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Abstract
In this paper, an adaptive fixed-time controller is raised for the manipulator system with uncertain disturbances to boost the
rate and precision of its trajectory tracking and solve the convergence time dependence on the system’s initial conditions.
First, a nonsingular fixed-time sliding mode (SM) surface and a reaching law based on an arctangent function are constructed
to enhance the control scheme performance. Second, the upper bound is difficult to obtain because of the uncertainty of the
disturbance. The disturbance upper bound is estimated by adaptive techniques, which do not require a priori knowledge about
the upper bound and effectively inhibit the effect of disturbance on the system. Finally, the fixed-time convergence of the states
is analyzed by rigorous theoretical proof, and the validity of the presented control scheme is demonstrated by simulation.

Keywords Nonsingular fixed-time sliding mode (SM) surface · Adaptive techniques · Disturbance upper bound
· Manipulator system

Introduction

As robotics advances, manipulator schemes are being fully
utilized as the core part of robots to replace humans in
complex, repetitive, and dangerous tasks. The manipulator
scheme’s high-precision trajectory tracking is indispensable
for all of the above tasks. The robotic manipulator is a
time-varying nonlinear system with external disturbances
and parameter uncertainty effects. Thus, for nonlinear sys-
tem control issues, slidingmode control (SMC) [1–6], neural
network control [7–9], fuzzy control [10–14], and adaptive
control [15, 16] have been used. Among them, SMC has the
advantages of fast dynamic response, excellent robustness,
and relatively simple control implementation.
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The common SMC uses a linear SM surface, and [17]
designed an SMC based on a super-twisting method for the
robotic manipulator system control issue, considering that it
uses a linear SM surface and does not have finite-time con-
vergence capability, and the linear error SM surface has slow
convergence and large chattering problems. The ordinary lin-
ear SM surface can only approach the equilibrium point in
infinite time. To obtain better performance, finite-time SMC
has been fully developed. In [18], a nonsingular terminal
sliding mode (TSM) controller is presented for the magnetic
levitation scheme control issue, achieving finite-time control
of the error states and effectively addressing the singularity
issue. By bringing in a new error term, a nonsingular fast
TSM surface is proposed for the first time in [19], which
achieves a fast convergence of the full phase of the error
while increasing the control accuracy. In [20], a nonsingular
fast TSM controller is proposed to effectively improve the
underwater vehicle control issue by estimating the distur-
bance magnitude through a state observer. Nonsingular fast
TSM surfaces have been fully utilized in different systems
[21–23]. To eliminate the singularity, an adjustment of the
reaching law is required under the action of the nonsingular
fast TSM surface, which may affect the rate of convergence
of the error states. In [24, 25], nonsingular fast TSM surfaces
based on piecewise functions were proposed, which effec-
tively solved the problems of nonsingular fast TSM surfaces
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while avoiding the singularity issue. However, the conver-
gence time of the system state in the above literature depends
on the initial conditions, which means that the convergence
time is unknown.

The proposed fixed-time algorithm can effectively solve
the issues of finite-time control algorithms. In [26], a fixed-
time control method was first presented to ensure that its
convergence time was independent of the initial conditions
of the system. In [27], a new fixed-time controller was pre-
sented to address the power system control issue, but the
effect of disturbances on the system was not considered. In
[28], a neural network-based fixed-time controller was raised
to address the spacecraft attitude tracking issue. In [29], for
spacecraft systems with disturbances and inertial uncertain-
ties, a nonsingular fixed-time SM surface is designed, while
an exponential function is introduced for the reaching law
to improve it, and the issue of the unknown upper bound of
disturbances is solvedby the adaptive law technique, and sim-
ulations demonstrate the superiority of its control scheme. In
[30], a fixed-time control method based on fuzzy control is
proposed for the control of quadrotor unmanned aerial vehi-
cles in the presence of actuator saturation, and a new SM
surface is constructed to handle the singularity issue.

Inspired by the above-mentioned literature and aiming
at the robotic manipulator system with unknown external
disturbances, a nonsingular fixed-time controller based on
adaptive law is proposed in this work. The main contribu-
tions are concluded as follows:

(1) A new fixed-time SM surface is proposed, and a reach-
ing law based on the arctangent function is designed to
shorten the convergence time of the system variables
and improve the accuracy.

(2) The upper bound of the unknown disturbance is effec-
tively estimated by the adaptive technique, which
compensates for the impact brought by the unknown
disturbance to the system.

(3) The fixed-time convergence of the states is analyzed by
rigorous theoretical proof.

This paper is organized as follows: “Problem descrip-
tion and a priori knowledge” gives the control object model
and some basic lemmas; “Adaptive fixed-time SM controller
design” analyzes the various components of the controller.
“Control system stability analysis” demonstrates the stability
of the adaptive fixed-time controller. “Simulation case analy-
sis” gives a comparative analysis of the controllers proposed
in this work. “Conclusion” provides the conclusion of this
work.

Problem description and a priori knowledge

Prior knowledge

Lemma 1 ([31]). For any positive real numbers xi , i � 1, 2,
. . . , n, the following inequality holds:

n∑

i�1

xi
l1 ≥

(
n∑

i�1

xi

)l1
, (1)

n∑

i�1

xi
l2 ≥ n1−l2

(
n∑

i�1

xi

)l2
, (2)

where 0 < l1 ≤ 1 and l2 > 1.

