
Complex & Intelligent Systems (2023) 9:1809–1821
https://doi.org/10.1007/s40747-022-00884-6

ORIG INAL ART ICLE

A collaborative neurodynamic optimization algorithm to traveling
salesman problem

Jing Zhong1 · Yuelei Feng1 · Shuyu Tang1 · Jiang Xiong1 · Xiangguang Dai1 · Nian Zhang2

Received: 24 May 2022 / Accepted: 20 September 2022 / Published online: 13 October 2022
© The Author(s) 2022

Abstract
This paper proposed a collaborative neurodynamic optimization (CNO) method to solve traveling salesman problem (TSP).
First, we construct a Hopfield neural network (HNN) with n × n neurons for the n cities. Second, to ensure the convergence
of continuous HNN (CHNN), we reformulate TSP to satisfy the convergence condition of CHNN and solve TSP by CHNN.
Finally, a population of CHNNs is used to search for local optimal solutions of TSP and the globally optimal solution is
obtained using particle swarm optimization. Experimental results show the effectiveness of the CNO approach for solving
TSP.

Keywords Combinatorial optimization problems · Collaborative neurodynamic optimization · Hopfield neural network ·
Traveling salesman problem

Introduction

The traveling salesman problem (TSP) is to find a route to
travel each city once and return to the starting city. The best
route is a feasible route of aminimum total distance of a given

Jing Zhong, Yuelei Feng, Shuyu Tang, Jiang Xiong, Xiangguang Dai,
and Nian Zhang have contributed equally to this work.

B Jiang Xiong
xiongjiang@sanxiau.edu.cn

Jing Zhong
zjing@sanxiau.edu.cn

Yuelei Feng
120211609@stumail.sanxiau.edu.cn

Shuyu Tang
120201623@stumail.sanxiau.edu.cn

Xiangguang Dai
daixiangguang@sanxiau.edu.cn

Nian Zhang
nzhang@udc.edu

1 Key Laboratory of Intelligent Information Processing and
Control of Chongqing Municipal Institutions of Higher
Education, Chongqing Three Gorges University, Bai’an Dam,
WanZhou, Chongqing 404120, China

2 Department of Electrical and Computer Engineering,
University of the District of Columbia, Washington, DC
20008, USA

city list. TSP can be regarded as a classic combinatorial opti-
mization problem. The related optimization theory can also
be used to some similar problems including the quadratic
assignment problem and the scheduling problem [1]. It is
well known that TSP is a NP-hard optimization problem,
which was discussed and studied by extensive researchers
[2–5]. Some classic optimization methods, including Near-
est Neighborhood Search, SimulatedAnnealing, andGenetic
Algorithm, were proposed to solve TSP.

In the past decade, some optimization theory based on
neural network was emerged to solve optimization prob-
lems. Hopfield [6] first used the networks of several neurons
as a powerful computational model to solve the complex-
ity problem. In the seminal paper of Hopfield, two types
of Hopfield neural network models (i.e., the continuous
HNN and the discrete HNN) were proposed. The two neu-
ral network modes were used to solve linear programming
problems and combinatorial optimization problems [7–9].
After that, numerous neural network models were devel-
oped to solve various optimization problems, including linear
and nonlinear programming [7,10–13], generalized convex
optimization problems (e.g., [14,15]), minimax optimiza-
tion problems (e.g., [16]), distributed optimization problems
(e.g., [17]), and combinatorial optimization (e.g., [18]).

Because of the computational complexity of TSP, the
above-mentioned neural network methods fall into a local
solution easily. Recently, collaborative neurodynamic opti-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-022-00884-6&domain=pdf

1810 Complex & Intelligent Systems (2023) 9:1809–1821

mization (CNO) approaches are very popular for solving
the combinatorial optimization problems [19–21]. Compared
with traditional neural networks, CNO can search the global
solution of a given problem. In the CNO, several neurody-
namic models in a parallel mode are used to search the local
solutions of the optimization problem and the searching pro-
cess are repeated by the initialization of initial states until
the global solution is achieved. Theory and experiments were
presented to prove the convergence of CNO approaches and
the effectiveness in searching the global optima of combina-
torial optimization problems [22].

