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Abstract
This paper presents a novel integrated distributed production and distribution scheduling problem in groupmanufacturingwith
uncertain travel time (IDPDSP-GM-UTT), in which products are firstly produced in several distributed hybrid flow shops and
then delivered to several retailers in batches. The proposed model considers both geographical dispersion of multi-factories
and variable travel time between factories and retailers caused by time-varying dynamics of road network, which describes
the production environment more authentic. Additionally, a mathematical model is developed to find the optimal quantity
of raw material, delivery plan, and punishment of earliness and tardiness with the objective of minimizing total costs. Then,
an improved genetic algorithm with two-stage heuristic mutation scheduling strategy and tabu search for local optimization
(GA-2HMS&TS) is designed to solve the proposed model. To verify the performances of the proposed method, several
experiments by adopting test experimental examples with different scales are performed. The computational results exhibit
that the GA-2HMS&TS not only significantly reduces the total cost of production and distribution, but also outperforms all
of its rivals. In addition, the robustness of the proposed models is also analyzed with regard to the different road conditions.

Keywords Integrated production and distribution scheduling · Group manufacturing · Uncertain travel time · Improved
genetic algorithm · Tabu search

Introduction

Production and distribution are two crucial activities in group
manufacturing [1], and their scheduled planning are sepa-
rately treated in most cases [2]. However, this decentralized
approach leads to inefficiency, due to the complex orga-
nizational structure and untimely information transmission
in manufacturing group. Thus, they need to be considered
together to improve the production efficiency and reduce
the operation cost of the manufacturing group [3]. More-
over, considering the difficulty in coordinating behavior of
different subsidiaries, integrated production and distribution
scheduling problem is one of the most important challenges
facing by the group manufacturing.

B Zhao Peng
pzgood@163.com

1 School of Mechanical and Electronic Engineering, Wuhan
University of Technology, Wuhan 430070, China

2 Hubei Digital Manufacturing Key Laboratory, Wuhan
430070, China

As the economic globalization and demand diversifica-
tion, the factories of manufacturing group are established
with decentralized geographic location and independent
operating agency [4].What’smore, due to the similar or iden-
tical production process,manufacturing group usually adopts
the hybrid flow-shop mode which can balance the utilization
rate of machines, increase production capacity and improve
the efficiency of production lines. And the distribution stage
is always addressed as a batch distribution problem of mul-
tiple vehicles and multiple customers where the capacity of
vehicles is limited. Thus, the integrated production and dis-
tribution scheduling problem in group manufacturing can be
regarded as a combinatorial optimization problem. It needs
to handle the distributed hybrid flow-shop scheduling prob-
lem (DHFSP) at the production stage [5, 6], andmulti-vehicle
multi-customer batch delivery scheduling problem at the dis-
tribution stage simultaneously.

Additionally, the current turbulent business circumstances
and the ever-changing market in the context of COVID-
19 present new challenges to decision makers. There are
many uncertain factors in the process of distribution, such
as bad traffic, bad weather and unpredictable impacts. This
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time-varying dynamic of road network usually leads to the
inaccuracy of model, and then incurs unnecessary losses if
these factors are ignored. The dynamic nature of the envi-
ronment determines that the scheduling environment is not
deterministic [7]. Only by adapting to uncertain factors can
companies obtain better competitiveness and certification.

To solve the aforementioned problems,we propose a novel
integrated distributed production and distribution schedul-
ing problem in group manufacturing considering uncertain
travel time (IDPDSP-GM-UTT) to minimize the total cost.
The main contributions of this work can be summarized as
follows:

We investigate a joint distributed hybrid flow-shop produc-
tion and batch distribution scheduling with uncertain travel
time problem in group manufacturing, which is discussed in
few works in literature although this mode is implemented
in a broad range of actual manufacturing scenarios.
To cope with the complexity of IDPDSP-GM-UTT, we pro-
pose an improved genetic algorithm with two-stage heuristic
mutation scheduling strategy and tabu search. Two set of
benchmark test examples are presented to illustrate the effec-
tiveness of the proposed model and solution algorithm.
Moreover, the experiments are extended by including addi-
tional analysis of robustness and influence of uncertain
factors regarding the different road conditions.

The rest of this paper is structured as follows. “Literature
reviews” shows the relevant literature on the investigated
problem. “Problem formulation” describes the IDPDSP-
GM-UTT and provides a mathematical model. “Proposed
solution algorithm” describes an improved genetic algorithm
with two-stage heuristic mutation scheduling strategy and
tabu search for local optimization (GA-2HMS&TS) with
its search operators. “Experimental results and discussions”
presents the computational results and performance analysis.
Finally, conclusions and expectations for the future research
are given in “Conclusion”.

Literature reviews

In recent years, many scholars devote themselves to the
research of integrated production and distribution scheduling
problem (IPDSP) for the sake of saving costs and improv-
ing competitiveness of enterprises [8]. Agnetis et al. [9]
addressed an IPDSP for supply chain coordination, in which
there was only one manufacturer and the order of products
was pre-specified. Yağmur and Kesen [10] studied an IPDSP
where a singlemanufacturer processed jobs and subsequently
distributed by a single capacitated vehicle. Fu et al. [11] pro-
posed an IPDSP for metal packaging industry considering
the job splitting and delivery time windows, and they devel-
oped a two-phase iterative heuristic to solve it. Kergosien

et al. [12] presented an IPDSP for a healthcare industry, and
a heuristic based on benders decomposition was introduced
to handle it. Cheng et al. [13] studied an IPDSP for manu-
facturers, in which jobs in a batch were processed together.
Besides, some researchers discussed more details about the
different productionmodels, such as single-machine [14, 15],
parallel-machine [16, 17], flow shop [18, 19], and job shop
[20]. Although the above literatures consider the different
production modes, they focus on single factory at the pro-
duction stage.

In addition to the traditional consideration of transport
constraints, Senoussi et al. [21] assumed that the distance
between the supplier and the retailer was fixed, and they
designed five heuristics based on genetic algorithms to solve
production distribution problem. Ganji et al. [22] studied an
integrated scheduling problem considering due-dates with
production and distribution times.Wang et al. [23] addressed
an IPDSP, where distribution stage aimed at solving a vehicle
routing problem. And an improvedMAwas designed to han-
dle it. Guo et al. [24] considered several transportationmodes
with different vehicle capacities and transportation times in
the IPDSP. Vincenzo et al. [25] considered an IPDSP for
non-perishable food and beverage industry. They introduced
a metaheuristic algorithm to find approximate solutions. In
the perishable goods industry, Devapriya et al. [26] proposed
an IPDSP for perishable products with constrained fleet size
and vehicles’ routes, and they developed evolutionary algo-
rithms to solve it. Liu and Liu [27] presented an IPDSP with
vehicles capacity constraints for perishable products, and an
improved large neighborhood search algorithmwas designed
to handle it. Liu et al. [28] addressed an integrated produc-
tion-inventory-routing of blood in a supply chain network,
which consisted of a single supplier and a group of blood
centers. And a heuristic solution algorithm was developed
to deal with it. Wei et al. [29] researched on production-
delivery-inventory strategies considering the inventory and
delivery sustainability of perishable products.

