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Abstract
The similarity measures are essential concepts to discuss the closeness between sets. Fuzzy similarity measures and intuition-
istic fuzzy similarity measures dealt with the incomplete and inconsistent data more efficiently. With time in decision-making
theory, a complex frame of the environment that occurs cannot be specified entirely by these sets. A generalization like the
Pythagorean fuzzy set can handle such a situation more efficiently. The applicability of this set attracted the researchers to
generalize it into N-Pythagorean, interval-valued N-Pythagorean, and N-cubic Pythagorean sets. For this purpose, first, we
define the overlapping ratios of N-interval valued Pythagorean and N-Pythagorean fuzzy sets. In addition, we define similarity
measures in these sets. We applied this proposed measure for comparison analysis of plagiarism software.

Keywords Pythagorean fuzzy sets · Cubic Pythagorean fuzzy sets · N-cubic Pythagorean fuzzy sets · Similarity measures ·
Applications
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Introduction

The similarity measure is the tool used for many decision-
making processes, unclear reasons, data mining, artificial
intelligence, measuring instruments, machine learning, and
the reasoning of approximation. The primary purpose of sim-
ilarity measure is that measures the similarity or like portion
between twoobjects. i.e., it utilizes the degree of a similar part
and is expressedbetween0 and1(real number) [1–3]. Further,
similarity measure was defined for interval-valued data, as
crisp value is nomore effective in decision-making problems.
Similarity interval was introduced to evaluate the similarity
of interval-valued fuzzy sets, [4–7]. The similarity was being
used as an application to many areas of imprecise nature,
including diagnosis of many diseases, ranking purposes,
and engineering tools [8–12]. For proceeded more, similar-
ity measure for intuitionistic fuzzy set initialized according
to the concept that it demonstrates the membership also
non-membership value along with their daily used applica-
tions [13–16]. A Pythagorean fuzzy set determined similarity
measure with their valuable existence in various fuzzy envi-
ronments was in a Pythagorean fuzzy set. The similarity
measures of the Pythagorean fuzzy set are also defined in
the sense of consideration of similarity among Pythagorean
fuzzy sets [17–19]. As a fuzzy set and interval-valued fuzzy
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set are considered as the composing sets of cubic sets, simi-
larity measure was explained in terms of cubic sets [20–22].
Similarity measure under cubic Pythagorean fuzzy sets was
initialized to illustrate the similarity between two defined
sets with the similarity of their composing sets [23]. The
effect of priority degrees on the overall result is thoroughly
investigated. Furthermore, in the [24] Pythagorean fuzzy set
environment, a decision-making strategy is proposed based
on these operators [25]. This paper aims to expand on the
concepts of PmFSs and offer some additional operations and
findings on them. The idea of the Pythagorean m-polar fuzzy
relation to selecting the most suitable life partner was used
[26]. A bipolar fuzzy soft set (BFSS) is a powerful math-
ematical tool for dealing with uncertainty and unreliability
in real-world situations such as logistics and supply chain
management [27]. Some basic properties of the proposed
similarity measure are also discussed, such as the SM of
any two PFS-sets equals unity if the two PFS-sets coincide
[28]. We studied focused on a problem on a linear Diophan-
tine fuzzy graph, where each arc length is assigned a linear
Diophantine fuzzy number rather than a real number in this
paper. The linear Diophantine fuzzy number can indicate
the linear Diophantine fuzzy graph’s arc expenses’ uncer-
tainty [29]. Single-valued neutrosophic Einstein interactive
weighted averaging and geometric operators are proposed
using SVNSs, and smooth approximation with interactive
Einstein operations [30].

Further, the development made by different researchers in
the area of cubic sets and their applications can be seen in
[31–47]. The idea of similarity measure was examined as the
powerful mechanism used for many years in various fields
using these given sets. For similarity evaluation, many other
methods included similaritymeasures of Euclidean,Manhat-
tan, Chebyshev, Minkowski, cosine, Pearson, Mahalanobis,
SED Jaccard, Levenshtein, Dice, Jensen Shannon, Canberra,
Hamming, Spearman, Chi-square, and so on. These tools are
used in many areas of fuzzy environments to analyze simi-
larities among different sets. In science, similarity measure
expresses how the samples of data are closely related, and the
concept of dissimilarity is how the data models are diverse
or disparate. The similarity measure of the overlapping ratio
indicated a set’s similarity and dissimilarity to find a given
set’s overall similarity. The fact is thatwe discussed in a fuzzy
environment that similarity measure has already been under
observation. These similarities only find similarities between
the sets of positive impacts. It needs to express the negative
similarity of sets.