In this paper, the CNO method is proposed for solv-
ing TSP based on continuous Hopfield networks (CHNs).
First, we reformulate the TSP into a quadratic unconstrained
binary optimization (QUBO) problem [23] by converting the
penalty functions into equality constraints. Second, we pro-
pose a population of CHNs to search the local solution of
TSP. Third, we reinitialize the initial states of each CHN by
employing Particle Swarm Optimization (PSO) and repeat
the step 2 until the global solution of TSP is achieved. Our
achievements of this paper are

• Combining CHNs and PSO, this paper proposed a CNO
algorithm to search the global solution of the TSP.

• Experimental results of four benchmark datasets are pre-
sented to demonstrate the superior performance of the
CNO approach than the existing TSP algorithm based on
CHNs.

Related works

Continuous Hopfield network

Continuous Hopfield network (CHN) is a archetypal feed-
back network, where all neurons are both inputs and outputs
in the CHN. Suppose that there are n neurons in the CHN
and each neuron connects with each other. The states of all
the neurons can be denoted by u = [u1, . . . , un]. CHN can
update all the neurons synchronously by the following form:

u(t + 1) = u(t) + du

dt
� t,

v = g(u), (1)

where�t and v ∈ {0, 1}n denote a constant and a state vector,
respectively. du

dt is decided by the following equation:

du

dt
= −u

τ
+ T v + I , (2)

where T ∈ Rn×n and I ∈ Rn×1 denote a symmetric matrix
and a bias matrix, respectively. The g(ui) of Eq. (1) is
expressed as follows:

vi = g(ui) = 1

2

(
1 + tanh

(
ui
u0

))
, u0 > 0, i = 1, 2 . . . n,

(3)

where u0 is a positive constant. To satisfy the convergence
property of CHN synchronous, two conditions should be sat-
isfied. First, any neuron should not exist a self feedback.
Second, the connecting weight between neurons Ti j and Tji

should be the same.
In general, the energy function [24] of CHN is described

by

E = −1

2
vt T v − (ib)tv. (4)

For Eq. (3), there are two updating modes (i.e., asyn-
chronous or synchronous). The asynchronous mode means
that each neuron vi can be updated sequentially. The syn-
chronous mode can update all the neurons simultaneously.
The two update modes have been extensively studied in
[6,25–27]. In this paper, we use the synchronous mode. The
T of Eq. (4) should satisfy the following two conditions: (1)
the values of the diagonal elements should be zeros; (2) T
should be symmetric.

The initial value of v are initialized randomly. Therefore,
the CHN can achieve different local optimal solutions by
different initial values. In other words, CHN cannot search
for a global optimal solution. In the following subsection, we
introduce Particle SwarmOptimization to search for a global
optimal solution.

Particle swarm optimization

Particle swarm optimization (PSO) is a popular meta-
heuristic optimization algorithm [28–34],which is often used
to solveNP-hard problems. PSO is first proposed byKennedy
and Eberhart [35], which simulates the bird flock searching
for food. PSOprovides a searching procedure by a population
of individuals. Each individual called the particle can change
its position (state) with time. While searching a multidimen-
sional space, each particle re-adjusts its position (state) by a
new velocity which is computed by its own and its neighbor-
ing’s flying experience.

Suppose that x and v denote a particle position (state)
and its velocity in a searching space, respectively. xi =
(xi1, xi2, . . . xi j) represents the i th particle in thed-dimensional
space. pbesti j = (pbesti1, pbesti2, . . . , pbesti j) denotes the
best previous position of the i th particle. gbest is the global
optimal position searched by all particles in the group. vi j =
(vi1, vi2, . . . vi j) represents the velocity of the i th particle.
The velocity and position of the particle are calculated in
terms of the following formula:

vti j = wvt−1
i j + c1r1(pbesti j − x (t−1)

i j)

123

Complex & Intelligent Systems (2023) 9:1809–1821 1811

+c2r2(gbesti j − x (t−1)
i j), (5)

xti j = xt−1
i j + xti j , (6)

where c1 and c2 denote the acceleration speeds, r1 and r2
denote random numbers in [0, 1], andw is a positive constant
called the inertia weight. However, this mode cannot be used
to optimize discrete variable problems [36]. Kennedy and
Eberhart [37] proposed another PSOalgorithm to address this
problem. The updated velocity of the particle xid is expressed
as follows:

vid = vid + ϕ(pbestid − xid) + ϕ(gbestid − xid), (7)

xid =
{
1, if rand() < sig(vid)
0, otherwise,

(8)

where the definition of xid , vid , pbest and gbest are given in
the beginning. According to Eq. (8), xid , pbestid and gbestid
can be normalized to 0 or 1. sig(vid) is a transformation lim-
iting function, which constrains xid to [0, 1], by 1

1+exp(−vid)
.

rand(·) can generate random numbers in [0, 1].

