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Abstract
Dynamic gesture recognition has become a new type of interaction to meet the needs of daily interaction. It is the most 
natural, easy to operate, and intuitive, so it has a wide range of applications. The accuracy of gesture recognition depends 
on the ability to accurately learn the short-term and long-term spatiotemporal features of gestures. Our work is different 
from improving the performance of a single type of network with convnets-based models and recurrent neural network-
based models or serial stacking of two heterogeneous networks, we proposed a fusion architecture that can simultaneously 
learn short-term and long-term spatiotemporal features of gestures, which combined convnets-based models and recurrent 
neural network-based models in parallel. At each stage of feature learning, the short-term and long-term spatiotemporal 
features of gestures are captured simultaneously, and the contribution of two heterogeneous networks to the classification 
results in spatial and channel axes that can be learned automatically by using the attention mechanism. The sequence and 
pooling operation of the channel attention module and spatial attention module are compared through experiments. And the 
proportion of short-term and long-term features of gestures on channel and spatial axes in each stage of feature learning is 
quantitatively analyzed, and the final model is determined according to the experimental results. The module can be used 
for end-to-end learning and the proposed method was validated on the EgoGesture, SKIG, and IsoGD datasets and got very 
competitive performance.

Keywords Dynamic gesture recognition · Attention mechanism · Spatiotemporal features · The human–computer 
interaction · Video understanding

Introduction

With the popularization of computers in modern society, 
the interaction technology of people is gradually transferred 
from the computer as the center to the human center, and 
the technology of the cross-domain man–machine barrier 
has become a new research hotspot. Gestures are the most 
instinctive and common means of human communication. 
Compared with expressions and actions, gestures are not 
only more intuitive and natural but also can express rich 
semantic information. Therefore, gestures are the most com-
mon means of human communication. However, the gesture 
itself is highly flexible and diverse, so interaction through 
gesture is a challenging research direction.

Gestures are divided into static gestures and dynamic ges-
tures according to the semantic expression of the gesture. 
The static gesture takes pictures as its data set. It focuses 
on gesture posture and shape features at a single time. The 
dynamic gesture takes video as its data set. It not only 
focuses on gesture posture and shape but also the time series 
of gesture input. The purpose of studying human–computer 
interaction is to make human–computer interaction as natu-
ral as human–human interaction. However, static pictures 
have limited semantic expression, so dynamic gesture inter-
action is more in line with people's usage habits and more 
suitable for the application of future human–computer inter-
action technology.

Early gesture recognition mainly relied on wearable 
devices and artificial design features, such as Soli [1] and 
MYO [2]. However, wearable devices are bulky and cum-
bersome to wear, so there are certain limitations. Artifi-
cial design features include Parcheta et al.'s [3] hidden 
Markov model (HMM), HOG algorithm, MEI algorithm, 

 * Gongzheng Chen 
 chengongzheng64@163.com

1 Graduate School of Aerospace Engineering University, 
Beijing, China

http://orcid.org/0000-0001-9855-6223
http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-022-00858-8&domain=pdf


1378 Complex & Intelligent Systems (2023) 9:1377–1390

1 3

etc. However, artificial design features cannot meet the 
needs of the actual gesture recognition system because it 
requires artificial design features and is time-consuming. 
With the advent of Alexnet and other convolutional neural 
networks, deep learning has made breakthroughs in image 
classification, image segmentation, target detection, scene 
recognition, face recognition [4], action recognition [5, 6], 
and gesture recognition. The method of dynamic gesture 
feature extraction based on deep learning has become a 
research hotspot. Gesture recognition is mainly based on 
the skeleton or video sequence, so time information plays 
an important role in gesture recognition. Unfortunately, 
compared with motion recognition and other video clas-
sification tasks, video background can improve the rec-
ognition results. For gesture recognition, complicated 
video background can reduce the accuracy of gesture 
recognition, bringing more challenges to gesture-based 
human–computer interaction. Because gesture recognition 
pays more attention to the gesture itself, namely the shape 
and movement track of the hand, a larger and complex 
background will affect the spatial features of the smaller 
hand and arm. Therefore, time information is more impor-
tant in gesture recognition than other video classification 
tasks.

Many video classification algorithms have been applied to 
dynamic gesture recognition and achieved good performance 
and high accuracy. The first method is the two-flow con-
volutional network, which is the spatiotemporal features of 
gestures that people try to learn by using CNN. The second 
method is to inflate the 2D filters to 3D filters T × H ×W  . 
3D ConvNet [7] (C3D) can directly learn spatiotemporal fea-
tures by adding time dimension T  , so it can directly process 
multiple frames and has made a breakthrough in video clas-
sification tasks. However, the convolution kernel is limited 
in size, so the learned feature receptive field is limited. In 
the same stage of the model, the mapping relation with the 
difference between frames greater than the time dimension 
of the convolution kernel cannot be learned. Therefore, such 
models can only learn short-term spatiotemporal features. 
The last one is to mimic natural language processing such as 
recursive neural networks and long and short-term memory 
to learn temporal features of gestures. This structure can 
remember the information learned before the network and 
apply it to the current calculation, so it can learn the infor-
mation for a long time.