Problem description

The robotic manipulator system model is represented as

M(q)q̈ + C(q, q̇)q̇ +G(q) � τ + τ d, (3)

where q and q̇ are the joint position and velocity vectors,
respectively, and q̈ represents the acceleration vector. M(q)
is the inertia matrix. C(q, q̇) and G(q) are the centrifugal
Coriolismatrix and gravity vector, respectively. τd represents
external disturbance. τ stands for control input torque.

The main objective of this research paper is to design a
fixed-time robust controller to achieve fast convergence of
the system state and improve its accuracy. Each part of the
design of this paper is analyzed in detail below.

Adaptive fixed-time SM controller design

In this section, the performance of the sliding and reaching
phases is enhanced by designing a novel fixed-time SM sur-
face and an enhanced reaching law, respectively. Then, the
adaptive law is raised to handle the problem that the upper
bound of the disturbance is unknown.

Nonsingular fixed-time SM surface design

First, the tracking error is defined as e � q − qd , and qd is
the desired trajectory. In response to the singularity issue of
the traditional fixed-time SM surface [32], this paper designs
a new type of SM surface that not only avoids the singularity
issue but also enhances the error convergence accuracy and
rate, which can be written as

s � ė + α(e) + c3ϕ(e), (4)

where the i th term of α(e) is α(ei )i � c1i ei + c2i
|ei |a1i sign(ei ). The parameters c1i , c2i , c3i , and a1i fulfill
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c1i > 0, c2i > 0, c3i > 0, and a1i > 1. The singularity issue
is handled by employing a piecewise function, and the i th
term of ϕ(e) is expressed as

ϕ(ei )i

�
{ |ei |a2i sign(ei ), si � 0 ∨ (si �� 0, |ei | ≥ μi ) ,

n1i ei + n2i f (ei ) |ei |a3i sign(ei ), si �� 0, |ei | < μi ,

(5)

where 0.5 < a2i < 1, 1 < a3i < 2, f (ei ) � 1 + w1i cos(
πei
2μi

)
, 0 ≤ w1i <

2(a3i−1)
π

, and μi > 0. si is represented as

si � ėi + α(ei )i + c3i |ei |α2i sign(ei ). (6)

Since the function ϕ(e) is a piecewise function, to ensure
the continuity of ϕ(e) and ϕ̇(e), the parameters n1i and n2i
are designed as

n1i � a3i − πw1i
2 − a2i

a3i − πw1i
2 − 1

μ
a2i−1
i , (7)

n2i � a2i − 1

a3i − πw1i
2 − 1

μ
a2i−a3i
i . (8)

The function ϕ̇(e) can be expressed as

(9)

ϕ̇(ei )i �
{
a2i ėi |ei |a2−1 , si � 0 ∨ (si �� 0, |ei | ≥ μi )

n1i ėi + fa(ei ), si �� 0, |ei | < μi

fa(ei ) � n2i a3i

(
1 + w1i cos

(
πei
2μi

))
|ei |a3i−1 ėi

− n2iw1i sin

(
πei
2μi

)
|ei |a3i sign(ei )π ėi

2μi
.

According to the range of values of a3i , it is known that
there exists a3i − 1 > 0, and the SM surface raised in this
paper does not undergo singularity. Bringing Eqs. (7) and
(8) into Eqs. (9) and (5) shows that the function ϕ(e) and its
first-order derivatives ϕ̇(e) are continuous, which can effec-
tively enhance the controller performance. The SM surface
proposed in this work has a fast time convergence property
in the whole phase. When si � 0 ∨ ( si �� 0, |ei | ≥ μi ) is
held, it is known that the SM surface is represented as

si � ėi + c1i ei + c2|ei |a1i sign(ei ) + c3i |ei |a2i sign(ei ). (10)

When the system state satisfies si � si � 0, Eq. (10) is
expressed as

ėi � −c1i ei − c2i |ei |a1i sign(ei ) − c3i |ei |a2i sign(ei ). (11)

The parameters satisfy a1i > 1 and 0.5 < a2i < 1, and the
system state has a better convergence rate both near and far
from the zero point. To certify the simplicity of the paper, the

i th DOF is used to verify its fixed convergence time property,
and the design function is

V1i � 1

2
e2i . (12)

Taking first-order differentiation of Eq. (12) and bringing
Eq. (11) into Eq. (12), we can get

V̇1i � ei ėi

� ei
(−c1i ei − c2i |ei |a1i sign(ei ) − c3i |ei |a2i sign(ei )

)

� −c1i e
2
i − c2i |ei |a1i+1 − c3i |ei |a2i+1

� −2c1i V1i − c2i2
a1i +1

2 V
a1i +1

2
1i − 2

a2i +1
2 c3i V

a2i +1
2

1i

� − ω1V1i − ω2V
a1i +1

2
1i − ω3V

a2i +1
2

1i ,

(13)

where ω1�2c1i , ω2�c2i2
a1i +1

2 , and ω3�2
a2i +1

2 c3i . In the fol-
lowing, we will solve the differential Eq. (13), proving that
V1i (ei ) � 0 can be reached at a fixed time. We can get

T1 ≤ lim
V1i (e0)→∞

∫ V1i (e0)

0

dV1i

ω1V1i + ω2V
a1i +1

2
1i + ω3V

a2i +1
2

1i

≤
∫ 1

0

dV1i

ω1V1i + ω3V
a2i +1

2
1i

+ lim
V1i (e0)→∞

∫ V1i (e0)

1

dV1i

ω1V1i + ω2V
a1i +1

2
1i

≤
∫ 1

0

dV1i

ω1V1i + ω3V
a2i +1

2
1i

+ lim
V1i (e0)→∞

∫ V1i (e0)

1

dV1i

ω2V
a1i +1

2
1i

� 2

ω1(1 − a2i )
ln

(
1 +

ω1

ω3

)
+

2

ω2(a1i − 1)
.

