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Abstract
This paper proposed a collaborative neurodynamic optimization (CNO) method to solve traveling salesman problem (TSP).
First, we construct a Hopfield neural network (HNN) with n × n neurons for the n cities. Second, to ensure the convergence
of continuous HNN (CHNN), we reformulate TSP to satisfy the convergence condition of CHNN and solve TSP by CHNN.
Finally, a population of CHNNs is used to search for local optimal solutions of TSP and the globally optimal solution is
obtained using particle swarm optimization. Experimental results show the effectiveness of the CNO approach for solving
TSP.

Keywords Combinatorial optimization problems · Collaborative neurodynamic optimization · Hopfield neural network ·
Traveling salesman problem

Introduction

The traveling salesman problem (TSP) is to find a route to
travel each city once and return to the starting city. The best
route is a feasible route of aminimum total distance of a given
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city list. TSP can be regarded as a classic combinatorial opti-
mization problem. The related optimization theory can also
be used to some similar problems including the quadratic
assignment problem and the scheduling problem [1]. It is
well known that TSP is a NP-hard optimization problem,
which was discussed and studied by extensive researchers
[2–5]. Some classic optimization methods, including Near-
est Neighborhood Search, SimulatedAnnealing, andGenetic
Algorithm, were proposed to solve TSP.

In the past decade, some optimization theory based on
neural network was emerged to solve optimization prob-
lems. Hopfield [6] first used the networks of several neurons
as a powerful computational model to solve the complex-
ity problem. In the seminal paper of Hopfield, two types
of Hopfield neural network models (i.e., the continuous
HNN and the discrete HNN) were proposed. The two neu-
ral network modes were used to solve linear programming
problems and combinatorial optimization problems [7–9].
After that, numerous neural network models were devel-
oped to solve various optimization problems, including linear
and nonlinear programming [7,10–13], generalized convex
optimization problems (e.g., [14,15]), minimax optimiza-
tion problems (e.g., [16]), distributed optimization problems
(e.g., [17]), and combinatorial optimization (e.g., [18]).

Because of the computational complexity of TSP, the
above-mentioned neural network methods fall into a local
solution easily. Recently, collaborative neurodynamic opti-
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mization (CNO) approaches are very popular for solving
the combinatorial optimization problems [19–21]. Compared
with traditional neural networks, CNO can search the global
solution of a given problem. In the CNO, several neurody-
namic models in a parallel mode are used to search the local
solutions of the optimization problem and the searching pro-
cess are repeated by the initialization of initial states until
the global solution is achieved. Theory and experiments were
presented to prove the convergence of CNO approaches and
the effectiveness in searching the global optima of combina-
torial optimization problems [22].

In this paper, the CNO method is proposed for solv-
ing TSP based on continuous Hopfield networks (CHNs).
First, we reformulate the TSP into a quadratic unconstrained
binary optimization (QUBO) problem [23] by converting the
penalty functions into equality constraints. Second, we pro-
pose a population of CHNs to search the local solution of
TSP. Third, we reinitialize the initial states of each CHN by
employing Particle Swarm Optimization (PSO) and repeat
the step 2 until the global solution of TSP is achieved. Our
achievements of this paper are

• Combining CHNs and PSO, this paper proposed a CNO
algorithm to search the global solution of the TSP.

• Experimental results of four benchmark datasets are pre-
sented to demonstrate the superior performance of the
CNO approach than the existing TSP algorithm based on
CHNs.

Related works

Continuous Hopfield network

Continuous Hopfield network (CHN) is a archetypal feed-
back network, where all neurons are both inputs and outputs
in the CHN. Suppose that there are n neurons in the CHN
and each neuron connects with each other. The states of all
the neurons can be denoted by u = [u1, . . . , un]. CHN can
update all the neurons synchronously by the following form:

u(t + 1) = u(t) + du

dt
� t,

v = g(u), (1)

where�t and v ∈ {0, 1}n denote a constant and a state vector,
respectively. du

dt is decided by the following equation:

du

dt
= −u

τ
+ T v + I , (2)

where T ∈ Rn×n and I ∈ Rn×1 denote a symmetric matrix
and a bias matrix, respectively. The g(ui ) of Eq. (1) is
expressed as follows:

vi = g(ui ) = 1

2

(
1 + tanh

(
ui
u0

))
, u0 > 0, i = 1, 2 . . . n,

(3)

where u0 is a positive constant. To satisfy the convergence
property of CHN synchronous, two conditions should be sat-
isfied. First, any neuron should not exist a self feedback.
Second, the connecting weight between neurons Ti j and Tji

should be the same.
In general, the energy function [24] of CHN is described

by

E = −1

2
vt T v − (ib)tv. (4)

For Eq. (3), there are two updating modes (i.e., asyn-
chronous or synchronous). The asynchronous mode means
that each neuron vi can be updated sequentially. The syn-
chronous mode can update all the neurons simultaneously.
The two update modes have been extensively studied in
[6,25–27]. In this paper, we use the synchronous mode. The
T of Eq. (4) should satisfy the following two conditions: (1)
the values of the diagonal elements should be zeros; (2) T
should be symmetric.

