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Abstract
This papermainly solves the individual consistency and group consensus in the decision-makingwith hesitant fuzzy preference
relations (HFPRs). The worst consistency index (WCI) is used to measure the individual consistency level. The envelop of
an HFPR called envelop of HFPR (EHFRP) is proposed in the consensus reaching process (CRP). Two algorithms are
proposed: one is to improve the WCI, in which only one pair of elements are revised in the consistency improving process
each time, which aims to preserve the decision makers’ (DMs’) original information as much as possible. Another algorithm
is proposed to improve the consensus in the CRP. To aggregate individual EHFPRs into one group HFPR, a new induced
ordered weighted averaging (IOWA) operator is presented, called envelope HFPR-IOWA (EHFPR-IOWA), which allows the
experts’ preference to be aggregated in such a way that the most consistent ones are given more weight. Finally, an illustrative
example and comparisons with the existing methods are provided to show the effectiveness of the proposed method.

Keywords Hesitant fuzzy preference relations (HFPRs) · Worst consistency index (WCI) · Consensus · Envelop of HFPR
(EHFPR)

Introduction

In the actual decision-making process, the decision maker
(DM) is usually required to offer their preference values over
a set of alternatives. Preference relation is a useful tool to
express the DMs’ preferences, which has been widely used
in decision making and has gotten much attention over the
past decades. Many types of preference relations have been
proposed, such as fuzzy preference relation (FPR) [1–3],
multiplicative preference relation [4, 5], linguistic preference
relation [6, 7], interval-valued preference relation [8], intu-
itionistic preference relation [9–11]. Fuzzy sets are widely
used [12], but they can only use one preference value to
express the DM’s preference. In order to solve this prob-
lem, Torra [13] defined the hesitant fuzzy set (HFS) which
employs several values to express the membership degree of
the alternative, andnowhas beenwidely investigated recently
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[14, 15]. Based on the concept of HFS and FPR, Xia and Xu
[16] defined hesitant fuzzy preference relation (HFPR).

Consistency plays an essential role in decision making,
which guarantees the information provided by the DMs
is rational [17–19]. In HFPR, each hesitant fuzzy element
(HFE) has a set of preference values that denote the hesi-
tant degree to which one alternative is preferred over another
alternative. If two HFEs have different number of values,
two opposite normalization principles are proposed: (1) α-
normalization [20], which removes some of the elements
in the long length of the HFEs and, (2) β-normalization
[21, 22], which adds some elements into the short length
of the HFEs. Zhu [23] proposed α-normalization and β-
normalization for HFPRs. Subsequently, an FPR with a high
consistency levelwas obtained using theα-normalization and
regression method, which was used as the consistency level
of theHFPR. Zhu et al. [22] first used α-normalization and β-
normalization methods. Then, they used a distance measure
to measure the consistency of the HFPR, i.e., the distance
between the original HFPR and the HFPR that achieved
acceptable consistency. Xu et al. [24] proposed an estima-
tion measure normalization method to measure consistency
based on additive consistency. Zhang et al. [21] used the β-
normalization method to convert all the HFSs in the original
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HFPR into the same length, then measured the consistency
through the distance and proposed an automatic iterative
algorithm to improve the consistency.

Consensus is a significant problem that has been inves-
tigated widely in recent years. Currently, the consensus
reaching process (CRP) includes interactive CRPs [24–28]
and automatic CRPs [29, 30]. Gathering preferences, com-
puting the agreement level, consensus control, and feedback
generation are the primary aspects of the iteration-basedCRP
[31]. In gathering preferences, the ordered weighted average
(OWA) operator and the induce ordered weighted average
(IOWA) operator are widely used to aggregate preference
relations into a collective one. Chen et al. [32] proposed an
improved OWA operator generation algorithm and applied
it to multicriteria decision-making. Jin et al. [33] proposed
some standard and general forms of the IOWA operator,
which takes the OWA weight vector as the inductive infor-
mation. In the CRP, consensus checking and improvement
process are two important processes. When DMs make deci-
sions on the same issue, one needs to check whether their
opinions are satisfied the requirements. The moderator will
guide the experts to change their preferences, and finally
achieve the consensus. Chen et al. [34] used the large-
scale group decision-making method and k-means clustering
method as well as the consensus reaching process to deter-
mine the final satisfaction level and ranking of passenger
demands. Xu et al. [24] proposed an interaction mechanism
and automaticmechanisms to achieve the predetermined con-
sistency and consensus through a normalization approach
based on additive consistency. He and Xu [35] proposed a
consensus model implemented by a selection process and
a consensus improvement process. Li et al. [36] proposed
a consensus measure based on extracting priority weight
vectors and constructing a model to reach the predeter-
mined consensus. Xu et al. [37] proposed a group decision
making (GDM) model that dynamically and automatically
adjusts the weight of decision makers and uses an itera-
tive consensus algorithm to improve the group consensus
degree. The condition of the algorithm to stop is that both
the individual consistency index and the group consensus
index are controlled within the threshold. Wu and Xu [38]
proposed a reciprocal preference relation-based consensus
support model for GDM, designed a consistency adjustment
process to make inconsistent reciprocal preference relations
into acceptable consistency, and used an interactive method
to achieve the consensus reaching process. Zhang et al. [39]
developed a model to improve the consistency index, but it
did not consider the consensus problem.

Based on the above literature review, there are still some
limitations:

(1) In [20–25], these papers use α-normalization, β-
normalization, or other normalization methods to cal-
culate the consistency and consensus of HFPRs. These
methods make the number of elements in the HFS is
same. However, it is ignored that the normalization
method will distort the original information of DMs or
cause information deficiency,making the decision result
inaccurate.

(2) In the study of consistency and consensus under HFPRs,
some scholars only considered consistency but ignored
consensus; some scholars considered to adjust the con-
sensus index based on dynamic expert contributions
in GDM without considering the consistency index.
The consensus achieved by such adjustment may not
be accurate enough because it ignores the validity of
preference information provided by individuals. Some
literature investigated both consistency and consensus,
but it is not clear in the article whether the final indi-
vidual consistency reaches an acceptable level. They
ignored the consistency index in the process of consen-
sus adjustment, and it may happen that the consistency
index decreased or appeared to have unacceptable con-
sistency when consensus was reached.

To overcome these limitations, this paper uses a non-
normalizationmethod to study the consistency and consensus
of HFPR, and then proposes two algorithms to improve con-
sistency and consensus based on this. Specifically, the main
work of the paper is in twofold:

(1) Worst consistency index (WCI) is used to measure the
consistency degree of anHFPR. This paper uses 0–1 lin-
ear programmingmodel [40, 41] to obtain theWCI of an
HFPR.An iterative algorithm is proposed to improve the
WCI. In each iteration, only one pair of preference val-
ues which is farthest from the consistent FPR is revised.
In this way, the original information of DMs can be pre-
served as much as possible.

(2) As different HFEs have different values, and it is hard
to aggregate individual HFPRs into a group HFPR. In
order to solve this problem, the envelope of an HFPR
is proposed, a new IOWA operator is presented, which
is called envelope HFPR-IOWA (EHFPR-IOWA) and
the CRP is then carried out. It indicates that the CRP
can be achieved and it can preserve the DMs’ original
information as much as possible.

The rest of the paper is organized as follows. Section “Pre-
liminaries” introduces some basic knowledge related to
HFPRs. Section “Individual consistency of HFPRs” intro-
duces the definition ofWCI, and presents a 0–1 programming
model to obtain WCI. Then, an algorithm is proposed to
improve the WCI. A CPR algorithm is devised to help the
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DMs to reach the consensus. In section “An illustrative exam-
ple and comparative analysis”, some numerical examples and
comparative analysis are provided to illustrate the effective-
ness of the proposed models. Finally, some conclusions are
drawn in section “Conclusion”.

Preliminaries

For the sake of completeness, some basic concepts are
reviewed.