We define the overlapping ratio of the N-Pythagorean
fuzzy set and N-interval-valued Pythagorean fuzzy set to
initialize the negative similarity. Then we define the over-
lapping ratio for N-cubic Pythagorean fuzzy sets. Also, we
describe the similarity of N-Pythagorean fuzzy sets and

N-interval-valued Pythagorean fuzzy sets. After that, we ini-
tialize the similarity measure of the N-cubic Pythagorean
fuzzy set. Also, demonstrate the comparison of two pop-
ular plagiarism checker software using similarity measure
of overlapping ratio under the N-cubic Pythagorean fuzzy
sets. In this study, we show that our method produces intu-
itively appealing results even when the similarity is analyzed
using a graph visualization method. In our technique (the
new measure), we compare two N-cubic Pythagorean fuzzy
sets, i.e., with a measure that uses two functions to repre-
sent N-cubic Pythagorean fuzzy sets for comparison. While
evaluating the results of our new measure’s comparison, we
draw a graph of the new similarity measure between two N-
cubic Pythagorean fuzzy sets, where the membership value
of N-interval valued Pythagorean fuzzy sets compares to
the membership function of second N-cubic Pythagorean
fuzzy sets, and non-membership value corresponds to non-
membership value of this set.

Background

Wewill start through the review of similaritymeasures. First,
we revise the definition of similarity measure in such a way:

Definition [24] A set A � {(x , μ(x), ϑ(x))|xεX} is called
the Pythagorean fuzzy set, where μ : X → [0, 1] and ϑ :
X → [0, 1] and 0 ≤ μ2(x) + ϑ2(x) ≤ 1.

Definition [46] A set A � {(x , μ(x), ϑ(x))|xεX} is called
N-Pythagorean fuzzy set, where μ : X → [−1, 0] and ϑ :

X → [−1, 0] and−1 ≤ (−1)2(2)+1(μ
2(2)

(x)+ϑ2(2)(x)) ≤ 0.

Example Let X � {x}. Then A � {x, μ(x) � − 0.7, ϑ(x)
� − 0.5} is a N Pythagorean fuzzy set.

Definition [46] A set A � {(
x , μ̃(x), ϑ̃(x)

)|xεX}
is

called interval valued N-Pythagorean fuzzy set, where
μ̃ : X → D[−1, 0] and ϑ̃ : X → D[−1, 0] and
−̃1 ≤ (−1)2(2)+1(μ̃

2(2)
(x) + ϑ̃2(2)(x)) ≤ 0̃.

Example Let X � {x}. Then Ã � {< x, [− 0.6, − 0.5], [−
0.4, − 0.3] >} is an interval-valued N Pythagorean fuzzy set.

Definition [46] A set A � {(x , μ̃(x), ϑ(x))|xεX} is called
N-cubic Pythagorean fuzzy set, where μ̃ is an N-interval
valued Pythagorean fuzzy set and ϑ is N-Pythagorean fuzzy
set.

Example Let X � {x}. Then NA � {x, < [− 0.8, − 0.7],
[− 0.5, − 0.2], (− 0.8, − 0.2) >}, is an N-cubic Pythagorean
fuzzy set.

Definition [1] Asimilaritymeasure is a real-valuedmapping
S

′
(E, F) → [0, 1] that describes the similar area between
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objects (E,F). Basically, the area that is similar between
objects lies between the interval [0, 1] such that 0 specify
that objects are totally disjoint and 1 specify that objects
behave alike. The basic properties of similarity measure are
as under below for the sets E, F and G.

Boundedness: 0 ≤ S
′
(E, F) ≤ 1.

Symmetry: S
′
(E, F) � S

′
(F,E).