(14)

Based on the above analysis, it is demonstrated that the
error state will reach the balance point at a fixed time T1.

Remark 1. Compared with the SM surface designed in [19,
23, 29, 30], which requires changes to the reaching law to
eliminate the singularity, the SM surface presented in this
work does not require adjustments to the reaching law, which
can effectively accelerate the error convergence.

Remark 2. The SM surface Eq. (4) is inspired by [25]. Com-
pared with [25], the SM surface Eq. (4) has a fixed-time
convergence property, which does not rely on the size of the
initial conditions of the system. The upper bound of the con-
vergence time can be calculated according to the parameter
gain. Also, the new error convergence term c2i |ei |a1i sign(ei )
added in Eq. (4) can further accelerate the error convergence.
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Design of reaching law

The fixed-time SM surface designed in the previous section
is mainly for the sliding phase. To boost the performance of
the reaching phase, a new reaching law is designed in this
paper, which is defined as

ṡi � 1

N(si )i

[
−k1i |si |b1i sign(si ) − k2i |si |b2i sign(si )

]
− k3i si ,

(15)

where ṡi is the i th term of ṡ. The parameters b1i , b2i , k1i , k2i ,
and k3i satisfy b1i > 1, 0 < b2i < 1, k1i > 0, k2i > 0, and
k3i > 0. The N(si )i is expressed as

N(si )i �
(
h1i − arctan h2i |si |h3i

)
h4i , (16)

where h1i � π
2 , h2i > 0, 0 < h3i ≤ 1, and h4i > 2

π
. From

Eq. (16), it can be seen that the function N(si )i is positive
in any case and does not affect the control system stability.
Further analysis shows that when the initial size of the SM
variable is great, the parameter arctan h2i |si |h3i tends to π

2 .
At this time, it is made to satisfy 0 < N(si )i < 1 with a suit-
able choice of parameters. Then, the parameters k1i

N(si )i
and

k2i
N(si )i

are larger than k1i and k2i , respectively, to speed up the
convergence of the SM variables. When the initial size of the
SM variable is small, the parameter arctan h2i |si |h3i is close
to 0. At this time, N(si )i � π

2 h4i is greater than 1, which
reduces the value of the parameters k1i and k2i . As a result,
the convergence speed of the SM variable becomes slower,
and the chattering phenomenon is reduced. According to the
above analysis, it is easy to know that the value range of
the arctangent function is between 0 and π

2 . The size of the
arctangent function can follow the size of the SM variable
to make corresponding changes, thus changing the magni-
tude of the parameter N(si )i , which can effectively adjust
the speed of convergence of the SM variable and balance the
relationship between the speed of convergence and the size
of the control input.

Remark 3. Increasing the amplitude of parameter h2i or
decreasing the amplitude of parameter h4i can further lead to
faster convergence, but will result in more chattering. There-
fore, it is necessary to balance the relationship between the
point convergence speed and the chattering magnitude and
choose a more reasonable value.

Design of the controller

Combining the SM surface Eq. (4) and the reaching law
Eq. (15), the controller is

τ � M(q)q̈d +M(q)(−α̇(e) − c3ϕ̇(e)) + C(q, q̇)q̇ +G(q)

+M(q)
(

− k1
N(s)

|s|b1 sign(s) − k2
N(s)

|s|b2 sign(s) − k3s − D
)
,

(17)

where α̇(e) � c1ė + a1c2|e|a1−1ė and D � M(q)−1τd. From
[33], it is known that the disturbanceD satisfies the following
inequality:

|Di | ≤ v1i + v2i |qi | + v3i |q̇i |2, (18)

where v1i , v2i , and v3i are all positive constants. In the actual
situation, v1i , v2i , and v3i are unknown. The adaptive law is
designed in this paper to estimate them, and the correspond-
ing adaptive law is expressed as

˙̂v1i � p1i
(|si | − m1i v̂1i

)
,

˙̂v2i � p2i
(|si ||qi | − m2i v̂2i

)
,

˙̂v3i � p3i
(
|si ||q̇i |2 − m3i v̂3i

)
, (19)

where p1i > 0, p2i > 0, p3i > 0, m1i > 0, m2i > 0, and
m3i > 0. v̂1i , v̂2i , and v̂3i represent the estimated values of
v1i , v2i , and v3i , respectively.

Combining Eq. (19) and controller (17), we get

τ � M(q)q̈d +M(q)(−α̇(e) − c3ϕ̇(e)) + C(q, q̇)q̇ +G(q)

+M(q)
(

− k1
N(s)

|s|b1 sign(s) − k2
N(s)

|s|b2 sign(s) − k3s

−
(
v̂1 + v̂2|q| + v̂3|q̇|2

)
sign(s)

)
. (20)

Remark 4. For the adaptive law Eq. (19), when increas-
ing its coefficients p1i , p2i , and p3i , it will speed up its
parameter estimation and approach the upper bound of the
disturbance more quickly, but too high an estimation speed
may have adverse effects. Smaller parameters m1i , m2i , and
m3i can maintain a faster upper bound estimation rate for
disturbances, but introduce an increase in the control input
amplitude. According to the above analysis, the influence of
different factors needs to be taken into account when adjust-
ing the parameters.