FPRs

FPRs are the most common tools to express DMs’ prefer-
ences over alternatives and widely used in decision-making.
The definition of FPRs can be represented as follows.

Definition 1 ([42]). Let X � {x1, x2, ..., xn} be a finite
set of alternatives. An FPR on X is represented by a matrix,
R � (ri j )n×n ⊂ X × X in which ri j � μ(xi , x j ) : X × X →
[0, 1] with R assumed to be reciprocal in the following sense

ri j + r ji � 1, i , j � 1, 2, ..., n.

ri j represents the degree of the preference or intensity of
the alternative xi over x j : ri j � 1/2 indicates that xi and
x j is indifferent, ri j � 1 indicates that xi is absolutely pre-
ferred to x j , and ri j > 1/2 indicates that xi is preferred to x j .
DMs only need to provide preferences for the upper trian-
gular positions, the rest elements can be obtained from the
reciprocal property.

Definition 2 ([3, 42]). An FPR R � (ri j )n×n is additively
consistent if the following additive transitivity is satisfied:

ri j + r jk − rik − 0.5 � 0, i , j , k � 1, 2, ..., n. (1)

It shows that for a consistent reciprocal preference rela-
tion, the distance of any two rows is a constant. Summing
both sides of ri j � rik − r jk + rkk for all k ∈ N , it is derived
as

ri j � 1

n

n∑

k�1

(rik − r jk + rkk)

� 1

n

n∑

k�1

rik − 1

n

n∑

k�1

r jk + 0.5

� 1

n

n∑

k�1

(rik + rk j ) − 0.5, ∀k ∈ N . (2)

If R is a consistent reciprocal FPR, Eqs. (1) and (2) are
equivalent. For any reciprocal FPR R � (ri j )n×n , one can use

Eq. (2) to construct a consistent FPR A � (ai j )n×n , where

ai j � 1

n

n∑

k�1

(rik + rk j ) − 0.5, i , j � 1, 2, ..., n. (3)

It means that A is an additively consistent FPR. If R is not
a consistent reciprocal FPR, some elements ai j maybe out of
the scope [0,1], but in [− q, 1 + q] where q > 0. In such a case,
Herrera-Viedma et al. [3] proposed a method to transform
matrix A � (ai j )n×n into another matrix A′ � (a′

i j )n×n

where

a′
i j � ai j + q

1 + 2q
, i , j � 1, 2, ..., n.

A′ is an FPR with additive consistency, a′ ∈ [0, 1].
Based on Definition 2, Wu et al. [43] defined the additive

CI of an FPR R as follows.

Definition 3 ([43]). Let R � (ri j )n×n ⊂ X × X be an FPR,
then the CI(R) is

C I (R) � 1 − 4

n(n − 1)(n − 2)

n−2∑

i�1

n−1∑

j�i+1

n∑

k� j+1

|ri j + r jk − rik − 0.5|.

(4)

Obviously, the higher the value CI(R) is, the more the
consistent R is. If CI(R) � 1, then R is perfectly consistent.
However, the initial preferences do not guarantee the perfect
consistency which is expressed by the DM, a threshold C I
is set beforehand. If the current consistency level is lower
than the threshold C I , i.e., C I (R) < C I , the DM needs
to revise their preferences. If C I (R) ≥ C I , the acceptable
consistency is achieved and the decision result given by the
DM is reasonable.

HFSs and HFPRs

Due to the complexity of the decision problems and the lack
of expertise of DMs, they may hesitate in decision-making
process, and give several preference values. To address this
situation, Torra [13] introduced the concept of HFSs.

Definition 4 ([13]). Let X be a fixed set, an HFS on X is in
terms of a function h that when applied to X returns a subset
of [0,1].

To be easily understood, Xia and Xu [44] expressed the
HFS by a mathematical symbol

E � {< x , hE (x)|x ∈ X},

where hE (x) is a set of values in [0,1], which denotes the
possible membership degrees of the element x ∈ X to the set
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E. For convenience, hE (x) is called a hesitant fuzzy element
(HFE).

Xia and Xu [16] combined HFS with FPR and defined the
HFPR. Later, Xu et al. [24] revised their definition that the
elements do not need to be sorted in ascending or descending
order.

Definition 5 ([24]). Let X � {x1, x2, ..., xn} be a fixed
set, then an HFPR H on X is presented by a matrix H �
(hi j )n×n ⊂ X×X where hi j � {hsi j |s � 1, 2, ..., #hi j } (#hi j
is the number of elements in hi j ) is an HFE indicating all
the possible preference degree(s) of the alternative xi overxj.
Moreover, hi j should satisfy the following conditions:

⎧
⎪⎨

⎪⎩

hsi j + hsji � 1, i , j � 1, 2, ..., n; s � 1, 2, ..., #hi j

hii � {0.5}, i , j � 1, 2, ..., n

#hi j � #h ji , i , j � 1, 2, ..., n

,

where hsi j and hsji is the sth elements in hi j and h ji , respec-
tively.

In the process of decision-making, DMs are not sure about
a determined value; they are hesitant in several values. The
concept of hesitancy degree is defined as follows.

Definition 6 ([45]). Let h be a HFS on X � {x1, x2, ..., xn},
and for any xi ∈ X , l(h(xi )) be the length of h(xi ). Denote.

Hd(h(xi )) � 1 − 1

l(h(xi ))
, (5)

Hd(H ) � 1

n(n − 1)

n−1∑

i�1

n∑

j�i+1

Hd(hi j ), (6)

Hd(h(xi )) is called the hesitancy degree of h(xi ), andHd(H)
the hesitancy degree of H, respectively. The larger the value
ofHd(H), themore hesitant theDM.IfHd(H)�1, it indicates
that the DM is hesitant completely and difficult to determine
the value of membership.

Definition 7 ([46]). Let hi (i � 1, 2, …, n) be a collection of
HFS, and let h+ � max

hi∈h
({hi }), h− � min

hi∈h
({hi }) and env(h) �

[h−, h+]. Then h+, h− and env(h) are, respectively, called the
lower bound, the upper bound and the envelope of h.

Example 1. Let h � {0.2, 03, 0.4, 0.5, 0.6} be an HFS,
its envelope is h− � min{0.2, 0.3, 0.4, 0.5, 0.6} � 0.2,
h+ � max{0.2, 0.3, 0.4, 0.5, 0.6} � 0.6, env(h) �[0.2,
0.6].

Definition 8 ([47]). Let h1 � [h−
1 , h

+
1] and h2 � [h−

2 , h
+
2],

then the degree of possibility of h1 ≥ h2 is formulated by

p(h1 ≥ h2) � max

{
1 − max

(
h+2 − h−

1

h+1 − h−
1 + h+2 − h−

2

, 0

)
, 0

}
, (7)

and construct a FPR P � (pi j )n×n where pi j � p(h1 ≥ h2),
pi j > 0, pi j + p ji � 1, pii � 0.5, i, j � 1, 2, …, n.

IOWA aggregation operator

Let X � {x1, , ..., xn} be a finite set of n alternatives and
E � {e1, ..., em} be a set of m DMs. Hv � (hi j , v)n×n is an
HFPR matrix given by DM ev ∈ E , v � 1, 2, ..., m, where
hi j , v represents ev’s preference degree of the alternative xi
over x j .

Yager [48] proposed a procedure to evaluate the overall
satisfaction of quantifierQ important (uv) criteria (or experts)
(ev) by the alternative x j . In this procedure, once the satisfac-
tion values to be aggregated have been ordered, theweighting
vector associated with an OWA operator using a linguistic
quantifier Q are calculated by the following expression

wi � Q

(∑i
v�1 uσ (v)

T

)
− Q

(∑i−1
v�1 uσ (v)

T

)
, (8)

being T � ∑i
v�1 uσ (v) the total sum of importance, and σ

the permutation used to produce the ordering of the values
to be aggregated. In our case, the consistency levels of the
HFPRs are used to derive the “importance” values associated
with the experts.