The initial value of v are initialized randomly. Therefore,
the CHN can achieve different local optimal solutions by
different initial values. In other words, CHN cannot search
for a global optimal solution. In the following subsection, we
introduce Particle SwarmOptimization to search for a global
optimal solution.

Particle swarm optimization

Particle swarm optimization (PSO) is a popular meta-
heuristic optimization algorithm [28–34],which is often used
to solveNP-hard problems. PSO is first proposed byKennedy
and Eberhart [35], which simulates the bird flock searching
for food. PSOprovides a searching procedure by a population
of individuals. Each individual called the particle can change
its position (state) with time. While searching a multidimen-
sional space, each particle re-adjusts its position (state) by a
new velocity which is computed by its own and its neighbor-
ing’s flying experience.

Suppose that x and v denote a particle position (state)
and its velocity in a searching space, respectively. xi =
(xi1, xi2, . . . xi j ) represents the i th particle in thed-dimensional
space. pbesti j = (pbesti1, pbesti2, . . . , pbesti j ) denotes the
best previous position of the i th particle. gbest is the global
optimal position searched by all particles in the group. vi j =
(vi1, vi2, . . . vi j ) represents the velocity of the i th particle.
The velocity and position of the particle are calculated in
terms of the following formula:

vti j = wvt−1
i j + c1r1(pbesti j − x (t−1)

i j )
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+c2r2(gbesti j − x (t−1)
i j ), (5)

xti j = xt−1
i j + xti j , (6)

where c1 and c2 denote the acceleration speeds, r1 and r2
denote random numbers in [0, 1], andw is a positive constant
called the inertia weight. However, this mode cannot be used
to optimize discrete variable problems [36]. Kennedy and
Eberhart [37] proposed another PSOalgorithm to address this
problem. The updated velocity of the particle xid is expressed
as follows:

vid = vid + ϕ(pbestid − xid) + ϕ(gbestid − xid), (7)

xid =
{
1, if rand() < sig(vid)
0, otherwise,

(8)

where the definition of xid , vid , pbest and gbest are given in
the beginning. According to Eq. (8), xid , pbestid and gbestid
can be normalized to 0 or 1. sig(vid) is a transformation lim-
iting function, which constrains xid to [0, 1], by 1

1+exp(−vid )
.

rand(·) can generate random numbers in [0, 1].

Problem formulations

Problem formulation

In [38], the energy function form of TSP is

E(v) = A

2

n∑
x=1

n∑
i=1

n∑
j �=i

vxivx j + B

2

n∑
i=1

n∑
x=1

n∑
y �=x

vxivy j

+ C

2

(
n∑

x=1

n∑
i=1

−n

)2

+ D

2

n∑
x=1

n∑
y �=x

n∑
i=1

dxyvxi (vy,i+1 + vy,i−1), (9)

where A, B,C and D are positive constants. The first three
terms of Eq. (9) are constraints, and the last term is the
objective function. Some explanations of Eq. (9) are given as
follows:

• For the first term, each row has exactly one 1 or the values
of each row are all zeros.

• For the second term, each column has only one 1 or the
values of each column are all zeros.

• For the third term, the matrix v should has 1 for n times.
Therefore, each row or each column appears only one
once.

Table 1 The permutation matrix v

Sequence city name 1 2 3 4 5

cn_A 0 1 0 0 0

cn_B 0 0 0 1 0

cn_C 1 0 0 0 0

cn_D 0 0 0 0 1

cn_E 0 0 1 0 0

• The last item depicts the total path that may be taken
through these cities. According to the first three con-
straints, only one path is a local optimum solution.

Note: dxy denote the distance between city x and city y, and
vxi denote whether the city x is passed. vyi denote whether
the city y is passed.

TSP can be mapped into the state vector of the neural
network and expressed by a permutation matrix. Suppose
that n cities are needed to visit. Each row and column must
has one 1 once, and the rests are zeros. A local optimum
solution of TSP can be expressed by a permutation matrix in
Table 1.

