, when the number of UAVs increases, it is
necessary to separate the task assignment problem from
the entire formation reconfiguration. This will reduce the
total movement distance of the overall formation recon-
struction.

2. The process of optimizing task assignment requires
some computing time and consumption, and considering
the real-time requirements in the process of formation
reconfiguration, we hope to reduce the time costing for
optimizing control parameters as much as possible. As a
result, the task assignment is decoupled from the overall
reconstruction process and handled before the formation
change, which can reduce the complexity of the problem.

This paper uses natural numbers encoding each group of
assignment results in the target assignment problem to solve
the multi-UAV formation reconstruction problem. To solve
the multi-UAV formation reconstruction problem, this paper
uses natural numbers to encode each group of assignment
results. Suppose a UAV formation consists of N UAVs, and
then, there will be n! targets assigned. Let xi be the i th target
assignment result of the group, then xi can be represented as
follows:

xi = [
xi1, xi2, . . . , xi j , . . . , xin

]
,

xi j ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n}, (21)

where xi j represent the target position of j th UAV in the i th,
which is determined by i th target assignment result.

Suppose there is a flight team made up of five UAVs,
and this team needs to change its formation. In the initial
formation, the serial number of UAVs is set to 1–5, and the
UAV positions in the target formation are also set to 1–5.
Then, a set of target assignment results xi can be expressed as
xi = [xi1, xi2, xi3, xi4, xi5] , xi j ∈ [1, 2, . . . , 5]. Where xi j
represents the assigned position in target formation of UAV
j and 5 is the total number of UAVs in the flight formation.
If xi = [1, 3, 5, 4, 2], then the result of the target assignment
can be represented as Table 2:

To minimize the total moving distance of the forma-
tion reconfiguration by target assignment, distance overhead
matrix D is constructed as

D =

⎡

⎢
⎢⎢
⎣

D11 D12 · · · D1n
D21 D2 · · · D2n
...

...
...

...

Dn1 Dn2 · · · Dmn

⎤

⎥
⎥⎥
⎦

, (22)

where Djm represents the distance between UAV j in ini-
tial formation and position m in target formation, j =
1, 2, . . . , n, m = 1, 2, . . . , n. Furthermore, according to the
target allocation vector xi and the distance cost matrix Di ,
we can obtain the total distance Total D

Total D =
n∑

j=1

Djxi j . (23)

Therefore, the xi that can minimize the value of TotalD is
the optimal target allocation result.

AHPSODE algorithm

The PSO algorithm is known for its low computational
overhead and fast convergence speed, but it is easy to fall
into the local optimum. Through the crossover process of
the DE algorithm, it is possible to increase the amount of
search space by encouraging information exchange between
individuals. In addition, the mutation process can increase
the diversity of the population and improve the algorithm’s
ability to escape from the local minimum. Therefore, the
AHPSODE proposed in this paper combines the advantage
of the PSO algorithm and theDE algorithm to find an optimal
solution.

First, the PSO algorithm is used to update the position of
the initial population. To reduce the complexity of the algo-
rithm, this process runs 50% max iterations. Then, we set
the population classification threshold as 30%, sort the par-
ticles’ fitness values, and divide the population into superior
and inferior group. The top 30% of excellent particles are
superior groups, and the rest are inferior group. The indi-
viduals in inferior groups will be reinitialized to increase the
diversity of thewhole population. Thenmerge inferior groups
and inferior group to generate a new population as the initial
population for DE. In the early stage of this hybrid algorithm,
the PSO algorithm can quickly get an approximate optimal
solution for the advantage of fast convergence and the low
computational cost. Meanwhile, the mutation operation of
the DE algorithm can effectively prevent the algorithm from
local optimization and improve the search precision.

Generally, w in the PSO has a great impact on the search
ability of the algorithm. The w in the standard PSO algo-
rithm is a constant value. As a result, the standard PSOcannot
dynamically adjust its search capability during different peri-
ods of iteration and is easy to falling into local optimality. In
the iteration process of the PSO algorithm, the distribution
of the whole population gradually changes from a dispersive
state to a centralized state. However, excessive concentration
may result in the algorithm falling into local optimization. As
a consequence, we need to enhance the global search abil-
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ities of the PSO when the distribution of the population is
too concentrated. And we need to enhance the local search
abilities when the distribution is dispersed. In other words, as
population density increases, the inertial weight w needs to
adjust dynamically. This article improves the inertia weight
w of the standard particle swarm, which integrates the dis-
tance information between particles into w, so that w can be
adjusted according to the distribution of the particle swarm
adaptively.

First, define the average distance between the i th particle
and other N − 1 particles as di

di = 1

N − 1

N∑

j=1, j �=i

√√
√
√

D∑

k=1

(
xik − x jk

)2
, (24)

where N is the population size, andD is the dimension. Then,
define the adaptation factor σ as follows:

δ = dg − dmin

dmax − dmin
. (25)

In Eq. (25), dg represents the average distance between of
global optimal point. dmax and dmin represent the maximum
and minimum average distances in the population, respec-
tively. Then, according to the properties of adaptive factor σ ,
we construct an adaptive inertia weight W (δ)

W (δ) = 1

1 + 1.5e−2.6δ . (26)

According to Eq. (26), the value of W (δ) is positively cor-
related with σ , which means that the larger σ is, the more
massive W (δ) is, and vice versa. At the beginning of the
iteration of PSO, the overall distribution of particles is scat-
tered, which means that the σ is relatively large. Therefore,
the PSOalgorithmwith the adaptive factorσ has better global
search capabilities at the early stage of the iteration. As the
algorithm converges, the position of the particle swarm is
relatively concentrated, so that the σ will decrease, which
can lead to the decrease of the W (δ) and increase the local
search ability of the algorithm. Besides, the coefficients of
W (δ) are used to adjust the transformation range, and the
current coefficient can determine that the range of W (δ) is
[0.4, 0.9].

In DE, the crossover probability CR has a great impact
on the population’s diversity. When the value of CR is large,
there will be a big probability of mutation for the popula-
tion, which can guarantee the population’s diversity, and the
algorithm is more likely to find the global optimal solution.
When the value of CR is small, the population’s information
is easier to be inherited, which is conducive to the algorithm
for stable search in the current solution space. Therefore, this

Algorithm 1 AHPSODE
Require: Population:M ; Dimension:D ;Generation:T ; Learning

Factors:c1, c2; Scaling Factors:F
Ensure: Run max iteration
1: for i = 1 to M do
2: for i = 1 to M do
3: xi j (t) = Minxi j + rand(0, 1) · (

Maxxi j − Minxi j
)

4: vi j (t) = Minvi j + rand(0, 1) · (
Maxvi j − Minvi j

)

5: end for
6: Pi = xi (Pbest)
7: end for
8: Pg = min(Pi ) (Gbest)
9: t ⇐ 1
10: while (| f (Gbest)| ≥ ε) or (t ≤ 0.5 ∗ T ) do
11: for i = 1 to M do
12: (Adaptive factor of PSO and DE)
13: Calculate di ,σ ,ω(σ), CR(σ )

14: for j = 1 to D do
15: vij(t + 1) = ω(σ)vij(t) + c1 · r1 · (pij(t) − xij(t)