Since the convolution operation essentially fuses the 
spatial and channel information of the input feature maps, 
semantic information is captured from the input feature 
graph. However, not every feature graph has the same fea-
tures, and its contribution to semantics is also different. 
Therefore, the attention mechanism emerges and is widely 
used in various computer vision tasks. Examples are SE [8], 
BAM [9] and CBAM [10].

For gesture recognition, the time series of hand and arm 
movements are very important. The learning of spatiotempo-
ral features directly affects the recognition results. Our work 
is different from improving the performance of a single type 
of network with convnets-based models and recurrent neural 
network-based models or serial stacking of two heterogene-
ous networks. Instead, we propose an architecture that uses 
the attention mechanism to connect two heterogeneous net-
works in parallel in two independent dimensions, channel 
and spatial. And then the attention maps are multiplied to the 
input feature map for adaptive feature refinement. The mod-
ule cannot only apply the channel attention module (CAM) 
and spatial attention module (SAM) to learn both global and 
local spatiotemporal features in parallel but also make the 
two heterogeneous networks learn the noteworthy informa-
tion on the channel axis and spatial axis at each stage and 
automatically learn the contribution of two heterogeneous 
networks to classification results through backpropagation. 
It can discard some useless information and improve the 
weight of useful information. Res2plus1D and ConvLSTM 
are mainly used in this paper. More importantly, two het-
erogeneous networks can be replaced by other networks. 
Similar to the SeST [11], the proposed network not only 
selectively extracts the weight and dependencies for the two 
types of networks in the channel axis but also selectively 
extracts the weight and dependencies for the spatial axis.

The contributions of this paper are as follows:

1.  Two heterogeneous networks (R2plus1D and Con-
vLSTM) are combined in parallel called the RPCNet 
module. The structure cannot only learn long-term and 
short-term spatiotemporal features by using the charac-
teristics of the two networks but also the network is an 
end-to-end model.

2.  The proposed RPCNet utilizes the attention mechanism 
to extract the features that need attention in the chan-
nel and the spatial axes and adjusts the contributions of 
the two networks by Softmax operation at each stage. 
By comparing the sequential and pooling operations of 
CAM and SAM and quantitatively analyzing the propor-
tions of short-term and long-term spatiotemporal fea-
tures on channel and spatial axes in each stage of feature 
learning, proves the effectiveness of our model.

3.  In EgoGesture [12], SKIG [13], and IsoGD [14], the 
network gets very competitive performance in end-to-
end networks.

The rest of this paper is organized as follows. In “Related 
work”, we review the related work of gesture recognition 
from the aspects of manual feature extraction and deep learn-
ing. And in “Proposed method”, we introduce the model 
architecture proposed in this paper in detail. In “Experi-
ment”, we discuss the combination of CAM and SAM and 



1379Complex & Intelligent Systems (2023) 9:1377–1390 

1 3

the influence of maximum pooling and average pooling on 
the model accuracy, and we compared the proposed on Ego-
Gesture [12] dataset, SKIG [13] dataset, and IsoGD [14] 
dataset. Finally, the output results of model weight are ana-
lyzed. The last section is for discussion and outlook.

Related work

With the continuous popularization of computers in society, 
the development of human–computer interaction technology 
based on gesture recognition will bring convenience to the 
use of computers, and can greatly improve the efficiency of 
interaction. Many kinds of research are based on this back-
ground. This section reviews the current researches from two 
aspects: hand-crafted features and gesture feature extraction 
based on deep learning.

Hand‑crafted feature of gesture recognition

Due to the lack of computer computing power, researchers 
can only use artificial features for image recognition. And, 
most artificial features are mainly used to extract spatiotem-
poral features for gesture recognition, that is, the interesting 
part of the input image is converted into a set of feature 
vectors. Common gesture features are divided into global 
feature-based and local feature-based. Common global fea-
tures include image color, shape, texture, and other features, 
which are easy to understand and require less computation. 
Ibrahim et al. [15] used tone-based skin detection to segment 
the hand region and skin spot tracking technology to recog-
nize and track gestures. But this kind of feature description 
does not apply to the case of occluded images. In recent 
years, gesture feature extraction based on local features has 
been widely used. Yang et al. [16] used depth motion map-
ping (DMMs) to capture motion cues from three different 
perspectives of the front, side, and top, and finally used the 
HOG descriptor to represent actions. Reviewing previous 
related work, the IDT proposed by Wang [17] is the most 
successful method of hand-crafted. Due to the high cost of 
hand-crafted, it is difficult to apply it to real scenes because 
it cannot take into account factors such as video background. 
With the rapid development of deep learning, many meth-
ods have been applied to gesture recognition, and gradually 
replace artificial features.