The IOWA operator was introduced by Yager and Filev
[49] as an extension of the OWA operator to allow for a
varied sequencing of the aggregated values.

Definition 9 ([49]). An IOWA operator of dimension n is a
function �w : (R × R)n → R, to which a set of weights
is associated, W � (w1, ..., wm)T with wi ∈ [0, 1],∑

i wi � 1, and it is defined to aggregate the set of second
arguments of a list of n two-tuples {< u1, p1 >, ..., < un ,
pn >}, the expression is as follows:

�W (< u1, p1 >, ..., < un , pn >) �
n∑

i�1

wi · pσ (i), (9)

being σ a permutation of {1, 2, ..., n} such that uσ (i) ≥
uσ (i+1),∀ i � 1, ..., n − 1, i.e., < uσ (i), pσ (i) > is the two-
tuple with uσ (i), the ith highest value in the set {u1, ..., un}.

In the above definition, the reordering of the set of values
to be aggregated {p1, ..., pn} is induced by the reordering
of the set of values {u1, ..., un} associated with them, which
is based upon their magnitude. Due to this use of the set of
values {u1, ..., un}, Yager called them the values of an order
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inducing variable and {p1, ..., pn} the values of the argument
variable [48–51].

Yager [48] considers the parameterized family of regular
increasing monotone quantifiers

Q(z) � za , a ≥ 0. (10)

In general, when a fuzzy quantifier Q is used to compute
the weight of IOWA operator.

Individual consistency of HFPRs

In this section,WCI of an HFPR is introduced, and a method
is proposed to obtain a matrix which has the WCI in HFPR.
Then, an iterative algorithm is used to adjust this matrix to
reach the predefined threshold.

Worst consistency of HFPRs

For an HFPR H, all the set of possible FPRs � can be repre-
sented as:

�H � {Bq � (bqi j )n×n|bqi j ∈ hi j , bqi j + bqji
� 1, i , j � 1, 2, ..., n, q � 1, ..., l}.

Clearly, #hi j is the number of elements in hi j , where 1 ≤
i < j ≤ n, then there will be

∏n−1
i�1

∏n
j�i+1 #hi j possible

FPRs in �H . For convenience, let l � ∏n−1
i�1

∏n
j�i+1 #hi j

and let all the possible FPRs be denoted by Bq � (bqi j )n×n

(q � 1, 2, ..., l).
First, the definition of theWCI of an HFPR is as follows:

Definition 10 ([39]). Let H be an HFPR and �H is the col-
lection of all the possible FPRs associated with H, then the
WCI of HFPR is

WCI (H ) � min
B∈�H

C I (B) � min
B∈�H

1 − 4

n(n − 1)(n − 2)

n−2∑

i�1

n−1∑

j�i+1

n∑

k� j+1

|bi j + b jk − bik − 0.5|,

(11)

WCI(H) is determined by the FPR with the CI in �H . It
also provides the lower bound of the consistency level for
an HFPR H. In addition, the larger the valueWCI(H) is, the
more the consistent H.

In the actual decision-making process, due to the differ-
ence in the knowledge background and technical ability of
the DMs, the decision-making result of the DMs is not the
optimal solution. Therefore, based on Definition 6, Zhang

et al. [39] provided a method to calculate the WCI(H) as
follows:

min J1 � 1

− 4

n(n − 1)(n − 2)

n−2∑

i�1

n−1∑

j�i+1

n∑

k� j+1

|bi j + b jk − bik − 0.5|

s.t .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bi j �
#hi j∑

s�1

μs
i j h

s
i j , i , j ∈ N , i < j

#hi j∑

s�1

μs
i j � 1, i , j ∈ N , i < j

μs
i j � 0 ∨ 1, i , j ∈ N , i < j

bi j , h
s
i j ∈ [0, 1], f or i < j .

(12)

By introducing variables gi jk �bi j + b jk − bik − 0.5,
|gi jk |� fi jk , model (12) can be equivalently transformed
into the following model:

min J1 � 1 − 4

n(n − 1)(n − 2)

n−2∑

i�1

n−1∑

j�i+1

n∑

k� j+1

fi jk

s.t .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bi j �
#hi j∑

s�1

μs
i j h

s
i j , i , j ∈ N , i < j

#hi j∑

s�1

μs
i j � 1, i , j ∈ N , i < j

μs
i j � 0 ∨ 1, i , j ∈ N , i < j

gi jk � bi j + b jk − bik − 0.5, ∀i < j < k

gi jk ≤ fi jk , ∀i < j < k

−gi jk ≤ fi jk , ∀i < j < k

bi j , h
s
i j ∈ [0, 1], f ori < j .

(13)

Example 2. Let H be an HFPR, which is shown as follows:

H �

⎡

⎢⎢⎢⎣

{0.5} {0.3, 0.5} {0.7} {0.7, 0.8}
{0.7, 0.5} {0.5} {0.2, 0.3, 0.4} {0.5, 0.6}
{0.3} {0.8, 0.7, 0.6} {0.5} {0.7, 0.8, 0.9}
{0.3, 0.2} {0.5, 0.4} {0.3, 0.2, 0.1} {0.5}

⎤

⎥⎥⎥⎦.

Based on l � ∏n−1
i�1

∏n
j�i+1 #hi j , one can see that there

are 72 possible FPRs in the original HFPR H � (hi j )4×4.
Solving model (13), one can obtain six matrices can obtain
that having the same consistency index WCI(H) � 0.7333,
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where

B1 �

⎡

⎢⎢⎢⎣

0.5 0.3 0.7 0.7
0.7 0.5 0.2 0.5
0.3 0.8 0.5 0.9
0.3 0.5 0.1 0.5

⎤

⎥⎥⎥⎦, B2 �

⎡

⎢⎢⎢⎣

0.5 0.3 0.7 0.7
0.7 0.5 0.3 0.5
0.3 0.7 0.5 0.9
0.3 0.5 0.1 0.5

⎤

⎥⎥⎥⎦,

B3 �

⎡

⎢⎢⎢⎣

0.5 0.3 0.7 0.7
0.7 0.5 0.4 0.5
0.3 0.6 0.5 0.9
0.3 0.5 0.1 0.5

⎤

⎥⎥⎥⎦,

B4 �

⎡

⎢⎢⎢⎣

0.5 0.3 0.7 0.8
0.7 0.5 0.2 0.5
0.3 0.8 0.5 0.9
0.2 0.5 0.1 0.5

⎤

⎥⎥⎥⎦, B5 �

⎡

⎢⎢⎢⎣

0.5 0.3 0.7 0.8
0.7 0.5 0.3 0.5
0.3 0.7 0.5 0.9
0.2 0.5 0.1 0.5

⎤

⎥⎥⎥⎦,

B6 �

⎡

⎢⎢⎢⎣

0.5 0.3 0.7 0.8
0.7 0.5 0.4 0.5
0.3 0.6 0.5 0.9
0.2 0.5 0.1 0.5

⎤

⎥⎥⎥⎦.

Definition 11: Let H � (hi j )n×n be an HFPR and
let WCI (WCI ≥ 0) be the consistency threshold, if
WCI (H ) ≤ WCI ,H called an acceptably consistent HFPR.

Obviously, when theWCI of a given HFPR H � (hi j )n×n

is acceptable, then all FPRs B � (bi j )n×n belonging to the
HFPR are acceptably consistent, where bi j ∈ hi j . Control-

ling the worst consistency level of the original HFPR can
ensure the rationality of the results since all FPRs of the
original HFPR have been considered. Therefore, this paper
believes that the consistency of an HFPR is acceptable only
when itsWCI meets the predefined consistency level.

Improving theWCI of HFPRs

This section details how to improve the WCI of an HFPR.
When the WCI of HFPR does not reach the predetermined
threshold, experts need to revise their preferences or consider
constructing a new preference relation.