)

16: +c2 · r2 · (
pgj(t) − xij(t)

)

17: xij(t + 1) = xij(t) + vij(t)
18: end for
19: if f (xi (t + 1)) < Pi then
20: Pi ← xi (t + 1)
21: if f (Pi ) < f (Pg) then
22: Pg ← Pi
23: end if
24: end if
25: end for
26: t ⇐ t + 1
27: end while
28: Sort f (xi )
29: SuperiorGroup ← Top50%
30: I n f eriorGroup ← Rest
31: Reini tiali zetheIn f eriorGroup
32: PopulationM ← SuperiorGroup

⋂
I n f eriorGroup

33: while (| f (Gbest)| ≥ ε) and (t ≤ T ) do
34: for j = 1 to D do
35: vi, j (t) = Mutation

(
xi, j (t)

)

36: ui, j (t) = Crossover
(
xi, j (t), vi, j (t)

)

37: if f (ui (t)) < f (xi (t)) then
38: xi (t) ← ui (t)
39: if f (xi (t)) < f (Pi ) then
40: Pi ← xi (t)
41: if f (xi (t)) < f (Pg) then
42: Pg ← xi (t)
43: end if
44: end if
45: end if
46: end for
47: t ← t + 1;
48: end while
49: returenthebestsolution Pg :

article uses the distance adaptation factor mentioned above
to improve CR

CR(δ) = 1

1 + e−2.2δ . (27)

According to Eq. (27), then range of CR(δ) is [0.5, 0.9], and
the improved DE algorithm will adaptively adjust the cross
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probability according to the concentration degree of popula-
tion, which can improve the search accuracy of the standard
DE algorithm. Algorithm (1) is the pesudo of AHPSODE.

Design of formation reconfiguration
controller

RHC-based formation reconfiguration

RHC divides the global control problem into several local
optimization problems, and these local optimization prob-
lems have the same optimization goal as the global optimiza-
tion. In the kth sampling period, the state equation of the i th
UAV in the UAV formation can be described as follows:

xi (k + 1) = xi (k) +
∫ (k+1)T

kT
f (xi (k), ui (k)) dt . (28)

The constraints for the ui (k) and xi (k) are as follows:

umin ≤ ui (k) ≤ umax

xmin ≤ xi (k) ≤ xmax,
(29)

where xi (k) = [xi (k), yi (k), zi (k)] ∈ R3 represent the
state of i th UAV in the kth sampling period. ui (k) =[
φi (k) , θi (k) , ψi (k) , vbi (k)

]T ∈ R4 represents the cor-
responding control input, which will keep stable until the
next sampling period, and T represents the sampling period’s
time interval. At time horizon k, the RHC controller can
calculate each UAV’s control input sequence in the current
time horizon and the future p predicted time horizon through
the UAV formation’s current state and constraint conditions.
These control input sequences can be expressed as ui (k|k),
ui (k + 1|k), . . . , ui (k + p − 1|k). Then, the corresponding
states in the next p time horizons k can be represented as
xi (k + 1|k), xi (k + 2|k), . . . , xi (k + p|k).

Through Eq. (16) and Eqs. (28)–(30), we can obtain the
quadratic cost by the following cost function at the kth time
horizon:

min J (k) =
p∑

j=1

N∑

i=1

(
xref,i − (xi (k + j |k) − xL (k + j |k)))T

× Q
(
xref,i − (xi (k + j |k) − xL (k + j |k)))

st xi (k + 1|k) = xi (k) +
∫ T

0
f (xi (k), ui (k|k)) dt

xi (k + j + 1|k) = xi (k + j |k)

+
∫ T

0
f (xi (k + j |k), ui (k + j |k)) dt

umin ≤ ui (k + j |k) ≤ umax.

(30)

Fig. 8 Process of RHC control

Finding a solution that minimizes the fitness function at a
given time horizon k, we can obtain the optimal control input
sequence u∗

i (k+ j−1|k), j = 1, 2, . . . , p, wherewe apply
the preceding m control input u∗(k|k),u∗(k + 1|k), . . . ,
u∗(k + m − 1|k)) , (0 ≤ m ≤ p) to the correspondingUAVs
in the current and following m − 1 time horizons, respec-
tively. The final state of multi-UAV formation can then be
approximated using theRHCmethod.The process of anRHC
method can be described in Fig. 8.

Although the RHC method can divide a global control
problem into a series of local optimization problems to reduce
the computational complexity and the time overhead, the
multi-UAV formation reconfiguration problem is essentially
a constrained nonlinear problem. Therefore, it is hard to
solve this problem using traditional optimization methods.
Therefore, how to calculate the control law of RHC is a cru-
cial technology. Aiming at the above problems, an adaptive
hybrid intelligent algorithm AHPSODE is proposed to opti-
mize the target assignment problem and the control inputs’
sequence of RHC.

AHPSODE-based RHC controller

In this paper, we use the AHPSODE algorithm to optimize
each UAV’s control input to realize the reconfiguration of
multi-UAV formation. Suppose there is a UAV flight forma-
tion composed of N UAVs, and the size of predicted time
horizon is p. Then, the control input of i th UAV in the for-
mation at time horizon k can be expressed as ui (k + j −
1|k) = [SFi , φi , θi , ψi ]T, i = 1, . . . , N , j = 1, . . . , p.
Since UAV’s control input has four parameters, the dimen-
sionality of the search space of the AHPSODE algorithm can
be obtained as D = 4∗N ∗ p. Furthermore, the particle xi in
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Fig. 9 Schematic of AHPSODE-based RHC controller

the AHPSODE algorithm at time horizon k can be expressed
as

xi (k) = [
u1(k|k), u2(k|k), . . . , uN (k|k), . . . , u1(k

+ 1|k), u2(k + 1|k), . . . , uN (k + 1|k), . . . , u1(k
+ p − 1|k), u2(k + p − 1|k), . . . , uN (k + p − 1|k)] .

(31)

The schematic of the AHPSODE-based RHC controller
is shown in Fig. 9. Here, Xre f = [

�xre f ,1, . . . , xre f
, . . . ,�xre f ,N

]
is the relative state vector between the leader

UAV and other UAVs. xref is the reference state of the Leader
UAV xL , and �xref,i represents the i th UAV’s expected state
relative to xL .

The target formation determination module is used to
determine the leader UAV’s number and the state of the tar-
get formation. All of the above information will send to the
target assignment module. Subsequently, the target assign-
ment module optimizes each UAV’s moving targets through
the information transmitted by the target formation determi-
nation module and the current state of the UAV group. Then,
the controller will update the relative state.

After acquiring the Xref , the online optimization module
will calculate the optimal control sequence U in the current
time horizon and send the control input sequence to the cor-
responding UAV for execution. After each UAV completing
the execution of control input, the UAV formation will feed-
back the current status to the online optimization module
and repeat the above steps until the UAV team’s states sat-
isfy the termination condition. Considering the complexity
of computation and the controller’s timeliness, we adopted
the first-order predictive control strategy in this controller.
Therefore, we set p = m = 1.