By summarizing the relevant researches on IPDSP, we
can find that most of existing literature consider scheduling
single factory at the production stage. There are few stud-
ies give attention on the integrated distributed production
and distribution scheduling problems (IDPDSP) although
they actually exist in a wide range of modern manufacturing
scenarios. Marandi and Ghomi [6] introduced an integrated
multi-factory production and distribution scheduling prob-
lemwith the objective ofminimizing the sumof tardiness cost
and transportation cost. In their model, a number of facto-
ries were joined together in a network configuration. And an
improved imperialist competitive algorithm was developed
to solve it. Badhotiya et al. [30] proposed a fuzzy multi-
objective mixed integer programming model considering
multi-site manufacturing environment. They used piecewise
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Fig. 1 Integrated production and distribution in group manufacturing

linear membership function to represent three fuzzy objec-
tives of total cost, delivery time, and backorder level. Hou
et al. [31] studied an integrated model with the considera-
tion of time windows of limited vehicles in a multi-factory
manufacturing system. They established amixed integer pro-
gramming model to minimize total weighted earliness and
tardiness and developed an enhanced brain storm optimiza-
tion algorithm to deal with it. Qin et al. [32] addressed
an IDPDSP in distributed hybrid flow shop environment
and multiple transportation modes to minimize the sum of
earliness, tardiness and delivery costs. They introduced an
adaptive human-learning-based genetic algorithm to handle
it. However, the above studies on IDPDSP do not take into
account the time variability in the logistics distribution pro-
cess. In the actual urban road network, the vehicle speed is
always changing due to the influence of traffic management,
traffic flow, traffic accidents, rush hours and other factors. If
this factor is not taken into account, it may lead to excessive
value loss caused by prolonged waiting time of distribution
vehicles or delayed product delivery, which reduces the prof-
itability and service level of group enterprises. Thus, this
work describes a novel IDPDSP model considering uncer-
tain travel time. A mixed integer programming model is
formulated and an improved genetic algorithm with two-
stage heuristic mutation scheduling strategy and tabu search
for local optimization (GA-2HMS&TS) is designed to find

the optimal solution of total cost. Then, experimental com-
parisons under different road conditions are also made to
analyze the impact of uncertain factors on time window vio-
lation.

Problem formulation

Problem description

The IDPDSP-GM-UTT is a new combinatorial optimiza-
tion problem, which consists of two inter-dependent sub-
problems, namely DHFSP in the production stage and batch
delivery of finished products with capacity limited multi-
vehicles and multi-customer in the distribution stage, as
indicated in Fig. 1.

In the production stage, a set of n jobs are assigned to f
production factories with different geographical locations for
processing. Each of the factories is arranged as a hybrid flow
shop, which has a set of t stages andmtp parallel machines. A
set of jobs are randomly assigned among factories. Each job
has to go through a set of sequential stages in every factory.
And at each stage, a set of parallel and identical machines are
available to process the job. To be more consistent with the
actual factory situation, it is assumed that there is only one
machine in the first stage of each factory. In the distribution
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stage, it includes the batch division of jobs and assignment
of delivery vehicles, which can be addressed as a traveling
scheduling problem with multiple distribution points locat-
ing in different regions and customers with time window
requirements. And the cost of single delivery is related only
to the length of the delivery route and not to the number
of jobs. Considering the geographically dispersed nature of
the factories, the rules for dividing batches are based on the
completion time of jobs. And jobs processed at the same fac-
tory will be divided into the same batch unless the number
contained reaches the vehicle capacity limit.

To facilitate the modeling and solving of the IDPDSP-
GM-UTT, some assumptions are as follows.

(1) Assignment of jobs is random and any factory can pro-
cess all the jobs.

(2) The division of jobs batches is random in initialization.
(3) There are enough parallel machines at any stages to sat-

isfy scheduling needs except thefirst stage ofworkpiece.
(4) The production capacity of each factory is consistent.

(5) The finished products are distributed according to the
divided batches;

(6) Once a job is assigned to a definite factory, all its steps
ought to be executed in this factory and interruption is
not allowed;

(7) One machine can only process one job at a time, and
jump the queue is not allowed;

(8) There are no buffer limits between stages;
(9) The production preparation time, product packaging

time, product loading time and product unloading time
of mechanical products are not take offense in this arti-
cle.

Mathematical model

Considering the geographical dispersion of the factories and
multi-vehicle delivery method adopted, this section proposes
a mathematical model for IDPDSP-GM-UTT. The indexes,
parameters and variables are defined as follows.
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Indexes

p Index of jobs, 1 ≤ p ≤ n

t Index of stages, 1 ≤ t ≤ T

f Index of factories, 1 ≤ f ≤ F

l Index of parallel machine

v Index of vehicle, 1 ≤ v ≤ V

i, j Index of retailer, 1 ≤ i ≤ r , 1 ≤ j ≤ r

h Index of batch distribution loop, 1 ≤ h ≤ V

b Index of batches, 1 ≤ b ≤ n

Parameters

F The number of factories

n The number of released jobs

V The number of vehicles used in a single dispatch

T The number of stages

d f , i Distance from factory f to retailer i

di , j Distance from retailer i to retailer j

r The number of retailers in a single dispatch

M A sufficiently large number

τv Capacity limits of vehicle v[
ζp, ξp

]
Customer’s time window of job p

π
p
f jth job of the job p sequence processed in factory f

υ(πp
f , t) Processing time of job p at stage t

C P(πp
f , t) Unit processing cost of job p at stage t in factory f

a(πp
f , b) Delivery time of job p in factory f

V Tf, p Departure time of job p in factory f

TCi , p Unit tardiness cost of job p for retailer i

ECi , p Unit earliness cost of job p for retailer i

C Rp Raw material cost of job p

ψv Original cost of vehicle v

T (πp
f , t) Production waiting time of job p in factory f

ti , j Travel time from retailer i to retailer j

ωv variable transportation cost of vehicle v

Vp Vehicle index of job p

Decision variables

Aftlp1p2
1 if the processing sequence of job p1 and job p2 are adjacent on
machine l at stage t in factory f ; and 0 otherwise