First, one can get a FPRBwhich has theWCI of theHFPR.
If theWCI(H) is smaller than the predefined thresholdWCI ,
one should adjust matrix B to achieve the predetermined
threshold. Then one put the modified FPR into the origi-
nal HFPR, and recalculate the WCI . To keep the original
information as much as possible, only one pair of elements
is revised every time in the adjustment process for the pref-
erence relations.

The WCI improving process for HFPRs is detailed in
Algorithm 1.
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(13)

(3)
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Examples for consistency improvement

Example 3. (Continued from Example 2) To demonstrate
Algorithm 1, Example 1 is still used for analysis.

Setting WCI � 0.9, the consistency adjustment parame-
ter of β � 0.6.

Algorithm 1 is used to examine and improve the WCI of
H.

Round 1. TheWCI based on model (13) is used, and one
haveWCI(H(1)) � 0.7333 and six FPR matrices which have
the sameWCI , denoted as B(1)t

B(1)1 �

⎡

⎢⎢⎢⎣

0.5 0.3 0.7 0.7
0.7 0.5 0.2 0.5
0.3 0.8 0.5 0.9
0.3 0.5 0.1 0.5

⎤

⎥⎥⎥⎦,

B(1)2 �

⎡

⎢⎢⎢⎣

0.5 0.3 0.7 0.7
0.7 0.5 0.3 0.5
0.3 0.7 0.5 0.9
0.3 0.5 0.1 0.5

⎤

⎥⎥⎥⎦,

B(1)3 �

⎡

⎢⎢⎢⎣

0.5 0.3 0.7 0.7
0.7 0.5 0.4 0.5
0.3 0.6 0.5 0.9
0.3 0.5 0.1 0.5

⎤

⎥⎥⎥⎦,

B(1)4 �

⎡

⎢⎢⎢⎣

0.5 0.3 0.7 0.8
0.7 0.5 0.2 0.5
0.3 0.8 0.5 0.9
0.2 0.5 0.1 0.5

⎤

⎥⎥⎥⎦,

B(1)5 �

⎡

⎢⎢⎢⎣

0.5 0.3 0.7 0.8
0.7 0.5 0.3 0.5
0.3 0.7 0.5 0.9
0.2 0.5 0.1 0.5

⎤

⎥⎥⎥⎦,

B(1)6 �

⎡

⎢⎢⎢⎣

0.5 0.3 0.7 0.8
0.7 0.5 0.4 0.5
0.3 0.6 0.5 0.9
0.2 0.5 0.1 0.5

⎤

⎥⎥⎥⎦.

As WCI (H (1)) < WCI , the consistent FPR B̃(1)1 is cal-
culated by Eq. (3). Then Step 4 in Algorithm 1 is applied,
from which the deviation matrix θ

(1)1
1 is obtained;

B̃(1)1 �

⎡

⎢⎢⎢⎣

0.5 0.575 0.425 0.7
0.425 0.5 0.35 0.625
0.575 0.65 0.5 0.775
0.3 0.375 0.225 0.5

⎤

⎥⎥⎥⎦ , θ
(1)1
1

�

⎡

⎢⎢⎢⎣

0 0.275 0.275 0
0.275 0 0.15 0.125
0.275 0.15 0 0.125
0 0.125 0.125 0

⎤

⎥⎥⎥⎦ .

As (iτ , jτ ) � (1, 2) and b(p)ti j , f +1 � βb(p)ti j , f +(1−β)b̃(p)ti j , f �
b(1)112, 1+1 � 0.6b(1)112, 1 +(1−0.6)b̃(1)112, 1� 0.41. After 7 iterations,
themodified element at position (1,2) should be 0.5711, posi-
tion (1, 3) should be 0.4655. And the modified matrix H (2)

is

H (2) �

⎡

⎢⎢⎢⎣

{0.5} {0.5, 0.5711} {0.4655} {0.7, 0.8}
{0.5, 0.4289} {0.5} {0.2, 0.3, 0.4} {0.5, 0.6}
{0.5345} {0.8, 0.7, 0.6} {0.5} {0.7, 0.8, 0.9}
{0.3, 0.2} {0.5, 0.4} {0.3, 0.2, 0.1} {0.5}

⎤

⎥⎥⎥⎦.

Due to WCI (H (2)) � 0.8667 < 0.9, a second round is
needed.

Round 2. Based on model (13), WCI (H (2)) � 0.8667
and two FPRs which have the same WCI , denoted as B(2)t .
The adjusted FPR B(2)1, corresponding consistent FPR B̃(2)1

and deviation matrix θ
(2)1
1 are as follows:

B(2)1 �

⎡

⎢⎢⎢⎣

0.5 0.5 0.4655 0.8
0.5 0.5 0.2 0.5
0.5345 0.8 0.5 0.7
0.2 0.5 0.3 0.5

⎤

⎥⎥⎥⎦ ,

B̃(2)1 �

⎡

⎢⎢⎢⎣

0.5 0.6414 0.4328 0.6914
0.3586 0.5 0.2914 0.55
0.5673 0.7086 0.5 0.7586
0.3086 0.45 0.2414 0.5

⎤

⎥⎥⎥⎦ ,

θ
(2)1
1 �

⎡

⎢⎢⎢⎣

0 0.1414 0.0327 0.1086
0.1414 0 0.0914 0.05
0.0327 0.0914 0 0.0586
0.1086 0.05 0.0586 0

⎤

⎥⎥⎥⎦ .

Obviously, (iτ , jτ ) � (1, 2) and b(p)ti j , f +1 � βb(p)ti j , f + (1 −
β)b̃(p)ti j , f � b(2)112, 1+1 � 0.6b(2)112, 1+(1 − 0.6)b̃(2)112, 1 � 0.4435.
After 2 iterations, the modified element at position (1,2)
should be 0.6018. And the modified H (3) is:

H (3) �

⎡

⎢⎢⎢⎣

{0.5} {0.5711, 0.6018} {0.4655} {0.7, 0.8}
{0.4289, 0.3982} {0.5} {0.2, 0.3, 0.4} {0.5, 0.6}
{0.5345} {0.8, 0.7, 0.6} {0.5} {0.7, 0.8, 0.9}
{0.3, 0.2} {0.5, 0.4} {0.3, 0.2, 0.1} {0.5}

⎤

⎥⎥⎥⎦ .

Due to WCI (H (3)) � 0.8904 < 0.9, a third round is
needed.

Round 3. Based on model (13), WCI (H (3)) � 0.8904
and two FPRs which have the same WCI , denoted as B(3)t .
The adjusted FPR B(3)1, corresponding consistent FPR B̃(3)1
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and deviation matrix θ
(3)1
1 are:

B(3)1 �

⎡

⎢⎢⎢⎣

0.5 0.5711 0.4655 0.8
0.4289 0.5 0.2 0.5
0.5345 0.8 0.5 0.7
0.2 0.5 0.3 0.5

⎤

⎥⎥⎥⎦ ,

B̃(3)1 �

⎡

⎢⎢⎢⎣

0.5 0.6769 0.4505 0.7901
0.3231 0.5 0.2736 0.5322
0.5495 0.7264 0.5 0.7586
0.2909 0.4678 0.2414 0.5

⎤

⎥⎥⎥⎦ ,

θ
(3)1
1 �

⎡

⎢⎢⎢⎣

0 0.1058 0.015 0.0909
0.1058 0 0.0736 0.0322
0.0150 0.0736 0 0.0586
0.0909 0.0322 0.0586 0

⎤

⎥⎥⎥⎦ .

From θ
(3)1
1 , (iτ , jτ ) � (1, 2) and b(p)ti j , f +1 � βb(p)ti j , f + (1−

β)b̃(p)ti j , f � b(2)112, 1+1 � 0.6b(2)112, 1+(1 − 0.6)b̃(2)112, 1 � 0.6134.
After 1 iteration, the modified element at position (1, 2)
should be 0.6134. And the modified matrix, H (4) is:

H (4) �

⎡

⎢⎢⎢⎣

{0.5} {0.6018, 0.6134} {0.4655} {0.7, 0.8}
{0.3866, 0.3982} {0.5} {0.2, 0.3, 0.4} {0.5, 0.6}
{0.5345} {0.8, 0.7, 0.6} {0.5} {0.7, 0.8, 0.9}
{0.3, 0.2} {0.5, 0.4} {0.3, 0.2, 0.1} {0.5}

⎤

⎥⎥⎥⎦.