Experimental verification

Performance analysis of AHPSODE

We employed a set of 29 benchmark functions for explaining
the performance of the proposed AHPSODE. The current
well-known single objective optimization test suites contain

Table 3 Parameter settings for different algorithms

Algorithm Parameter setting

SPSO ω = 0.4 ∼ 0.9, c1 = c2 = 2.0

SDE CR = 0.5 ∼ 0.9, F = 1.2

APSO ω = 0.4 ∼ 0.9, c1 = c2 = 2.0

ADE CR = 0.5 ∼ 0.9, F = 1.2

AHPSODE ω = 0.4 ∼ 0.9, c1 = c2 = 2, F = 1.2

HPSOGA[14] ω = 0.4 ∼ 0.9, c1 = c2 = 2, Pc = 0.9, Pm = 0.05

IDE[17] CR = 0.5 ∼ 0.9, F = 1.2

PIO[15] N1 = 0.9 ∗ N , N2 = 0.1 ∗ N , R = 0.003

CEC 2005, 2013, 2014, and 2017.We chose the CEC 2017 as
the test suite for this experiment. In the CEC 2017, there are
two unimodal functions (F1, F3), seven simple multimodal
functions (F4–F10), ten expanded hybrid functions (F11–
20), and ten composition functions (F21–F30). Please refer
to [18] for more details about CEC 2017.

We compared the performance of AHPSODE with eight
relevant algorithms, namely: SPSO, SDE, APSO, ADE,
HPSOGA [14], IDE [17], and PIO [15]. TheAPSOalgorithm
and ADE algorithm are derived from SPSO and SDE using
distance adaptive factors. By comparing APSO and ADE
to PSO and DE, the effectiveness of the proposed distance
adaptive factor can be validated. On this premise, the com-
parison of the AHPSODE algorithm with ADE and APSO
can further demonstrate the performance of the AHPSODE
algorithm. HPSOGA, IDE, and PIO algorithms are used in
similar work to solve the formation reconfiguration problem,
and hence, these three algorithms are also chosen to compare
with AHPSODE.

Experiment setting

To have a fair comparison, all the experiments were coded
in MATLAB language and were implemented on Windows
10 Pro-64 bit of a PC with 32 GB of RAM and Inter(R)
Core(TM)i7-9700 CPU @ 3.0GHz.

We set the population N as 100 and the maximum gen-
eration G as 3000 for all algorithms. On the premise of
retaining the theme idea of the algorithm, we will ensure
that the parameters of the tested algorithm are consistent. For
example, the ADE and the IDE have different improvement
strategies for parameter CR, which means that our goal is to
keep their range of changes for CR consistent. The detailed
parameter settings are shown in Table 3.

Comparison for AHPSODE with other algorithms

In this part, the performance results onCEC2017 at 30-D and
50-D are presented. In CEC 2017, there are a total of 30 test
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Table 4 Statistics of mean value for AHPSODE and compared algorithms on CEC 2017

Dimension Function type Mean value

SPSO SDE APSO ADE AHPSODE HPSOGA IDE SPIO

30 Unimodal functions 2

Multimodal functions 3 3 1

Hybrid functions 3 2 4 1

Composition functions 4 4 2

SUM 6 2 0 0 13 6 0 2

50 Unimodal functions 2

Multimodal functions 7

Hybrid functions 2 7 1

Composition functions 6 4

SUM 0 0 2 0 22 4 0 1

Table 5 Statistics of standard deviation for AHPSODE and compared algorithms on CEC 2017

Dimension Function type Standard deviation

SPSO SDE APSO ADE AHPSODE HPSOGA IDE SPIO

30 Unimodal functions 1 1

Multimodal functions 3 4

Hybrid functions 3 2 2 1 2

Hybrid functions 1 2 2 1 2 2

SUM 4 7 2 4 3 0 9

50 Unimodal functions 2

Multimodal functions 2 2 3

Hybrid functions 1 1 1 1 3 3

Composition functions 4 2 2 1 1

SUM 4 2 2 1 0 1

functions (F2 has been excluded, because it shows unstable
behavior, especially for higher dimensions). The maximum
generation G for each algorithm is set as 3000. Each algo-
rithm needs to run 15 times for a same test function at each
dimension and calculate the mean value and standard devia-
tion.

Tables 4 and 5 present the statistical data for mean value
and standard deviation at 30-D and 50-D, respectively. The
Function Type is the collection of all test functions of the
same type (e.g., Unimodal Function = F1, F3). The values
in the table represent the number of times that the algorithm
finds the optimal value compared with other algorithms for
the same function type and dimension. In this situation, a
blank cell indicates that the algorithmdid not get a good result
on the test functionwhen compared to other algorithms. SUM
represents the sum optimum statistics for a given algorithm
over all test functions. The detailed results are shown in the
Appendix, Tables 14 and 15, respectively.

Table 4 shows that the APSO algorithm and the ADE
algorithm are not more effective than other algorithms when
handling 30-dimensional problems, but the SPSO and SDE

algorithms in F7 F8 F9 F12 F13 F18 and F14 F15 obtain
better solutions. However, in 30 dimensions, SDE can only
get a better solution than ADE when solving F10 F14, so
distance adaptive factor does have some improvement for
ADE to deal with low-dimensional problems. In 50 dimen-
sions, the mean value of APSO on the 25 test functions is
better than those of SPSO. On the other hand, SPSO and
SDE did not find the best solution for 50-dimensional prob-
lems, whereasAPSO found a better solution for F13 and F14.
Consequently, an enhanced SPSO and SDE incorporating
distance adaptation factor do not have excellent performance
in low dimensions. However, the distance factor has a much
better effect when dealing with high dimension problems.
In Table 4, we can also find that AHPSODE has achieved
optimal solutions for all F1–F10 problems with 30 dimen-
sions. This illustrates that the AHPSO algorithm is effective
in solving low-dimensional unimodal and multimodal prob-
lems. In 50 dimensions, there are 22 optimal solutions to 30
test functions using AHPSODE. This shows that the AHP-
SODE algorithm has a significant performance improvement
compared to SPSO and SDE, especially when solving high-
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dimensional complex problems, the algorithm can avoid
falling into local optimums and improve global search capa-
bility. Additionally, AHPSODE provides better solutions
than HPSOGA IDE and SPIO algorithms when dealing with
30-dimensional problems. However, AHPSODE performs
similarly to HPSOGA when solving complex problems of
high dimension.

Table 5 shows that although the AHPSODE algorithm
proposed in this paper has good global search ability, the stan-
dard deviation is lower than that of SDE for 30-dimensional
problems. This means that the AHPSODE algorithm has a
small probability calculating a less desirable solution when
dealing with low-dimensional problems. SPIO is signifi-
cantly more stable in 30 dimensions than SDE. However,
the algorithm’s accuracy is poor.

The boxplots for experiment data are shown in Appendix
Figs. 19, 20, 21, 22, With the boxplots, we can intuitively
visualize the calculation results of each algorithm on the
specified test function. Data deviation is especially intuitive
with the box plot. We also plot the convergence curves of all
algorithms in different dimensions for different test functions
as shown inAppendixFigs. 23, 24, 25, 26.Thesefigures show
that at the early stage of convergence, AHPSODE has a faster
convergence speed than SDE. At the later stages of the algo-
rithm, AHPSPODE has a better search accuracy than SPSO.
The above data analysis demonstrates that by integrating the
SPSO and SDE algorithms and including the distance adap-
tive factor, the AHPSODE performs much better than the
other algorithms in global search.