Control system stability analysis

In this section, the fixed-time stability of the sliding phase
and the reaching phase is analyzed separately. For the sake
of simplicity in the proof, we will choose the i th DOF for the
proof, and the Lyapunov function is selected as

V2i � 1

2
s2i +

1

2p1i
ṽ21i +

1

2p2i
ṽ22i +

1

2p3i
ṽ23i , (21)

where ṽ1i � v1i − v̂1i , ṽ2i � v2i − v̂2i , and ṽ3i � v3i − v̂3i .
The derivation of Eq. (21) yields

V̇2i � si ṡi +
1

p1i
ṽ1i ˙̃v1i + 1

p2i
ṽ2i ˙̃v2i + 1

p3i
ṽ3i ˙̃v3i . (22)
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A first-order derivative of the SM surface Eq. (4) yields

ṡ � ë + α̇(e) + c3ϕ̇(e)

� q̈ − q̈d + α̇(e) + c3ϕ̇(e)

�M(q)−1 (τ+τ d − C(q, q̇)q̇ − G(q))− q̈d +α̇(e)+c3ϕ̇(e).

(23)

Bringing the control input Eq. (20) into Eq. (23) for sim-
plification, and combining it with Eq. (22), we get

V̇2i � si ṡi +
1

p1i
ṽ1i ˙̃v1i + 1

p2i
ṽ2i ˙̃v2i + 1

p3i
ṽ3i ˙̃v3i

� si

(
− k1i
N(si )i

|si |b1i sign(si ) − k2i
N(si )i

|si |b2i sign(si )

− k3i si −
(
v̂1i + v̂2i |qi | + v̂3i |q̇i |2

)
sign(si ) + Di

)

+
1

p1i
ṽ1i ˙̃v1i + 1

p2i
ṽ2i ˙̃v2i + 1

p3i
ṽ3i ˙̃v3i .

(24)

Bringing the adaptive law Eq. (19) into Eq. (24) yields

V̇2i � si ṡi +
1

p1i
ṽ1i ˙̃v1i + 1

p2i
ṽ2i ˙̃v2i + 1

p3i
ṽ3i ˙̃v3i

� si

(
− k1i
N(si )i

|si |b1i sign(si ) − k2i
N(si )i

|si |b2i sign(si ) − k3i si −
(
v̂1i + v̂2i |qi | + v̂3i |q̇i |2

)
sign(si ) + Di

)

− 1

p1i
ṽ1i
(
p1i
(|si | − m1i v̂1i

))− 1

p2i
ṽ2i
(
p2i
(|si ||qi | − m2i v̂2i

))− 1

p3i
ṽ3i

(
p3i
(
|si ||q̇i |2 − m3i v̂3i

))

� si

(
− k1i
N(si )i

|si |b1i sign(si ) − k2i
N(si )i

|si |b2i sign(si ) − k3i si −
(
v̂1i + v̂2i |qi | + v̂3i |q̇i |2

)
sign(si ) + Di ) − ṽ1i |si |

+ m1i v̂1i ṽ1i − ṽ2i |si ||qi | + m2i v̂2i ṽ2i − ṽ3i |si ||q̇i |2 + m3i ṽ3i v̂3i

� si

(
− k1i
N(si )i

|si |b1i sign(si ) − k2i
N(si )i

|si |b2i sign(si ) − k3i si + Di

)
+ m1i v̂1i ṽ1i + m2i v̂2i ṽ2i + m3i ṽ3i v̂3i − v1i |si |

− v2i |si ||qi | − v3i |si ||q̇i |2

≤ si

(
− k1i
N(si )i

|si |b1i sign(si ) − k2i
N(si )i

|si |b2i sign(si ) − k3i si

)
+ |si ||Di | − v1i |si | − v2i |si ||qi | − v3i |si ||q̇i |2

+ m1i v̂1i ṽ1i + m2i v̂2i ṽ2i + m3i ṽ3i v̂3i

≤ si

(
− k1i
N(si )i

|si |b1i sign(si ) − k2i
N(si )i

|si |b2i sign(si ) − k3i si

)
+ m1i v̂1i ṽ1i + m2i v̂2i ṽ2i + m3i ṽ3i v̂3i . (25)

Equation (25) can be further simplified as

V̇2i

≤ si

(
− k1i
N(si )i

|si |b1i sign(si ) − k2i
N(si )i

|si |b2i sign(si ) − k3i si

)

+ m1i v̂1i ṽ1i + m2i v̂2i ṽ2i + m3i ṽ3i v̂3i

� −k4i |si |b1i+1 − k5i |si |b2i+1 − k3i s
2
i

+ m1i v̂1i ṽ1i + m2i v̂2i ṽ2i + m3i ṽ3i v̂3i ,

(26)

where k4i � k1i
N(si )i

and k5i � k2i
N(si )i

. The following relation-
ships exist:

(27)

m1i v̂1i ṽ1i � m1i ṽ1i
(−ṽ1i + v1i

)

≤ −m1i (2δ1 − 1)

2δ1
ṽ21i +

m1iδ1

2
v21i ,

(28)

m2i v̂2i ṽ2i � m2i ṽ2i
(−ṽ2i + v2i

)

≤ −m2i (2δ2 − 1)

2δ2
ṽ22i +

m2iδ2

2
v22i ,

(29)

m3i v̂3i ṽ3i � m3i ṽ3i
(−ṽ3i + v3i

)

≤ −m3i (2δ3 − 1)