Because WCI (H (4)) � 0.9 ≥ 0.9, Algorithm 1 is termi-
nated and one have H̃ � H (4), only three elements in the
upper triangular part of H are modified.

Calculate the hesitancy indexofH byEqs. (5)–(6), Hd(H )
� 17/72, Hd(H̃ ) � 17/72.

Zhang et al. [21] introduced a consistency improvement
algorithm for HFPR. Using Algorithm 2 in Zhang et al. [21]
to improve the consistency index, the adjusted HFPR H̃2 is

H̃2 �

⎡

⎢⎢⎣

{0.5}
{0.425, 0.365, 0.3875}
{0.5025, 0.435, 0.435}
{0.345, 0.2, 0.1775}

{0.5475, 0.635, 0.6125}
{0.5}
{0.62, 0.61, 0.5775}
{0.4325, 0.355, 0.31}

{0.4975, 0.565, 0.565}
{0.38, 0.39, 0.4225}
{0.5}
{0.3225, 0.245, 0.2125}

{0.655, 0.8, 0.8225}
{0.5675, 0.645, 0.69}
{0.6775, 0.755, 0.7875}
{0.5}

⎤

⎥⎥⎦.

Table 1 illustrates the results between the proposed algo-
rithm and Zhang et al. [21]’s method. Only 3 elements of
the adjusted preference relation obtained using the proposed
algorithm are changed. However, for the model in Zhang
et al. [21], all of the elements are revised, it is hard for the
DM to adjust all of their preferences. Further, the hesitancy
degree aboutH and the adjustedmatrix H̃ using the proposed
algorithm are preserved. When the algorithm in Zhang et al.
[21]. is applied to adjust the HFPRH, the hesitancy degree is

Table 1 TheWCI, #H andHd values of the proposedmethod andZhang
et al. [21]’s Method of Example 3

Model WCI #H Hd

Proposed Algorithm 1 0.90 3 17/72

Zhang et al. [21]’s Method 0.9208 17 1/3

Note: #H is the number of elements changed

very large. As we can see, the HFPR obtained by this paper’s
method can preserve the original opinions of DMs as much
as possible.

Consensus building for HFPRs

In this section, the concept of EHFPRs is introduced, the
measuring method of consensus index among group mem-
bers is introduced, and then an algorithm of how to achieve
group consensus is proposed.

Group consensus measure

Based on Definition 7, the concept of EHFPR is defined as
follows:

Definition 12. Let H � (hi j )n×n be an HFPR, let G �
(gi j )n×n � ([g−

i j , g
+
i j ])n×n be an EHFPR, where g−

i j is the
smallest value in hi j , and g+i j is the largest term in hi j .

The distance between the EHFPRs can be defined as.

Definition 13. Let G1 � (gi j , 1)n×n � [g−
i j , 1, g

+
i j , 1] and

G2 � (gi j , 2)n×n � [g−
i j , 2, g

+
i j , 2] be two EHFPRs, the dis-

tance between G1 and G2 is defined as.
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d(G1, G2) �
n∑

i�1

n∑

j�1

||gi j , 1 − gi j , 2||

� 1

2

n∑

i�1

n∑

j�1

(|g−
i j , 1 − g−

i j , 2|+|g+i j , 1 − g+i j , 2|).

(15)

In consensus measure, two types are commonly used: one
is the distance between the individual preference relation and
the collective preference relation, the other are the distances
among all the DMs. The first type of consensus measure
is adopted in this paper. In this study, the EHFPR-IOWA
operator is proposed to aggregate the individual HFPRs.

Based on Definition 9, the EHFPR-IOWA operator is
defined as:

Definition 14. Let E � {e1, e2, ..., em} be a set of DMs, and
Hv � (hi j , v)n×n , v � 1, 2, ..., m be the HFPRs provided
by the DMs on a set of alternatives X � {x1, x2, ..., xn}.
The EHFPR-IOWA operator of dimensionm,�EHFPR

w is an
EHFPR-IOWA operator whose set of order inducing values
is the set of worst consistency index values, {WCI1, WCI2,
..., WCIm}, associated with the set of DMs. Therefore, the
collective HFPR is obtained as follows:

Hc
i j � �EHFPR

Q (< WCI1, hi j , 1 >, ..., < WCIm , hi j ,m >),

(16)

where Q is the fuzzy quantifier used to implement the fuzzy
majority concept, and Eq. (8) is used to compute the weight-
ing vector of the �EHFPR

W .

Based onEq. (16), one can obtain the collective preference
relation. The group consensus is defined as:

Definition 15. Let Gv (v � 1, 2, ..., m) be m EHFPRs
provided bym individuals, where Gv � (gi j , v)n×n � [g−

i j , v ,

g+i j , v], v � 1, 2, ..., m. Suppose Gc � (gi j , c)n×n �[g−
i j , c,

g+i j , c] is the group EHFPR aggregated by the EHFPR-IOWA
operator. Then, the group consensus index (GCI) for Gv is.

GC I (Gv)

� 1 − d(Gi j , v , Gi j , c) � 1

− 1

2n(n − 1)

n−1∑

i�1

n∑

j�i+1

(|g−
i j , v − g−

i j , c|+|g+i j , v − g+i j , c|).

(17)

IfGC I (Gv) � 1, then the vth expert has perfect consensus
with the group preference. Otherwise, the higher the value
of GC I (Gv), the closer that expert is to the group.

If

min
v

GC I (Gv) ≥ GC I , (18)

then, all the DMs reach the consensus.
In fact, the predefined consensus thresholdGC I indicates

the deviation degree between the individual preference rela-
tion and the group preference relation. In addition, this paper
believes that the consensus is acceptable only when its GCI
meets the predefined consensus threshold.

Consensus reaching process

In the GDM process, consensus process is essentially that
consensus models need to be applied to assist the experts
reach consensus. It means that most individuals are willing
to revise their original preference values. By Definition 12,
one can identify whose consensus level is not achieved.

In the following, an iterative procedure is proposed to
achieve the consensus. This procedure stops until all the
HFPRs reach an acceptable predefined consensus level or
the maximum number of iterations is reached.

The detail of this consensusmethod is shown inAlgorithm
2.
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(9)–(10)

(17)

(18)

θ iτ jτ ,v(f)
+ =max

i,j
{ gij,c(f)

+ gij,v(f)
+ } and i j ,v(f)=max

i,j
{ gij,c(f) gij,v(f) } θ τ τ
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An illustrative example and comparative
analysis

In this section, some examples are given to demonstrate the
effectiveness of the proposed method.