Run-time complexity

In this subsection, we use the widely known running-time
complexity criterion proposed in CEC 2017 to measure the
efficiency of AHPSODEwith SPSO, SDE, APSO, andADE.
In Table 6, the running-time complexity results of above
algorithms on the CEC 2017 at 10-D, 30-D, and 50-D are
calculated.

From Table 6, we can see that the SDE consumes more
running-time than SPSO, and the running-time of the SPSO
increases faster with the improvement of problem dimen-
sions than that of DE. We also find that the running-time of
the ADE and APSO is larger than that of the standard SPSO
and SDE. The reason is that APSO and ADE need to calcu-
late the distance adaptive factor at each iteration. However,
this distance adaptive can improve the calculation accuracy
of the SPSO and SDE. Due to the fact that the AHPSODE
algorithm integrates the distance adaptive factor, the algo-
rithm’s running-time is also bigger than that of the SPSO
and SDE. However, the running-time of the AHPSODE is
substantially lower than that of ADE for the algorithm com-
bines the properties of SPSO and SDE, and the running-time
will not increase much as the problem dimension expands.

Table 6 Running-time complexity for SPSO, SDE, APSO, ADE, and
AHPSODE

Algorithm Dimension T0 T1 T2 (T2–T1)/T0

SPSO 10 0.024 0.116 0.1458 1.24

30 0.515 0.5825 2.81

50 1.169 1.3678 8.28

SDE 10 0.024 0.116 0.4745 14.94

30 0.515 1.0312 21.51

50 1.169 1.8201 27.13

APSO 10 0.024 0.116 1.6087 62.20

30 0.515 3.4752 123.34

50 1.169 5.6537 186.86

ADE 10 0.024 0.116 2.079 81.86

30 0.515 4.459 164.35

50 1.169 6.823 235.58

AHPSODE 10 0.024 0.116 1.87 73.15

30 0.515 3.78 136.18

50 1.169 5.75 190.91

Meanwhile, the algorithm’s computational precision is supe-
rior than that of other algorithms. In Table 4, this finding has
been verified.

Simulation of multi-UAV reconfiguration

In this paper, the problem of multi-UAV formation recon-
figuration is decoupled into two parts. In the first part, we
construct the target position determination problem in the for-
mation change process as a task assignment problem. Then,
we solve it through the AHPSODE algorithm to determine
the target position of eachUAV. In the second part, the control
input sequence for eachUAV is generated by theAHPSODE-
based RHC controller to reform the target formation with
the shortest moving distance. Therefore, this section will
simulate the above two decoupled processes to evaluate the
effectiveness of AHPSODE-based RCH controller for multi-
UAV reconfiguration.

All the simulation experiments were coded in MATLAB
language and were implemented on Windows 10 Pro-64 bit
of a PC with 32 GB of RAM and Inter(R) Core(TM)i7-9700
CPU @ 3.0GHz.

Simulation for target assignment

In this subsection, we use AHPSODE to solve the discrete
task assignment problem in multi-UAV formation reconfigu-
ration and test its performance and effectiveness. We first set
up a virtual formation reconfiguration scene. In this scene, a
group of 10 UAVs are randomly generated limited to a spher-
ical sphere with (0, 0, 0) as its center and 30m as its radius.
The target is to control these UAVs to form a circle forma-
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Table 7 States of UAV group

UAV number Initial states Target states

1 (−8.7,−5.3, 28.2) (24.3, 17.6, 0)

2 (15.7, 16.4,−19.6) (9.3, 28.5, 0)

3 (−23.2,−3.4, 18.7) (−9.3, 28.5, 0)

4 (−24.3,−16.5, 6) (−24.3, 17.6, 0)

5 (0.2,−27.9,−11) (−30, 0, 0)

6 (2.2,−11.5,−27.6) (−24.3,−17.6, 0)

7 (−4.8,−6.6, 28.9) (−9.3,−28.5, 0)

8 (−0.1, 0.5,−30) (9.3,−28.5, 0)

9 (19.9,−7.9, 21) (24.3,−17.6, 0)

10 (2.5, 0.7, 29.9) (30, 0, 0)

Table 8 Parameter settings for different algorithms

Algorithm Parameter setting

SPSO ω = 0.4 ∼ 0.9, c1 = c2 = 2.0

SDE CR = 0.5 ∼ 0.9

APSO ω = 0.4 ∼ 0.9, c1 = c2 = 2.0

ADE CR = 0.5 ∼ 0.9, F = 1.2

AHPSODE ω = 0.4 ∼ 0.9, c1 = c2 = 2, F = 1.2

HPSOGA[14] ω = 0.4 ∼ 0.9, c1 = c2 = 2, Pc = 0.9, Pm = 0.05

IDE[17] CR = 0.5 ∼ 0.9, F = 1.2

PIO[15] N1 = 0.9 ∗ N , N2 = 0.1 ∗ N , R = 0.003

tion. The coordinates of the initial state and the target state
are shown in Table 7.

Since the above task assignment problem is discrete, we
discretize AHPSODE to solve this problem with the goal
of minimizing the total moving distance. The SPSO, SDE,
APSO,ADE, IDE,AHPSOGA, andSPIOalgorithms are also
compared to the AHPSODE algorithm in the present exper-
iment. The parameters of the above algorithms are shown in
Table 8.According to the experiment results, wefind the opti-
mal solution gbest = [4 1 5 6 8 9 7 3 10 2]. Figure 10 shows
the initial position and target position of each UAV, and the
solid lines in different colors correspond to gbest . Figure 11
shows the convergence curves of SPSO, SDE, APSO, ADE,
IDE, PIO, HPSOGA, and AHPSODE in solving the target
assignment problem of above UAV formation reconfigura-
tion problem. The x-coordinate is the number of iterations,
and the y-coordinate is the fitness value (the total moving
distance).

As shown in Fig. 11a, the APSO algorithm has better con-
vergence accuracy than the SPSO algorithm, since it is easier
to jump out of the local optimum. In comparison to SDE,
the ADE algorithm has a faster convergence speed, mainly
because the distance adaptive factor adjusts the mutation
probability of the algorithm, helping it obtain better global
search ability in the early stages of algorithm iteration. Based
on the aforementioned results, the distance adaptive factor

Fig. 10 The optimal task assignment result of 10 UAVs in 3D space

proposed in this paper can effectively improve the accuracy
of the algorithm in the later iteration of the discrete PSO
and discrete DE when dealing with the problem of target
assignment. At the same time, according to the convergence
curve, it can be found that the convergence performance of
AHPSODE algorithm is better than that of ADE and APSO.

As illustrated in Fig. 11b, the convergence speed of the
AHPSODE algorithm in the early stages of the iteration is
slightly lower than that of SPIO, but the global convergence
speed is higher than SPIO, IDE, and HPSOGA. The AHP-
SODE also has better convergence accuracy than the above
algorithm. As a result, the AHPSODE algorithm can not only
find the optimal assignment result in this problem of multi-
UAV formation reconstruction, but also provide a relatively
good performance.