2δ3
ṽ23i +

m3iδ3

2
v23i ,

where δ1 > 1
2 , δ2 > 1

2 , and δ2 > 1
2 . Bringing Eqs. (27)–(29)

into Eq. (26), we get

V̇2i ≤ −k4i |si |b1i+1 − k5i |si |b2i+1 − k3i s
2
i

+ m1i v̂1i ṽ1i + m2i v̂2i ṽ2i + m3i ṽ3i v̂3i

≤ −k4i |si |b1i+1 − k5i |si |b2i+1 − k3i s
2
i

− m1i (2δ1 − 1)

2δ1
ṽ21i +

m1iδ1

2
v21i − m2i (2δ2 − 1)

2δ2
ṽ22i

+
m2iδ2

2
v22i − m3i (2δ3 − 1)

2δ3
ṽ23i +

m3iδ3

2
v23i
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≤ −k3i s
2
i − m1i (2δ1 − 1)

2δ1 p1i
p1i ṽ

2
1i +

m1iδ1

2
v21i

− m2i (2δ2 − 1)

2δ2 p2i
p2i ṽ

2
2i +

m2iδ2

2
v22i

− m3i (2δ3 − 1)

2δ3 p3i
p3i ṽ

2
3i +

m3iδ3

2
v23i

≤ −k6i

(
1

2
s2i +

1

2p1i
ṽ21i +

1

2p2i
ṽ22i +

1

2p3i
ṽ23i

)

+
m1iδ1

2
v21i +

m2iδ2

2
v22i +

m3iδ3

2
v23i

≤ −k6i V2i + �1i ,

(30)

where k6i � min (2k3i ,
m1i (2δ1−1)

δ1
p1i ,

m2i (2δ2−1)
δ2

p2i ,
m3i (2δ3−1)

δ3
p3i ) and �1i � m1i δ1

2 v21i +
m2i δ2
2 v22i +

m3i δ3
2 v23i .

According to the previous analysis, it is known that the
parameters si , ṽ1i , ṽ2i , and ṽ3i are bounded. The parame-
ters v̂1i , v̂2i , and v̂3i are bounded. From Eq. (30), we can
get

V̇2i ≤ −k4i |si |b1i+1 − k5i |si |b2i+1 − k3i s
2
i

+ m1i v̂1i ṽ1i + m2i v̂2i ṽ2i + m3i ṽ3i v̂3i

� −k4i2
b1i +1

2

(
1

2
s2i

) b1i +1
2 − k5i2

b2i +1
2

(
1

2
s2i

) b2i +1
2

− 2k3i

(
1

2
s2i

)
+

(
1

2p1i
ṽ21i

) b1i +1
2

+

(
1

2p2i
ṽ22i

) b1i +1
2

+

(
1

2p3i
ṽ23i

) b1i +1
2

+

(
1

2p1i
ṽ21i

) b2i +1
2

+

(
1

2p2i
ṽ22i

) b2i +1
2

+

(
1

2p3i
ṽ23i

) b2i +1
2

+

(
1

2p1i
ṽ21i

)
+

(
1

2p2i
ṽ22i

)

+

(
1

2p3i
ṽ23i

)
−
(

1

2p1i
ṽ21i

) b1i +1
2

−
(

1

2p2i
ṽ22i

) b1i +1
2 −

(
1

2p3i
ṽ23i

) b1i +1
2

−
(

1

2p1i
ṽ21i

) b2i +1
2 −

(
1

2p2i
ṽ22i

) b2i +1
2

−
(

1

2p3i
ṽ23i

) b2i +1
2 −

(
1

2p1i
ṽ21i

)
−
(

1

2p2i
ṽ22i

)

−
(

1

2p3i
ṽ23i

)
+ m1i v̂1i ṽ1i + m2i v̂2i ṽ2i + m3i ṽ3i v̂3i

≤ −k7i

((
1

2
s2i

) b1i +1
2

+

(
1

2p1i
ṽ21i

) b1i +1
2

+

(
1

2p2i
ṽ22i

) b1i +1
2

+

(
1

2p3i
ṽ23i

) b1i +1
2
)

− k8i

⎛

⎜⎝
(
1

2
s2i

) b2i +1
2

+

(
1

2p1i
ṽ21i

) b2i +1
2

+

(
1

2p2i
ṽ22i

) b2i +1
2

+

(
1

2p3i
ṽ23i

) b2i +1
2

⎞

⎟⎠

−k9i

((
1

2
s2i

)
+

(
1

2p1i
ṽ21i

)
+

(
1

2p2i
ṽ22i

)
+

(
1

2p3i
ṽ23i

))
+�2i ,

(31)

where k7i � min

(
k4i2

b1i +1
2 , 1

)
, k8i � min

(
k5i2

b2i +1
2 , 1

)
,

and k9i � min(2k3i , 1). According to the previous analysis,
it is clear that �2i is bound as a whole. �2i can be expressed
as

�2i � ∣∣m1i v̂1i ṽ1i
∣∣ +
∣∣m2i v̂2i ṽ2i

∣∣ +
∣∣m3i v̂3i ṽ3i

∣∣

+

(
1

2p1i
ṽ21i

) b1i +1
2

+

(
1

2p2i
ṽ22i

) b1i +1
2

+

(
1

2p3i
ṽ23i

) b1i +1
2

+

(
1

2p1i
ṽ21i

) b2i +1
2

+

(
1

2p2i
ṽ22i

) b2i +1
2

+

(
1

2p3i
ṽ23i

) b2i +1
2

+

(
1

2p1i
ṽ21i

)
+

(
1

2p2i
ṽ22i

)
+

(
1

2p3i
ṽ23i

)
. (32)