An illustrative example

Supply ChainManagement (SCM) is important for an indus-
try. To reduce supply chain risk, maximize revenue, optimize
business processes, and accomplish other goals, it is impor-
tant to construct and SCM. It is a crucial issue to determine
suitable supplies in SCM. The following example consid-
ers to select potential suppliers for a solar company with
four potential suppliers (Zhang et al. [21]). Four managers
were invited to provide their preference values for these four
potential suppliers, and the four HFPRs Hv, v � 1, 2, 3, 4
are:

H1 �

⎡

⎢⎢⎢⎣

{0.5} {0.3} {0.5, 0, 7} {0.4}
{0.7} {0.5} {0.7, 0.9} {0.8}
{0.5, 0.3} {0.3, 0.1} {0.5} {0.6, 0.7}
{0.6} {0.2} {0.4, 0.3} {0.5}

⎤

⎥⎥⎥⎦,

H2 �

⎡

⎢⎢⎢⎣

{0.5} {0.3, 0.5} {0.1, 0.2} {0.6}
{0.7, 0.5} {0.5} {0.7, 0.8} {0.1, 0.3, 0.5}
{0.9, 0.8} {0.3, 0.2} {0.5} {0.5, 0.6, 0.7}
{0.4} {0.9, 0.7, 0.5} {0.5, 0.4, 0.3} {0.5}

⎤

⎥⎥⎥⎦,

H3 �

⎡

⎢⎢⎢⎣

{0.5} {0.3, 0.5} {0.7} {0.7, 0.8}
{0.7, 0.5} {0.5} {0.2, 0.3, 0.4} {0.5, 0.6}
{0.3} {0.8, 0.7, 0.6} {0.5} {0.7, 0.8, 0.9}
{0.3, 0.2} {0.5, 0.4} {0.3, 0.2, 0.1} {0.5}

⎤

⎥⎥⎥⎦,

H4 �

⎡

⎢⎢⎢⎣

{0.5} {0.4, 0.5, 0.6} {0.3, 0.4} {0.5, 0.7}
{0.6, 0.5} {0.5} {0.3} {0.6, 0.7, 0.8}
{0.7, 0.6} {0.7} {0.5} {0.8, 0.9}
{0.5, 0.3} {0.4, 0.3, 0.2} {0.2, 0.1} {0.5}

⎤

⎥⎥⎥⎦.

Without loss of generality, let WCI � 0.9, GCL � 0.9,
ς � 0.6.

Step 1. Let f � 0, Hv( f ) � (hi j , v( f ))n×n � (hi j , v)n×n , v
� 1, 2, …, m.

Step 2.Using model (13), theWCI of the four HFPRs are
WCI(H1) � 0.8333, WCI(H2) � 0.6, WCI(H3) � 0.7333,
WCI(H4) � 0.8677.

TheWCI of the four individual HFPRs are unsatisfactory.
Let the consistency adjustment parameter β � 0.6, Algo-
rithm 1 is applied to improve the consistency of theseHFPRs,
and the improved HFPRs are:

H̃1 �

⎡

⎢⎢⎢⎣

{0.5} {0.2280} {0.5, 0, 5790} {0.4}
{0.7720} {0.5} {0.7, 0.9} {0.8}
{0.5, 0.4210} {0.3, 0.1} {0.5} {0.5536, 0.56}
{0.6} {0.2} {0.4464, 0.44} {0.5}

⎤

⎥⎥⎥⎦,

H̃2 �

⎡

⎢⎢⎢⎣

{0.5} {0.3, 0.5} {0.4689} {0.6}
{0.7, 0.5} {0.5} {0.6873, 0.7} {0.6362, 0.6532, 0.6952}
{0.5311} {0.3103, 0.3} {0.5} {0.5, 0.6, 0.7}
{0.4} {0.3638, 0.3468, 0.3048} {0.5, 0.4, 0.3} {0.5}

⎤

⎥⎥⎥⎦,

H̃3 �

⎡

⎢⎢⎢⎣

{0.5} {0.6018, 0.6134} {0.4655} {0.7, 0.8}
{0.4692, 0.3886} {0.5} {0.2, 0.3, 0.4} {0.5, 0.6}
{0.5345} {0.8, 0.7, 0.6} {0.5} {0.7, 0.8, 0.9}
{0.3, 0.2} {0.5, 0.4} {0.3, 0.2, 0.1} {0.5}

⎤

⎥⎥⎥⎦,

H̃4 �

⎡

⎢⎢⎢⎣

{0.5} {0.4, 0.5, 0.6} {0.3, 0.3280} {0.5, 0.7}
{0.6, 0.5} {0.5} {0.3} {0.6, 0.6664, 0.7}
{0.7, 0.6720} {0.7} {0.5} {0.8, 0.9}
{0.5, 0.3} {0.4, 0.3336, 0.3} {0.2, 0.1} {0.5}

⎤

⎥⎥⎥⎦.

The WCI for adjusted HFPRs are WCI (H̃1) � 0.9040,
WCI (H̃2) � 0.9, WCI (H̃3) � 0.9, WCI (H̃4) � 0.9.
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Based on the concept of envelope in Definition 9, one can
obtain the EHFPRs G̃v , v � 1, 2, ..., m from HFPRs:

G̃1 �

⎡

⎢⎢⎢⎣

[0.5, 0.5] [0.228, 0.228] [0.5, 0.579] [0.4, 0.4]
[0.7720, 0.7720] [0.5, 0.5] [0.7, 0.9] [0.8, 0.8]
[0.421, 0.5] [0.1, 0.3] [0.5, 0.5] [0.5536, 0.56]
[0.6, 0.6] [0.2, 0.2] [0.44, 0.4464] [0.5, 0.5]

⎤

⎥⎥⎥⎦,

G̃2 �

⎡

⎢⎢⎢⎣

[0.5] [0.3, 0.5] [0.4689, 0.4689] [0.6, 0.6]
[0.5, 0.7] [0.5, 0.5] [0.6873, 0.7] [0.6362, 0.6952]
[0.5311, 0.5311] [0.3, 0.3103] [0.5, 0.5] [0.5, 0.7]
[0.4, 0.4] [0.3048, 0.3638] [0.3, 0.5 [0.5, 0.5]

⎤

⎥⎥⎥⎦,

G̃3 �

⎡

⎢⎢⎢⎣

[0.5, 0.5] [0.6018, 0.6134] [0.4655, 0.4655] [0.7, 0.8]
[0.3886, 0.4692] [0.5, 0.5] [0.2, 0.4] [0.5, 0.6]
[0.5345, 0.5345] [0.6, 0.8] [0.5, 0.5] [0.7, 0.9]
[0.2, 0.3] [0.4, 0.5] [0.1, 0.3] [0.5, 0.5]

⎤

⎥⎥⎥⎦,

G̃4 �

⎡

⎢⎢⎢⎣

[0.5, 0.5] [0.4, 0.6] [0.3, 0.328] [0.5436, 0.7]
[0.5, 0.6] [0.5, 0.5] [0.3, 0.3] [0.6, 0.708]
[0.672, 0.7] [0.7, 0.7] [0.5, 0.5] [0.8, 0.9]
[0.3, 0.4564] [0.292, 0.4] [0.1, 0.2] [0.5, 0.5]

⎤

⎥⎥⎥⎦.

Step 3. The group preference relation is obtained by the
EHFPR-IOWA operator. In this paper, Q(z) � z1/2 is used
to represent fuzzy linguistic quantifier “most of”.

The detailed calculation steps are:
For example, the process of obtaining the grouppreference

relationship H12, c is:

WCI1 � 0.904, WCI2 � 0.9, WCI3 � 0.9, WCI4 � 0.9.
g̃−
12, 1 � 0.228,g̃−

12, 2 � 0.3, g̃−
12, 3 � 0.6018, g̃−

12, 4 � 0.4.
σ (1) � 1, σ (2) � 2, σ (3) � 3, σ (4) � 4.
T � WCI1 +WCI2 +WCI3 +WCI4 � 3.6040.

Q(0) � 0, Q
(
WCI4
T

)
� 0.5008, Q

(
WCI4+WCI3

T

)
�

0.7075,Q
(
WCI2+WCI3+WCI4

T

)
� 0.8662,

Q
(
WCI1+WCI2+WCI3+WCI4

T

)
� Q(1) � 1.

w1 � 0.5008, w2 � 0.2067, w3 � 0.1587, w4 � 0.1338.

g−
12, c � w1 · g̃−

12, 1 + w2 · g̃−
12, 2 + w3 · g̃−

12, 3 + w4 · g̃−
12, 4

� 0.5008·0.2280 + 0.2067·0.3 + 0.1587·0.6018 +
0.1338·0.4

� 0.3252.
Other values can be obtained in a similar way, and the

group consensus matrix is:

Gc �

⎡

⎢⎢⎢⎣

[0.5, 0.5] [0.3252, 0.3952] [0.4613, 0.5046] [0.5082, 0.5450]
[0.6048, 0.6748] [0.5, 0.5] [0.5846, 0.6990] [0.6918, 0.7343]
[0.4954, 0.5387] [0.301, 0.4148] [0.5, 0.5] [0.5987, 0.6884]
[0.455, 0.4918] [0.2657, 0.3082] [0.3116, 0.4012] [0.5, 0.5]

⎤

⎥⎥⎥⎦.