Problem formulations

Problem formulation

In [38], the energy function form of TSP is

E(v) = A

2

n∑
x=1

n∑
i=1

n∑
j �=i

vxivx j + B

2

n∑
i=1

n∑
x=1

n∑
y �=x

vxivy j

+ C

2

(
n∑

x=1

n∑
i=1

−n

)2

+ D

2

n∑
x=1

n∑
y �=x

n∑
i=1

dxyvxi (vy,i+1 + vy,i−1), (9)

where A, B,C and D are positive constants. The first three
terms of Eq. (9) are constraints, and the last term is the
objective function. Some explanations of Eq. (9) are given as
follows:

• For the first term, each row has exactly one 1 or the values
of each row are all zeros.

• For the second term, each column has only one 1 or the
values of each column are all zeros.

• For the third term, the matrix v should has 1 for n times.
Therefore, each row or each column appears only one
once.

Table 1 The permutation matrix v

Sequence city name 1 2 3 4 5

cn_A 0 1 0 0 0

cn_B 0 0 0 1 0

cn_C 1 0 0 0 0

cn_D 0 0 0 0 1

cn_E 0 0 1 0 0

• The last item depicts the total path that may be taken
through these cities. According to the first three con-
straints, only one path is a local optimum solution.

Note: dxy denote the distance between city x and city y, and
vxi denote whether the city x is passed. vyi denote whether
the city y is passed.

TSP can be mapped into the state vector of the neural
network and expressed by a permutation matrix. Suppose
that n cities are needed to visit. Each row and column must
has one 1 once, and the rests are zeros. A local optimum
solution of TSP can be expressed by a permutation matrix in
Table 1.

In Table 1, cn_A, cn_B, cn_C, cn_D, and cn_E denote
different city name; the sequences 1, 2, 3, 4, and 5 denote the
path sequence. The permutation matrix v concludes that the
salesman visits cn_C → cn_A → cn_E → cn_B → cn_D
→ cn_C, successively.

Problem reformulation

To simplify the form of Eq. (9), Sun and Zheng [39] make
some improvements. Next, Eq. (9) can be rewritten as fol-
lows:

min
n∑

x=1

n∑
y=1

n∑
i=1

vxi dxyvy,i+1 (10a)

s.t.
n∑

x=1

vxi = 1, x = 1, . . . , n, (10b)

n∑
i=1

vxi = 1, i = 1, . . . , n, (10c)

vxi ∈ {0, 1} , i, j = 1, . . . n, (10d)

where dxy is the distance of cities x and y, n is the number
of cities, and vxi = 1 denotes that the city x is visited in the
i th time.

Equation (10a) is the total distance of an effective path,
and the constraints in (10b) and (10c) denote that a salesman
enters and leaves a city only once. The Euclidean distance is
used to measure the distance of cities x and y, where dxy is
symmetric.

123

1812 Complex & Intelligent Systems (2023) 9:1809–1821

Equation (10d) canbe rewritten by theLagrangemultiplier
method as follows:

E(v) = D

2

n∑
x=1

n∑
y=1

n∑
i=1

vxi dxyvy,i+1 + A

2

n∑
x=1

(
n∑

i=1

vxi − 1

)2

+ A

2

n∑
i=1

(
n∑

x=1

vxi − 1

)2

, (11)

where A and D are positive penalty parameters.
The partial derivative of Eq. (11) is expressed as follows:

dUxi

dt
= −dE

vxi
= −D

n∑
x=1

n∑
y=1

n∑
i=1

dxyvy,i+1 − A

(
n∑

x=1

vxi − 1

)

−A

(
n∑

i=1

vxi − 1

)
. (12)

Algorithmic design

The solution of TSP is based on the CHN and PSO, and
the details of procedure are described as follows: (1) Ini-
tialize the population (i.e., given multiple initial solutions of
the Hopfield neural network); (2) CHN is used to optimize
Eq. (11) using Eqs. (1), (3), and (12) and obtain several fea-
sible solutions; (3) these feasible solutions are reset to the
initial solutions using PSO; (4) the above steps are repeated
until the global optimal solution is obtained or the maximum
number of iterations is reached.

