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Abstract
Many real-world optimization problems have complex features, such as bias,multimodel, etc. Existing evolutionary algorithms
mainly utilize solutions’ current performance to decide their survivals, which are not comprehensive enough to describe the
evolving trend, and may misguide the evolve decision. In this paper, a novel robust performance evaluation approach for
evolutionary multiobjective optimization algorithm is proposed. Here, the robustness refers to the performance fluctuation
degree among several generations, which can be expressed by interval values in respect to the decision and objective spaces.
Based on the robust performance evaluation, solutions can be selected and preserved considering their historical performance,
and thus, the exploration strength in convergence potential areas can be maintained. Meanwhile, to construct an evolutionary
algorithm that embeds robustness evaluation, a robust elite managerial method and a learning-based updating strategy are
also designed. Experiments on multiobjective benchmark problems and a real-world optimization in a robotic manipulation
system have proved the superiority of the proposed approach.

Keywords Multiobjective · Evolutionary algorithm · Elite preservation · Robustness · Historical information

Introduction

Multiobjective optimization problems (MOPs) widely exist
in real-world applications, such as community extraction
[17], trajectory planning [13], network configuration [39],
mechanism design [29], and so on. In the past 2 decades,
a large number of algorithms have been designed to obtain
an accurate and well-distributed approximation of the true
optimal front, most of which adopt the population-based
metaheuristic mechanism that can provide multiple solu-
tions at one time [42]. In this mechanism, individuals update
according to competition or cooperation principles, thus
building the approximate front. Here, the definition and
preservation of the elite solution are essential, since they
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will affect the searching preference as well as the final per-
formance. Up to now, the static definition that bases on the
current fitness values has been fully studied.

Dominance relation, crowding estimation, and aggrega-
tion cost function are the most commonly used strategies in
handling elite definition and preservation [22]. Dominance
relation is the primary consideration in most studies. The
nondominated sorting technique has provided efficient con-
vergence strength in MOPs with less than three objectives
[7]. To guarantee selection pressure under high-dimensional
problem, modified dominance relations have been studied
[1]. Crowding estimation is usually required as the sec-
ondary criterion to maintain the searching diversity, where
Minkowski distance and cosine distance have been studied
under different problem dimensions [31]. Two approaches
are commonly used to preserve solution based on the crowd-
ing estimation. The first one calculates the neighboring
distance from the same nondominated front, and then selects
solutions with larger distance to fill the elite archive [7].
The second one calculates the distance between the nons-
elected solution and its closest selected solution, and then
moves the most distant solution to the selected archive one
at a time until the archive’s capacity limit is reached [20].
Finally, aggregation cost function is mostly designed based
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on reference vectors in the objective space; therefore, it has
advantages in controlling the search direction and main-
taining the diversity performance. This strategy is always
adopted in the decomposition-based algorithmMOEA/D and
its variants [21], and also in dominance-based mechanism as
a secondary criterion to guarantee the diversity performance
[41]. Moreover, indicator-based methods and preference-
based weightings have also been widely studied in recent
years [32].

Meanwhile, the above strategies can also work in a
cooperative manner. Through introducing multi-stage and
multi-archive approaches, solutions under different stan-
dards are selected as elite ones to balance the searching
performance. A few works introduced multiple stages focus-
ing on convergence or diversity controls, where aggregated
convergence measure and distance-based diversity estima-
tion are, respectively, adopted in updating the approximate
Pareto front. For example, Tian et al. updated the popula-
tion by different selection schemes in different stages [28],
while Chen et al. introduced different grouping schemes
in different stages [3]. Similarly, studies adopting multiple
archives also assign different elite handling methods to dif-
ferent archives [35]. These archives update in parallel and
store elite records separately. Defining preferences in differ-
ent times and archives has greatly improved the performance
in many-objective optimization problems [25].

The population’s update approach is another essential
process which determines the exploration and exploitation
behaviors [30,33]. To inherit from the previous generation,
the existing updatemechanisms canbe classified into two cat-
egories, elimination-based and learning-based, respectively.
Elimination-based mechanism mainly refers to the genetic
and differential evolution operators, where offsprings are
generated through crossover and mutation, and then, all the
individuals participate in the competition following the rule
of “survival of the fittest” according to the elite definition
strategy [34]. Under thesemechanisms, individuals aremem-
oryless; thus, they have a rapid response for exploitation in
local regions, yet it is difficult for them to fulfill the explo-
ration based on historical information. On the other hand, the
learning-based mechanisms, such as particle swarm opera-
tor, competitive swam operator, etc., are less greedy and have
continuous dynamic model; thus, they have advantages in
exploring the global optima [26]. However, the individual
association for learning behaviors under multiple elites envi-
ronment will significantly affect the optimization efficiency
[38].

In conclusion, the existing studies mainly utilize the
solution’s current objective values to conduct elite preser-
vation and updating, which are not comprehensive enough
to describe the searching trends. For instance, facing com-
plex Pareto set including bias, scattered, and multimodel
proprieties, estimation based on the current performance

may lead to premature decision, causing diversity loss and
misguided exploitation direction. Meanwhile, to enhance
convergence strength and restrict computing expenses, most
algorithms do not consider diversity control in the decision
space, thus good alternative solutions may not be found.
Since historical conditions and learning-based mechanisms
show advantages in exploring the global optima, and utilizing
historical evaluations does not bring additional computa-
tional costs, it makes sense to record and utilize individuals’
representative information during evolution. The informa-
tion may contribute to choosing the right leader as well
as preserving promising directions for evolution. Based on
the above assumptions, this work attempts to define elite
solutions based on their performance intervals in several his-
torical generations. The performance includes convergence
and diversity assessments, and the diversity considers the
sparsity from both the objective space and the decision space.
This novel idea is denoted as the robust performance evalua-
tion (RPE). Based on the RPE, a multiobjective optimization
framework with a robust archive is established.