In Table 1, cn_A, cn_B, cn_C, cn_D, and cn_E denote
different city name; the sequences 1, 2, 3, 4, and 5 denote the
path sequence. The permutation matrix v concludes that the
salesman visits cn_C → cn_A → cn_E → cn_B → cn_D
→ cn_C, successively.

Problem reformulation

To simplify the form of Eq. (9), Sun and Zheng [39] make
some improvements. Next, Eq. (9) can be rewritten as fol-
lows:

min
n∑

x=1

n∑
y=1

n∑
i=1

vxi dxyvy,i+1 (10a)

s.t.
n∑

x=1

vxi = 1, x = 1, . . . , n, (10b)

n∑
i=1

vxi = 1, i = 1, . . . , n, (10c)

vxi ∈ {0, 1} , i, j = 1, . . . n, (10d)

where dxy is the distance of cities x and y, n is the number
of cities, and vxi = 1 denotes that the city x is visited in the
i th time.

Equation (10a) is the total distance of an effective path,
and the constraints in (10b) and (10c) denote that a salesman
enters and leaves a city only once. The Euclidean distance is
used to measure the distance of cities x and y, where dxy is
symmetric.
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Equation (10d) canbe rewritten by theLagrangemultiplier
method as follows:

E(v) = D

2

n∑
x=1

n∑
y=1

n∑
i=1

vxi dxyvy,i+1 + A

2

n∑
x=1

(
n∑

i=1

vxi − 1

)2

+ A

2

n∑
i=1

(
n∑

x=1

vxi − 1

)2

, (11)

where A and D are positive penalty parameters.
The partial derivative of Eq. (11) is expressed as follows:

dUxi

dt
= −dE

vxi
= −D

n∑
x=1

n∑
y=1

n∑
i=1

dxyvy,i+1 − A

(
n∑

x=1

vxi − 1

)

−A

(
n∑

i=1

vxi − 1

)
. (12)

Algorithmic design

The solution of TSP is based on the CHN and PSO, and
the details of procedure are described as follows: (1) Ini-
tialize the population (i.e., given multiple initial solutions of
the Hopfield neural network); (2) CHN is used to optimize
Eq. (11) using Eqs. (1), (3), and (12) and obtain several fea-
sible solutions; (3) these feasible solutions are reset to the
initial solutions using PSO; (4) the above steps are repeated
until the global optimal solution is obtained or the maximum
number of iterations is reached.

Note: pop denotes the population size, and ln(·) denote
the logarithmic function. p denote the number of the class.
�t , A, D, and u0 are the parameters of CHN.

Algorithm 1 describes our proposed algorithm in detail.

Experiment

Experiment set

In the paper, our proposed CHN_PSO approach is used to
measure performance on the att48, ulysses16, ulysses22, and
burma14. The parameters of our algorithm refer to Table 2.
A, D, u0, iter, and �t are the parameters of CHN; N , M , c1,
and c2 denote the parameters of PSO.

Algorithm 1 CHN_PSO
Require: Sample matrix Xn×m , initial states vn×p×pop ∈ {0, 1}, pop-

ulation size N , termination criterion M , c1, c2, random number
matrix un×p , �t , A, D, i ter and u0

Require: Initialize states by [v(1)(0), . . . , v(N )(0)] = u0×ln(n−1)+
u, v ∈ {0, 1}(np+p)×N ;

Require: Initialize the pbest by [v(1)∗, . . . , v(N )∗] ←
[v(1)(0), . . . , v(N )(0)];

Require: Initialize the gbest by v0∗ ←
argmin[ f p(v(1) (0)), . . . , f p(v(N ) (0))]

Require: Initialize ini t (i)v ∈ R(np+p)×N to zeros, i = 1, . . . , N ; k ←
1;

Ensure: v∗;
1: while k < M do
2: while i < N do
3: while j = 1 < i ter do
4: Update neuronal states of each batch v by Eqs. (1), (3) and

(12).
5: end while
6: v̂(i) ← all neuronal states v(i);
7: if then f p(v̂(i)) < fP (v(i)∗ )
8: v(i)∗ ← v̂(i)

9: end if
10: end while
11: vk∗ ← argmin

{
f p(v(1)∗), . . . , f p(v(N )∗)

}
;

12: if then f p(v(k−1)∗) = f p(vk∗)
13: k = k + 1;
14: else[k ← 1;]
15: end if
16: Generate r1,r2 ∈ R(np+p)×N randomly in [0, 1];
17: while doi = 1 to N
18: Update v(i) according to Eqs. (7) and (8);
19: end while
20: end while
21: v∗ ← vk∗;
22: return v∗.