B(πp
f , b) 1 if batch b contains job p; and 0 otherwise

C(πp
f ,b) 1 if the products of job π

p
f are manufactured in factory f ; and 0 otherwise

D(πp
f , i) 1 if the products of job π

p
f belong to retailer i; and 0 otherwise

Efp1p2
1 if job p1 and job p2 are in the same vehicle; and 0 otherwise

σ (πp
f , t) Production finished time of job π

p
f at stage t in factory f

Vb Delivery departure time of batch b
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The objective function and constraints are as follows:

MI Nα �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P∑
p�1

CRp+
P∑

p�1

F∑
f�1

T∑
t

C P(πp
f , t)υ(π

p
f , t) +

V∑
v�1

ψv +
P∑
p

V∑
v�1

n∑
i�1, j�1

B∑
b

ωvti , j B(π
p
f , b)

+
P∑

p�1

n∑
i�1

F∑
f

ECi , p × max{0, ζp − af, p} +
P∑

p�1

n∑
i�1

F∑
TCi , p × max{af, p − ξp}

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1)

s.t

σ (πp
f , t) ≥ υ(πp

f , t), ∀ f , p, t (2)

σ (π
p2
f , 1) ≥

m1∑
l�1

ni∑
j1�1

Aftlp1p2
σ (π1

f , 1) + υ(π
p2
f , 1), ∀ f (3)

T (πp
f , t)� 0, ∀p, f , t � 1 (4)

υ(πp
f , t) ≤ T (πp

f , t), ∀p, f , t (5)

Vb �
f∑

p�1

C(πp
f ,b)max{B(πp

f , b)σ (π
p
f , t)}, ∀ f , b, p (6)

σ (πp
f , t) ≤ VTf, p, ∀ f , t , p (7)

[
ζp ≤ a(πp

f , b) ≤ ξp

]
, ∀i , v, p (8)

VbB(π
p
f , b) + VTf, p ≤ a(πp

f , b), ∀p, f , b (9)

a(πp
f , b)�

n∑
i , j(i �� j)

Efp1p2
ti , j+VbB(π

p
f , b), ∀i , p, v (10)

∑
p∈P

B(πp
f , b) � 1 (11)

Bi , j ≤ E(i , j)v , ∀i , j , v(i �� j) (12)

1 ≤
n∑

i�1

Efp1p2
≤ τv , ∀ f , p, v (13)

∑
i∈n

D(πp
f , i) � 1, ∀ f , p, i (14)

∑
p∈P

C(πp
f ,b) � 1, ∀ f , p, b (15)

B(πp
f , b)VTf, p > 0, ∀ f , p, b (16)

σ (πp
f , t) > 0, Vb > 0, ωv > 0, ∀ f , p, v, b, t (17)

where Eq. (1) represents that the objective is to minimize
the total costs of raw material, production, vehicle, delivery,
earliness, tardiness. Constraints (2) and (3) ensure that the
finished time of jobs are correct. Constraints (4) guarantees
that the production wait time of the first stage of job is zero.
Constraints (5) represents the waiting time of job p is greater
than or equal to the processing time of job p. Constraints (6)
determines that the distribution of batch b start after all the
jobs in batch b have been completed. Constraint (7) repre-
sents the production completion time of job p is less than or
equal to the delivery departure time of the batch bwhich con-
tains job p. Constraints (8) is the time window limit for job p.
Constraints (9) implies that the delivery arrival timeof batchb
which containing job pmust be equal or greater than the sum
of the corresponding vehicle departure time and the travel
time before job p. Formula (10) represents the calculation
method of the departure time of job p. Constraint (11) guar-
antees that a job is only allowed to be allocated to a batch for
distribution. Constraint (12) represents the constraints about
batches and factories. Constraint (13) determines that the
deliver products does not exceed the vehicle capacity limit
and meet the demands of one retailer at least. Constraint (14)
ensures that all retailers’ demands are met. Constraint (15)
ensures that a job is assigned to only one factory. Constraint
(16) guarantees that all jobs in the vehicle are delivered before
returning. Constraint (17) means that time and cost-related
decision variables are positive.

Processing of travel time uncertainty

During the arrangement of distribution vehicles, there are
lots of uncertainties in these processes which are difficult to
be described accurately by mathematical model. And it will
lead to large deviation in the actual implementation of the
scheduling scheme if these factors are ignored. In this section,
Monte Carlo method is used to deal with these uncertainties
during the journey.

Assumed that the travel time between distribution points
satisfies the normal distribution in the cause of traveling.
The size of uncertain factors during vehicle driving is mainly
related to the actual length of delivery routes. The longer the
path, the more uncertain events occur during driving, which
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meets X ~ N(μ,σ 2):

ti , j ∼ N (ti , j , σ 2
i , j ) (18)

The formula that converts the uncertain factors during dis-
tribution process into deterministic factors through Monte
Carlo simulation is as follows:

−
t
i , j

∼ 1

T

T∑
t�1

f (t ti , j , σi , j ) (19)

Since the random variable satisfies normally distributed
and the size of standard deviationwill affect the choice of dis-
tribution scheme. The standard deviation factor k is designed
to control the randomness as follows:

σi , j � k2 · di , j (20)

Proposed solution algorithm

IPDSP has been extensively investigated and proved to be
NP-hard [33]. And the proposed IDPDSP-GM-UTT can
be regarded as the extension of IPDSP, which considering

the distributed processing factory, muti-vehicle and uncer-
tain batch distribution situations simultaneously. It is more
complicated than traditional IPDSP and undoubtedly is also
NP-hard. So, a hybrid genetic algorithm with a new three-
layer representation scheme is developed in this section for
the proposedmathematicmodel. In the proposed algorithm, a
two-stage heuristic mutation scheduling strategy is designed
which can achieve rapid convergence at the initial iteration
of algorithm and greatly improve the probability of finding
the optimal solution. Then, a tabu search is used to improve
the local search performance of algorithm at the end of pop-
ulation iteration. The steps and strategies in the algorithm are
detailed described in the following sections.