Reflexivity: S
′
(E, F) � 1 ⇐⇒E � F.

Transitivity: If E ⊆ F ⊆ G then S
′
(E, F) ≥ S

′
(E, G).

Definition [5] The overlapping ratio (OV) of an interval A
within a pair of intervals {A, B} utilizes the cardinality of
the alike of the given intervals pair divided by the size of an
interval as:

OV(A, B) � | A ∩ B |
| A | ,

such that, |A ∩ B | be the cardinality of the common portion
of intervals pair and |A| be the cardinality of A.

Remarks In an interval A having a cardinality� 0, i.e., |A|�
0, OV (A, B) � 0. The overlapping ratio for the intervals pair
will satisfy one of the cases given below:

1) OV (A, B)=1 if A is like B,
2) OV (A, B) �0 if A is different from B,
3) 0 <OV (A, B)< 1, else.

Definition[5] The similarity measure using overlapping
ratio SOR for the intervals pair,

A and B, is the t-norm of inverse overlapping ratios,
defined as below:

SOV (A, B) � T (OV (A, B), OV (B, A)) such that T is the
t-norm.

Similarity measures of n-cubic pythagorean
fuzzy set

The purpose of initiating this concept of similaritymeasure is
the evaluation of the similarities of two N-cubic Pythagorean
fuzzy set. To evaluate overall similarity, we consider recip-
rocal similarity along with similarity measure.

Overlapping ratio for N-Pythagorean fuzzy set

Definition: The overlapping ratio of the item set A having a
set {A, B} is the cardinality of the union of the pair divided
by the cardinality of given N-Pythagorean fuzzy set i.e., A.
the.

OV(A, B) � | A ∪ B |
| A | (a)

where | A ∪ B | be the cardinality of the union of A and B.
also, | A | be the cardinality of set A.

Remark For any N-Pythagorean fuzzy set with the cardi-
nality of zero i.e., | A |� 0, OV (A, B) is the set to 0. Then,
the overlapping ratio for N-Pythagorean fuzzy set defined by
Eq. (a) satisfies the given one of the following cases:

a) OV (A, B) � − 1, when both A and B sets are similar.
b) OV (A, B) � 0, when both A and B sets are different.
c) − 1 < OV(A, B) < 0, otherwise.

Equation (a) implies that OV (A, B) � |∪ jεA, Bμ j |
|μA| and

|∪ jεA, Bη j |
|ηA| , where | ∪ jεA, Bμ j | is the cardinality of the union

of members of the pair {A, B}, | μA | be the cardinality of
membership of set A and | ∪ jεA, Bη j | is the cardinality of
the union of non-membership of the pair {A, B},| ηA | be the
cardinality of the non-membership of A.

Example: Let A � {< x/ − 0.6, − 0.7 >} and B � < y / −
0.8, − 0.5 > be two NPFS then

OV(A, B) � | ∪ jεA, Bμ j |
| μA | and

| ∪ jεA, Bη j |
| ηA |

OV (A, B) � <− 1, − 0.71>

Overlapping ratio for N-interval valued Pythagorean
fuzzy set

Definition: The overlapping ratio of the item set C having a
sets {C, D} is the cardinality of the union of the pair divided
by the cardinality of given N-interval valued Pythagorean
fuzzy set i.e., C. the

OV (C , D) � | C ∪ D |
| C | (b)

where | C ∪ D | be the cardinality of the union between
C and D. also, | C | be the cardinality of set C. Eq (b)
implies that OV (C, D) � |∪ jεC , Dμ j |

|μC | and
|∪ jεC , Dη j |

|ηC | , where
| ∪ jεC , Dμ j | be the cardinality of the union of members of
the pair {C, D}, | μC | be the cardinality of membership of
set C and | ∪ jεC , Dη j | be the cardinality of the union of
non-membership of the pair {C, D},| ηC | be the cardinality
of the non-membership of C, where μ, η are the N-intervals
(Fig. 1).

Example: Let C � {< x/ [− 0.8, − 0.6], [− 0.6, − 0.5]
>} and D � < y / [− 0.7, − 0.5], [− 0.5, − 0.3] >} be two
NIVPFS then.