Considering the parameters satisfy b1i+1
2 > 1 and 0 <

b2i+1
2 < 1, and combined with Lemma 1, we have

V̇2i ≤ −k7i4
1−b1i

2 (V2i )
b1i +1

2 − k8i (V2i )
b2i +1

2 − k9i V2i+�2i

� −k10i (V2i )
b1i +1

2 − k8i (V2i )
b2i +1

2 − k9i V2i + �2i ,
(33)

where k10i�k7i4
1−b1i

2 . For inequality (33), it can be trans-
formed into the following three forms:

(34)

V̇2i ≤ − (1 − θ0) k10i (V2i )
b1i +1

2 − θ0k10i (V2i )
b1i +1

2

− k8i (V2i )
b2i +1

2 − k9i V2i + �2i ,

(35)

V̇2i ≤ −k10i (V2i )
b1i +1

2 − (1 − θ0)k8i (V2i )
b2i +1

2

− θ0k8i (V2i )
b2i +1

2 − k9i V2i + �2i ,

(36)

V̇2i ≤ −k10i (V2i )
b1i +1

2 − k8i (V2i )
b2i +1

2

− (1 − θ0) k9i (V2i ) − θ0k9i V2i + �2i ,

where 0 < θ0 < 1. For Eq. (34), when −(1 −
θ0)k10i (V2i )

b1i +1
2 + �2i ≤ 0 is satisfied, Eq. (34) becomes
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V̇2i ≤ −θ0k10i (V2i )
b1i +1

2 − k8i (V2i )
b2i +1

2 − k9i (V2i ). (37)

According to the previous analysis, Eq. (37) has the same
form as Eq. (13), and the system state si will converge to
⎧
⎪⎨

⎪⎩
lim

t→T2a
|si | ≤

√√√√
2

(
�2i

k10i (1 − θ0)

) 2
b1i +1

⎫
⎪⎬

⎪⎭
. (38)

T2a can be expressed as

T2a ≤
2 ln
(
1 + k9i

k8i

)

k9i (1 − b2i )
+

2

k10iθ0(b1i − 1)
. (39)

Doing a similar analysis for Eqs. (35) and (36), the final
SM variables will converge to the following region:

(40)
1 �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
lim

t→T2
si

∣∣∣∣∣∣∣

∣∣si
∣∣ ≤ min

⎧
⎪⎨

⎪⎩

√√√√
2

(
�2i

k10i (1 − θ0)

) 2
b1i +1 ,

√√√√√
2

(
�2i

k8i (1 − θ0)

)
2

b2i +1

,

√

2

(
�2i

k9i (1 − θ0)

)
⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

The fixed convergence upper bound time T2 is denoted as

(41)T2 ≤ max

⎧
⎪⎨

⎪⎩

2 ln
(
1 +

k9i
θ0k8i

)

k9i
(
1 − b2i

) +
2

k10i
(
b1i − 1

) ,
2 ln
(
1 +

k9i
k8i

)

k9i (1 − b2i )
+

2

θ0k10i (b1i − 1)
,
2 ln
(
1 +

θ0k9i
k8i

)

θ0k9i (1 − b2i )
+

2

k10i (b1i − 1)

⎫
⎪⎬

⎪⎭
.

According to the above analysis, the SM variables will
reach the region at a fixed time T2. The above analysis is
mainly for the reaching phase, and the following analysis
will be performed for the sliding phase. When |si | ≤ 
1 is
satisfied, the discussion can be divided into three cases at this
point.When si � 0 is satisfied, it is known from the previous
analysis that the system state will converge to zero at a fixed
time. When si � 0 ∨ ( si �� 0, |ei | ≥ μi ) is satisfied, then
the SM surface is written as

si � ėi + c1i ei + c2i |ei |a1i sign(ei ) + c3i |ei |a2i sign(ei ). (42)

Equation (42) can be written in a different form and can
be transformed as

(43)

ėi +

(
c1i − si

ei

)
ei + c2i |ei |a1i sign(ei ) + c3i |ei |a2i sign(ei )

� 0,

(44)

ėi +c1i ei +

(
c2i − s

|ei |a1i sign(ei )
)

|ei |a1i sign(ei )
+ c3i |ei |a2i sign(ei ) � 0,

(45)

ėi + c1i ei + c2i |ei |a1i sign(ei )
+

(
c3i − si

|ei |a2i sign(ei )
)

|ei |a2i sign(ei ) � 0.

According to Eq. (43), when satisfied with
(
c1i − si

ei

)
>

0, Eq. (43) has the same form as Eq. (11), and the system
state can converge at a fixed time to

|ei | ≤ |si |
c1i

≤ 
1

c1i
. (46)

Performing the same analysis for Eqs. (44) and (45), the
system variables will converge at a fixed time to

|ei | ≤
( |si |
c2i

) 1
a1i ≤

(

1

c2i

) 1
a1i

, (47)

|ei | ≤
( |si |
c3i

) 1
a2i ≤

(

1

c3i

) 1
a2i

. (48)

According to the above analysis, the variable ei will con-
verge at a fixed time T1 to
∣∣ei
∣∣ ≤ 
2i

� min

⎧
⎨

⎩max

{(
μi ,


1
c1i

)}
,

⎧
⎨

⎩

⎛

⎝μi ,

(

1
c2i

) 1
a1i

⎞

⎠

⎫
⎬

⎭ ,

⎧
⎨

⎩

⎛

⎝μi ,

(

1
c3i

) 1
a2i

⎞

⎠

⎫
⎬

⎭

⎫
⎬

⎭ .