Simulation of AHPSODE-based RHC controller

In this part, we construct a virtual scene for multi-UAV for-
mation reconfiguration. To solve this formation problem, the
AHPSODE-based RHC controller is simulated in our exper-
iment. Additionally, we compare AHPSODE-based RHC
controller with similar methods PIO, HPSOGA, and IDE on
the basis of RHC controllers. The parameters of the above
test algorithm are displayed in the Table 9.

Simulation setting In our experiment scenario, there is
a UAV group of 9 UAVs with the same specifications. We
numbered these UAVs as 1–9, and the initial state of each
UAV is shown in Table 10. Among this UAV group, U AV5
is selected as leader UAV. The goal is to transform this initial
formation into a circular formation, and we use our proposed
controller to generate optimized control inputs for each UAV.
The states of the target circular formation are also shown in
Table 10.

Furthermore, we add several constraints on the control
inputs in our experiment to ensure that the optimized control
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Fig. 11 Convergence curve of different algorithms in solving the target assignment problem of multi-UAV reconfiguration

Table 9 Parameter settings for different algorithms

Algorithm Parameter setting

AHPSODE ω = 0.4 ∼ 0.9, c1 = c2 = 2, F = 0.2

HPSOGA[14] ω = 0.4 ∼ 0.9, c1 = c2 = 2, Pc = 0.9, Pm = 0.05

IDE[17] CR = 0.5 ∼ 0.9, F = 0.2

PIO[15] N1 = 0.9 ∗ N , N2 = 0.1 ∗ N , R = 0.003

Table 10 States of UAVs’ group

Serial number Initial states Target states

1 (−20, 0, 0) (21.2, 21.2, 30)

2 (−15, 0, 0) (0, 30, 30)

3 (−10, 0, 0) (21.2, 21.2, 30)

4 (−5, 0, 0) (−30, 0, 30)

5 (0, 0, 0) (0, 0, 30)

6 (5, 0, 0) (−21.2 − 21.2, 30)

7 (10, 0, 0) (0−, 30, 30)

8 (15, 0, 0) (−30, 0, 30)

9 (20, 0, 0) (21.2,−21.2, 30)

input sequence can provide a smooth trajectory for the UAV
group (Table 11).

Performance analysis of AHPSODE-based RHC con-
troller

Based on the states of Table 10,we can get the optimal task
assignment solution assign = [5 9 4 3 1 2 7 8] by the discrete
AHPSODE algorithm. Then, the relative states�Xref can be
determined. Figure 12 shows the initial position and target
position of the UAV group. The blue star indicates the initial

Table 11 Constraints for UAV control inputs and states

Parameters Value

Sum force VB(m/s) [−15, 15]
Roll angle φi (

◦) [−45, 45]
Pitch angle θi (

◦) [−45, 45]
Yaw angle ψi (

◦) [−90, 90]
Position x (m) [0, 100]
Position y (m) [−100, 100]
Position z (m) [−100, 100]

Fig. 12 Initial positions, target positions, and moving targets of 9
UAVs’ group in 3D space

position of UAV formation. The green circle indicates the
target position of the reconstructed formation, and the col-
ored solid line indicates the matching relationship calculated

123



1946 Complex & Intelligent Systems (2023) 9:1929–1962

Fig. 13 Effect of constraints on generated trajectory

Fig. 14 a Evolution curve of all algorithms at the 1st–4th time horizon; b evolution curve of all algorithms at the 5th–8th time horizon

by the discrete AHPSODE. Figure 13 illustrates the effect of
constraints on the generated trajectory. By the AHPSODE-
based RHC controller, the original straight line formation
can be successfully changed into the target circular forma-
tion. However, the trajectory generated without constraints
is quite jagged.

The convergence curve of the IDE, SPIO, HPSOGA, and
AHPSODE is shown in Fig. 14. In Fig. 14, every 100 itera-
tions represent a control time domain of 1s. We also divided
the 800 iterations into the first 400 iterations (Fig. 14a) and
the last 400 iterations (Fig. 14b) to better observe the conver-

gence characteristics. According to the convergence curve,
the controller will converge in time-domain 8, and the pro-
posed AHPOSDE has a faster convergence speed than IDE
and SPIO. It also has a higher accuracy than HPSOGA. At
the same time, according to the convergence curve of each
time-domain, it can be found that the AHPSODE is easy to
jump out local optimum and search a new solutionwith better
fitness. This can help AHPSODE have a bigger probability
finding a better solution when dealing with real problems.

To verify the performance of the RHC method, we also
compared RHCmethodwith the CPTDmethodmentioned in
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Fig. 15 The convergence curve of AHPSODE-based RHC controller
and AHPSODE-based CPTD controller

[14]. We first construct an AHPSODE-based RHC controller
and AHPSODE-based CPTD controller. For a fair compari-
son, the population size is set as 100, and all populations will
update 800 times. Then, two controllers are used to solve
the problem of multi-UAV formation reconfiguration men-
tioned in this section. Figure 15 shows the convergence curve
of AHPSODE-based RHC controller and AHPSODE-based

CPTD controller. Although the search accuracy of these two
methods is similar at the same iteration, the CPTD method
takes 28s for 800 iterations,while theRHCmethod only takes
7 s. Therefore, the RHC method can save more computing
resources than the CPTD method.

Figure 16 illustrates the optimized control inputs in eight
time domains for each UAV. The results demonstrate that
each UAV’s control inputs in all time-domains satisfy our
constraint. Figure 17 depicts the distance between UAV5 and
otherUAVs in each timedomain, and it canbe seen thatUAV5
satisfies both the safe distance and communication distance
requirements in each time domain.

The average fitness values and average time cost of ten
repeated experiment for different algorithms in each time-
domain are shown inTable 12. FromTable 12, theAHPSODE
method requires the least amount of time and has the highest
level of computing precision compared to all other methods.

To verify the performance of our proposed method when
solving large scale UAV formation reconfiguration, we set
the number of population size n = 50, the max iteration
timeG = 50, and theGroupScale = [10, 20, 30, . . . , 100],
vB = 15. As this part of the experiment investigates the time
consumption of the method described in this paper in solv-
ing the reconfiguration problem of multi-UAV formations
of different group scale, the initial positions are equidistant

Fig. 16 Control inputs’ curve for each UAV at all time-domain
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Fig. 17 Distance curve between each UAV for UAV 1–9 (a)–(i)

Table 12 Average fitness value for different algorithms

Domain IDE 1lSPIO HPSOGA AHPSODE

1 s 201.52 194.73 187.1535 189.188

2 s 74.98 65.35 59.27 61.19

3 s 25.43 19.54 10.46 9.18

4 s 14.72 14.05 2.68 6.75

5 s 7.97 10.84 1.14 3.32

6 s 5.19 8.73 0.56 1.56

7 s 3.45 8.78 0.844 0.548

8 s 2.33 6.21 0.611 0.196

Time cost 8.49s 8.96s 9.63s 6.051s

distributed in [− 30,30], and the target positions are on a
circular area with [0, 0, 50] as the center and a radius of 15
without considering collisions and communication distance.
The experimental scene is shown in Fig. 18.