Note: pop denotes the population size, and ln(·) denote
the logarithmic function. p denote the number of the class.
�t , A, D, and u0 are the parameters of CHN.

Algorithm 1 describes our proposed algorithm in detail.

Experiment

Experiment set

In the paper, our proposed CHN_PSO approach is used to
measure performance on the att48, ulysses16, ulysses22, and
burma14. The parameters of our algorithm refer to Table 2.
A, D, u0, iter, and �t are the parameters of CHN; N , M , c1,
and c2 denote the parameters of PSO.

Algorithm 1 CHN_PSO
Require: Sample matrix Xn×m , initial states vn×p×pop ∈ {0, 1}, pop-

ulation size N , termination criterion M , c1, c2, random number
matrix un×p , �t , A, D, i ter and u0

Require: Initialize states by [v(1)(0), . . . , v(N)(0)] = u0×ln(n−1)+
u, v ∈ {0, 1}(np+p)×N ;

Require: Initialize the pbest by [v(1)∗, . . . , v(N)∗] ←
[v(1)(0), . . . , v(N)(0)];

Require: Initialize the gbest by v0∗ ←
argmin[f p(v(1) (0)), . . . , f p(v(N) (0))]

Require: Initialize ini t (i)v ∈ R(np+p)×N to zeros, i = 1, . . . , N ; k ←
1;

Ensure: v∗;
1: while k < M do
2: while i < N do
3: while j = 1 < i ter do
4: Update neuronal states of each batch v by Eqs. (1), (3) and

(12).
5: end while
6: v̂(i) ← all neuronal states v(i);
7: if then f p(v̂(i)) < fP (v(i)∗)
8: v(i)∗ ← v̂(i)

9: end if
10: end while
11: vk∗ ← argmin

{
f p(v(1)∗), . . . , f p(v(N)∗)

}
;

12: if then f p(v(k−1)∗) = f p(vk∗)
13: k = k + 1;
14: else[k ← 1;]
15: end if
16: Generate r1,r2 ∈ R(np+p)×N randomly in [0, 1];
17: while doi = 1 to N
18: Update v(i) according to Eqs. (7) and (8);
19: end while
20: end while
21: v∗ ← vk∗;
22: return v∗.

Experiments are performed on windows 10 with Intel(R)
Core(TM) i5-1035G1CPU@1.00GHz 1.19GHz andMAT-
LAB 2018a.

Where two parameters N (i.e., pop) and M (i.e., termina-
tion criteria) in Table 2 are obtained based on experience.

Note: DHN denotes Discrete Hopfield Network, CHN
denotes Continuous Hopfield Network, and CHN_PSO
denotes our proposed algorithm.

Numerical experiment

Let: M = 500, N = 32, A = 2, D = 1, u0 = 0.025,
�t = 0.002 and the number of cities is 8. Figure 1 shows the

Table 2 The permutation
matrix

Datasets A D u0 �t Iter N M c1 c2

ulysses16 15 0.2 0.02 0.0007 5000 96 500 2 2

ulysses22 500 0.01 0.02 0.00003 5000 96 500 2 2

burma14 10 0.01 0.02 0.0002 5000 96 500 2 2

att48 180 0.001 0.0025 0.00002 5000 32 500 2 2

123

Complex & Intelligent Systems (2023) 9:1809–1821 1813

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X(m)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y
(m

)

DHN solution

 1

 2

 3

 4

 5

 6

 7

 8
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X(m)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y
(m

)

CHN solution

 1

 2

 3

 4

 5

 6

 7

 8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X(m)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y
(m

)