The contributions of this paper are summarized in the
following three aspects. First, a robust performance eval-
uation approach is introduced to define elite solutions
according to the historical performance. Second, an exter-
nal robust archive is established and its preservation strategy
is designed. Third, a learning-based updating strategy is
proposed for individuals in the external robust archive.
The proposed RPE-based framework has proved to have
competitive performance compared to several well-known
evolutionary algorithms for solving MOPs.

The remainder of this paper is organized as follows. The
preliminaries of related definitions and studies on interval
dominance relation are introduced in the section “Related
definitions”. The proposed robust performance evaluation
and the RPE-based algorithm are detailed in the section
“The proposed algorithm”. Then, the experiments on several
benchmark instances and a parameter sensitivity study are
presented in the section “Experiments”. Finally, the section
“Discussions” presents the conclusions.

Related definitions

In this section, some basic knowledge in MOP study will
be presented first. Then, a brief introduction of the interval
dominance relation is given.

Multiobjective optimization problem

An MOP can be mathematically formulated as

Min f(x) = ( f1(x), f2(x), . . . , fM (x))
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s.t. x ∈ �, (1)

where � = ∏D
i=1[ai , bi ] ⊆ R

D is the D-dimensional deci-
sion space, and ai and bi are the lower and upper bound of
the i th dimension respectively. x = (x1, x2, . . . , xD)T ∈ �

is a candidate solution, and f ∈ R
M constitutes M objective

functions.
When adopting the population-based searching mecha-

nism to solveMOP, the position of each individual represents
a candidate solution. The Pareto dominance is used to make
comparison between individuals.

Definition 1 (Zhou et al. [40]) Given two individual p1 and
p2, p1 Pareto dominates p2 is defined as

p1 ≺ p2 ⇔ ∀ j ∈ {1, 2, . . . , M}, f j (p1.x) ≤ f j (p2.x),

∧ ∃ j ∈ {1, 2, . . . , M}, f j (p1.x) < f j (p2.x).

(2)

p1 and p2 are incomparable when they are nondominated
with each other. These nondominated individuals provide the
so-called trade-off solutions, which form the Pareto set (PS)
in the decision space and map to the Pareto front (PF) in the
objective space.

Interval comparison

Interval values havebeen introduced in studyingoptimization
problems with environmental uncertainty or time-varying
optima [10,12,23,36]. Among these studies, on comparing
interval values, several relations have been presented. The
following relation is the most commonly adopted [18].

Definition 2 Given two intervals a = [a, a] and b = [b, b],
relation <IN is defined as

a <IN b ⇔ a ≤ b ∧ a ≤ b ∧ a 
= b. (3)

By taking both the lower and upper boundaries into con-
sideration, this relation is reasonable in handing interval
comparison. When intervals are incomparable, it is denoted
as a‖b.

When solving an optimization through metaheuristic
approaches, disturbance to the individualwill provide a group
of solutions and generate multiple objective values accord-
ingly. Therefore, the individuals can be compared based on
the generated objective interval, which is defined as follows.

Definition 3 Given a solution set {x1, . . . , xn}, the j th objec-
tive interval is denoted as

f Ij � [ f j (x1:n), f j (x1:n)] =
[

min
k

f j (xk),max
k

f j (xk)
]

.

(4)

In single-objective optimization, individuals with one-
dimensional objective interval f I can be compared accord-
ing to Definition 2. When dealing with multiobjective
optimization, individuals with multi-dimensional objective
interval f I = ( f I1 , f I2 , . . . , f IM ) should be compared accord-
ing to the interval Pareto dominance relation.

Definition 4 (Sun et al. [24]) Given two individuals p1, p2
each related to a solution set, the j th objective interval is
denoted as p1. f Ij and p2. f Ij , respectively.The interval Pareto
dominance relation ≺I F is defined as

p1 ≺I F p2 ⇔ ∀ j ∈ {1, 2, . . . , M}, (p1. f Ij <IN p2. f
I
j )

∧(p1. f
I
j ‖p2. f Ij ),

∧ ∃ j ∈ {1, 2, . . . , M}, p1. f Ij <IN p2. f
I
j .

(5)

The interval dominance relation will be adopted in our
work to utilize historical performance for robust elite defini-
tion.

The proposed algorithm

In this part, the concept of the robust performance evalu-
ation over time will be introduced, and then, the selecting
and updating details in building the robust archive will be
described. In the end, the framework of the proposed RPE-
based algorithm is given.

Robust performance evaluation

In multiobjective metaheuristic algorithm, solutions elim-
inated in an elite competition must not provide guidance
for subsequent generations. However, considering the mul-
timodal, deceptive situations, or the diversity estimation
affected by the whole distribution, the elite definition prin-
ciple is not absolutely correct and can lead to premature
situations. Therefore, the RPE technique is presented to
define the suboptimal solutions according to the individuals’
states in a time window.

The individuals’ historical states include position infor-
mation and objective values. The historical states over a
time interval are recorded as follows. At time t , the his-
torical positions in the last K generations are denoted as
{xt−k | k = 0, . . . , K − 1}. According to Definition 3, for
an individual p, the objective interval over time window K
is p. f Ij � [ f j (xt−K+1:t ), f j (xt−K+1:t )], j = 1, 2, . . . , M .
These historical states can demonstrate the stability and
evolving trend of the individual.