Framework of GA-2HMS&TS

The framework of GA-2HMS&TS is show in Fig. 2 and the
detailed process are described in the follow sections:

Encoding and decoding scheme

Encoding strategy greatly affects the performance of an effi-
cient meta-heuristic. In this paper, the IDPDSP-GM-UTT
concludes jobs assignment among distributed factories, job
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tasks sequencing at production stage, and batch delivery of
finished jobs with capacity limited vehicles at the distribu-
tion stage. A matrix of three rows is used to represent a
chromosome. The n numbers randomly arranged in the first
row show the processing sequence of n workpieces in a dis-
tributed hybrid flow shop. The second row represents the
delivery vehicle selected by different jobs which are deter-
mined in the first row. The last row represents the production
plant that are chosen by jobs. A feasible solution is shown in
Fig. 3:

The detailed decoding steps are as follows:

Step 1 Calculate the productionwaiting time, thefinish time
of each job according to the job production sequence
and processing workshop where the job is located.
Then, determine production costs.

Step 2 Calculate the delivery waiting time of different vehi-
cles and the delivery time according to the delivery
vehicle specified by the job. Then, calculate the
delivery cost.

Step 3 Calculate the cost of exceeding time window based
on arrival time and time window of different jobs.

Step 4 Calculate the fixed cost of vehicles.
Step 5 Obtain the fitness value of the chromosome, matrix

of production time, matrix of delivery time, and job
production orders in different factories

Selection operation

Selection strategies are critical to population iteration, which
can choose a set of better individuals for the next iteration.
Binary tournaments combined with optimal individual reten-
tion strategies are used to make choices in GA-2HMS&TS.
Firstly, a certain number of individuals are selected from the
population at a time, and then select the best individual as
one of offspring. Repeat this operation until the size of new
population reaches the original size. The detailed steps are
as follows:

Step 1 Determine the number to select.
Step 2 Select the chromosome with best fitness as one of

offspring.
Step 3 Repeat Step 2 until the number of descendants reach

population size.
Step 4 Determine whether the individual with the best fit-

ness value exists in NewChrome, if it exists return
NewChrome, otherwise put the best individual into
NewChrome.

Step 5 Return the population NewChrom.

Crossover operation

In this paper, chromosomes are divided into two segments
and crossed separately under the premise of three-layer cod-
ing rules, both of two segments adopt a two-point crossover
method. The first segment represents the job order while
the second segment implies the sequence of delivery vehi-
cle. The crossover probability of two segments is p1 and p2
respectively:

p1 � C

C + V
, p2 � V

C + V
(21)

The notation C represents the number of distributed fac-
tories and notation V represents the number of vehicles used
in a single integrated scheduling.

The specific crossover procedure is as follows:

Step 1 Generate a random number q between 0–1.
Step 2 If q is greater than p1, the crossover process takes

place in the second segment; otherwise, the first seg-
ment is crossed.

Step 3 Complete the exchange operation and return the pop-
ulation.
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Two-stage heuristic variation scheduling strategy

At the initial iteration of population, heuristic variation
scheduling strategy for the first stage ensures that the mutant
chromosome is superior than that is not mutated. While the
strategy in the distribution stage guarantees that the shipping
order is consistent with the finished time of jobs. In addition,
the mutation strategy divides the orders completed within
the same time interval into the same batch, which reduces
both of the delivery time and costs in the distribution stage.
Consequently, the two-stage heuristic mutation scheduling
strategy can achieve rapid convergence at the initial iteration
of algorithm and greatly improve the probability of finding
the optimal solution. And at the end of population iteration,
tabu search is used to improve the local search performance
of algorithm.

The crossover probability Pc and mutation probability Pm

play a vital role in the convergence of algorithm and the
quality of the solution. Excessive selection of Pc will destroy
the balance of the group and result in the destruction of good
individuals, while reduces the evolution speed of population
if Pc is too small.

Similarly, the evolution direction of the group is change-
able when the selected Pm value is too large, while it is
not conducive to the generation of new individuals. And the
algorithm is prone to prematurely fall into the local opti-
mum if Pm value is too small. Therefore, it is difficult to
solve the integrated scheduling problem in distributed group
manufacturing with a constant cross-mutation probability.
In response to this problem, this article adopts a dynamic
crossover probability crossover and mutation probabilities,
the specific calculation formula is as follows.

Pc �
{
k1 − (Pc1 − Pc2)

(
g
3G + f − fav

3( fmax− fav)

)
, f ≥ fav

0.8, f < fav

(22)

Pm �

⎧⎪⎨
⎪⎩
k2 + (Pm1 − Pm2)

(
g
3G + f− fav

3( fmax− fav)

)
, f ≥ fav

0.2, f < fav

(23)

where the notation g represents current iteration number, G
represents the maximum number of iterations. The param-
eter f means current fitness value, the parameter f av means
average fitness values to date and the parameter f max means
maximum fitness values so far. The parameter k1 represents
the cross cardinality and k2 represents the mutation cardinal-
ity.

Heuristic mutation scheduling strategy in first stage

In the first-stage, chromosome segment is revised according
the location of retailers and factories. The first-stage segment
is revised to a better segment which has least procession
time during production. The detailed operation method is as
follows:

Step 1 Obtain the chromosomes that need to be muted.
Step 2 Determine the factory which job p is processed

according to the encoding strategy of chromosomes.
Step 3 Calculate the process finishing time of each job

according to processing time of job p in each fac-
tory.

Step 4 Calculate the processing duration of each factory.
Step 5 Taking the job p with shortest processing time from

factory with longest processing time and placed job
p into factory f with shortest processing duration.

Step 6 Calculate the chromosome fitness value after adjust-
ment and recording the chromosome and fitness
value after each adjustment.

Step 7 Repeat Step 6 until the number of iterations is
reached.

Step 8 End the cycle and return the chromosome after first-
stage heuristic mutation.
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Algorithms 1: First-stage heuristic mutation 
input Chromesome, τv, time, ShopTimeList, F 

output new Chromesome1, ShopTimeList 

1:  for i←1 to P do
2:  if pi F, then 
3:    F[pi]←f  Determine the processing factory where a job is eliminated

4:  end 
5:  end
6:  for k←1 to P do
7:   if pk F, then  Determine the processing completion time of each job 

8:    if F[pk]←1,then 
9:  prTime[j]←time[pk] 

10:    else
11:  prTime[j]←time[pk]+ time[pk-1]

12:    end
13:   end
14:  end
15:  for f←1 to F do  Calculate the processing time of different factories 

16:   for n←1 to P do
17:  prdTime[n]←0

18:   if pn f,then
19:  prdTime[n] ←prdTime[n]+time[pn]

20:   end
21:   end
22:  end
23:  maxST←max(prdTime)

24:  maxS←Chromesome[index(maxST)]

25:  minST←min(prdTime)

26:  minS←Chromesome[index(minST)]