CHN_PSO solution

 1

 2

 3

 4

 5

 6

 7

 8
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Inner-loop Iteration

0

20

40

60

80

100

120

140

160

180

200

E
ne

rg
y

F
un

ct
io

n
V

al
ue

The Energy Function Change of CHN

0 100 200 300 400 500 600 700 800 900

Outer-loop Iteration

1.29

1.3

1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

1.39

Fig. 1 The numerical experiment of the DHN, CHN, and CHN_PSO algorithm

123

1814 Complex & Intelligent Systems (2023) 9:1809–1821

0 20 40 60 80 100 120 140 160 180 200

Inner-loop Iteration

0

0.5

1

1.5

2

2.5

3

3.5

E
ne

rg
y

F
un

ct
io

n
V

al
ue

106 The Energy Function Change of CHN

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Inner-loop Iteration

0

1000

2000

3000

4000

5000

6000

E
ne

rg
y

F
un

ct
io

n
V

al
ue

The Energy Function Change of CHN

0 20 40 60 80 100 120 140 160 180 200
Inner-loop Iteration

0

1

2

3

4

5

6

7

8

9

E
ne

rg
y

F
un

ct
io

n
V

al
ue

105 The Energy Function Change of CHN

0 20 40 60 80 100 120 140 160 180 200

Inner-loop Iteration

0

1000

2000

3000

4000

5000

6000

7000

8000

E
ne

rg
y

F
un

ct
io

n
V

al
ue

The Energy Function Change of CHN

0 20 40 60 80 100 120 140 160 180 200

Inner-loop Iteration

0

1

2

3

4

5

6

E
ne

rg
y

F
un

ct
io

n
V

al
ue

105 The Energy Function Change of CHN

Fig. 2 The convergent behaviors (inner loop) of the CHN_PSO algorithm on the four datasets

123

Complex & Intelligent Systems (2023) 9:1809–1821 1815

0 500 1000 1500

Outer-loop Iteration

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

Outer-loop Iteration

0.145

0.15

0.155

0.16

0.165

0.17

0 200 400 600 800 1000 1200

Outer-loop Iteration

5

10

15

20

25

Fig. 3 The convergent behaviors (outer loop) of the CHN_PSO algorithm on the four datasets

123

1816 Complex & Intelligent Systems (2023) 9:1809–1821

(a) (b)

(c)

Fig. 4 The optimization path of the PSO_CHN, CHN, and DHN algorithms on att48

numerical experiments conducted on eight randomly gen-
erated cities. To vividly show experimental results, we plot
the experimental results in Fig. 1a–c. Figure 1d, e depicts
the convergent value of the objective function CHN_PSO in
the inner loop and the outer loop, respectively. Figure 1a–c
shows the paths of DHN, CHN, and CHN_PSO algorithm in
eight cities, respectively.

Real datasets’ experiment

Datasets

The att48, burma14, and bayg29 datasets contain 48, 14,
and 29 instances, respectively. Each data set contains three
columns of data, namely, serial number, abscissa, and ordi-
nate. The ulysses16 and ulysses22 datasets contain 16 and 22
instances, respectively. Each dataset contains two columns of
data, namely, abscissa and ordinate.

Convergence study

Figure 2 depicts the convergent behaviors of the objective
function computed with CHN in the inner loop of our algo-
rithm on datasets att48, burma14, bayg29, ulysses16, and
ulysses22. Figure 3 depicts the convergent behaviors of the
outer loop of our algorithm on datasets att48, burma14,
bayg29, ulysses16, and ulysses22. These experiments show
that outer loop iterations are less than inner loop iterations to
reach function convergence.

Experiment results

Figures 4, 5, 6, 7 and 8 show the algorithm performance of
our method compared to CHN on att48, burma14, ulysses16,
and ulysses22. The experiment results in the figure demon-
strate that our proposed algorithm statistically outperforms
the CHN and DHN algorithms in light of the given exper-

123

Complex & Intelligent Systems (2023) 9:1809–1821 1817

(a) (b)

(c)

Fig. 5 The optimization path of the PSO_CHN, CHN, and DHN algorithms on burma14

iment result. According to the Figs. 4, 5, 6, 7 and 8, we
summarize as follows:

• The final optimization path of our method outperforms
CHN and DHN algorithms on the att48, burma14, and
ulysses16.

• For ulysses22, the final optimization path of the CHN
and DHN algorithms is close to our algorithm, but they
still perform unsatisfactorily.

Conclusion

In this paper, a collaborative neurodynamic optimization
(CNO) is proposed to solve the traveling salesman problem
(TSP). The PSO and HNN are employed in the proposed
algorithm. They are used to reach satisfactory results. Exper-
imental results show the effectiveness of the CNO approach
for solving four TSP benchmarks.