For high-dimensional space, the selection pressure pro-
videdby the interval Pareto dominance relation is not enough;
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therefore, instead of comparing the objective values directly,
two metrics to establish comparison during the robust eval-
uation are adopted. The two metrics, respectively, focus on
evaluating convergence and evaluating diversity. They are
defined according to the states of the individual to be evalu-
ated relative to an elite solution set.

The convergence evaluation metric is denoted as EC, and
it is defined as the distance between an individual and an
existing elite solution set. Here, the two kinds of distance are
plotted in Fig. 1a.

The first one is the Euclidean distance from the individual
to the ideal point of the solution set in a normalized objective
space. Although this distance has been adopted in several
studies for convergence measure, it is not quite reasonable
forMOPwith concave PF. For instance, in Fig. 1a (left), com-
pared to individual p1, p2 looks closer to the approximate PF,
yet its advantage cannot be reflected. The second distance is
calculated by adding a scaling procedure and transforming
the PF to the convex shape. The scaling ratio is the length
of the normalized objective vector closest to the individual.
Assume X is an elite solution set, for individual p, EC using
the second distance is calculated as follows:

p.EC = ‖p.f ′‖
‖f ′(x∗)‖

x∗ = argmin 
 (p.f, f(x)), x ∈ X

f ′(x∗) = f(x∗) − zid

zna − zid
p.f ′ = p.f − zid

zna − zid
, (6)

where zidj = minx∈X f j (x), j ∈ {1, 2, . . . , M} represents
the j th dimension of the ideal point, and znaj represents the
nadir value. f ′ is the normalized objective vector. Through
this EC metric, the individuals can be distinguished (Fig. 1a
(right)).

The diversity evaluation metric is denoted as ED. In this
work, ED has two forms: one evaluates crowding degree in
the objective space, termed as EDo; the other preforms in the
decision space, termed as EDd . In each form, the diversity
evaluation for one individual follows two steps, association
and quantification. Given an elite set ε and population Pe to
be evaluated. First, each individual p ∈ Pe is associated with
one closet elite in ε. Second, the diversity metric is quantified
as follows:

p.ED = dist × α(c−1), (7)

where, for EDo, dist represents one minus the cosine of the
included angle between the normalized objective vectors; for
EDd , dist represents Euclidean distance in the normalized
decision space. α is a penalty factor, α ∈ [0, 1]; c is the
index after sorting individual associated with a same elite in
descending order with respect to their dist values.

Based on the above definition, the RPE mechanism
transforms a individual’ historical states to the metric
intervals over time window K , denoted as p.ECI �
[EC(xt−K+1:t ),EC(xt−K+1:t )], p.EDI � [ED(xt−K+1:t ),
ED(xt−K+1:t )]. The diagram of the intervals is displayed in
Fig. 1b. The following sections will introduce the RPE-based
elite preservation.

Robust performance evaluation-based preservation

This section bases on the RPEmetrics in the section “Robust
performance evaluation” and the interval Pareto dominance
relation in Definition 4.

To incorporate RPE into metaheuristic algorithms, a
robust archive (RA) is established to preserve individu-
als with advantageous intervals in the objective or the
decision spaces. These individuals are selected consider-
ing convergence as well as diversity performance. Hence,
RA consists of two segments with equal capacity, which,
respectively, evaluated by interval [ECI ,−EDoI ] and inter-
val [ECI ,−EDd I ]. The intervals are displayed in Fig. 2a.
The cylinders represent the convergence intervals quanti-
fied by ECI , and the arcs represent the diversity fluctuation
quantified by EDI . Based on the interval Pareto relation,
in the decision space, p1 ≺IN p2; in the objective space,
p3 ≺IN p4.

During RA selection, individuals with nondominated
intervals have higher preserve priorities; individuals on the
same interval nondominated level are selected according
to their current convergence degree ECt . This procedure is
described in Algorithm 1.

Algorithm 1 RA-Selection
Require: Population P , Archive capacity NA
Ensure: Population R
1: A = ∅,i = 0;
2: (F1,F2, . . .) = Interval-NDSort([P.EC I ,−P.EDoI ]);
3: while | A |>= NA/2 do
4: i = i + 1; A = A ∪ Fi ;
5: end while
6: R = ⋃i−1

k=1 Fk ; P = P \ ⋃i−1
k=1 Fk ;

7: (p1, p2, . . .) = Sort(P.ECt );
8: for j = 1 : (NA/2− | R |) do
9: R = R ∪ p j ; P = P \ p j ;
10: end for
11: A = ∅;i = 0;
12: (F1,F2, . . .) = Interval-NDSort([P.EC I ,−P.EDdI ]);
13: while | A |>= NA/2 do
14: i = i + 1; A = A ∪ Fi ;
15: end while
16: R = ⋃i−1

k=1 Fk ∪ R; P = P \ ⋃i−1
k=1 Fk ;

17: (p1, p2, . . .) = Sort(P.ECt );
18: for j = 1 : (NA− | R |) do
19: R = R ∪ p j ; P = P \ p j ;
20: end for
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Fig. 1 Diagrams of basic concepts in RPE. a EC: the distance between an individual and a solution set. b Intervals in the objective space and the
decision space over time

Fig. 2 Diagrams of a performance intervals in decision space and objective space for individual comparison; b evolving trends corresponding to
different ϕ values: (left) small ϕ; (right) large ϕ

Learning-based local search

Solutions selected by RPE metric have strong robustness,
which indicate potential convergence areas. However, since
interval evaluation has less selection pressure, these solu-
tions are suboptimal and always lag behind the converging
process on the basis of the current fitness evaluation, they
cannot directly contribute to the approximate Pareto front.
Therefore, the utilization of these solutions is to conduct local
search that enhances the exploration performance in subre-
gions. The local search is realized by updating the position
of individuals in RA.