Step 4. Then using Eq.(17) to calculate the GCI , one
obtain:GC I (G̃1) � 0.8033, GC I (G̃2) � 0.9125, GC I (G̃3)
� 0.8900, GC I (G̃4) � 0.9226. As GC I (G̃1) � 0.8033 <
0.9, GC I (G̃3) � 0.8900 < 0.9, go to Step 5.

Step 5. Find the position of the element with the largest
distance from the expert preference matrix to the group
matrix and adjust it, one have:
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θ1( f ) �

⎡

⎢⎢⎢⎣

[0, 0] [0.1476, 0.2812] [0.0959, 0.1586] [0.1437, 0.2356]
[0.1476, 0.2812] [0, 0] [0.2073, 0.2859] [0.0894, 0.1663]
[0.0959, 0.1586] [0.2073, 0.2859] [0, 0] [0.1348, 0.2381]
[0.1437, 0.2356] [0.0894, 0.1663] [0.1348, 0.2381] [0, 0]

⎤

⎥⎥⎥⎦.

Find the position of elements θiτ jτ , v( f ), where θiτ jτ , v( f ) �
max{θ+iτ jτ , v( f ), θ−

iτ jτ , v( f )
}. For G̃1(1), since, θ23, 1(1) �

max{θ−
23, 1(1), θ+23, 1(1)}� max{0.2073, 0.2859} � 0.2859 �

θ+23, 1(1). By Eq. (20), one have:
g̃+23, 1(2) � 0.6g̃+23, 1(1) + (1 − 0.6)g+23, c(1) � 0.6·0.7863 +

0.4·0.5004 � 0.6719.
Similarly, other values can be obtained.
Step6.Output themodifiedpreference relations andgroup

preference relation:

G1 �

⎡

⎢⎢⎢⎣

[0.5, 0.5] [0.2870, 0.4078] [0.5, 0.5156] [0.5, 0.5507]
[0.6797, 0.772] [0.5, 0.5] [0.5276, 0.5869] [0.7335, 0.8]
[0.4844, 0.5] [0.413, 0.4724] [0.5] [0.5536, 0.7124]
[0.4493, 0.5] [0.2, 0.2665] [0.2876, 0.4463] [0.5, 0.5]

⎤

⎥⎥⎥⎦,

G2 �

⎡

⎢⎢⎢⎣

[0.5, 0.5] [0.3, 0.5] [0.4689} [0.6, 0.6]
[0.5, 0.7] [0.5, 0.5] [0.6897, 0.7] [0.626, 0.6532]
[0.5311, 0.5311] [0.3, 0.3103] [0.5, 0.5] [0.5, 0.7]
[0.4, 0.4] [0.3468, 0.374] [0.3, 0.5] [0.5, 0.5]

⎤

⎥⎥⎥⎦,

G3 �

⎡

⎢⎢⎢⎣

[0.5, 0.5] [0.5113, 0.6134] [0.4655, 0.4655] [0.7, 0.7342]
[0.3866, 0.4887] [0.5, 0.5] [0.3, 0.4] [0.5, 0.6]
[0.5345, 0.5345] [0.6, 0.7] [0.5, 0.5] [0.7, 0.9]
[0.2658, 0.3] [0.4, 0.5] [0.1, 0.3] [0.5, 0.5]

⎤

⎥⎥⎥⎦,

G4 �

⎡

⎢⎢⎢⎣

[0.5, 0.5] [0.4, 0.6] [0.3, 0.328] [0.5436, 0.7]
[0.5, 0.6] [0.5, 0.5] [0.3, 0.3] [0.6, 0.708]
[0.672, 0.7] [0.7, 0.7] [0.5, 0.5] [0.8, 0.9]
[0.3, 0.4564] [0.292, 0.4] [0.1, 0.2] [0.5, 0.5]

⎤

⎥⎥⎥⎦,

Gc �

⎡

⎢⎢⎢⎣

[0.5, 0.5] [0.3755, 0.5092] [0.4041, 0.4204] [0.5436, 0.6354]
[0.4908, 0.6244] [0.5, 0.5] [0.4307, 0.5006] [0.6338, 0.7106]
[0.5796, 0.5959] [0.4996, 0.5692] [0.5, 0.5] [0.6883, 0.7981]
[0.3644, 0.4563] [0.2894, 0.3663] [0.2019, 0.3116] [0.5, 0.5]

⎤

⎥⎥⎥⎦.

The consensus levels for the updated preference relations
are GC I (H1) � 0.9082 GC I (H2) � 0.9085, GC I (H3)
� 0.9001, GC I (H4) � 0.9225. The WCI of these adjust-
ment matrices are WCI (H1) � 0.9040, WCI (H2) � 0.9,
WCI (H3) � 0.9,WCI (H4) � 0.9119.

As we can see, the consensus has been reached. Then the
alternatives can be ranked with the following steps.

Step 7. Based on AA operator, one can obtain the overall
preference degree gi , c (i � 1,2,3,4) of the alternative xi (i �
1,2,3,4):

g1, c � [0.4558, 0.5162], g2, c � [0.5136, 0.5839],
g3, c � [0.5669, 0.6158],

g4, c � [0.3389, 0.4085].

Step 8. Based on Eq. (7), and construct a FPR P �
(pi j )n×n .

P �

⎡

⎢⎢⎢⎣

0.5

0.9812

1

0

0.0188

0.5

0.857

0

0

0.143

0.5

0

1

1

1

0.5

⎤

⎥⎥⎥⎦.

Step 9. Summing all elements in each line of the matrix P,
i.e., pi � ∑n

j�1 pi j , i�1, 2,…, n: p1 �1.5188, p2 �2.6242,
p3 � 4.357, p4 � 0.5, then one has p3 > p2 > p1 > p4.
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Therefore, the ranking of the alternatives is: x3 � x2 � x1 �
x4, and the optimal alternative is x3.

Comparisons and discussions

Zhang et al. [21] introduced a decision support model for
GDM to achieve the group consensus. To demonstrate the
validity of the proposed method, a comparative study with
Zhang et al. [21] method is conducted in this subsection.

Zhang et al. [21] used β-normalization to achieve the con-
sensus, let the consistency thresholdC I � 0.9, the consensus
thresholdGC I � 0.9, the consistency adjustment parameter
λ � 0.6, and the consensus adjustment parameter θ � 0.6.
Furthermore, in Zhang et al. [21]’s Algorithm 4, the DMs’
weights are given in advance as w � (0.1, 0.5, 0.3, 0.1)T .
If Algorithm 4 in Zhang et al. [18] is applied, then the nor-
malized HFPRs are:

H1 �

⎡

⎢⎢⎢⎣

{0.5} {0.3, 0.3, 0.3} {0.5, 0, 7, 0.7} {0.4, 0.4, 0.4}
{0.7, 0.7, 0.7} {0.5} {0.7, 0.9, 0.9} {0.8, 0.8, 0.8}
{0.5, 0.3, 0.3} {0.3, 0.1, 0.1} {0.5} {0.6, 0.7, 0.7}
{0.6, 0.6, 0.6} {0.2, 0.2, 0.2} {0.4, 0.3, 0.3} {0.5}

⎤

⎥⎥⎥⎦,

H2 �

⎡

⎢⎢⎢⎣

{0.5} {0.3, 0.35, 0.5} {0.1, 0.125, 0.2} {0.6, 0.6, 0.6}
{0.7, 0.65, 0.5} {0.5} {0.7, 0.725, 0.8} {0.1, 0.3, 0.5}
{0.9, 0.875, 0.8} {0.3, 0.275, 0.2} {0.5} {0.5, 0.6, 0.7}
{0.4, 0.4, 0.4} {0.9, 0.7, 0.5} {0.5, 0.4, 0.3} {0.5}