Gesture feature extraction based on deep learning

In recent years, deep neural networks have been applied to 
computer vision and other fields. The two-flow network was 
the first attempt to learn spatiotemporal features, and then 
some improvements were made according to the two-flow 
network, such as Wang et al. [18]. Wu et al. [19]. The above 

network uses optical flow as the input of time flow, which 
requires a lot of complex calculations and thus reduces the 
speed of the network model. Therefore, the C3D network 
emerges and is gradually applied in gesture recognition 
[20–23]. Based on the great success of the ResNet net-
work in graph classification, Miao proposed the ResC3D 
[21] model, which makes use of the advantages of residual 
and C3D model and gets a place in ChaLearn LAP [24] 
gesture recognition. But 3D convolution can only handle 
small temporal windows, not the whole gesture in the video. 
Therefore, this kind of network cannot capture the long-term 
spatiotemporal features of gesture, thus affecting the per-
formance of the network in the gesture recognition task. 
LSTM is a variant of the recurrent neural network, which 
can encode videos of different lengths for a long time. Since 
LSTM was proposed in 1995, several LSTM variants have 
been proposed by researchers. Among them, Shi et al. [25] 
extended fully connected LSTM (FC-LSTM) by using con-
volution structure in input to state and state to state transition 
and proposed convolution LSTM (ConvLSTM) network to 
process sequential images of precipitation near prediction. 
Therefore, convolutional LSTM can be used in video tasks 
such as motion recognition and gesture recognition, and it 
solves the defect that the model based on a convolutional 
neural network lacks time modeling ability. Molchanov et al. 
[26] combined C3D and RNN to construct a cyclic 3D con-
volutional neural network for gesture recognition. Nunez 
et al. [27] proposed the network model constructed by CNN 
and LSTM, but the model ignored the spatial information, 
thus reducing the accuracy. To make up for this deficiency, 
Zhang et al. [28] introduced ConvLSTM to replace RNN 
or LSTM to learn the spatial features of videos. Elboushaki 
et al. [29], Peng et al. [30], and Wang et al. [31] are conduct-
ing video classification tasks through the combination of 3D 
convolution and ConvLSTM. All of the above methods are 
serial cascades of two heterogeneous networks, and they are 
not simultaneous learning.

The attention mechanism is widely used in gesture rec-
ognition because it enables neural networks to recognize 
key information. Hou [32] and Wiederer [33], for example, 
have integrated the attention mechanism into gesture recog-
nition. Dhingra [34] proposes a 3D attention based on the 
residual network, which can generate multiple stacked atten-
tion blocks for traffic gestures. Zhang [35] uses the attention 
module in different gates in LSTM and combines it with 
3DCNN for gesture recognition.

Proposed method

Although convolutional network can realize end-to-end 
learning, its convolution kernel is limited. For example, the 
convolution kernel of C3D is T × H ×W  , which are time, 
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height, and width, respectively. Therefore, the receptive 
field of feature extraction is fixed. In the convolution of the 
same layer, features can only be extracted from adjacent 
T  frames, and feature relations with frame spacing greater 
than T  cannot be extracted. Therefore, 3D convolution can-
not encode long-term time information. A large number 
of previous studies focused on sequential networks such 
as CNN and RNN, but none of these networks could learn 
spatiotemporal features at the same time, and the informa-
tion loss caused by a single network would continue to 
accumulate. The proposed RPCNet module uses the atten-
tion mechanism to learn the contribution and dependence 
of R2plus1D and ConvLSTM to classification results on 
the channel and spatial axes respectively, so that the mod-
ule can learn the long-term and short-term spatiotempo-
ral features in parallel, thus overcoming the problem of 
a single network, and the model can realize end-to-end 
learning. Greatly improve the accuracy in video tasks. Its 
structure is shown in Fig. 1. Firstly, the gesture sequence is 

input into a 3D convolutional network (Layer0) for feature 
extraction and dimensionality reduction, which is indis-
pensable. Because ConvLSTM will generate more train-
ing parameters and increase training time if the gesture 
sequence is input directly into the RPCNet module. Then 
it is input to the 4-layer network in turn, among which 
the first three layers (Layer1, Layer2, and Layer3) are the 
RPCNet module proposed in this paper, and the last layer 
(Layer4) is the 3D convolutional network.

The section begins with a review of the R2plus1D and 
ConvLSTM networks, it is our main framework for the 
proposed method. R2plus1D network is an outstanding 3D 
network that can learn the short-term spatiotemporal fea-
tures of videos. And ConvLSTM can encode information 
over a long period. By combining the two architectures 
in parallel, the long-term and short-term spatiotemporal 
features are fully utilized for dynamic gesture recogni-
tion. Table 1 shows the hyperparameters used in various 
components of our work.