A learning-based local search (LBLS) is proposed for this
purpose. LBLS takes into account the robust solutions’ cur-
rent state, historical states, and information from the current
optimal solutions. It consists of two steps: individual selec-
tion and learning-based update.

(1) Select individuals from RA and current optimal popula-
tion separately. For example, in genetic algorithm (GA),
the current population is the optimal population, which
is updated by environmental selection strategy. The tour-

nament selection mechanism is adopted to determine the
mating parents. First, two sets of individuals, R1 and
R2, are selected from RA. The individuals’ interval non-
dominated levels and the maximum crowding distances
of the interval in the objective space (for R1) as well
as the decision space (for R2) determine the selection
result. Second, select individuals from the current optimal
population P . The nondominated levels and the closest
distance to the selected robust individuals are considered
during the selection. To be noted, the number of selected
individuals for LBLS is designed to be adaptive to main-
tain diversity at the beginning and stability at the end,
that is

| R1 | =
⌈
NA

4
× Eval − Evaluated

Eval

⌉

| R1 | = | R2 |, | P |=| R1 | + | R2 | . (8)

(2) Update the individuals in RA. LBLS strategy is inspired
fromPSO [5] andCSO [4] operators. The individual from
the elite archive is seen as a leader, and its position is
denoted as xe. Denote at time t , the position and velocity
of individuals from robust archive are denoted as xr ,t and
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vr ,t . The update formulation is as follows:

vr ,t+1 = r1 × vr ,t
+r2 × (xe − xr ,t ) + r3 × ϕ × (xr ,T − xr ,t )

xr ,t+1 = xr ,t + vr ,t+1. (9)

Here, r1, r2, r3 ∈ [0, 1]D are randomly generated vec-
tors, xr ,T is the mean value of the individual’s historical
position over time interval T , and ϕ ∈ [0, 1] is a parame-
ter to control the proportion of the historical information
and the elite information. When ϕ is small, the update
operator presents higher convergence strength guided by
the elite information; otherwise, when ϕ is large, the
updated individual receives backward strength, remain-
ing exploration in local areas. Trajectories under these
two conditions are illustrated in Fig. 2b. To control the
influence of local search to the main searching process, ϕ
can be designed adaptive to fit different evolution stages.

Main framework

The main framework of MOEA-RPE is illustrated in Algo-
rithm 2. In the framework, “GA” represents the general
evolutionary algorithm including tournament selection, sim-
ulated binary crossover, and polynomial mutation. The
“EnvironmentalSelection” can refer to any existing selection
technique in multiobjective research, such as metric-based
sorting, one-by-one selection, etc. Individuals eliminated by
“EnvironmentalSelection” are denoted asPr . These individ-
uals will be further evaluated and selected to update RA. At
the same time, optimal solutions found by RA will update
the population in MOEA.

It can be seen that the proposed framework is a mod-
ification of traditional MOEA that appends an external
production–selection process to discover robust noninferior
solutions. The external processwill contribute to the diversity
preservation in the objective space and the decision space, as
well as enhancing exploration in local regions. The update
diagram of the population in MOEA and the external RA is
displayed in Fig. 3.

Fig. 3 The update diagram of the population and the robust archive in
MOEA-RPE

Algorithm 2MOEA-RPE
1: Generate population P0 randomly, | P0 |= N ;
2: Establish robust archive R0 = ∅ ;
3: t = 0;
4: while computational budget is not exhausted do
5: Q = GA(P t );
6: R′ = LBLS(Rt ,P t );
7: [P t+1,Pr ] = EnvironmentalSelection(P t ∪ Q ∪ R′, N );
8: Rt+1 = RA-Selection(R′ ∪ Pr , N );
9: t = t + 1;
10: end while

Experiments

In this section, the experiments are arranged to validate the
effectiveness of the robust performance evaluation. Problems
with complex properties are selected as the test instances,
respectively. Several appropriate optimization algorithms for
these kinds of problems are selected to compare with the
proposed method.

Experiments on problemswith biased decision space

Experiment setting

For optimization problems, complexity in the decision space
mainly refers to the biased searching space [15]. Bias means
that the slopes of objectives are large in the vicinities of
some Pareto solutions, that is, a small variation will cause
significant deterioration. Therefore, the bias feature presents
difficulty in the balance between exploitation and explo-
ration, results in premature during optimization, and also
challenges the diversity performance. Benchmarks have been
built considering this complexity. Typical benchmark suite is
BT [16].

The complexity in decision space challenges the evolution
operator. Therefore, in this experiment, MOP methods with
different operators are selected, namely genetic operator, par-
ticle swarm optimizer, and differential optimizer. Since this
part of experiment does not focus on the highdimension in the
objective space, the performance of traditional algorithms,
such as NSGAII [7], MOPSO [5], and MOEADDE [15], is
similar to that of the current new algorithms. Thus, these tra-
ditional algorithms are selected as comparisons. Moreover,
two algorithms with local search mechanisms are selected,
namely,MOEADCMA [16] andNSLS [2]. These algorithms
have advantages in dealing with complexity in the decision
space. The comparison algorithms are provided by PlatEMO
[27].

Elite definition has great influence on the optimization per-
formance. For fair competition, the proposed MOEA-RPE
adopts the same environmental selectionmethods asNSGAII
(Algorithm 2, Line 7). The population size N and the maxi-
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mal number of fitness evaluations are set to be 100 and 1e5
in all runs.

The inverted generational distance (IGD) is used as the
performance assess indicators, which is a combinationalmet-
ric for both convergence and diversity. IGD is the average
distance from a uniformly distributed set selected from the
true PF to the obtained solution set. The size of the uniform
set for calculating IGD is set to be 5000.