123

1818 Complex & Intelligent Systems (2023) 9:1809–1821

(a)(a) (b)

(c)

Fig. 6 The optimization path of the PSO_CHN, CHN, and DHN algorithms on bayg29

This paper use CHN and PSO to solve the TSP problem.
In the future work, the discrete Hopfield networks can be
use to solve this problem and combine with others Swarm

intelligence algorithm. We are studying how to effectively
and efficiently combine them at present.

123

Complex & Intelligent Systems (2023) 9:1809–1821 1819

(a)(a) (b)

(c)

Fig. 7 The optimization path of the PSO_CHN, CHN, and DHN algorithms on ulysses16

123

1820 Complex & Intelligent Systems (2023) 9:1809–1821

(a) (b)

(c)

Fig. 8 The optimization path of the PSO_CHN, CHN, and DHN algorithms on ulysses22

Acknowledgements This work is supported by the Chongqing Smart
Ecotourism Science Group Open Fund , Natural Science Founda-
tion of Chongqing (Grant No. cstc2018jcyjAX0502), Scientific and
Technological Research Program of Chongqing Municipal Education
Commission (Grant No. KJQN202001222) , National Natural Science
Foundation of China (Grant No. 61602072), National Science Founda-
tion (NSF) (2011927), and DoD (W911NF1810475).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Wang J (1990)Adeterministic connectionistmachine for the travel-
ing salesman problem. IEEE International conference on systems,
man, and cybernetics conference proceedings. IEEE, pp 374–375

2. Lawler EL, Lenstra JK, Rinnooy Kan AH, Shmoys DB (1986)
Erratum: The traveling salesman problem: a guided tour of combi-
natorial optimization. J Oper Res Soc 37(6):655

3. Mulder SA, Wunsch DC II (2003) Million city traveling salesman
problem solution by divide and conquer clustering with adaptive
resonance neural networks. Neural Netw 16(5–6):827–832

4. Zhao K, Liu S, Rong Y, Yu JX (2021) Towards feature-free tsp
solver selection: a deep learning approach In: 2021 Internation-
alJoint Conference on Neural Networks (IJCNN), IEEE, p 1–8

5. Berger A, Kozma L, Mnich et al (2020) Time- and space-optimal
algorithm for the many-visits tsp. ACMTrans Algorithms 16(3):1–
22

6. Hopfield JJ (1982) Neural networks and physical systems with
emergent collective computational abilities. Proc Natl Acad Sci
79(8):2554–2558

7. Tank D, Hopfield J (1986) Simple ‘neural’ optimization networks:
anA/D converter, signal decision circuit, and a linear programming
circuit. IEEE Trans Circuits Syst 33(5):533–541

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Complex & Intelligent Systems (2023) 9:1809–1821 1821

8. Hopfield JJ, Tank DW (1985) “Neural” computation of decisions
in optimization problems. Biol Cybern 52(3):141–152

9. Talaván PM, Yáñez J (2002) Parameter setting of the Hopfield
network applied to TSP. Neural Netw 15(3):363–373

10. Xia Y, Wang J (1998) A general methodology for designing glob-
ally convergent optimization neural networks. IEEE Trans Neural
Netw 9(6):1331–1343

11. LiuS,Wang J (2006)A simplified dual neural network for quadratic
programmingwith itsKWTAapplication. IEEETransNeuralNetw
17(6):1500–1510

12. Xia Y, Feng G, Wang J (2008) A novel recurrent neural network
for solving nonlinear optimization problems with inequality con-
straints. IEEE Trans Neural Netw 19(8):1340–1353

13. Hu X,Wang J (2008) An improved dual neural network for solving
a class of quadratic programming problems and its k-winners-take-
all application. IEEE Trans Neural Netw 19(12):2022–2031

14. HuX,Wang J (2006) Solving pseudomonotone variational inequal-
ities and pseudoconvex optimization problems using the projection
neural network. IEEE Trans Neural Netw 17(6):1487–1499

15. Guo Z, Liu Q, Wang J (2011) A one-layer recurrent neural net-
work for pseudoconvex optimization subject to linear equality
constraints. IEEE Trans Neural Netw 22(12):1892–1900

16. Liu Q, Wang J (2015) A projection neural network for constrained
quadratic minimax optimization. IEEE Trans Neural Netw Learn
Syst 26(11):2891–2900