Fig. 1  The framework of the proposed deep architecture

Table 1  The hyperparameters 
used in various components of 
our work

Layer name Output size 
( T × H ×W)

Convnets-based model Recurrent neural network-based model

Layer0 32 × 56 × 56
[

1 × 7 × 7,stride(1,2,2),64

3 × 1 × 1,stride(1,1,1),64

]

None

Layer1 32 × 56 × 56
[

1 × 3 × 3,stride(1,1,1),64

3 × 1 × 1,stride(1,1,1),64

]

× 4

[

3 × 3, stride(1, 1), 64

FC − 192

]

× 2

Layer2 16 × 28 × 28
[

1 × 3 × 3,stride(1,2,2),128

3 × 1 × 1,stride(2,1,1),128

]

× 1

[

3 × 3, stride(1, 1), 64

FC − 192

]

× 2

3 × 7 × 7, stride(1, 2, 2), 128
[

1 × 3 × 3,stride(1,1,1),128

3 × 1 × 1,stride(1,1,1),128

]

× 3

Layer3 8 × 14 × 14
[

1 × 3 × 3,stride(1,2,2),256

3 × 1 × 1,stride(2,1,1),256

]

× 1

[

3 × 3, stride(1, 1), 128

FC − 384

]

× 2

3 × 7 × 7, stride(1, 2, 2), 256
[

1 × 3 × 3,stride(1,1,1),256

3 × 1 × 1,stride(1,1,1),256

]

× 3

Layer4 4 × 7 × 7
[

1 × 3 × 3,stride(1,2,2),256

3 × 1 × 1,stride(2,1,1),256

]

× 1
None

[

1 × 3 × 3,stride(1,1,1),512

3 × 1 × 1,stride(1,1,1),512

]

× 3

1 × 1 × 1 Average pool, FC
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R2plus1D component

The earliest spatiotemporal features learning component is 
C3D extended from C2D, which expands the 2D convolu-
tion kernel H ×W  into 3D convolution kernel T × H ×W 
by introducing an additional time dimension T  . Inspired by 
the ResNet network, ResC3D applies residual network to 3D 
convolution, which reduces the parameters of the network, 
avoids the problem of gradient disappearance, and greatly 
improves the performance of the model. In this paper, the 
RPCNet module is based on the R2plus1D model, which 
splits the convolution kernel of 3 × 3 × 3 in the ResC3D 
model into 1 × 3 × 3 and 3 × 1 × 1 for spatial feature extrac-
tion respectively, and sequential feature extraction. The 
structure is shown in Fig. 2. We use the R2plus1D-18 in 
our work.

ConvLSTM component

LSTM is mainly used in natural language processing to learn 
the timing features of text vectors, and it mainly deals with 
one-dimensional vectors. However, both video and image 
are two-dimensional vectors, which cannot be encoded 
for a long time. ConvLSTM was proposed to change the 
feedforward method of LSTM from Hadamard product to 

convolution. ConvLSTM has a large number of parameters 
because of the convolution operation. GateConvLSTM pro-
posed in the literature [36] reduces the spatial dimension 
by performing a global average pooling on input features 
and hidden states, so that the convolution operation can be 
replaced by the fully connected operation. The number of 
parameters and calculation costs are greatly reduced. The 
performance of GateConvLSTM is better than that of Con-
vLSTM. The GateConvLSTM structure is shown in Fig. 3, 
the GateConvLSTM can be formulated as:

where � is the sigmoid function, Xt is the input, Ct is the 
cell state, Ht is the hidden state. where Wx∼ and Wh∼ are 2D 
convolution kernels. it, ft,ot are three-dimensional tensors, * 
represents convolution operator, and ◦ represents Hadamard 
product.

However, the input and output dimensions of GateCon-
vLSTM operation are unchanged, so we adopt the structure 
in Fig. 4 to enable GateConvLSTM to reduce sampling and 
achieve the purpose of end-to-end training. The input of this 
structure is T × H ×W × C , and compared with the informa-
tion before T∕2 , the information after T∕2 has more features 
to learn. So we sent the last T∕2 information to the C3D 
structure to learn spatial features.