Experimental results

The best, medium, and worst IGD values of each algo-
rithm on test instances BT1-5 from 30 independent runs are
presented in Table 1. The best IGD value in each row is
marked in black. The Wilcoxon’s rank sum test with the
significance level 0.05 is performed to show the statisti-
cally significant differences between the results; the symbols
“+”, “−”, and “=” in the table, respectively, indicate that
the results obtained by the reference algorithms are signifi-
cantly better than, worse than or equal to the ones obtained
by the proposed MOEA-RPE. Also, the Pareto optimal solu-
tions of all runs are plotted in Fig. 4, where the true PFs
are marked in red. From the IGD values and the position of
the best solutions, it can be observed that MOEA-RPE have
achieved most of the best performance. For BTs that have
distance-related bias, the convergence difficulty is raised.
Here,MOPSO,MOEADDE,MOEADCMA, andNSLS can-
not converge to the true PF; NSGAII and MOEA-RPE have
competitive performance, while MOEA-RPE shows smaller
converge distance and better stability. BT3 and BT4 also
have position-related bias. In these cases, compared to the
approximate PF of NSGAII, the shape of MOEA-RPE is
closer to the true PF. Considering that NSGAII and MOEA-
RPE adopt the same environmental selection method, it can
be concluded that MOEA-RPE has better exploration abil-
ity. The IGD curves within 1e5 fitness evaluations are given
in Fig. 5. Compared to NSGAII, MOEA-RPE can further
improve the optimization performance. This can be explained
by the robust performance evaluation approach that can
reserve potential good solutions, thus improving the explo-
ration ability of MOEA.

Experiments onmany-objective problems

Experiment setting

Complexity in objective space mainly refers to high-
dimensionality, degeneration, and so on. For many-objective
optimization, diversity control is essential in objective space
aswell as decision space. The popularmany-objective bench-
mark test suite MaF is selected as the optimization problem
in this section. MaF includes diverse properties in separabil-
ity, variable linkage, modality, and front geometry. In MaF,

the nonlinearity simulated by several transformation func-
tions can examine the convergence ability of the optimization
methods. In this section, the objective dimension inMaF suite
M is set to be 5.

MaF8 is a multi-point distance minimization problem
(MPDMP), which can visually examine the elite distribu-
tion in decision space [14]. The difficulty of MaF8 has been
raised, and another 3 MPDMPs with disconnected PS, local
optima, and shift transformation have been built. These new
instances are described in Table 2, where the penalty area�p

is built in decision space to complicate the fitness landscape;
shift transformation in MPDMP4 makes the problem decep-
tive and multimodal. All these changes require algorithm to
have better exploration ability. In MPDMP experiments, the
objective dimension M is set to be 10.

For many-objective problems, both evolution operator
and environmental selection method are important. There-
fore, many-objective algorithms using different operators are
selected as the comparison, namely, NSGAIII [6], MyO-
DEMR [8], and NMPSO [19]. The operators adopted are
GA, DE, and PSO, respectively. Also, an algorithm for
MaOP considering history information, NSGAIII-F1 [11],
is also selected, which introduces an information feed-
back model in updating population. And a newly pro-
posed decomposition-based algorithm MOEA/D-UR [9] is
included. All methods adopt the reference-based method and
the truncation approach in environmental selection. In this
experiment, to adjust the proposed RPE-based method for
solving many-objective problem, during the environmental
selection (Algorithm 2, Line 7), extreme solution on each
objective is first selected; the rest solutions are selected by
the truncation approach according to the minimum distance
to the neighboring solutions [37]. The population size N is
set to be 150 (for NSGAIII, N = 126), and the maximal
number of fitness evaluations is 1e5.

Experiment result

The IGD performance from 30 independent runs on MaF1-
8 and MPDMP2-4 is displayed in Table 3. It can be
observed from the IGD values that MOEA-RPE has an
obvious advantage on MaF1,2,5,6. For instances with mul-
timodal modality, MOEA-RPE has poor performance on
MaF3, which has a large number of local fronts. How-
ever, it is competitive on MaF4. It can be concluded that
although the robust performance evaluation has the abil-
ity to handle local optima, it may not suitable for highly
multimodal situation. This limitation can be explained by
the leader matching mechanism in LBLS, which can cause
fluctuations in exploiting an objective direction. Therefore,
the highly multimodal complexity remains a challenge for
MOEA-RPE.OnMPDMP2-4,MOEA-RPEhas achieved the
best IGD scores. To observe the effectiveness of integrating
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Table 1 The IGD values (best, medium, and worst) on BTs