⎤

⎥⎥⎥⎦,

H3 �

⎡

⎢⎢⎢⎣

{0.5} {0.3, 0.5, 0.5} {0.7, 0.7, 0.7} {0.7, 0.8, 0.8}
{0.7, 0.5, 0.5} {0.5} {0.2, 0.3, 0.4} {0.5, 0.6, 0.6}
{0.3, 0.3, 0.3} {0.8, 0.7, 0.6} {0.5} {0.7, 0.8, 0.9}
{0.3, 0.2, 0.2} {0.5, 0.4, 0.4} {0.3, 0.2, 0.1} {0.5}

⎤

⎥⎥⎥⎦,

H4 �

⎡

⎢⎢⎢⎣

{0.5} {0.4, 0.5, 0.6} {0.3, 0.4, 0.4} {0.5, 0.7, 0.7}
{0.6, 0.5, 0.5} {0.5} {0.3, 0.3, 0.3} {0.6, 0.7, 0.8}
{0.7, 0.6, 0.6} {0.7, 0.7, 0.7} {0.5} {0.8, 0.9, 0.9}
{0.5, 0.3, 0.3} {0.4, 0.3336, 0.3} {0.2, 0.1, 0.1} {0.5}

⎤

⎥⎥⎥⎦.

Using Zhang et al. [21]’s Algorithm 4, after two iterations,
the adjusted HFPRs are:

H̃1 �

⎡

⎢⎢⎣

{0.5}
{0.666, 0.653, 0.65}
{0.56, 0.5478, 0.456}
{0.556, 0.5122, 0.478}

{0.34, 0.3470, 0.35}
{0.5}
{0.4, 0.3948, 0.3060}
{0.324, 2872, 0.256}

{0.44, 0.4523, 0.544}
{0.6, 0.6052, 0.694}
{0.5}
{0.424, 0.3925, 0.342}

{0.444, 0.4878, 0.522}
{0.676, 0.7127, 0.744}
{0.576, 0.6075, 0.658}
{0.5}

⎤

⎥⎥⎦,

H̃2 �

⎡

⎢⎢⎣

{0.5}
{0.652, 0.65, 0.58}
{0.756, 0.743, 0.672}
{0.592, 0.532, 0.448}

{0.348, 0.35, 0.42}
{0.5}
{0.46, 0.431, 0.376}
{0.692, 0.544, 0.404}

{0.244, 0.257, 0.328}
{0.54, 0.569, 0.624}
{0.5}
{0.516, 0.424, 0.348}

{0.408, 0.468, 0.552}
{0.3080, 0.456, 0.596}
{0.484, 0.576, 0.652}
{0.5}

⎤

⎥⎥⎦,

H̃3 �

⎡

⎢⎢⎣

{0.5}
{0.582, 0.485, 0.488}
{0.482, 0.4518, 0.432}
{0.412, 0.2962, 0.256}

{0.4180, 0.515, 0.5120}
{0.5}
{0.652, 0.6108, 0.552}
{0.474, 0.3832, 0.34}

{0.5180, 0.5483, 0.568}
{0.348, 0.3892, 0.448}
{0.5}
{0.358, 0.2725, 0.216}

{0.588, 0.7038, 0.744}
{0.526, 0.6167, 0.66}
{0.632, 0.7175, 0.784}
{0.5}

⎤

⎥⎥⎦,

H̃4 �

⎡

⎢⎢⎣

{0.5}
{0.558, 0.506, 0.488}
{0.668, 0.6258, 0.591}
{0.49, 0.3412, 0.277}

{0.442, 0.494, 0.512}
{0.5}
{0.61, 0.6198, 0.603}
{0.432, 0.3352, 0.289}

{0.332, 0.3743, 0.409}
{0.39, 0.3802, 0.3970}
{0.5}
{0.322, 0.2155, 0.186}

{0.51, 0.6588, 0.723}
{0.568, 0.6647, 0.711}
{0.678, 0.7845, 0.814}
{0.5}

⎤

⎥⎥⎦.

Based on Zhang et al. [21]’s Algorithm 4, all the values in
these HFPRs are changed. This means that the DM’s original
information are distorted greatly.

Some comparative analyseswith someof the relatedmeth-
ods are also conducted.
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Table 2 A comparison of various consistency and consensus methods

Methods All FPRs Removing
values

Adding
values

consistency consensus Consistency
control

Optimization
based

Zhu and Xu [52]’s
algorithm I

Yes Yes No Yes No No No

Zhang et al. [21]’s
algorithm 4

No No Yes Yes Yes Yes No

Zhang et al. [39]’s
(M-9)

Yes No No Yes No No Yes

Xu et al. [37]’s
Algorithm 2

No No Yes No Yes No Yes

This paper
Algorithms 2

Yes No No Yes Yes Yes Yes

(1) In (Zhang et al. [21]), the β-normalization method is
used and it requires that the elements in the HFPRs
have the same length; however, the normalized HFPRs
were different from the original HFPRs when the new
values are added to the original elements. Further, the
β-normalization based approach only considered some
of the possible FPRs. The approach in Xu et al. [37]
does not consider the individual consistency. Generally,
the consistency of an HFPR demonstrates the inherent
logic of the preferences in the HFPR; therefore, if the
individual consistency level is unacceptable, the group
decision derived by aggregating the individual prefer-
ences may be not reliable.

(2) Zhu and Xu [52] used α-normalization to reduce the
individual HFPR to FPR, and used the highest con-
sistency level in FPR as the consistency of HFPR.
However, it does not consider the adjustment process
of consistency and used α-standardization, resulting in
missing decision information for DM.

(3) Zhang et al. [39] applied average consistency and best
consistency indexes in their consistency control, they
randomly generated some HFPRs and used mixed 0–1
linear programming model to improve the consistency
index. But the consensus is not considered.

(4) In this paper, both the consistency and consensus are
considered. However, the methods in (Zhang et al. [39],
Xu et al. [37]) only consider one of the consistency and
consensus, these may cause decision result not accu-
rate. In Zhang et al. [39]’s method, the weight of each
expert is given in advance, and the contribution of the
expert in the decision-making process is not considered.
In Xu et al. [37]’s method, expert weights are dynam-
ically adjusted in the process of achieving consensus,
but consistency is not considered.

A brief comparison is provided in Table 2. In Table 2,
‘Consistency control’ meant that all individuals consistency

levels still met the predefined consistency levels after the
consensus process.

To summarize, Algorithm 1 considers all the possible
FPRs associated with HFPRs without adding or deleting any
values, and the WCI is introduced to guarantee that all pos-
sible FPRs are acceptably consistent. Then, Algorithm 2 is
proposed to improve the consensus of the HFPRs.

Conclusion

Consistency and consensus play an important role in HFPRs.
In this paper, two algorithms are proposed to improve the
consistency and consensus. The main contributions of the
paper are:

(1) A non-standardized approach is used to adjust the con-
sistency and consensus process of HFPR.

(2) An iterative algorithm for adjusting the WCI of indi-
vidual HFPRs is proposed. To maintain more original
information, only the elements with the largest devia-
tion values in the consistencymatrix are adjusted in each
iteration.

(3) An iterative algorithm for group consensus of HFPR
is proposed. When achieve group consensus the WCI
keeping unchanged or improved. This avoids inaccurate
decision results caused by preference relations provided
by individuals who do not satisfy the consistency.

Some problems still need to be investigated, includ-
ing the effects of different adjustment parameters on the
inconsistency and consensus adjustment processes are not
considered; the consistency and consensus thresholds in
HFPR are artificially determined. In the future, we will focus
on the impact of different adjustment parameters on the
adjustment process of inconsistency and achieving group
consensus adjustment and search for a more intelligent
method to determine the thresholds.
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