27:  for m←1 to 3*shopNum do    Put the job p with the shortest processing time into the array 

minS 

28:  for c←1 to F do
29:    for n←1 to F do
30:  prdTime[f]←0

31:    if pn F,then
32:  prdTime[f] ←prdTime[f]+time[pn]

33:    end
34:    end
35:   end
36:   maxST←max(prdTime)

37:   maxS←Chromesome[index(maxST)]

38:   minST←min(prdTime)

39:   minS←Chromesome[index(minST)]

40:   ShopTimeList(m)←maxST

41:  end
42:  Chromesome1←Chromesome[index(min(ShopTimeList))]

43:  return min(ShopTimeList)  Chromesome1 Return the chromosome with the shortest 

processing time 
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Heuristic mutation scheduling strategy in second stage

In the second-stage, divide jobs p into different batches
according to the vehicle capacity limit τv and product
completion time. Carry out the second segment coding
mutation on chromosomeswhich obtained fromSect. Encod-
ing and decoding scheme according to the principle of
idle vehicle priority. The detailed operation method is as
follows:

Algorithms 2: Second-stage heuristic mutation 
input Chromesome1, τv, time 

output new Chromesome2, prTime 

1:  for j←1 to P do
2:  if pj F1, then 
3:    prTime[j]←time[pj]

4:  else
5:    prTime[j]←time[pj]+ time[pj-1]

6:  end
7:  end
8:  sortrows(prTime) 

9:  for k←1 to P do
10:  Divide into different batches according to the vehicle capacity limit τv and the production 

11:  completiZon time prTime

12:   if Pk B1,then 
13:  Chromesome2[p+k]←1

14:   else
15:    if Pk B2,then
16:  Chromesome2[p+k]←2

17:  else
18:  Chromesome2[p+k]←B

19:   end
20:  end
21:  return Chromesome2,prTime Return the generated chromosomes and production completion 

time array 

Tabu search algorithm for local optimization

The length of tabu length plays an important role in the exe-
cution of tabu search algorithm. If it is too long, it will lead to
the less efficiency of the algorithm.On the contrary, if it is too
short, it will lead to the algorithm falls into local optimum.
Therefore, this paper sets dynamically tabu length according
to job number and iteration number. The specific value of the

length is as flows:

(Tabulen) �
{
4p × k

stopL , 0 <k ≤ 1
2 × stopL

p × k
stopL ,

1
2 × stopL <k ≤ stopL

(24)

where Tabulen denotes the length of tabu table, k represents
the number of iterations and stopL means the maximum iter-
ation z

The specific steps of tabu search are as follows:

Step 1 Select initial individuals.
Randomly select individuals after cross and mutation for

taboo operations and empty the tabu table T .
Step 2 Neighborhood search.
Legality adjustment to realize neighborhood search oper-

ation.
Step 3 Identify candidate solution.
Select bestS from the candidate solutions that satisfy the

rule.
Step 4 Neighborhood evaluation.
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Table 1 Related parameters

Parameters Values

Processing time of job p at stage k in
factory f

Unidrnd (1,10)

Unit processing cost of job p in
factory f

Unidrnd (1,10)

Distance from factory f to retailer i Unidrnd (10,30)

Distance from retailer i to retailer j Unidrnd (10,30)

Variable transportation cost of vehicle
v per unit time

4

Unit tardiness cost of job p for retailer
i

Unidrnd (1,10)

Unit earliness cost of job p for retailer
i

Unidrnd (1,10)

Time window of job p [T-Unidrnd (0, 50), T +
Unidrnd (0, 50)]

T �
P∑

p�1

F∑
f �1

T∑
t�1

υ(πp
f , t)

Fixed transportation cost of vehicle v 2

Fixed processing cost of job p 3

Calculate the fitness value of the candidate solution and
compare the current solution fitness value fit(Si) with the
candidate solution fitness value fit(si’). If the fitness value of
candidate solution is better than the current solution, replace
Si with Si’ and update the tabu list T if Si’ dos not exists in
tabu list.

Step 5 Determine whether the termination condition is
met.

If the termination condition of the algorithm is satisfied,
return the result of local search. Otherwise, repeat Step 2.

Experimental results and discussions

Experimental design

All algorithms involved in this article are developed inMAT-
LAB R2016a and run on a computer with Intel Coretm

i5-4200H 3.40 GHz CPU and 8 GB RAM under Microsoft
Windows 10 environment. Since the IDPDSP-GM-UTT is
a new combinatorial scheduling problem and no benchmark
instances have been found in the literature, we set up two sets
of test problems randomly. The parameters involved in the
test example are shown in Table 1.

To verify the effectiveness of GA-2HMS&TS, three rep-
resentative heuristic algorithms in the existing literature for
solving IPDSP, i.e., minimal critical ratio (CR) [34], mini-
mal slack (MS) [35], and earliest due date heuristics (EDD)
[36], are introduced for comparison. Besides, to prove the

effectiveness of the proposed improvement strategy, GA-TS
without heuristic mutation scheduling strategy and standard
GA are also used to compare with GA-2HMS&TS to solve
the proposed problem. In order to further compare the perfor-
mance of the algorithms, one performances metric, relative
error (RE), is adopted to evaluate the convergence and dis-
tribution of solutions sets. RE is widely used for benchmark
comparison and has been proved that it can effectively com-
pare the stability of heuristic algorithms. The calculation
formula of RE is as follows:

RE � Ci − Cmin

Cmin
(25)

where Cmin means the minimum cost which is calculated by
the Eq. (1) among six compared algorithms.Ci expresses the
total cost value obtained by one specific algorithm.

There are four parameters that are vitally important in
GA-2HMS&TS, namely population size (NIND), maximum
iteration (Max), crossover rate (Pc), mutation rate (Pm). And
each parameter has four level. The detailed parameter levels
are shown in Table 2. To find the optimal parameters, several
experiments are carried out with diverse parameter settings
and obtained results are analyzed using Taguchi approach.
Based on the orthogonal array L16(44), different parameter
combinations(3 × 40 × 15) are shown in Table 3.

The GA-2HMS&TSwith each parameter combinations is
performed 20 times independently and the average relative
error (ARE) over 20 independent results are shown in Table
3. The significance rank of four parameters is exhibited in
Table 4. Based on the aforementioned experimental results
from Table 4, it can be seen that Pc and NIIND play the most
important and second roles. A reasonable parameter combi-
nation is suggested as follows: population size NIND� 200,
Maximum iteration Max � 400, initial crossover probability
Pc � 0.8, initial mutation probability Pm= 0.2. self-adapting
crossover probability Pc1 � 0.9 and Pc2 � 0.6, self-adapting
mutation probability Pm1 � 0.2 and Pm2 � 0.1, k1 � 0.9, k2
� 0.1.