(49)

When the system state satisfies si �� 0, |ei | < μi , the
error variable is already included in Eq. (49) at this point.
In summary, the controller raised in this work has fixed-time
convergence characteristics.

Remark 5. Compared to [17, 20, 24], the controller proposed
in this work has a fixed-time characteristic. According to
Eqs. (14) and (41), it can be seen that the convergence upper
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bound time depends on the coefficient size and does not rely
on the initial conditions of the system, which can be applied
to a broader range of nonlinear systems and has a certain
superiority.

Remark 6. Considering that the controller Eq. (20) designed
in this paper is discontinuous and the control law contains
switching functions, this problem can be improved by the
saturation function.

Remark 7. For the reaching stage, the analysis of conver-
gence time Eq. (40) and range Eq. (41) shows that increasing
the reaching law coefficients k1i , k2i , and k3i can enhance
the convergence speed and accuracy of the SM variables, but
at the same time, chattering phenomena, high control input
amplitude, and overshoot phenomena will occur.

For the sliding stage, the analysis of the convergence time
of the SM surface Eq. (14) and the control accuracy Eq. (49)
show that when increasing the SM surface coefficients c1i ,
c2i , and c3i , the convergence speed and accuracy of the track-
ing error can be effectively raised, but at the same time, the
control input size will also be increased. When decreasing
the SM surface coefficients c1i , c2i , and c3i , it slows down
the convergence speed and accuracy of the tracking error and
decreases the control input size. When the initial error size
is large, we can both relatively increase the size of a1i and
decrease the size of a2i to accelerate the error convergence
and improve the control performance. Considering that the
parameter μi has an important influence on the system accu-
racy, we can gradually decrease it from a larger value until
the control accuracy decreases and select it as an appropriate
value.

According to the above analysis, the parameter size plays
an important role in control performance. This paper cur-
rently follows the above rules and then, through repeated
experiments, finally selects amore reasonable value to obtain
a better tracking performance. In the future, we will consider
developing a parameter adjustment mechanism to resize the
size of the control parameters to obtain amore concise adjust-
ment method, which is one of the future research contents.

Simulation case analysis

To prove the advantages of the controller developed in this
paper, the control scheme presented in this paper is com-
pared with controllers from different works of literature. The
two-joint robotic manipulator is the control target, and the
model parameters are referred to [34]. The control scheme
developed in this work is used as controller 1, the scheme
corresponding to [24] is used as controller 2, the controller
corresponding to [35] is used as controller 3, and the con-
troller corresponding to [36] is used as controller 4, which
are analyzed separately below.

In controller 2, the SM surface and reaching law are
expressed as

s � ė + c1e + c3ϕ(e), (50)

ϕ(ei )i �
{ |ei |a2i sign(ei ), si � 0 ∨ (si �� 0, |ei | ≥ μi ),

r1i ei + r2i |ei |a3i sign(ei ), si �� 0, |ei | < μi ,

(51)

ṡ � −k2|s|b2sign(s) − k3s, (52)

where si � ėi + c1i ei + c2i |ei |α2i sign(ei ). Parameters r1i
and r2i refer to the [24]. Combining with the adaptive law
proposed in this paper, controller 2 is

τ � M(q)q̈d +M(q)(−c1ė − c3ϕ̇(e)) + C(q, q̇)q̇ +G(q)

+M(q)
(
−k2|s|b2 sign(s) − k3s −

(
v̂1 + v̂2|q| + v̂3|q̇|2

)
sign(s)

)
.

(53)

In controller 3, the SM surface and the control input are
represented as

s � ė + c1e, (54)

τ � M(q)q̈d − M(q)c1ė +M(q)
(

− k2
F(s)

|s|b2sign(s) − k3s

−
(
v̂1 + v̂2|q| + v̂3|q̇|2

)
sign(s)

)
+ C(q, q̇)q̇ +G(q),

(55)

where F(si )i � f3iarccot
(
f2i |si | f1i

)
, f3i > 2

π
, f2i > 0, and

0 < f1i ≤ 1.
In controller 4, the SM surface and the control input are

represented as

s � ė + c1e, (56)

(57)

τ � M(q)q̈d − M(q)c1ė

+M(q)
(
−k1 |s|b1 sign(s) − k2 |s|b2 sign(s)

−
(
v̂1 + v̂2 |q| + v̂3 |q̇|2)

)
sign(s)

)

+ C(q, q̇)q̇

+G(q).

According to the aforementioned analysis, it is clear that
the SM surface designed in this paper is a further improve-
ment of the SM surface corresponding to controller 2, while
the reaching law corresponding to controller 1 developed
in this paper has the adaptive capability. The SM surfaces
corresponding to controllers 3 and 4 are special cases of
the SM surface corresponding to controller 1. The above
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Fig. 1 Trajectory tracking curve

four control schemes are compared to show the superior-
ity of the controller developed in this paper. The above four
controller parameters are roughly the same, and after the
trial-and-error method of adjustment, the SM surface param-
eters are c1 � c2 � c3 � diag(1, 1), a1 � diag(9/5, 9/5),
a2 � diag(5/9, 5/9), a3 � diag(1.8, 1.8), w1 � diag(0.4,
0.4), and μ � diag(0.01, 0.01). The reaching law parame-
ters are k1 � k2 � k3 � diag(2, 2), b1 � diag(1.5, 1.5),
b2 � diag(0.5, 0.5), h2 � diag(0.1, 0.1), h3 � diag(0.6,
0.6), and h4 � diag(0.7, 0.7). The adaptive law parameters
are p1 � p2 � p3 � diag(0.008, 0.008) and m1 � m2 �
m3 � diag(0.01, 0.01). The two joints of the desired trajec-
tory are sin(3t) and cos(3t), respectively. The interference is

unified as τd �
[
1 + 2 sin(2πt)

1 + 2 sin(2πt)

]
.