RPCNet

To better classify gestures, we need to learn the long-term 
and short-term spatiotemporal features of gestures, and the 
lack of any information will greatly affect the classification 
results. The representative long-term and short-term spa-
tiotemporal features models are ConvLSTM and 3DCNN. 
3DCNN is limited by the size of the convolution kernel, 
and the size of the receptive field is limited, so it can only 
learn short-term spatiotemporal features. Although Con-
vLSTM adopts a memory gate structure to learn long-term 

(1)Xt = GlobalAveragePooling(Xt),

(2)Ht−1 = GlobalAveragePooling(Ht−1),

(3)it = �

(

WxiXt +WhiHt−1 + bi

)

,

(4)ft = �(Wxf Xt +WhfHt−1 + bf ),

(5)ot = �(WxoXt +WhoHt−1 + bo),

(6)Ct = ft◦Ct−1 + it◦ tanh(Wxc ∗ Xt +Whc ∗ Ht−1 + bc),

(7)Ht = ot◦ tanh(Ct),

Fig. 2  The R2plus1D component
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spatiotemporal features, with the increase of input sequence, 
the earlier time information will be forgotten. However, the 
serial connection of 3D CNN and ConvLSTM could not 
learn both short-term and long-term spatiotemporal features 
at the same stage of learning. Therefore, the short-term 
and long-term spatiotemporal features are simultaneously 
learned by connecting two heterogeneous networks in par-
allel. In the process of network fusion, an attention mecha-
nism is used to extract the features that need attention from 
two heterogeneous networks in the channel and spatial axes 
respectively, and the contribution and dependencies of two 
heterogeneous networks in the process of model learning 
are automatically selected. As shown in Fig. 5, the model 

is divided into two parts, the channel fusion module, and 
the spatial fusion module respectively. These are shown in 
Figs. 6 and 7.

Channel fusion module

Firstly, the input frames are sent to R2plus1D and Gate-
ConvLSTM networks respectively, and the outputs of the 
two models are summed element by element to integrate the 
feature maps of the two heterogeneous models. We downsize 
features maps from T × H ×W × C to T∕2 × H∕2 ×

W∕2 × 2C.
Secondly, the global average pooling operation and the 

global maximum operation are used to aggregate the 

Fig. 3  GateConvLSTM

Fig. 4  Improved GateConvLSTM
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spatiotemporal features of X and generate channel-wise 
statistics Fc

avg
 and Fc

max
 whose dimension is 1 × 1 × 1 × 2C 

used to represent the global average-pooled features and 
global max-pooled features. The resulting global average-
pooled features are forwarded into a 1 × 1 × 1 convolution 
to capture contextual information between channel axis. 
And then forwarded it into a 1 × 1 × 1 convolution and we 
downsize features  maps from 1 × 1 × 1 × 2C to 
1 × 1 × 1 × 2C∕r , reducing the dimensionality by reducing 
ratio r and capturing the channel-wise dependencies com-
pletely. Fc

max
 is the same as Fc

avg
 . And then, add up the 

features and get Z  , and it is forwarded into a 1 × 1 × 1 

convolution for Softmax operation. In the experiment, the 
r was selected as 16 following reference [10].

Finally, a Softmax operation can automatically select the 
weight �c and �c of the two branches on the channel axis. The 
process can be formulated as:

(8)X = R2plus1(I) + GateConvLSTM(I) = X̃3D +
⌢

XLSTM,

Fig. 5  RPCNet

Fig. 6  Channel fusion module

Fig. 7  Spatial fusion module
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where I  represents the input feature whose size is 
T × H ×W × C,T ,H,W,C represents the time length, height, 
width, and the number of input channels of the feature, 
respectively. W0 and W1 is the convolution kernel of 1 × 1 × 1

, W2 ∈ R
2C

r
×2C , W3 ∈ R

2C

r
×2C , W4 ∈ R

2C×
2C

r , W5 ∈ R
2C×

2C

r

.Yc ∈ R
T

2
×

H

2
×

W

2
×2C,� denotes the ReLU function.

Spatial fusion module

Firstly, X′ generated by channel fusion module is used to 
perform global average-pooled and max-pooled features 
along the channel dimension to highlight the effective infor-
mation region, and spatial descriptor Fs

avg
 and Fs

max
 with 

dimension T∕2 × H∕2 ×
W∕2 × 1 is generated to represent the 

average-pooled feature and max-pooled feature. The result-
ing average-pooled feature and max-pooled are then for-
warded into a 3 × k × k convolution to capture contextual 
information between spatial axis. And then, it forwarded into 
a 3 × k × k convolution for Softmax operations. According 
to the experimental results in reference [10], the model k 
value was set to 7.

Finally, a Softmax operation can automatically select the 
weight �s and �s of the two branches on the spatial axis. The 
process can be formulated as:

(9)

z = Conv(Conv(Avgpool(X)))

+Conv(Conv(Maxpool(X)))

= �(W2(W0(F
c
avg

))) + �(W3(W1(F
c
max

))),

(10)Mc = Conv(z) = W4(z),

(11)Nc = Conv(z) = W5(z),

(12)�c =
exp(Mc)

exp(Mc) + exp(Nc)

(13)�c =
exp(Nc)

exp(Mc) + exp(Nc)
,

(14)Yc = 𝛼c ∙ X̃3D + 𝛽c ∙
⌢

XLSTM , 𝛼c + 𝛽c = 1,

(15)X
�

= Yc = 𝛼c ∙ X̃3D + 𝛽c ∙
⌢

XLSTM,

(16)
z = Conv([Avgpool(X

�

);MaxPool(X
�

)))

= �(f 3×7×7
1

([Fs
avg

;Fs
max

])),

(17)Ms = Conv(z) = f 3×7×7
2

(z),

where f 3×7×7 represents a convolution operation with the 
filter size of 3 × 7 × 7,� represent the sigmoid function.