Problem Item NSGAII MOPSO MOEADDE MOEADCMA NSLS MOEA-RPE

BT1 Min 0.0062 4.0784 1.7556 2.2039 4.2820 0.0061

Aver. 0.0385 4.4889 1.9811 2.5999 4.4355 0.0109

Max 0.1683 5.0025 2.3976 2.9179 4.5155 0.0212

Std. 5.9E−2 = 1.9E−1 − 1.6E−1 − 1.8E−1 − 5.9E−2 − 3.6E−3

BT2 Min 0.0941 2.5157 0.4122 0.4759 2.5749 0.0304

Aver. 0.1284 2.9885 0.4707 0.5479 2.7879 0.0572

Max 0.1752 3.5884 0.5275 0.6060 2.9644 0.0890

Std. 2.0E−2 − 2.4E−1 − 2.8E−2 − 3.8E−2 − 8.1E−2 − 1.4E−2

BT3 Min 0.0067 3.8944 0.8368 1.6172 4.3743 0.0064

Aver. 0.0090 4.6177 1.1407 1.9451 4.4626 0.0092

Max 0.0135 5.1581 1.4922 2.3404 4.5518 0.0152

Std. 1.7E−3 = 2.8E−1 − 1.7E−1 − 1.9E−1 − 4.2E−2− 2.1E−3

BT4 Min 0.0140 3.8182 0.5047 1.2264 4.2649 0.0126

Aver. 0.0188 4.5730 0.8599 1.6796 4.4300 0.0187

Max 0.0290 4.9093 1.1605 2.2717 4.5148 0.0240

Std. 3.7E−3 = 2.3E−1 − 1.9E−1 − 2.4E−1 − 5.5E−2 − 2.5E−3

BT5 Min 0.0049 4.2765 1.4657 2.1841 4.3097 0.0049

Aver. 0.0484 4.6243 1.9023 2.5571 4.3847 0.0211

Max 0.1523 5.1387 2.2389 2.8980 4.4869 0.0732

Std. 5.5E−2 − 1.9E−1 − 2.2E−1 − 1.7E−1 − 5.4E−2 − 2.1E−2

+/−/= 0/2/3 0/5/0 0/5/0 0/5/0 0/5/0

Bold indicates the best IGD value in each row

Fig. 4 The obtained solutions from 30 independent runs on BTs

historical information, attention should be paid to NSGAIII-
F1 and MOEA-RPE. Compared to NSGAIII, NSGAIII-F1
has advantage in solving a few instances, such as MaF8
and MPDMP2, while MOEA-RPE has advantage in most
of the instances, except MaF3. Therefore, the robust-based
approach has better effectiveness and stability to utilize the
historical information.

To study the distribution of the obtained solutions, the
solutions with medium performance are given in the paral-
lel coordinates in Fig. 6. It can be seen that MOEA-RPE
has advantageous convergence and diversity performance in
MaF1,2,4-8; and both NMPSO and MOEA-RPE have com-
petitive performance in MPDMPs. For MaF8 andMPDMPs,
the distributions in decision space can reflect the performance
visually, which are given in Fig. 7. Since the robust perfor-
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Fig. 5 The IGD curves with respect to the fitness evaluation times on BT1, BT2, and BT5

Table 2 Definition of the multi-point distance minimization problems
(MPDMPs)

mance evaluation consider the solutions’ historical position
in both objective space and decision space, MOEA-RPE can
achieve better distribution compared to the other algorithms,
including NMPSO and NSGAIII-F1. That is to say, MOEA-
RPE can provide more diverse solutions for the decision
maker.

In summary, according to the experiments, the proposed
method has advantages in dealing with bias in the decision
space, and is competitive in maintaining a uniform dis-
tribution in high-dimensional objective space. Since many
real-world problems, such as the path planning and crash-
worthiness optimizations, have the bias characteristics, the
proposed mechanism is suitable for solving these cases. To
further demonstrate this point, a robotic path planning exper-
iment will be performed in the section “Application on a path
planning problem in robotic manipulation system”.

Discussions

In this section, the effectiveness analysis of the applied strate-
gies and the sensitivity analysis of the main parameters are
included, followed by a computational complexity analysis
of the proposed framework.

Strategy effectiveness analysis

The proposed MOEA-RPE algorithm includes two main
operations, RA selection and LBLS. The effectiveness of
these two operations is discussed in this section.

Since the LBLS update requires individuals’ historical
performance, it cannot work alone without RPE in RA selec-
tion. The effectiveness of the combination of LBLS and RA
selection will be first discussed.WhenMOEA-RPE employs
the same environmental selection approach as NSGAII, the
comparative study between MOEA-RPE and NSGAII will
illustrate the differences. The bi-objective benchmark suite
BT is selected as the optimization problem. The optimization
results are displayed in Table 4, MOEA-RPE is represented
by “NSGAII+RA+LBLS”,which is significantly better than
NSGAII on 2 of the 5 test instances, and has better average
performance on 4 instances. This demonstrates that the uti-
lization of historical performance is meaningful.

Moreover, to analyze the effectiveness of LBLS sepa-
rately, an altered algorithm “NSGAII+RA+GA” is gener-
ated which adopts GA operation instead of LBLS. Results
show that without LBLS, the performance of four instances
would be degraded. The phenomenon can beŁ explained by
the advantages of the learning-based mechanisms in balanc-
ing global exploration and local search.

Sensitivity study on the robust archive capacity

In the proposedmethod, the robust archive capacity NA deter-
mines the extent of its influence on MOEA. In previous
experiment, NA is equal to the population size N . In this
section, MOEA-RPE with different NA values will be exam-
ined and analyzed.
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Table 3 The IGD values (best, medium, and worst) on MaFs and MPDMPs