Experiments are performed on windows 10 with Intel(R)
Core(TM) i5-1035G1CPU@1.00GHz 1.19GHz andMAT-
LAB 2018a.

Where two parameters N (i.e., pop) and M (i.e., termina-
tion criteria) in Table 2 are obtained based on experience.

Note: DHN denotes Discrete Hopfield Network, CHN
denotes Continuous Hopfield Network, and CHN_PSO
denotes our proposed algorithm.

Numerical experiment

Let: M = 500, N = 32, A = 2, D = 1, u0 = 0.025,
�t = 0.002 and the number of cities is 8. Figure 1 shows the

Table 2 The permutation
matrix

Datasets A D u0 �t Iter N M c1 c2

ulysses16 15 0.2 0.02 0.0007 5000 96 500 2 2

ulysses22 500 0.01 0.02 0.00003 5000 96 500 2 2

burma14 10 0.01 0.02 0.0002 5000 96 500 2 2

att48 180 0.001 0.0025 0.00002 5000 32 500 2 2
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Fig. 1 The numerical experiment of the DHN, CHN, and CHN_PSO algorithm
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Fig. 2 The convergent behaviors (inner loop) of the CHN_PSO algorithm on the four datasets
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(a) (b)

(c)

Fig. 4 The optimization path of the PSO_CHN, CHN, and DHN algorithms on att48

numerical experiments conducted on eight randomly gen-
erated cities. To vividly show experimental results, we plot
the experimental results in Fig. 1a–c. Figure 1d, e depicts
the convergent value of the objective function CHN_PSO in
the inner loop and the outer loop, respectively. Figure 1a–c
shows the paths of DHN, CHN, and CHN_PSO algorithm in
eight cities, respectively.

Real datasets’ experiment

Datasets

The att48, burma14, and bayg29 datasets contain 48, 14,
and 29 instances, respectively. Each data set contains three
columns of data, namely, serial number, abscissa, and ordi-
nate. The ulysses16 and ulysses22 datasets contain 16 and 22
instances, respectively. Each dataset contains two columns of
data, namely, abscissa and ordinate.

Convergence study

Figure 2 depicts the convergent behaviors of the objective
function computed with CHN in the inner loop of our algo-
rithm on datasets att48, burma14, bayg29, ulysses16, and
ulysses22. Figure 3 depicts the convergent behaviors of the
outer loop of our algorithm on datasets att48, burma14,
bayg29, ulysses16, and ulysses22. These experiments show
that outer loop iterations are less than inner loop iterations to
reach function convergence.

Experiment results

Figures 4, 5, 6, 7 and 8 show the algorithm performance of
our method compared to CHN on att48, burma14, ulysses16,
and ulysses22. The experiment results in the figure demon-
strate that our proposed algorithm statistically outperforms
the CHN and DHN algorithms in light of the given exper-
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(a) (b)

(c)

Fig. 5 The optimization path of the PSO_CHN, CHN, and DHN algorithms on burma14

iment result. According to the Figs. 4, 5, 6, 7 and 8, we
summarize as follows:

• The final optimization path of our method outperforms
CHN and DHN algorithms on the att48, burma14, and
ulysses16.

• For ulysses22, the final optimization path of the CHN
and DHN algorithms is close to our algorithm, but they
still perform unsatisfactorily.

Conclusion

In this paper, a collaborative neurodynamic optimization
(CNO) is proposed to solve the traveling salesman problem
(TSP). The PSO and HNN are employed in the proposed
algorithm. They are used to reach satisfactory results. Exper-
imental results show the effectiveness of the CNO approach
for solving four TSP benchmarks.
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(a)(a) (b)

(c)

Fig. 6 The optimization path of the PSO_CHN, CHN, and DHN algorithms on bayg29

This paper use CHN and PSO to solve the TSP problem.
In the future work, the discrete Hopfield networks can be
use to solve this problem and combine with others Swarm

intelligence algorithm. We are studying how to effectively
and efficiently combine them at present.
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(a)(a) (b)

(c)

Fig. 7 The optimization path of the PSO_CHN, CHN, and DHN algorithms on ulysses16
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(a) (b)

(c)

Fig. 8 The optimization path of the PSO_CHN, CHN, and DHN algorithms on ulysses22
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