Experimental results

The combination of parameter f , p, k is used to describe
a set of experimental instances. For example, 3 × 10 × 5
represents an instance with 3 factories, 10 jobs and 5 stages.
The experimental results of six algorithms for two set of
examples with different size are shown in Tables 5 and 6,
respectively.

Furthermore, Fig. 4 shows the comparison boxplot graphs
of six algorithms for the two selected problem (3 × 10 × 5,
and 3 × 40 × 15) respectively. It can be seen that the opti-
mal value obtained by the GA-2HMS&TS is better than that
of the other algorithms and the range of fluctuations is also
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Table 2 Factors and their levels
for GA-2HMS&TS Instance NIND Max Pc Pm

1 50 200 0.6 0.05

2 100 300 0.7 0.1

3 150 400 0.8 0.15

4 200 500 0.9 0.2

Table 3 Orthogonal experiments
and response values of
GA-2HMS&TS

Trail Parameter ARE

NIND Max Pc Pm

1 50 200 0.6 0.05 3.086

2 50 300 0.7 0.1 2.534

3 50 400 0.8 0.15 2.183

4 50 500 0.9 0.2 2.375

5 100 200 0.7 0.15 2.699

6 100 300 0.6 0.2 2.47

7 100 400 0.9 0.05 2.408

8 100 500 0.8 0.1 2.366

9 150 200 0.8 0.2 2.153

10 150 300 0.9 0.15 2.792

11 150 400 0.6 0.1 2.513

12 150 500 0.7 0.05 2.588

13 200 200 0.9 0.1 2.114

14 200 300 0.8 0.05 1.904

15 200 400 0.7 0.2 1.736

16 200 500 0.6 0.15 2.567

Table 4 Response and rank of
parameters for the
GA-2HMS&TS

Instance NIND Max Pc Pm

1 2.5445 2.513 2.659 2.4965

2 2.48575 2.425 2.38925 2.38175

3 2.5115 2.21 2.1515 2.56025

4 2.08025 2.474 2.42225 2.1835

Delta 0.46425 0.303 0.5075 0.37675

Rank 2 4 1 3

much smaller. Different from the GA, the GA-2HMS&TS
optimizes the fitness value of chromosomes in the process
of variation. In addition, the chromosomes are locally opti-
mized aftermutation by tabu search algorithm,which ensures
that chromosomes evolve not in a bad direction. And we can
summarize that the GA-2HMS&TS in this work is superior
than GA and GA-TS.

Since three heuristics (GA, GA-TS, GA-2HMS&TS) are
much faster thanMS, EDD and CR. The ARE, the best value
(BRE), and the worst value (WRE) of RE are applied to com-
pare these three heuristics in detail. The calculation results are

shown in Tables 7 and 8. It can be observed that three meta-
heuristic algorithms (GA, GA-TS, GA-2HMS&TS) can get
better results than three heuristic algorithms. And the CR has
better RE than MS and EDD, which indicates that the CR is
more suitable for the IDPDSP-GM-UTT. And among all the
three meta-heuristic algorithms, GA-2HMS&TS can get the
best results for both large-scale and small-scale problems.

To further evaluate the performance of six algorithmswith
the change of parameter values, ARE with different parame-
ters (f , t, p) are shown in Fig. 5, 6 and 7, respectively. It can
be seen that the ARE of GA-2HMS&TS obviously are better
than those obtained by GA and GA-TS. On the other hand,
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Table 5 Results with different
algorithms for small sized
examples

Instance f × p × k MS EDD CR GA GA-TS GA-2HMS&TS

1 2 × 10 × 5 35.08 35.06 34.32 29.28 28.89 28.35

2 2 × 10 × 10 43.54 43.33 43.11 36.47 34.81 34.69

3 2 × 20 × 5 78.29 77.26 77.75 62.44 60.81 60.81

4 2 × 20 × 10 98.88 97.38 95.33 77.20 72.16 71.38

5 3 × 10x5 47.01 47.58 48.66 38.19 36.14 36.08

6 3 × 10 × 10 55.75 55.12 53.40 42.54 41.46 41.29

7 3 × 20 × 5 108.52 106.93 103.40 87.92 81.26 81.26

8 3 × 20 × 10 127.82 125.46 125.98 100.86 93.23 92.11

9 4 × 10 × 5 70.18 68.85 66.89 54.96 53.51 53.23

10 4 × 10 × 10 75.39 75.03 72.60 58.13 56.35 55.74

11 4 × 20 × 5 173.10 165.15 158.62 130.78 123.93 123.44

12 4 × 20 × 10 198.64 195.53 183.26 151.62 139.75 138.49

13 5 × 10 × 5 84.13 86.19 83.59 65.55 62.87 62.17

14 5 × 10 × 10 100.13 97.40 93.89 72.33 70.99 69.35

15 5 × 20 × 5 216.44 214.02 210.90 158.46 152.58 149.84

16 5 × 20 × 10 236.29 232.67 231.11 175.44 164.68 161.59

Table 6 Results with different
algorithms for large sized
examples

Instance f × p × k MS EDD CR GA GA-TS GA-2HMS&TS

1 2 × 40 × 15 212.69 209.28 207.92 173.08 172.34 166.74

2 2 × 40 × 20 286.41 274.23 268.04 220.73 224.09 213.66

3 2 × 50 × 15 250.55 240.37 245.16 205.78 199.52 191.35

4 2 × 50 × 20 351.77 340.42 321.49 258.44 254.77 246.7

5 3 × 40 × 15 219.01 212.72 208.96 181.80 174.30 167.34

6 3 × 40 × 20 288.78 296.53 282.88 243.90 233.54 225.19

7 3 × 50 × 15 304.40 287.31 278.57 221.47 210.48 210.48

8 3 × 50 × 20 354.98 346.12 314.98 269.20 254.19 242.57

9 4 × 40 × 15 257.87 240.94 248.30 194.00 189.04 185.24

10 4 × 40 × 20 298.15 292.08 282.13 227.24 214.10 206.96

11 4 × 50 × 15 341.46 333.97 325.85 274.45 260.17 255.37

12 4 × 50 × 20 391.80 363.81 363.28 300.55 278.93 268.28

13 5 × 40 × 15 272.88 283.79 264.00 210.57 201.91 198.11

14 5 × 40 × 20 328.99 309.24 296.62 231.51 225.80 216.51

15 5 × 50 × 15 375.71 381.34 378.23 297.62 283.58 274.84

16 5 × 50 × 20 454.85 443.97 426.45 324.82 305.81 291.53

it can be observed that the there is an upward trend with the
increase of four parameters, which indicates that the ARE
increases with the increase of example size.