OV(C, D) � | ∪ jεC , Dμ j |
| μC | and

| ∪ jεC , Dη j |
| ηC |

OV (A, B) � <− 1, − 1>
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Fig. 1 Similarity of two
N-Pythagorean fuzzy sets

Overlapping ratio for N-cubic Pythagorean fuzzy set

Definition: The overlapping ratio of item set X having a sets
{X, Y} is the cardinality of the union of the pair divided by
the cardinality of the given N-cubic Pythagorean fuzzy set
i.e., X. the

OV(X , Y ) � | X ∪ Y |
| X | (c)

where | X∪Y | be the cardinality of the union betweenX and
Y . also, | X |be the cardinality of setX. Eq (c) implies thatOV
(X, Y )� |∪ jεX , Yμ j |

|μX | and
|∪ jεX , Y η j |

|ηX | , where | ∪ jεX , Yμ j | be the
cardinality of the union ofmembers of the pair {X,Y}, | μX |
be the cardinality of membership of set X and | ∪ jεX , Y η j |
be the cardinality of the union of non-membership of the pair
{X, Y},| ηX | be the cardinality of the non-membership of
X.

Or in simple words, OV (X, Y ) � < OV (A, B), OV (C,
D) > .

Example: let X � {< x/ [− 0.9, − 0.7], [− 0.6, − 0.4], (−
0.5, − 0.8) >} and Y � < y / [− 0.8, − 0.6], [− 0.7, − 0.5],
(− 0.4, − 0.7) >} be two NCPFS then.

OV(X, Y) � | ∪ jεX , Yμ j |
| μX | and

| ∪ jεX , Y η j |
| ηX |

OV (X, Y) � <− 1, − 1>

Similarity measure of N-Pythagorean fuzzy set

Definition: The similarity measure using overlapping ratio
SOV for the pair of N-Pythagorean fuzzy set is the t-norm of
their inverse overlapping ratios, as

SOV (A, B) � TN (OV(A, B), OV(B, A)) (d)

where TN be the t-norm of NCPFN’s.

This graph demonstrates that grey portion is similar that
defines the similarity measure clearly:

Similarity measure of N-interval valued
Pythagorean fuzzy set

Definition: The similarity measure using overlapping ratio
SOV for the pair of N- interval-valued Pythagorean fuzzy
set (C, D) be the t-norm of their inverse overlapping ratios
defined as;

S
′
OV (C, D) � T

′
N (OV(C, D), OV(D, C)) (e)

where T
′
N is a t-norm of NCPFN’s.

The Fig. 2 clearly explains the like portion of two N-
interval valued Pythagorean fuzzy sets illustrated as:

Similarity measure for N-Cubic Pythagorean fuzzy
set

Definition: The similarity measure using overlapping ratio
S∗
OV for the pair of N-cubic Pythagorean fuzzy set (X, Y ) is

the t-norm of their inverse overlapping ratios defined as:

S∗
OV (X , Y ) � T ∗

N {TN (OV (A, B), OV (B, A)), T ′
N (OV (C , D), OV (D, C))}

(f)

where T ∗
N (t-norm of N-cubic Pythagorean fuzzy sets) is a

t-norm of NCPFN’s.

Figure. 3 determines the similar portion of two N-cubic
Pythagorean fuzzy sets in a better way.

Example: Let X � {< x/ [− 0.9, − 0.7], [− 0.6, − 0.4],
(− 0.5, − 0.8) >} and Y � < y / [− 0.8, − 0.6], [− 0.7, −
0.5], (− 0.4, − 0.7) >} be two NCPFS then.

OV (X, Y) � < − 1, − 1>
Also,
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Fig. 2 Similar portion of two
interval-valued Pythagorean
fuzzy sets

Fig. 3 Similar portion of N-cubic
Pythagorean fuzzy sets

OV (Y, X) � < − 1, − 1>

T ∗
N (OV(A, B), OV(B, A)) � T ∗

N (< −1, −1 > , < −1, −1 >))

Then,T ∗
N satisfied following conditions:

• Boundedness.
• Commutativity.
• Reflexivity.

