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Abstract
DNA sequence similarity analysis is necessary for enormous purposes including genome analysis, extracting biological
information, finding the evolutionary relationship of species. There are two types of sequence analysis which are alignment-
based (AB) and alignment-free (AF). AB is effective for small homologous sequences but becomes N P-hard problem for long
sequences. However, AF algorithms can solve the major limitations of AB. But most of the existing AF methods show high
time complexity and memory consumption, less precision, and less performance on benchmark datasets. To minimize these
limitations, we develop an AF algorithm using a 2D k−mer count matrix inspired by the CGR approach. Then we shrink the
matrix by analyzing the neighbors and then measure similarities using the best combinations of pairwise distance (PD) and
phylogenetic tree methods. We also dynamically choose the value of k for k−mer . We develop an efficient system for finding
the positions of k − mer in the count matrix. We apply our system in six different datasets. We achieve the top rank for two
benchmark datasets fromAFproject, 100% accuracy for two datasets (16S Ribosomal, 18 Eutherian), and achieve a milestone
for time complexity and memory consumption in comparison to the existing study datasets (HEV, HIV-1). Therefore, the
comparative results of the benchmark datasets and existing studies demonstrate that our method is highly effective, efficient,
and accurate. Thus, our method can be used with the top level of authenticity for DNA sequence similarity measurement.
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Introduction

Sequence analysis is a trending research arena in the field
of bioinformatics, bioinformatics engineering, and com-
putation biology. It is obligatory for analyzing the evo-
lutionary relationship among different living objects from
whole genomes, finding gene regulatory regions, identifying
virus–host interactions, detecting horizontal gene transfer,
analyzing the similarity of sequences, extracting different
biological information, etc. [28]. Day by day, biological
information extraction from the whole genome is becoming
important because of rapid expansion (approximate growth
rate is doubling data in every 18 months) of biological data
from the last few decades [34]. Broadly, there are two types
of sequence analysis: AB and AF where AB algorithms have
several limitations. For example, it provides better results
only for homologous sequences, it works for comparatively
smaller sequences and these algorithms are time and space
consuming. For multiple and long sequences, it becomes
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N P-hard problem. However, AF algorithms can solve the
major limitations of the AB algorithms [40,41]. Due to
their time and memory efficiency, AF methods are widely
used in different free, paid, open and publicly available
software including MEGA (Molecular Evolutionary Genet-
ics Analysis) [13], MEGA7/X [13], CAFE (aCcelerated
Alignment-FrEe sequence analysis) [22], Co-Phylog [35],
etc.

Different AF-based researches have been conducted on
sequence similarity analysis. Among them, pattern his-
togram [23], suffix tree count [18], k −mer encoding-based
image analysis [6–8], chaos game representation (CGR)
approach [2,30,38], convolutional neural network (CNN)
approach using CGR image [30] are extensively used in
different studies. We discuss different AF models, their
strengths and limitations in the second section. From that
analysis, we find that most of the AF-based approaches have
some general limitations, e.g., high time complexity, high
memory consumption rate, less precision, lack of optimal
k − mer selection, achieving high performance by testing
their model in smaller datasets, and lack of comparison to
benchmark dataset.

Therefore, in this research, we aim to develop an AF
sequence similarity measurement model that will overcome
the limitations of existing models. For any sequence, our
model dynamically selects k for k − mer by considering
the whole dataset. Then it generates a 2D count matrix of
k − mers in a fast and efficient way by utilizing an accu-
rate calculation of the position of k − mer strings in the
2D matrix. After that, it shrinks the 2D matrix by analyzing
neighbors and then generating a 1D feature descriptor. Then,
we experiment to find the best combinations of distance and
phylogenetic tree generation methods to achieve high preci-
sion. Thus, the method effectively calculates the similarities
of any sequence dataset.

The rest of the manuscript is organized as follows. In
the next section, we discuss different existing AF models
with their strengths and limitations. In the subsequent sec-
tion, we present our novel sequence similarity measurement
method. Then we discuss different datasets, performance on
different datasets, and performance of the overall system in
comparison to existing studies. Finally, we summarize the
contributions and limitations of our system. Also, we put
some future directions.

The details of the dataset, implemented code are publicly
available (https://drive.google.com/drive/folders/1NIJUqtH
ryV7nhzPRbKyJT8U6ZTYpre2U?usp=sharing).

Background study

Ren et al. [28] performed a comparative study to analyze
the pros and cons of different AF algorithms in the field of

sequence analysis. The study also mentioned that the AB
approaches provide higher accuracy than AFmethods. How-
ever, AFmethods are computationally efficient and have less
memory consumption rate. Yang et al. [34] mentioned dif-
ferent approaches in their study for encoding DNA sequence
to numbers e.g., sequential, one-hot [33] and k−mer encod-
ing. They presented several issues, e.g., choosing appropriate
encoding, feature extraction technique, choosing the right
distance measuring technique may affect overall perfor-
mance.