Experiment

To verify the effectiveness of the RPCNet, we evaluate our 
network on the EgoGesture [12], SKIG [13], and IsoGD 
[14] datasets. The model can be validated in RGB and Depth 
modalities.

EgoGesture [12] is a recent multimodal large-scale data-
set, which was an egocentric gesture recognition dataset 
published by the Chinese Academy of Sciences, and its 
video format is a first-person view. The dataset format is 
RGB-D, and the resolution of each video frame is 320 × 240 
which was collected by 50 people in 6 different indoor and 
outdoor scenarios. There are 83 gesture categories in this 
dataset, including 33 static gestures and 50 dynamic ges-
tures. The dataset splits in a 3:1:1 ratio by distinct subjects 
which resulted in 1239 training, 411 validation, and 431 test-
ing videos, having 14,416,4768, and 4977 gesture samples, 
respectively.

SKIG [13] dataset is one of the used datasets for hand 
gesture recognition published by Sheffield. The dataset for-
mat is RGB-D and contains 1080 gesture sequences. It col-
lected 10 different gestures from 6 subjects, who were asked 
to complete gestures with fist, flat, and index in 2 illumina-
tion conditions and 3 different backgrounds.

IsoGD [14] dataset is a large gesture dataset containing 
47,933 gesture videos and the format is RGB-D. It's derived 
from the CGD dataset which was collected by 21 different 
individuals and it has 249 categories.

Data sets and implementation details

For each video, the proposed RPCNet selected 32 frames 
as the input, and for the clips with more than 32 frames, we 
keep the middle 32 frames and remove the non-important 
information at both ends. We randomly repeat the frames 
until the number of video frames equals 32 for the clips with 

(18)Ns = Conv(z) = f 3×7×7
3

(z),

(19)�s =
exp(Ms)

exp(Ms) + exp(Ns)

(20)�s =
exp(Ns)

exp(Ms) + exp(Ns)
,

(21)Ys = 𝛼s ∙ 𝛼c ∙ X̃3D + 𝛽s ∙ 𝛽c ∙
⌢

XLSTM, 𝛼s + 𝛽s = 1,
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less than 32 frames. When training, we randomly cut each 
frame to 224 × 224 to achieve the purpose of data expansion. 
And center clipping when testing. Then adjust the image to 
112 × 112 . One Quadro GV100 is used to train our proposed, 
which is implemented on the Pytorch platform. We use the 
mini-batch stochastic gradient descent (SGD) algorithm to 
optimize the parameters of the network. The momentum is 
set as 0.9 and weight decay is set at 0.0005. The batch size 
is set to 8 and the initial learning rate follows a polynomial 
decay from 0.001 to 0.000001 within a total of 50 epochs. In 
this paper, to shorten the training time, We first pre-trained 
our model on the Jester dataset [37].

Explorative study

This section will prove the validity of the model through 
experiments. In this experiment, we used the EgoGesture 
[12] dataset. And R2plus1D and GateConvLSTM as the 
basic model. Firstly, RPCNet modules are used in the last 
four stages of the model, namely Layer1, Layer2, Layer3, 
and Layer4. The experiments are divided into three parts, 
which discuss the sequential of CAM and SAM and the 
influence of maximum pooling and average pooling on the 
model accuracy. The final model is determined by compar-
ing the weights of the two heterogeneous networks on the 
channel axis and spatial axis.

Sequential of CAM and SAM

In this experiment, three different combinations of CAM and 
SAM are compared: sequential channel-spatial, sequential 
spatial-channel, and parallel use of both attention modules. 
Because CAM is more concerned with global information 
and SAM is concerned with local information, the two func-
tions are different. Therefore, the combination mode will 
change the performance of the model.

Table 2 compares the experimental results of the three 
permutations. It can be found that the effect of using CAM 
first is better than using SAM first. Both CAM and SAM 
were better than CAM alone. SeST [11] only uses CAM 

to learn spatiotemporal features in parallel and ignores the 
importance of SAM.

Maximum pooling and average pooling

This experiment compares the influence of three model vari-
ations on model accuracy. Average pooling alone, maximum 
pooling alone, and both pooling operations are used in par-
allel. Because they capture different information, the two 
pooling approaches can complement each other.