So T ∗
N is the t norm.

Properties of the similarity measure using
overlapping ratio

Following are some characteristics of the similarity measure
using overlapping ratio.

(Boundedness)
S∗
OV is bounded by [− 1, 0].

The boundary property of the t-norm T ∗
N are (a, − 1) �

(− 1, a) � a and (a, 0) � (0, a) � 0, ∀a ∈ [− 1, 0]. When a
is the overlapping ratio of NCPFN’s, it always lies within an
interval [− 1, 0]. Which implies,S∗

OV is also bounded by [−
1, 0].

(Symmetry)S∗
OV (X , Y )follows the property of symme-

try. That is,

S∗
OV (X , Y ) � S∗

OV (Y , X )

The t-norm T ∗
N is symmetric. Therefore,S∗

OV (X, Y )is also
symmetric.

(Reflexivity)
S∗
OV (X, Y )satisfied the reflexivity. That is, S∗

OV (X, Y ) �
− 1 ⇐⇒X � Y .

If X � Y , then OV(X, Y ) � OV(Y , X) � − 1. As the
boundary conditions i.e.,T ∗

N , (− 1, − 1) � − 1, so,S∗
OV (X,

Y ) � − 1. Alternatively, S∗
OV (X, Y ) � − 1 means that both

OV (X, Y ) and OV (X, Y ) � − 1. Which exist only when X
andY are same intervals.WhereX,Y andZ are theNCPFN’s.
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Application

In previous knowledge, college students at California State
University, Northridge, delivered some information about
plagiarism using software for plagiarism detection. Advance,
look at, 1/2 of the scholars in two training have been ran-
domlydecidedonandusing the teachers that their timepapers
might use for plagiarism the software. Students have nomore
extended information about the software program that might
be used. The workers thought that scholars that have been
warned about the usage of the software could plagiarize less
than learners were not now. However, the caution had not
affected. In a recent study, college students wrote to which
that chain of two papers was initialized. Their know-how
in detecting plagiarism programs changed oppositely related
to the rates of plagiarism on the advanced paper. However,
the recent article determined no relation between informa-
tion and plagiarism. Instead, individuals have attempted to
attract repeatedly from the same assets of plagiarized fabric
throughout documents.

Several softwares used for plagiarism detection are listed
below:

Grammarly, ProwritingAid, Copyscape,Writer.com, Tur-
nitin, paper Rater, Unicheck, PlagScan,DMCAScan, Plagia-
rism checker, iThenticate, etc.

Comparison between two plagiarism software (X
andY)

Software(X) was made for classroom use and is planned for
assessing students’ work. The University people group has
free admittance to two diverse electronic creativity check-
ing tools outfitted to assist authors with keeping away from
plagiarism. The following is a short outline of individuals
and how interesting to handle them. Software(X) and Soft-
ware(Y) expect entries to be created by the initial developer.
They have no idea for used by other people.

Software(X)
Software(X) has been developed explicitly for classroom

use and planned for checking on students’ jobs. Like the
administration, it can be coordinated into Canvas courses and
permits the trainer to view reports of students’ ask. It looks at
students’ tasks of about 60 billion pages, about 600 million
student papers that have already been added to the database
of this software: and more than 100 million articles from
professionals. Submitted articles are added to a database of
material from institutions worldwide.

Software(Y)
The software is supposed to accommodate educational

writers inwarding off plagiarism and copyright neglect while
making ready gadgets for e-books and is NOT supposed for
lecture room use. This software is considered for editors to

Table 1 Comparison of two software’s using proposed approach

Similarity measures (A1, C) (A2, C)

N-CPFN, s based on overlapping ratio − 0.10 − 0.30

examine articles submitted before the booklet. Papers judg-
ment using this software are NOT introduced to or recorded
on another database.

In this section, the similarity measure of N-cubic
Pythagorean fuzzy sets for the overlapping ratio is used to
compare two popular software, i.e., Software(X) and Soft-
ware(Y).

Let us suppose a set of software A � {X(A1), Y(A2)}
along with their parameters, and the set of parameters are:

B � {b1(through publications), b2(online internet
sources), b3(group members)}.