It can be seen that the GA-2HMS&TS has strong search
ability in both exploration and exploitation phases for solv-
ing the proposed model. In the GA-2HMS&TS, a two-stage
heuristic mutation scheduling strategy is adopted to enhance
the search ability. Additionally, the tabu search approach
is employed to optimize mutant individuals, which can

strengthen the local search ability of GA-2HMS&TS. There-
fore, the proposed algorithm has better performance than
others for handling the proposed model.

Parameter sensitivity analysis

To verify the robustness of the proposed model to deal
with the uncertainty of travel time, the Monte Carlo method
mentioned in Sect. Processing of travel time uncertainty is
introduced to handle uncertain factors during the journey.
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Table 7 RE value of different algorithms for small sized examples

Instance f × p × k MS EDD CR GA GA-TS GA-2HMS&TS

RE RE RE BRE ARE WRE BRE ARE WRE BRE ARE WRE

1 2 × 10 × 5 23.74 23.68 21.07 3.29 5.91 9.79 1.91 2.06 6.75 0.00 0.81 1.36

2 2 × 10 × 10 25.51 24.92 24.27 5.13 7.21 12.94 0.36 2.85 7.30 0.00 1.14 1.86

3 2 × 20 × 5 28.75 27.05 27.86 2.68 6.11 14.17 0.00 3.71 8.69 0.00 1.48 3.22

4 2 × 20 × 10 38.52 36.43 33.55 8.15 9.97 11.89 1.09 3.21 11.96 0.00 1.28 4.14

5 3 × 10 × 5 30.29 31.87 34.88 5.84 6.48 9.48 0.18 2.44 7.33 0.00 1.01 2.14

6 3 × 10 × 10 35.02 33.49 29.33 3.02 4.98 15.76 0.40 4.49 8.92 0.00 1.86 3.43

7 3 × 20 × 5 33.55 31.59 27.24 8.20 9.81 10.59 0.00 2.07 10.34 0.00 1.28 3.91

8 3 × 20 × 10 38.77 36.21 36.77 9.50 9.33 11.69 1.22 3.64 8.09 0.00 1.3 1.75

9 4 × 10 × 5 31.84 29.34 25.66 3.25 6.61 13.46 0.52 3.09 9.75 0.00 1.21 2.41

10 4 × 10 × 10 35.26 34.6 30.25 4.29 8.95 13.00 1.09 4.20 10.53 0.00 2.04 3.67

11 4 × 20 × 5 40.23 33.79 28.50 5.95 10.47 17.20 0.40 4.96 10.62 0.00 1.43 3.2

12 4 × 20 × 10 43.43 41.19 32.33 9.48 13.78 18.41 0.91 6.75 11.29 0.00 2.04 4.27

13 5 × 10 × 5 35.33 38.63 34.46 5.44 8.29 17.27 1.13 4.49 9.79 0.00 1.22 3.06

14 5 × 10 × 10 44.39 40.44 35.38 4.29 8.91 20.81 2.37 5.88 9.08 0.00 1.43 3.31

15 5 × 20 × 5 44.45 42.83 40.75 5.75 10.29 16.69 1.83 6.73 11.58 0.00 1.07 3.09

16 5 × 20 × 10 46.23 43.99 43.02 8.57 12.07 20.20 1.91 6.61 11.44 0.00 1.89 4.21

Average 35.96 34.38 31.58 5.80 8.69 14.58 0.95 4.19 9.59 0.00 1.41 3.06

Table 8 RE value of different algorithms for large sized examples

Instance f × p × k MS EDD CR GA GA-TS GA-2HMS&TS

RE RE RE BRE ARE WRE BRE ARE WRE BRE ARE WRE

1 2 × 40 × 15 27.56 25.51 24.70 3.80 6.10 23.32 3.80 4.32 10.72 0.00 2.85 5.33

2 2 × 40 × 20 34.05 28.35 25.45 3.31 14.63 28.91 3.31 6.02 22.29 0.00 3.57 8.95

3 2 × 50 × 15 30.94 25.62 28.12 7.54 8.00 20.34 7.54 5.26 14.37 0.00 2.38 9.19

4 2 × 50 × 20 42.55 37.95 30.28 4.73 8.50 23.70 4.73 7.05 17.20 0.00 4.36 11.89

5 3 × 40 × 15 30.88 27.12 24.87 8.64 9.27 30.09 8.64 10.62 29.80 0.00 3.81 8.55

6 3 × 40 × 20 28.24 31.68 25.62 8.31 10.30 23.60 8.31 11.59 27.46 0.00 5.73 11.55

7 3 × 50 × 15 44.62 36.50 32.35 5.22 7.88 20.04 5.22 6.83 25.89 0.00 3.89 9.3

8 3 × 50 × 20 46.34 42.69 29.85 10.98 12.61 23.88 10.98 11.43 30.56 0.00 2.72 10.54

9 4 × 40 × 15 39.21 30.07 34.04 4.73 9.53 23.36 4.73 10.40 25.20 0.00 3.76 8.44

10 4 × 40 × 20 44.06 41.13 36.32 9.80 14.09 21.60 9.80 11.72 20.36 0.00 2.44 10.32

11 4 × 50 × 15 33.71 30.78 27.60 7.47 10.37 25.04 7.47 6.92 21.78 0.00 3.61 6.79

12 4 × 50 × 20 46.04 35.61 35.41 12.03 18.59 25.75 12.03 9.52 27.67 0.00 4.17 9.74

13 5 × 40 × 15 37.74 43.25 33.26 6.29 7.90 22.41 6.29 7.98 16.62 0.00 2.34 6.27

14 5 × 40 × 20 51.95 42.83 37.00 6.93 14.48 24.91 6.93 9.26 21.05 0.00 4.06 8.18

15 5 × 50 × 15 36.70 38.75 37.62 8.29 11.92 30.62 8.29 8.29 27.26 0.00 3.58 9.54

16 5 × 50 × 20 56.02 52.29 46.28 11.42 21.03 38.77 11.42 10.40 33.25 0.00 6.27 12.61

Average 39.41 35.63 31.80 7.46 11.58 25.4 3.37 8.60 23.22 0.00 3.72 9.20
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Fig. 4 Boxplot graphs of six algorithms

Fig. 5 ARE with different numbers of factories (f)

Fig. 6 ARE with different stages in a factory (t)

Fig. 7 ARE with different numbers of jobs (p)

Since the choice of standard deviation factor will affects the
randomness, the standard deviation factor k is set as 0.8, 1.0
and 1.2, respectively. The RE values of the six algorithms
under different road conditions are shown in Table 9 and
Fig. 8.