Table 3 compares the three variants. You can see that 
average pooling alone is more accurate than maximum pool-
ing alone. And the best results can be obtained by using both 
the average pooling and the maximum pooling. Therefore, it 
is recommended to use both average pooling and maximum 
pooling.

Comparing the weights of two heterogeneous networks 
in the channel and spatial axes

We selected the Photo Frame category of EgoGesture [12] 
validation to the trained network and output the weight of 
each layer's channel axis. Figure 8 shows the weights of 
learning on channel axis for two heterogeneous networks. 
In the first, second, and third layers, weights ( �c and �c ) 
learned by the 3D convolutional network and ConvLSTM 
network are the same (values are around 0.5). Because the 
weights are processed by Softmax, it indicates that the 3D 
convolutional network and ConvLSTM network are equally 
important in the channel axis at the initial stage of the 
model. In the fourth layer, the weight of the 3D convolu-
tional network is significantly higher than that of the Con-
vLSTM network. The reason may be that at the early stage 
of the model, the time dimension T  is much larger than the 
width of the 3D convolution kernel, and CAM is concerned 
with global information, so the short-term and long-term 
temporal features at the early stage are equally important. In 
the last layer, the time dimension T  (4) is slightly larger than 
the width of the 3D convolution kernel (3). When T is small, 
the feature learning ability of ConvLSTM is lower than that 
of 3D convolution network, so the features learned by 3D 
convolution are more important. It shows that the model can 
use two heterogeneous networks to learn gestures simultane-
ously in the short and long time.

Table 2  Comparison methods of the CAM and SAM on EgoGesture 
[12]

Description Accuracy (%)

RGB Depth

R3D + channel (SeST [11]) 93.20 93.35
R2plus1D 92.76 92.94
R2plus1D + channel 93.26 93.42
R2plus1D + channel + spatial 93.53 93.68
R2plus1D + spatial + channel 93.32 93.45
R2plus1D + channel & spatial in parallel 93.42 93.51

Table 3  Comparison methods of pooling mode on EgoGesture [12]

Networks Accuracy (%)

RGB Depth

R2plus1D + channel + spatial(avg) 93.53 93.68
R2plus1D + channel + spatial(max) 93.25 93.49
R2plus1D + channel + spatial(avg & max) 93.65 93.81
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We selected the Photo Frame category of EgoGesture 
[12] validation to the trained network and output the weight 
of each layer's spatial axis. Since the weight of the spatial 
axis is three-dimensional ( T × H ×W ), we select the weight 
of the fixed time dimension ( T∕2 ) in each layer. Figure 9 
shows the weight of learning on spatial axis of two hetero-
geneous networks. In the first and second layers, the weight 
learned by the 3D convolutional network ( �s ) is less than 
that learned by the ConvLSTM network ( �s ). It indicates 
that in the first two layers of the model, the features learned 
by ConvLSTM on the spatial axis are more important than 
the 3D convolutional network. In the third layer, the weight 
of two heterogeneous networks is close, and the weight of 
the 3D convolutional network in the last layer is significantly 
higher than that of the ConvLSTM network. The reason may 
be that the time dimension T is large in the initial stage of the 
model, and the improved GateConvLSTM network can learn 
the spatial features for a long time through the memory gate 
structure. As SAM pays more attention to local informa-
tion, the local information learned by ConvLSTM is richer 
and the weight ( �s ) learned is higher. In the later time of the 

model, dimension T  is close to the width of the convolution 
kernel, so the weight ( �s ) of 3D convolution increases and 
significantly higher than ConvLSTM.

The experiment proves that the contribution of the Con-
vLSTM network can be ignored in Layer4, whether it is the 
channel axis or the spatial axis. So we set Layer4 as a 3D 
convolutional network. The final model is shown in Fig. 1.

Final results of the EgoGesture, SKIG, and IsoGD 
datasets

We compare our method with the other state-of-the-art 
methods [38–49] on EgoGesture [12] SKIG [13] and IsoGD 
[14] datasets. It can be seen in Tables 4, 5, and 6. It shows 
that the final model achieves higher accuracy in the EgoGes-
ture [12] data set compared with the RPCNet module used 
in the last layer. The final model is used on the SKIG [13] 
and IsoGD [14] datasets and the accuracy is also higher than 
SeST [11]. To the best of our knowledge, our model is state-
of-the-art on SKIG [13] and IsoGD [14] datasets in RGB and 
Depth modes. Although our model is not state-of-the-art on 

Fig. 8  Compare the weights of two heterogeneous networks on channel axis. Layer1, Layer2, Layer3, and Layer4 represent the output of model 
weights of the first, second, third, and fourth layers of the model respectively
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EgoGesture [12], the two heterogeneous networks can be 
replaced by other networks. We can replace it with a very 
advanced convnets-based models and recurrent neural net-
work-based models.