Assume that a software, with respect to all features or
sources, can be illustrated as by N-cubic Pythagorean fuzzy
set:

C � {(b1, [− 0.8, − 0.6], [− 0.6, − 0.4]), (b2, [− 0.7, −
0.5], [− 0.8, − 0.5]), (b3, [− 0.9, − 0.7], [− 0.5, − 0.3])}.

Also, for each software can be observed by NCPFN, s
along with the parameters given as below:

A1(X) � {(b1, [− 0.8, − 0.7], [− 0.6, − 0.5]), (b2, [−
0.9, − 0.7], [− 0.6, − 0.4]), (b3, [− 0.9, − 0.8], [− 0.7, −
0.5])}.

A2(Y) � {(b1, [− 0.6, − 0.4], [− 0.7, − 0.3]), (b2, [−
0.8, − 0.7], [− 0.6,− 0.5]), (b3, [− 0.7, − 0.5], [− 0.6, −
0.3])}.

Now, our aim is to classify the software C in one of the
sets of software’s A j (j� 1,2). For this purpose, the proposed
method has been evaluated given in Table 1 from C to A j (j
� 1, 2).

According to the law the maximum value of the similarity
measure between two NCPFN, s.

After the numerical discussion given in Table 1, we con-
clude the following results.

• We analyzed that the features of software C are 10 % like
A1(X software) in a negative sense aswell as the sources of
software C is 30% like A2(Y software) in negative nature.

• In negative sense, we may achieve that the similarity mea-
sure of A2(Y software) is much than A1(X software).

• By using the idea of maximum degree, the degree of A1 is
much greater than A2 which means that C software relate
to X software. so, A2 is preferable than A1.
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Table 2 Comparison Analysis between the existing and our proposed
method

N-Cubic (A1, C) (A2, C)

Similarity measure − 0.75 − 0.83

Jaccard similarity measure − 0.55 − 0.67

Dice similarity measure − 0.24 − 0.42

Similarity measure of overlapping ratio − 0.10 − 0.30

Comparison analysis

In a comparative analysis, we establish three different sets
(A1, A2, C) and use predefined measures of similarity, dice,
and jaccard for comparison to identify the similarity between
A1 and C, as well as A2 and C, which declare the novelty of
our proposed approach of similarity measure of overlapping
ratio.

The following Table 2 shows the similarities:
In this research, we present a new similarity measure

that computes the overall similarity of a pair of N-cubic
Pythagorean fuzzy sets by considering their common sim-
ilarity. We employed the over-lapping ratio of the specified
sets inside the pair to capture the asymmetric likeness.We’ve
also shown that the newmeasuremeets all of the fundamental
characteristics of a similarity measure.

Finally, we used synthetic datasets to compare the behav-
ior of the proposed measure to the well-defined measures
of similarity, Jaccard, and Dice similarity measures. The
findings reveal that the proposed similarity measure is more
sensitive to changes in set width and invariant and linear.

Conclusion

In this article, we defined a new concept of similarity mea-
sure of N-cubic Pythagorean fuzzy set based on overlapping
ratio by overlapping two N-cubic Pythagorean fuzzy sets
after representing the overlapping ratio N-interval valued
Pythagorean fuzzy sets and N-Pythagorean fuzzy sets. We
describe the similarity measure of N-cubic Pythagorean
fuzzy set, N-interval valued Pythagorean fuzzy set, and N-
Pythagorean fuzzy sets. Further, we apply this similarity
measure for finding the comparison between two software
related to plagiarism detectors, i.e., Software(X) and Soft-
ware(Y). Finally, we reveal the efficacy of the new suggested
similarity measure. This similarity measure will be used in
many decision-making processes to analyze similarities neg-
atively.

Future studies could include applications of the suggested
overlapping ratio similarity metric in multi-criteria deci-
sion making (MCDM) and research analysis. A similarity

measure for probabilistic N-cubic Pythagorean fuzzy sets
were developed to characterize stochastic and non-stochastic
uncertainty in a single framework. Future studies could focus
on creating an independent module that uses an overlapping
ratio similarity metric for existing expert or intelligent sys-
tems, software benefits, and online browsers.
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