Problem M Item NSGAIII MyODEMR NMPSO NSGAIII-F1 MOEADUR MOEA-RPE

MaF1 Min 0.2129 0.2256 0.1264 0.3546 0.1536 0.1216

5 Aver. 0.2614 0.2358 0.1352 0.4194 0.1582 0.1237

Max 0.3219 0.2457 0.1477 0.6313 0.1633 0.1271

Std. 3.2E−2 − 5.6E−3 − 4.7E−3 − 7.0E−2 − 2.3E−3 − 1.3E−3

MaF2 Min 0.1251 0.1128 0.1019 0.2782 0.1059 0.0964

5 Aver. 0.1400 0.1177 0.1047 0.3978 0.1103 0.1014

Max 0.1570 0.1217 0.1086 0.4817 0.1148 0.1036

Std. 8.8E−3 − 2.6E−3 − 1.9E−3 − 6.0E−2 − 2.1E−3 − 1.6E−3

MaF3 Min 0.0841 0.1307 0.1319 25.975 0.0665 0.0852

5 Aver. 0.1005 0.1584 0.9183 376.33 0.0830 6.1292

Max 0.1450 0.2073 4.6371 2483.9 0.0997 37.6700

Std. 1.3E−2 + 2.0E−2 + 1.2E+0 + 5.8E+2 − 8.4E−3 + 9.2E+0

MaF4 Min 2.7346 5.0358 2.0132 20.413 2.2314 1.9921

5 Aver. 4.1271 5.7259 2.4305 190.12 2.3377 2.8600

Max 21.017 6.8787 8.8498 1129.5 2.4873 11.2290

Std. 3.2E+0 − 4.0E−1 − 1.2E+0 = 2.5E+2 − 6.1E−2 + 1.8E+0

MaF5 Min 2.3720 2.2748 2.1614 4.0059 2.1811 1.9743

5 Aver. 2.5399 2.3947 2.2541 6.8835 2.6559 2.0410

Max 4.0340 2.6841 2.3714 9.3626 5.8572 2.1000

Std. 3.8E−1 − 9.7E−2 − 6.0E−2 − 1.3E+0 − 9.1E−1 − 3.2E−2

MaF6 Min 0.0164 0.6741 0.0190 0.2735 0.0044 0.0034

5 Aver. 0.0701 0.7258 0.0339 0.5210 0.0051 0.0035

Max 0.3343 0.7381 0.0538 0.6039 0.0057 0.0036

Std. 7.5E−2 − 1.6E−2 − 8.5E−3 − 8.2E−2 − 3.0E−4 − 6.2E−5

MaF7 Min 0.3200 0.7141 0.2403 14.341 0.3948 0.3207

5 Aver. 0.3714 0.8683 0.2585 16.963 0.4531 0.3388

Max 0.4204 1.1975 0.2722 20.240 0.4918 0.3706

Std. 2.6E−2 − 1.0E−1 − 6.8E−3 + 1.6E+0 − 2.2E−2 − 1.2E−2

MaF8 Min 0.1760 0.7113 0.0879 0.1272 0.1125 0.0952

5 Aver. 0.2454 0.9103 0.0915 0.1376 0.1221 0.0996

Max 0.3186 1.0026 0.0973 0.1475 0.1329 0.1073

Std. 3.9E−2 − 5.8E−2 − 2.1E−3 + 5.9E−3 − 4.5E−3 − 2.9E−3

MPDMP2 Min 0.4044 1.5312 0.4324 0.3581 0.3051 0.2370

10 Aver. 0.4520 2.4654 0.5442 0.4130 0.3313 0.2453

Max 0.5351 3.5890 0.6690 0.5419 0.3638 0.2562

Std. 3.2E−2 − 6.6E−1 − 5.1E−2 − 4.9E−2 − 1.5E−2 − 4.2E−3

MPDMP3 Min 0.2337 0.9572 0.1616 0.2229 0.1730 0.1130

10 Aver. 0.2726 1.7128 0.1808 0.2486 0.1906 0.1138

Max 0.3221 19.0300 0.2095 0.2749 0.2162 0.1157

Std. 2.3E−2 − 3.3E+0 − 1.2E−2 − 1.5E−2 − 8.8E−3 − 6.4E−4

MPDMP4 Min 0.2344 1.0658 0.1746 0.2594 NaN 0.1207

10 Aver. 0.2930 2.8022 0.1939 2.7794 NaN 0.1222

Max 0.4218 3.1147 0.2250 2.9585 NaN 0.1240

Std. 3.4E−2 − 6.6E−1 − 1.4E−2 − 6.7E−1 − NaN 1.0E−3

+/−/= 1/10/0 1/10/0 3/7/1 0/11/0 2/8/0

Bold indicates the best IGD value in each row
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Fig. 6 Solutions with medium performance on MaFs and MPDMPs

Let P = NA/N , the IGD performance of P ∈
{0.2, 0.4, 0.6, 0.8, 1.0} from 10 independent runs are plot-
ted in the box diagram Fig. 8. It can be seen that, compared
to the performance of NSGAII and NMPSO, the fluctuation
in P has no significant impact on MOEA-RPE. In previous
experiment, MOEA-RPE has presented better performance
on BT1-5, MaF1-2, and MaF5; in this section, the advantage
still exists when the proportion of robust solutions is reduced.
However, on MaF3 and MaF4, the performance deteriorates
when the proportion P is increased. Generally, the perfor-
mance has better stability when the proportion P is in range
[0.2, 0.8]. Thus, P = 0.6 is recommended when using the
proposed MOEA-RPE.

Computational complexity analysis

Compared with traditional MOEAs which hold an average
time complexity ofO(MN 2), the complexity ofMOEA-RPE
is mainly increased in processing the RPE-based preserva-
tion. In RPE, the number of comparison operation used to
obtain a metric interval is equal to the length of time window
K , and thus, the complexity in handling historical informa-
tion is O(K N ). The complexity of an interval nondominated
sorting operation is O(2MN 2). Since the sorting operation
performs twice in the two-metric-based selection process
(according to Algorithm 1), the time consumption will be
doubled. Taking all the above considerations and computa-
tions into account, the worst-case complexity is O(5MN 2).
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Fig. 7 The distribution of solutions with medium performance on MPDMPs

Table 4 The statistical results (mean and standard deviation) in terms of IGD values in the effectiveness study

Problem M D NSGAII NSGAII + RA + GA NSGAII + RA + LBLS

BT1 2 30 3.8451e−2 (5.92e−2) = 8.5190e−2 (7.87e−2) − 1.0852e−2 (3.62e−3)