17. LiuQ, Yang S,Wang J (2016) A collective neurodynamic approach
to distributed constrained optimization. IEEE Trans Neural Netw
Learn Syst 28(8):1747–1758

18. Peterson C (1990) Parallel distributed approaches to combinatorial
optimization: benchmark studies on traveling salesman problem.
Neural Comput 2(3):261–269

19. Yan Z, Fan J, Wang J (2016) A collective neurodynamic approach
to constrained global optimization. IEEE Trans Neural Netw Learn
Syst 28(5):1206–1215

20. Li X, Wang J, Kwong S (2020) Alternative mutation operators in
collaborative neurodynamic optimization. In: 2020 10th Interna-
tional conference on information science and technology (ICIST),
IEEE, pp 126–133

21. Leung MF, Wang J (2020) Minimax and biobjective portfolio
selection based on collaborative neurodynamic optimization. IEEE
Trans Neural Netw Learn Syst 32(7):2825–2836

22. Yan Z, Wang J, Li G (2014) A collective neurodynamic opti-
mization approach to bound-constrained nonconvex optimization.
Neural Netw 55:20–29

23. Glover F, Kochenberger G, Du Y (2019) Quantum bridge ana-
lytics I: a tutorial on formulating and using QUBO models. 4OR
17(4):335–371

24. Talavan PM, Yanez J (2005) A continuous Hopfield network equi-
librium points algorithm. Comput Oper Res 32(8):2179–2196

25. Bruck J, Goodman JW (1988) A generalized convergence theorem
for neural networks. IEEE Trans Inf Theory 34(5):1089–1092

26. Cottrell M (1988) Stability and attractivity in associative memory
networks. Biol Cybern 58(2):129–139

27. Dasgupta S, Ghosh A, Cuykendall R (1989) Convergence in neural
memories. IEEE Trans Inf Theory 35(5):1069–1072

28. VanLaarhovenPJ,AartsEH (1987)Simulated annealingSimulated
annealing: theory and applications. Springer, Dordrecht, pp 7–15

29. Whitley D (1994) A genetic algorithm tutorial. Stat Comput
4(2):65–85

30. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization.
IEEE Comput Intell Mag 1(4):28–39

31. Ruiz R, Stützle T (2007) A simple and effective iterated greedy
algorithm for the permutation flowshop scheduling problem. Eur J
Oper Res 177(3):2033–2049

32. Price KV (2013) Differential evolution. Handbook of optimization.
Springer, Berlin, pp 187–214

33. Wu X, Han J, Cui Q, Chen L, Liang Y, Huang H, Lee HP, Zhou
Y, Wu C (2021) Surprisingly popular algorithm-based adaptive
Euclidean distance topology learning PSO

34. Zhu SP, Keshtegar B, Seghier MEAB et al (2022) Hybrid and
enhanced PSO: novel first order reliability method-based hybrid
intelligent approaches. Comput Methods Appl. Proceedings of
ICNN’95-international conference on neural networks. IEEEMech
Eng 393:114730

35. Kennedy J, Eberhart R (1995) Particle swarmoptimization 4:1942–
1948. IEEE

36. Dai X, Wang J, Zhang W (2022) Balanced clustering based
on collaborative neurodynamic optimization. Knowl Based Syst
250:109026

37. Kennedy J, Eberhart RC (1997)Adiscrete binary version of the par-
ticle swarm algorithm. International conference on systems, man,
and cybernetics. Computational cybernetics and simulation. IEEE
5:4104–4108

38. Hopfield JJ, Tank DW (1985) “Neural” computation of decisions
in optimization problems. Biol Cybern 52(3):141–152

39. SunS, Zheng J (1995)An improved algorithm and theoretical proof
of Hopfield network for solving TSP. J Electron 23(1):73–78

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	A collaborative neurodynamic optimization algorithm to traveling salesman problem
	Abstract
	Introduction
	Related works
	Continuous Hopfield network
	Particle swarm optimization

	Problem formulations
	Problem formulation
	Problem reformulation

	Algorithmic design
	Experiment
	Experiment set
	Numerical experiment
	Real datasets' experiment
	Datasets
	Convergence study
	Experiment results

	Conclusion
	Acknowledgements
	References