Table 13 shows the experimental results for different
scales of UAV formation reconfiguration scenarios. It can
be seen from Table 13 that the time consumption increases
rapidly as the number of UAVs increases. Therefore, our
proposed AHPSODE-based method cannot solve the real-

time formation reconfiguration problem for large-scale UAV
groups.

According to the above simulations, we can conclude that
our proposed AHPSODE algorithm can utilize the advan-
tages of both DE and PSO in solving optimization problems.
Meanwhile, the convergence curve of different algorithms
also indicates that the AHPSODE has higher search veracity
than SPSO, more rapid convergence speed. Finally, the pro-
posed AHPSODE-Based RHC Controller can successfully
transform the initial UAV formation to the desired target for-
mation in 3-D space and each UAV satisfies all constraints
in the reconfiguration process.

Conclusion

In this paper, an AHPSODE-based RHC controller is pro-
posed to solve multiple-UAV formation reconfiguration
problem in a 3-D environment. The proposed AHPSODE
algorithm is first used to solve the discrete target assign-
ment problem of formation reconfiguration. Then combined
with the idea of rolling time-domain control, the global con-
trol problem is decomposed into several local optimization
problems, and then, the AHPSODE algorithm is used to
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Fig. 18 Scenes of formation reconfiguration for muti-UAV formation of 10 scale and 20 scale

Table 13 Time cost for different scale of UAV group by AHPSODE

Group scale 10 20 30 40 50 60 70 80 90 100

Timecost 6.679 11.126 15.932 21.262 26.851 33.13 39.26 45.61 52.54 59.707

gbestvalue 1.02 12.47 68.22 147.25 330.73 473.97 670.17 817.23 1120.80 1243.09

find the optimal solution of the local optimization prob-
lem. Through the numerical simulation experiment, it can
be proved that the AHPSODE-based RHC controller has
higher search precision and speed compared. At the same
time, due to the decomposition of the global control problem,
the complexity and computational overhead of multi-UAV
reconfiguration is reduced, and the real-time performance
of the controller in the formation reconfiguration task is
improved. In future work, the problem of formation recon-
figuration with multi-objective optimization and large-scale
problem will be consider. Furthermore, the optimization of
the controller within a framework of optimal control will
also be considered as a further research direction to enhance
the integrity and practicality of the formation reconfiguration
strategy.pg
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Table 14 Results on AHPSODE compared with other algorithms at 30-D