To analyze the sensitivity of the number of retailers, exper-
imental analysis under three different road conditions ismade
respectively, which is shown in Fig. 9.

With the increase of the number of service retailers, the
number of retailers exceeding the time window shows a
significant increase trend for all of three conditions. When
serving the same number of retailers, the greater the uncer-
tainty of travel time, themore retailers violate the service time
window. In addition, we find that GA-2HMS&TS has better
performance than the other algorithms from Fig. 8 although
the uncertainty of the journey has increased.

It can be found from the above results that the proposed
method for solving the uncertain factors is effective. The
uncertain factors during the distribution stage ought not to be
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Table 9 RE of different algorithms for different road conditions

k MS EDD CR GA GA-TS GA-2HMS&TS

RE RE RE BRE ARE WRE BRE ARE WRE BRE ARE WRE

0.8 24.75 24.75 21.86 0.48 6.11 14.17 0.00 3.71 8.69 0.00 1.48 3.22

1.0 26.55 25.96 22.66 0.44 7.49 14.85 1.44 3.99 9.46 0.00 2.14 3.96

1.2 30.69 36.77 24.87 0.76 11.58 22.37 3.54 7.67 10.22 0.00 2.69 3.88

Fig. 8 ARE of different algorithms for different road conditions

Fig. 9 The number of retailers that violate time window constraints

overlook, especially when some unexpected conditions hap-
pened, such as over numerate received orders, badweather or
serious road conditions. Decision makers need to appropri-
ately increase the number of distribution vehicles to reduce
the influence of uncertainty disturbance on enterprise opera-
tion to avoid unnecessary losses.

What’s more, to verify the validity of the model and algo-
rithm for different distributions, we did sensitivity analysis
with Normal, Poisson and Uniform distribution. The RE
values of the six algorithms under different distribution con-
ditions with instance 3f10p5k are shown in Table 10.

It can be seen from Table 10 that the GA-2HMS&TS
can still obtain the best RE value under the assumption of
different distributions. The fluctuation range of experimen-
tal results under different distributions is also small, which
proves that the designed model and algorithm are still valued
under the assumption where the travel time meets Poisson
and Uniform distribution.

Conclusion

This paper proposes a new IDPDSP-GM-UTT, in which
products are firstly processed in distributed hybrid flow shops
and subsequently delivered to several customers in batches
with capacity limited vehicles. An integrated scheduling
model is established considering uncertain travel time to
minimize the total costs. To solve the IDPDSP-GM-UTT, an
improved genetic algorithm with two-stage heuristic muta-
tion scheduling strategy and tabu search is designed. To
assess the superiority of GA-2HMS&TS in solving the con-
sidered scheduling problem, several experiments by adopting
test examples with different scales are performed. Three

Table 10 RE of different algorithms for different distribution conditions

Distribution MS EDD CR GA GA-TS GA-2HMS&TS

RE RE RE BRE ARE WRE BRE ARE WRE BRE ARE WRE

Normal 24.75 24.75 21.86 0.48 6.11 14.17 0.00 3.71 8.69 0.00 1.48 3.22

Poisson 21.14 22.77 28.37 1.69 6.83 16.14 0.36 4.48 9.65 0.00 1.49 4.94

Uniform 25.49 26.91 31.06 0.67 7.38 15.64 1.54 4.16 11.14 0.00 2.17 5.72
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fast heuristics (CR, EDD, and MS) and two baseline algo-
rithms (GA and GA-TS) are chosen for comparisons. The
obtained comparative results exhibit that the GA-2HMS&TS
has significantly superiority for solving the IDPDSP-GM-
UTT. Moreover, the sensitivity analysis indicates that the
proposed method for solving the uncertain factors is effec-
tive and the uncertain factors during the distribution stage
ought not to be overlook.

The future research is to extend the model to include more
uncertain factors in the process of production and distribu-
tion, such as uncertain factors of job demands or cost. This
could likely lead to the constructed model much more com-
plicated but would yield results that are more closely aligned
with practice.

Acknowledgements This research was supported by the National Nat-
ural Science Foundation of China under Project (No. 51705386); China
Scholarship Council (No. 201606955091);

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Ghadimi F, Aouam T (2021) Planning capacity and safety stocks in
a serial production-distribution system with multiple products. Eur
J Oper Res 289(2):533–552. https://doi.org/10.1016/j.ejor.2020.
07.024

2. Moons S, Ramaekers K, An C, Arda Y (2016) Integrating pro-
duction scheduling and vehicle routing decisions at the opera-
tional decision level: a review and discussion. Comput Ind Eng
104:224–245. https://doi.org/10.1016/j.cie.2016.12.010

3. Pasha H, Kamalabadi IN, Eydi A (2021) Integrated quality-
based production-distribution planning in two-echelon supply
chains. Math Prob Eng 2021(1):1–10. https://doi.org/10.1155/
2021/6615634

4. Guo S, Du B, Peng Z, Huang X, Li Y (2015) Manufacturing
resource combinatorial optimization for large complex equipment
in groupmanufacturing: a cluster-based genetic algorithm.Mecha-
tronics 31:101–115. https://doi.org/10.1016/j.mechatronics.2015.
03.005

5. Ji SF, Peng XS, Luo RJ (2018) An integrated model for the
production-inventory-distribution problem in the Physical Inter-
net. Int J Prod Res 57(4):1000–1017. https://doi.org/10.1080/
00207543.2018.1497818

6. Marandi F, Ghomi S (2019) Integrated multi-factory production
and distribution scheduling applying vehicle routing approach. Int J
Prod Res 57(3):722–748. https://doi.org/10.1080/00207543.2018.
1481301

7. Li M, Wang Z (2018) An integrated robust replenish-
ment/production/distribution policy under inventory inaccu-
racy. Int J Prod Res 56(12):4115–4131. https://doi.org/10.1080/
00207543.2018.1444808

8. Kumar R, Ganapathy L, Gokhale R, Tiwari MK (2020) Quantita-
tive approaches for the integration of production and distribution
planning in the supply chain: a systematic literature review. Int
J Prod Res 58(11):3527–3553. https://doi.org/10.1080/00207543.
2020.1762019

9. Agnetis A, Aloulou MA, Kovalyov MY (2017) Integrated produc-
tion scheduling and batch delivery with fixed departure times and
inventory holding costs. Int J Prod Res 55(20):6193–6206. https://
doi.org/10.1080/00207543.2017.1346323
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