BT2 2 30 1.2836e−1 (1.99e−2) − 1.0371e−1 (2.22e−2) − 5.7188e−2 (1.38e−2)

BT3 2 30 8.9991e−3 (1.71e−3) = 9.7731e−3 (2.01e−3) = 9.1801e−3 (2.11e−3)

BT4 2 30 1.8842e−2 (3.67e−3) = 2.0568e−2 (2.50e−3) − 1.8714e−2 (2.45e−3)

BT5 2 30 4.8434e−2 (5.51e−2) − 7.6837e−2 (1.01e−1) − 2.1127e−2 (2.12e−2)

+/−/= 0/2/3 0/4/1

Bold indicates the best IGD value in each row

Fig. 8 Sensitivity study on the
robust archive capacity
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When the constant coefficient is not considered, the time
complexity becomes O(MN 2). Meanwhile, since each non-
inferior individual maintains K historical metrics, the space
complexity would increase. In the worst case, it needs K
times more memory space than algorithms with no historical
records. To be concluded, although the proposed algorithm
has the same time complexity as most MOEAs, it requires
more sorting operations and read–write operations, so the
optimization process will take more time. Figure 9 shows
the average runtime of experiments in Table 3. The hardware
platform contains an Intel i7-9700K CPU and a memory of
16 GB. The software platform is Matlab. K = 5 is adopted
in these experiments.

Application on a path planning problem in
robotic manipulation system

In this section, the proposed algorithm is adopted and tested
in a robotic manipulation scenario. Industrial robots work in
environments withmany obstacles. In addition to completing
a task without collision with obstacles or other manipulators,
safety and energy costs should also be considered. There-
fore, a multiobjective path planning optimization problem
can be built. A manipulator can be described in two spaces, a
6-dimensional task-space illustrating the manipulator’s loca-
tion and orientation; and a Nd -dimensional joint-space to
record the joint angles of the manipulator motors, where Nd

is the dimension of freedom (DOF). The optimized solution
is a trajectory which consists of multiple points in the task-
space or the joint-space. Since a small change on the joint
angle will cause a significant change in the task-space, the
optimizations of the moving safety and the trajectory length
have bias features, which present difficulties for evolutionary
algorithms.

The manipulator path planning problem under environ-
ment with obstacles is defined as follows. The working
environment includes a 6-DOF manipulator and a spherical
obstacle. The task is to move the manipulator tip from ini-
tial position to target position through the stationary obstacle
without collision. To optimize the moving path, some points
in the path are selected as the control points. During opti-
mization, these control points are first determined by the
optimization algorithm, and then, the other points in the path
can be determined by interpolation between adjacent con-
trol points and endpoints. Each point in the path has two
positions, position in the task-space xop and position in the
joint-space xjt , respectively.

During path optimization, three objectives are considered.
The first objective is the manipulator end-effector/tip travel-
ling length in the task-space. The distance is the summation
of the displacements between adjacent points in the task-
space. The second objective is the safe distance. It is defined

as the minimal distance from the obstacle to the manipulator.
The manipulator is simplified as six cylinders, the minimal
distance from each cylinder to the obstacle is denoted as Dcy.
The larger safe distance is, the safer while operating the task.
The third objective is the energy cost in the joint-space. It is
the summation of angle increments on all joint motors. The
objective functions are formulated as follows. To formulate a
minimizationMOP, aminus sign is added to the safe distance

f1 =
Np−1∑

i=1

‖ xop,i+1 − xop,i ‖

f2 = − Nd
min Dcy

f3 =
Np−1∑

i=1

∑
| xjt,i+1 − xjt,i |

xop = forward(xjt). (10)

Here, the number of control points is set to be 10. Thus the
dimension of the decision variable is 10 × Nd . Np is the
number of points in the path after interpolation, and the points
include start point and target point.

To compare the optimization performance, four algo-
rithms are adopted in this section. The Pareto optimal
solutions from 10 independent runs are plotted in Fig. 10. To
compare the convergence performance more clearly, the PFs
are plotted in the 2D space illustrating the trajectory length
( f1) and the angle increment ( f3), and the safe distance (− f2)
is displayed by the color bar.

It can be seen from the figures that the convergence perfor-
mance of MOEA-RPE has significant advantage. NSGAIII
comes second. From the enlarged views, compared to
NSGAIII, themultiple fronts obtained byMOEA-RPEhave a
similar distribution,whichmeans thatMOEA-RPEhas better
stability in different runs. Therefore, the path planning prob-
lem proved that the proposed method has good performance
in biased practical problems.

Conclusion

This paper presents a robust performance evaluation
approach for multiobjective optimization. Based on this
approach, a robust archive has been established to preserve
potential solutions for evolution, and an RPE-based MOEA
framework has been designed. Experiments have been car-
ried out to examine the effectiveness of the proposedmethod.
Since the RPE considers solutions’ historical performance in
decision space and objective space, the RPE-based algorithm
can achieve well-distributed solutions with better conver-
gence performance in most test problems. Meanwhile, the
proposed method is deeply analyzed in respect of strategy
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Fig. 9 Runtimes on MaFs and
MPDMPs

Fig. 10 The performance of robotic manipulation path planning optimization problem

effectiveness and parameter sensitivity, and a recommended
range for the robust solution proportion has been given.
Finally, the proposed method has been applied to a robotic
manipulation system to obtain the optimal path. In conclu-
sion, the RPE approach is a novel and promising technique
for multiobjective optimization. However, it still has lim-
itations in highly multimodal environment. In future, the
learning-based mechanism will be further studied for mul-
timodal problems, and the RPE-based mechanism will be
applied in other complex practical applications.
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