Fun SPSO SDE APSO ADE AHPSODE HPSOGA IDE SPIO

F1 Mean 4.10E+08 2.39E+10 1.88E+09 1.68E+10 1.59E+08 1.10E+10 6.76E+09 1.46E+09

Std 8.08E+08 2.39E+09 1.06E+09 4.20E+09 5.00E+08 6.75E+09 7.16E+09 3.97E+08

F3 Mean 2.90E+04 2.01E+05 4.73E+04 1.95E+05 1.96E+03 2.10E+05 1.54E+05 6.64E+04

Std 7.83E+03 1.86E+04 1.33E+04 1.47E+04 1.48E+03 1.41E+05 2.40E+04 5.67E+03

F4 Mean 6.25E+02 1.68E+03 7.14E+02 9.55E+02 5.58E+02 1.04E+03 5.86E+02 9.23E+02

Std 1.63E+02 2.30E+02 1.18E+02 1.88E+02 8.57E+01 3.76E+02 1.22E+02 6.30E+01

F5 Mean 6.48E+02 8.30E+02 6.96E+02 8.20E+02 6.36E+02 7.88E+02 7.57E+02 7.60E+02

Std 2.51E+01 9.87E+00 2.09E+01 1.40E+01 4.00E+01 2.81E+01 7.34E+01 2.41E+01

F6 Mean 6.42E+02 6.57E+02 6.52E+02 6.44E+02 6.32E+02 6.56E+02 6.28E+02 6.30E+02

Std 1.44E+01 3.24E+00 1.05E+01 6.09E+00 6.28E+00 1.68E+01 1.99E+01 3.45E+00

F7 Mean 9.54E+02 1.88E+03 9.68E+02 1.59E+03 9.63E+02 1.16E+03 1.38E+03 1.09E+03

Std 5.31E+01 1.33E+02 5.94E+01 9.27E+01 7.65E+01 1.74E+02 3.26E+02 2.87E+01

F8 Mean 9.01E+02 1.15E+03 9.68E+02 1.12E+03 9.34E+02 1.09E+03 1.07E+03 1.06E+03

Std 2.00E+01 1.17E+01 3.11E+01 2.69E+01 3.45E+01 4.05E+01 9.18E+01 2.05E+01

F9 Mean 3.09E+03 1.41E+04 4.78E+03 1.14E+04 3.14E+03 9.70E+03 1.00E+04 4.77E+03

Std 7.71E+02 1.42E+03 1.88E+03 1.31E+03 1.10E+03 2.77E+03 4.45E+03 7.55E+02

F10 Mean 5.55E+03 5.49E+03 5.92E+03 6.46E+03 5.00E+03 7.97E+03 6.08E+03 8.14E+03

Std 8.71E+02 1.05E+03 5.13E+02 1.05E+03 5.86E+02 6.09E+02 8.77E+02 2.74E+02

F11 Mean 1.43E+03 1.77E+03 1.67E+03 1.73E+03 1.26E+03 1.08E+04 1.82E+03 2.68E+03

Std 6.29E+01 5.68E+01 1.88E+02 6.80E+01 5.08E+01 1.04E+04 7.36E+02 3.53E+02

F12 Mean 3.08E+07 3.35E+08 6.35E+07 3.01E+08 6.38E+07 5.58E+08 8.45E+07 2.54E+08

Std 6.15E+07 8.36E+07 6.35E+07 1.18E+08 9.47E+07 4.68E+08 1.07E+08 7.23E+07

F13 Mean 4.07E+04 3.63E+06 1.07E+05 2.62E+06 8.07E+06 3.41E+08 4.51E+06 5.05E+07

Std 2.25E+04 2.25E+06 6.05E+04 1.21E+06 2.24E+07 6.94E+08 4.20E+06 2.70E+07

F14 Mean 5.20E+04 1.61E+03 5.37E+03 1.73E+03 3.65E+03 4.32E+05 3.15E+05 1.82E+05

Std 1.22E+05 2.57E+01 5.84E+03 6.53E+01 4.50E+03 6.73E+05 4.00E+05 8.05E+04

F15 Mean 3.70E+04 6.86E+03 2.43E+04 1.69E+04 1.12E+04 2.09E+06 1.66E+05 1.06E+07

Std 5.51E+04 1.24E+03 1.66E+04 7.23E+03 1.70E+04 1.41E+06 5.36E+04 5.47E+06

F16 Mean 3.04E+03 3.05E+03 2.90E+03 2.95E+03 2.57E+03 3.64E+03 2.59E+03 3.47E+03

Std 2.48E+02 3.30E+02 4.01E+02 3.40E+02 4.33E+02 3.50E+02 2.46E+02 2.51E+02

F17 Mean 2.40E+03 2.18E+03 2.43E+03 2.13E+03 2.26E+03 2.61E+03 2.13E+03 2.39E+03

Std 2.69E+02 2.03E+02 3.04E+02 1.55E+02 1.77E+02 2.78E+02 1.60E+02 8.42E+01

F18 Mean 3.90E+04 3.80E+05 2.65E+05 4.96E+05 5.32E+04 2.22E+06 9.15E+05 1.91E+06

Std 2.72E+04 4.54E+05 2.44E+05 3.26E+05 9.02E+04 3.28E+06 6.89E+05 8.26E+05

F19 Mean 3.30E+04 3.05E+05 1.72E+05 4.04E+05 2.32E+03 1.52E+07 1.14E+06 1.99E+07

Std 3.73E+04 2.06E+05 2.21E+05 2.85E+05 5.24E+02 2.17E+07 2.51E+06 1.15E+07

F20 Mean 2.73E+03 2.58E+03 2.77E+03 2.55E+03 2.37E+03 2.83E+03 2.40E+03 2.65E+03

Std 2.54E+02 1.61E+02 2.49E+02 1.61E+02 1.21E+02 1.88E+02 1.55E+02 6.19E+01

F21 Mean 2.47E+03 2.63E+03 2.46E+03 2.59E+03 2.43E+03 2.57E+03 2.54E+03 2.53E+03

Std 2.89E+01 1.09E+01 3.58E+01 1.78E+01 2.08E+01 1.84E+01 6.61E+01 2.32E+01

F22 Mean 4.01E+03 8.75E+03 6.04E+03 8.74E+03 4.98E+03 5.31E+03 6.95E+03 2.56E+03

Std 2.37E+03 1.09E+03 2.27E+03 8.29E+02 2.10E+03 2.82E+03 1.74E+03 4.77E+01
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Table 14 continued

Fun SPSO SDE APSO ADE AHPSODE HPSOGA IDE SPIO

F23 Mean 2.95E+03 2.93E+03 2.99E+03 2.92E+03 2.89E+03 2.93E+03 2.85E+03 2.92E+03

Std 9.06E+01 1.69E+01 1.01E+02 9.50E+00 4.29E+01 4.62E+01 6.10E+01 2.25E+01

F24 Mean 3.12E+03 3.08E+03 3.19E+03 3.07E+03 3.04E+03 3.09E+03 3.03E+03 3.09E+03

Std 8.34E+01 1.17E+01 1.15E+02 1.49E+01 4.12E+01 3.02E+01 3.69E+01 2.43E+01

F25 Mean 2.98E+03 4.72E+03 3.06E+03 4.35E+03 2.90E+03 3.13E+03 3.11E+03 3.21E+03

Std 3.50E+01 2.78E+02 6.09E+01 3.55E+02 1.02E+01 2.67E+02 2.34E+02 3.56E+01

F26 Mean 6.23E+03 6.77E+03 6.76E+03 6.55E+03 5.67E+03 6.34E+03 6.14E+03 5.14E+03

Std 1.31E+03 2.06E+02 8.39E+02 1.75E+02 1.48E+03 1.12E+03 6.29E+02 2.73E+02

F27 Mean 3.34E+03 3.23E+03 3.38E+03 3.22E+03 3.26E+03 3.30E+03 3.22E+03 3.40E+03

Std 6.55E+01 1.36E+01 8.82E+01 6.87E+00 4.15E+01 4.75E+01 5.10E+00 2.19E+01

F28 Mean 3.32E+03 4.99E+03 3.48E+03 4.47E+03 3.28E+03 3.68E+03 3.65E+03 3.72E+03

Std 3.67E+01 8.32E+02 7.92E+01 1.02E+03 4.69E+01 3.82E+02 7.29E+02 5.62E+01

F29 Mean 4.49E+03 3.90E+03 4.57E+03 3.77E+03 3.88E+03 4.60E+03 3.59E+03 4.62E+03

Std 3.73E+02 2.65E+02 2.58E+02 2.67E+02 2.28E+02 3.34E+02 1.25E+02 7.11E+01

F30 Mean 9.14E+05 5.47E+05 3.98E+06 5.91E+05 6.38E+04 1.78E+07 7.35E+04 2.07E+07

Std 1.34E+06 1.86E+05 3.27E+06 2.13E+05 1.08E+05 2.44E+07 2.09E+04 7.37E+06

Table 15 Results on AHPSODE compared with other algorithms at 50-D

Fun SPSO SDE APSO ADE AHPSODE HPSOGA IDE SPIO

F1 Mean 8.77E+09 9.11E+10 1.83E+10 6.83E+10 1.86E+09 2.58E+10 4.88E+10 1.40E+10

Std 3.60E+09 6.16E+09 7.15E+09 8.02E+09 1.54E+09 9.28E+09 1.58E+10 1.95E+09

F3 Mean 1.05E+05 4.37E+05 1.51E+05 4.51E+05 3.09E+04 3.89E+05 3.72E+05 1.69E+05

Std 2.49E+04 3.32E+04 3.11E+04 2.93E+04 9.85E+03 1.89E+05 4.61E+04 1.74E+04

F4 Mean 1.28E+03 1.15E+04 2.52E+03 9.43E+03 8.11E+02 2.65E+03 3.65E+03 2.60E+03

Std 3.27E+02 8.90E+02 9.34E+02 1.61E+03 1.85E+02 1.17E+03 1.88E+03 3.40E+02

F5 Mean 8.48E+02 1.24E+03 8.95E+02 1.22E+03 8.13E+02 1.07E+03 1.02E+03 1.07E+03

Std 7.10E+01 2.13E+01 3.65E+01 3.17E+01 6.52E+01 7.01E+01 1.51E+02 2.68E+01

F6 Mean 6.62E+02 6.86E+02 6.66E+02 6.79E+02 6.42E+02 6.73E+02 6.78E+02 6.56E+02

Std 7.80E+00 4.64E+00 9.65E+00 4.39E+00 5.19E+00 1.48E+01 2.59E+01 3.47E+00

F7 Mean 1.36E+03 4.01E+03 1.45E+03 3.47E+03 1.32E+03 1.83E+03 2.53E+03 1.73E+03

Std 1.15E+02 2.50E+02 1.53E+02 5.30E+02 1.09E+02 2.71E+02 6.65E+02 5.30E+01

F8 Mean 1.15E+03 1.53E+03 1.20E+03 1.51E+03 1.11E+03 1.41E+03 1.38E+03 1.37E+03

Std 5.85E+01 2.00E+01 5.37E+01 2.74E+01 5.99E+01 8.64E+01 1.15E+02 2.44E+01

F9 Mean 1.29E+04 4.50E+04 1.59E+04 3.96E+04 1.01E+04 4.06E+04 3.64E+04 2.39E+04

Std 2.69E+03 3.16E+03 2.68E+03 2.83E+03 1.95E+03 1.09E+04 8.99E+03 2.80E+03

F10 Mean 9.63E+03 1.27E+04 1.07E+04 1.34E+04 8.26E+03 1.44E+04 1.16E+04 1.44E+04

Std 9.52E+02 1.22E+03 1.07E+03 1.05E+03 7.39E+02 9.96E+02 1.92E+03 5.12E+02

F11 Mean 3.20E+03 1.49E+04 6.43E+03 1.18E+04 1.60E+03 1.54E+04 5.99E+03 1.06E+04

Std 6.58E+02 1.40E+03 2.13E+03 1.64E+03 8.77E+01 1.13E+04 3.62E+03 1.29E+03

F12 Mean 1.41E+09 9.62E+09 2.03E+09 8.54E+09 2.36E+09 5.92E+09 2.15E+09 1.26E+09

Std 1.62E+09 1.60E+09 1.37E+09 8.88E+08 2.00E+09 3.16E+09 2.05E+09 2.94E+08

F13 Mean 9.52E+07 3.76E+08 6.19E+06 2.75E+08 2.87E+08 3.60E+09 1.07E+08 2.34E+08

Std 2.04E+08 2.44E+08 5.96E+06 2.21E+08 6.00E+08 4.04E+09 2.62E+08 7.13E+07
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Table 15 continued