Case 1

In the case of uniform parameter size, the simulation results
are shown in Figs. 1, 2, 3, 4, 5 and 6.

Figures 1 and 2 show the tracking trajectory and error
convergence curves, respectively. From the figures, it can be
seen that the control scheme designed in this paper has the
best tracking accuracy and speed under the condition of the
same initial position error. From the enlarged view of Fig. 1,
it can be seen that under the action of controller 1, the actual
trajectory converges to the given trajectorywith the least time
and the fastest speed, followedbycontroller 2, and controllers
3 and 4 converge with little difference in speed. Analysis of
the enlarged graph in Fig. 2 shows that the error fluctuation
range is minimized with the best steady-state error under the
control scheme presented in this work. The above analysis
fully indicates the superiority of the nonsingular fixed-time
SM surface and the enhanced reaching law presented in this
work.

Fig. 2 Error convergence curve

Fig. 3 Control input curve

Analysis of Fig. 3 shows that the four controller ampli-
tudes do not differ much, but the system state has the best
comprehensive performance under the controller proposed
in this paper, which further demonstrates the effectiveness
of the control scheme in this work. It is worth mentioning
that to make the system error quickly track the given tra-
jectory, the initial torque will be larger under controller 1,
which does not have a great influence on the actual perfor-
mance considering the small time used. Figures 4, 5 and 6
demonstrate the interference upper bound estimation curve,
which solves the prior knowledge of the interference by esti-
mating the unknown interference upper bound coefficients.
The introduction of adaptive law technology makes the sys-
tem more conducive to the use of the actual system, making
its controller more widely used.
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Fig. 4 Parameter v1 estimation curve

Fig. 5 Parameter v2 estimation curve

Fig. 6 Parameter v3 estimation curve

Fig. 7 Comparison of trajectory tracking with different initial errors

Considering that the upper bound of the fixed conver-
gence time cannot actually be calculated, the initial position
is adjusted to verify the fixed-time convergence characteris-
tics of the controller. The simulation is performed separately
for different initial positions under the action of controller 1,
and the results are shown in Fig. 7. C1, C2, and C3 are differ-
ent initial position sizes, respectively. Analysis of Fig. 7 and
its enlargement shows that it is obvious that joints 1 and 2
track on the desired trajectory at 1.9 s and 1.5 s, respectively,
with less dependence on the initial position size, which fully
illustrates the effectiveness of the fixed-time controller and
further proves the correctness of the analysis of the fixed-time
characteristics of this paper.

Case 2

Measurement noise is inevitable in the robotic manipulator
system. Case 2 further considers the effect of measurement
noise on the basis of Case 1 [37], and the results are displayed
in Figs. 8, 9.

Analysis of Fig. 8 shows that the controller developed in
this work still has the best error convergence rate and track-
ing accuracy with the effect of measurement noise. For the
tracking error results, this paper uses the root-mean-square
error (RMSE) and the average absolute error (AAE) for cal-
culation, and both are expressed as

RMSE �
√∑X

i�1
|e(i)|2/

X , (58)

AAE �
X∑

i�1

|e(i)|/
X . (59)

For the tracking error brought into RMSE and AAE for
calculation, the results are displayed in Table 1.
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Fig. 8 Error convergence curve

Fig. 9 Control torque curve

Table 1 Comparison of tracking error RMSE values and AAE values

(Degree) RMSE (joint 1/2) AAE (joint 1/2)

Proposed 0.2958/0.3214 0.1478/0.1574

Controller 2 0.3106/0.3801 0.1642/0.2124

Controller 3 0.3781/0.4642 0.2501/0.3216

Controller 4 0.3721/0.4711 0.2436/0.3284

Table 1 shows the final consequences of the RMSE and
AAE comparisons for different controllers. With the pro-
posed controller, joints 1 and 2 possess the smallest RMSE
and AAE values, and this result shows the validity of the
controller presented in this work. Figure 9 shows the torque
curves of the different controllers under the effect ofmeasure-
ment noise. All four controllers possess a certain amount of

chatter, which is due to the impact of measurement noise and
can be suppressed by filters [37].

Conclusion

This paper proposes a new adaptive nonsingular fixed-time
control method for robotic manipulator systems with dis-
turbance uncertainty. By designing a novel SM surface and
reaching law, the comprehensive performance in different
stages is effectively improved. Second, for the case where
the upper bound of the interference is unknown, this paper
suppresses the effect of the disturbance on the system by
estimating it through an adaptive technique. The stability of
the closed-loop system is also analyzed, and it is demon-
strated that the system state can reach the balance point at
a fixed upper bound time. Finally, a simulation comparison
with different control schemes reflects the effectiveness of
the control method raised in this work and the small depen-
dence of the convergence time on the initial conditions of
the system. The control method designed in this work is also
used in other nonlinear systems. Future work considers val-
idating the control scheme of our method with a real robot
system.
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