Discussion

Through the experiment in “Experiment”, it can be 
concluded that the simultaneous connection of 3D 
convolutional network and ConvLSTM network can 

simultaneously learn the short-term and long-term spati-
otemporal features of gestures. Compared with the SeST 
[11] model, which only uses channel information to con-
nect two heterogeneous networks in parallel, this paper 
proposes to connect two heterogeneous networks using 
CAM and SAM simultaneously and proves through the 
melting experiment that the performance of the model 
using CAM and SAM at the same time is higher than that 
using CAM only. At the same time, the sequence and pool-
ing operation of CAM and SAM were compared. In the 
final model shown in Figs. 5, 6, and 7, we followed the 
order of CAM and SAM, using both average pooling and 
maximum pooling. In addition, the proportion of short-
term and long-term features on channel and spatial axes 
in each stage of feature learning is quantitatively analyzed. 
Through the final experiment, it is proved that our model 
can learn the short-term and long-term spatiotemporal 
features of gestures in the first three stages of gesture 
learning, whether on the spatial axis or the channel axis 
and improved the classification results. To the best of our 
knowledge, our model is the state-of-the-art on SKIG [13] 
and IsoGD [14] datasets in RGB and Depth modes. The 
confusion matrix of the model on the EgoGesture [12] 
dataset is shown in Fig. 10. Although our model is not 
state-of-the-art on EgoGesture [12], the two heterogene-
ous networks can be replaced by other networks. We can 
replace it with a very advanced convnets-based models and 
recurrent neural network-based models. The core of our 
work is to build an architecture that combines convnets-
based models and recurrent neural network-based models 
in parallel so that the fusion architecture can simultane-
ously learn the long-term and short-term spatiotemporal 
features of gestures.

Table 4  Comparison results of our models with other state-of-the-art 
methods on the test set of EgoGesture [12] dataset

Networks Accuracy (%)

RGB Depth

VGG16 [38] 62.50 62.30
C3D [7] 86.88 88.45
C3D + LSTM + RSTTM [39] 89.30 90.60
CatNet [40] 90.05 90.09
MTUT [41] 92.48 91.96
SeST [11] 93.20 93.35
ResNeXt-101 [42] 93.75 94.03
STCA-R(2 + 1)D [43] 94.00 –
ACTION-Net [44] 94.40 –
RPCNet (initial model) 93.65 93.81
RPCNet (final model) 93.93 94.14

Table 5  Comparison results of our models with other state-of-the-art 
methods on the test set of SKIG [13] dataset

Networks Modality Accuracy (%)

RGGP + RGBD [45] RGB 99.63
MRNN [46] RGBD 97.80
DesNet + Bi-LSTM [47] RGBD 99.07
SeST [11] RGB 99.63
RPCNet (ours) RGB 99.70

Table 6  Comparison results of our models with other state-of-the-art 
methods on the test set of IsoGD [14] dataset

Networks Accuracy (%)

RGB Depth

ResNet50 [48] 33.22 33.22
3DCNN + ConvLSTM + 2DCNN [28] 51.31 49.81
Res3D + ConvLSTM [29] 53.81 56.35
Res3D + GateConvLSTM + Pyramid [36] 57.42 54.18
SeST [11] 60.27 57.02
AlexNet + LSTM [49] 63.51 51.29
RPCNet (ours) 69.30 69.65

Fig. 10  Confusion matrix of EgoGesture
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Conclusion

In this paper, a ConvLSTM which can be sampled down is 
designed and combined with R2plus1D in parallel. And a 
deep network structure for learning dynamic gesture fea-
tures is proposed by using CAM and SAM. And discuss 
the combination of CAM and SAM and the influence of 
maximum pooling and average pooling on the model accu-
racy. The effectiveness of our model is proved by quanti-
tative analysis of the proportions of short-term and long-
term features on channel and spatial axes in each stage 
of feature learning. This structure cannot only use two 
heterogeneous networks R2plus1D and GateConvLSTM 
to learn long-term and short-term spatiotemporal features, 
respectively but also use an attention mechanism to auto-
matically allocate the contributions and dependencies of 
the two networks in the channel and spatial axes. The net-
work is an end-to-end model. Finally, the effectiveness 
of the proposed method is verified by comparing it with 
the existing method on three public dynamic gesture data-
sets. However, this model still has many limitations. For 
example, the dynamic gesture recognition method in this 
paper requires the operator to complete a complete ges-
ture to be recognized, which causes a certain delay in the 
human–computer interaction based on gesture recognition. 
And our model takes a video as input. In real human–com-
puter interaction applications, the model generates error 
detection because it cannot distinguish between intentional 
and subconscious interactions. In the future, we will try 
to use the most advanced 3D convolutional network and 
ConvLSTM network to learn the short-term and long-term 
spatiotemporal features of gestures in parallel, and design 
a more designed and lightweight model for online gesture 
recognition.
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