Fun SPSO SDE APSO ADE AHPSODE HPSOGA IDE SPIO

F14 Mean 5.24E+05 8.47E+05 3.27E+05 6.40E+05 5.37E+05 1.17E+06 1.40E+06 2.29E+06

Std 1.24E+06 3.23E+05 4.51E+05 3.04E+05 1.34E+06 1.11E+06 8.86E+05 6.58E+05

F15 Mean 3.20E+04 9.46E+06 5.09E+04 2.66E+06 1.61E+04 2.40E+08 1.11E+06 1.21E+08

Std 2.42E+04 2.18E+07 3.51E+04 1.60E+06 8.22E+03 3.76E+08 2.28E+06 7.61E+07

F16 Mean 4.10E+03 5.81E+03 4.44E+03 5.81E+03 3.58E+03 4.98E+03 4.63E+03 5.54E+03

Std 4.13E+02 3.01E+02 4.71E+02 2.83E+02 3.92E+02 3.74E+02 8.27E+02 2.20E+02

F17 Mean 3.60E+03 4.61E+03 3.56E+03 4.59E+03 3.24E+03 4.48E+03 3.79E+03 4.34E+03

Std 4.23E+02 1.78E+02 4.20E+02 2.27E+02 4.63E+02 3.77E+02 1.93E+02 1.96E+02

F18 Mean 7.98E+05 1.40E+07 3.38E+06 1.66E+07 6.22E+05 2.72E+07 5.71E+06 1.63E+07

Std 1.46E+06 4.34E+06 1.62E+06 4.64E+06 1.48E+06 4.38E+07 2.58E+06 4.67E+06

F19 Mean 4.35E+05 2.36E+06 2.61E+06 2.72E+06 6.77E+03 2.86E+08 7.61E+06 4.18E+07

Std 7.07E+05 1.76E+06 3.65E+06 3.08E+06 5.97E+03 4.65E+08 2.13E+07 1.84E+07

F20 Mean 3.10E+03 3.85E+03 3.62E+03 3.71E+03 3.06E+03 4.14E+03 3.33E+03 3.89E+03

Std 3.74E+02 4.28E+02 3.29E+02 4.35E+02 2.37E+02 2.83E+02 3.12E+02 1.49E+02

F21 Mean 2.70E+03 3.02E+03 2.73E+03 2.96E+03 2.60E+03 2.92E+03 2.95E+03 2.79E+03

Std 6.02E+01 1.76E+01 5.30E+01 3.84E+01 5.68E+01 4.51E+01 6.29E+01 2.63E+01

F22 Mean 1.19E+04 1.59E+04 1.17E+04 1.59E+04 9.32E+03 1.51E+04 1.36E+04 1.25E+04

Std 1.30E+03 3.05E+02 8.24E+02 4.39E+02 1.76E+03 1.10E+03 1.78E+03 1.74E+03

F23 Mean 3.49E+03 3.42E+03 3.59E+03 3.38E+03 3.27E+03 3.38E+03 3.24E+03 3.32E+03

Std 1.55E+02 3.41E+01 1.82E+02 2.37E+01 4.70E+01 9.62E+01 1.16E+02 4.71E+01

F24 Mean 3.57E+03 3.46E+03 3.81E+03 3.43E+03 3.40E+03 3.49E+03 3.34E+03 3.52E+03

Std 1.40E+02 1.85E+01 1.81E+02 2.89E+01 6.65E+01 8.19E+01 6.66E+01 3.72E+01

F25 Mean 3.84E+03 1.48E+04 4.53E+03 1.07E+04 3.24E+03 4.10E+03 6.59E+03 5.74E+03

Std 3.52E+02 2.35E+03 7.40E+02 1.37E+03 1.41E+02 9.38E+02 3.51E+03 2.65E+02

F26 Mean 9.90E+03 1.09E+04 1.17E+04 1.03E+04 8.90E+03 1.05E+04 9.68E+03 1.14E+04

Std 1.98E+03 1.75E+02 1.53E+03 1.72E+02 1.07E+03 1.23E+03 1.65E+03 7.38E+02

F27 Mean 4.02E+03 3.51E+03 4.18E+03 3.44E+03 3.73E+03 3.91E+03 3.39E+03 4.30E+03

Std 1.65E+02 7.20E+01 1.77E+02 5.14E+01 1.46E+02 2.48E+02 4.91E+01 9.18E+01

F28 Mean 4.48E+03 8.12E+03 5.14E+03 7.95E+03 3.68E+03 6.31E+03 7.80E+03 5.96E+03

Std 7.05E+02 9.21E+01 5.29E+02 1.22E+02 3.59E+02 1.16E+03 2.47E+02 1.91E+02

F29 Mean 6.76E+03 6.16E+03 7.61E+03 5.84E+03 5.08E+03 6.37E+03 4.89E+03 6.89E+03

Std 7.12E+02 2.64E+02 1.65E+03 3.08E+02 3.23E+02 6.93E+02 5.70E+02 2.04E+02

F30 Mean 5.06E+07 8.54E+07 1.76E+08 6.25E+07 2.87E+06 2.81E+08 8.87E+06 2.97E+08

Std 2.94E+07 3.60E+07 5.13E+07 2.68E+07 2.17E+06 1.93E+08 7.28E+06 3.81E+07

123



Complex & Intelligent Systems (2023) 9:1929–1962 1953

Fig. 19 Box plot of different algorithms on CEC 2017 at 30-D (Fun 1–15)
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Fig. 20 Box plot of different algorithms on CEC 2017 at 30-D (Fun 16–30)
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Fig. 21 Box plot of different algorithms on CEC 2017 at 50-D (Fun 1–15)
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Fig. 22 Box plot of different algorithms on CEC 2017 at 50-D (Fun 16–30)
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Fig. 23 Convergence curve of different algorithms on CEC 2017 at 30-D (Fun 1–15)
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Fig. 24 Convergence curve of different algorithms on CEC 2017 at 30-D (Fun 1–15)
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Fig. 25 Convergence curve of different algorithms on CEC 2017 at 50-D (Fun 15–30)
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Fig. 26 Convergence curve of different algorithms on CEC 2017 at 50-D (Fun 15–30)
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