Jin et al. [14] analyzed different methods used for DNA
sequence similarity identification and they mentioned that
a good similarity algorithm should have the following abil-
ity (i) should have a strong encoding technique to reduce
the information loss, (ii) extracted features should work for
small, large and mixed length (the length varies from 102

to 1010 or more) sequence, (iii) should have high precision,
less time complexity, and space consumption rate. Luczak
et al. [23] surveyed to evaluate different histogram-based dis-
tance matrices used for phylogeny analysis. They mentioned
that to achieve better accuracy, the size of k − mer should
be increased for comparatively larger sequences. Zielezinski
et al. [40] developed a benchmark for comparing thousands
of AF algorithms developed by targeting different sequence
analysis studies. They launched a web portal named AFpro-
ject1 in which anyone can submit their self developed AF
algorithm to evaluate the comparative performance score
among reference algorithms and datasets. Klötzl et al. [18]
developed a suffix tree based algorithm and claimed their
method is faster and accurate than Mash [26] and other pair-
wise algorithms. However, in the AFproject web portal, they
obtained RF distance of 6.00 for fish dataset.

Chen et al. [7] developed amethod for phylogeny analysis
where they converted a DNA sequence to a digital vector by
assigning 1 − mer (A = 1,C = 2,G = 3, and T = 4)
and combined it with index information. After that, a gray
level co-occurrence matrix (GLCM) was calculated from
the vector. Again, Chen et al. [6] extended their previous
work using 2 − mer and got comparatively good results in
respect to previous studies. However, in both studies, the
dataset was very small in comparison to the benchmark
dataset. Similarly, Somodevilla et al. [32] used 1 − mer
(A = 1,C = 0.5,G = 0.75, and T = 1) encoding for gen-
erating an image. Later, they used CNN for DNA sequence
classification. However, they faced a time complexity issue.
Delibaş et al. [8] proposed a method by utilizing first-order
statistical concepts from an image texture. They used four
small datasets and compared their dendrogramwithMEGA7,
and ClustalW. However, they did not apply their method for a
large benchmarkdataset tofind theirmethods’ accuracy, error
and rank. Again, Delibaş et al. [9] proposed top−kn−gram

1 http://afproject.org/app/.
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based solution and calculated top−kn−gram from the count
of k − mers. They applied their system in different datasets
including AFproject [40] fish benchmark dataset where they
achieved rank 6 with 68% accuracy.

Chaos game representation (CGR) is a square matrix of
k − mer counts in a genome sequence. Traditionally, it is
calculated based on coordinate values of ancestor and pre-
decessor DNA bases [2,30]. Zheng et al. [38] used the CGR
image technique for circRNA disease association finding.
Dick et al. [10] mentioned that coordinate point-based CGR
calculations have several limitations. For that reason, they
proposed four different CGR (FCGR, 20-node-amino-acid
CGR, 20-node-amino-acid FCGR, and 20-Flake-FCGR) rep-
resentations for protein classification. However, Changchuan
Yin [36] showed that coordinate-based CGR matrix calcula-
tion highly suffers from floating-point error and an integer
representation may provide a good result. Safoury et al. [30]
worked for DNA sequence classification using convolutional
neural network (CNN) from CGR image. They prepared a
square matrix of k − mer sequences, where each cell con-
tains the number of counts of a specific sequence and their
accuracy was 51% to 100%. In addition, the method takes
a huge time to generate split images to train CNN. Rizzo
et al. [29] developed a DNA sequence classification based
on CGR image. Löchel et al. [20] also used deep learning
(DL) techniques for proteins classification and used CGR
images to train the DL model. All of the studies mentioned
that DL-based methods have huge time complexity. Kania et
al. [17] analyzed the behavior of CGR implementations and
sequence correlations and found that there was a strong rela-
tionship between k − mer with accuracy. Besides, k − mer
frequency counting CGR (FCGR) methods were more sensi-
tive for representing mutations, but it increased the time and
space complexity.

Ni et al. [25] developed a method for DNA sequence
similarity where they used the FCGR technique. Generally,
8 − mer generates a 2D matrix of (44 × 44) dimension that
contains 48 = 65, 536 pixels. They reduced this vector with
the concept of bicubic interpolation technique which returns
a 2D matrix of (16×16) dimension, then it was converted to
1D (1×256) vector. Thus, it reduces the vector size aswell as
time complexity. Later, perceptual image hashing difference
was used for sequence similarity calculation. This method
was tested on 21 HIV-1, 48 HEV, 8 mammalian chromo-
some DNA, and 25 Fish DNA from AFproject [40]. Among
the results, for AFproject [40] dataset they obtained rank 2,
RF distance 4, and score 91. Hence, the method reduces the
time complexity and achieved a good performance.However,
for the same dataset other methods exist in AFproject [40]
that achieve performance rank 1, RF distance 2, and accuracy
95. So, there are scopes to improve the accuracy or optimize
the time complexity and accuracy.

Based on the rigorous literature review, we summarize the
general limitations of existing systems:

– AB algorithms are accurate but not suitable (N P-hard)
for larger sequences. Because AB algorithms rearrange
sequence bases based on blocks or segments, and the
number of rearrangements becomes very large with
increasing sequence length and the number of input
sequences.

– Different AF algorithms are available. Some of the meth-
ods demonstrated good results but takes more time to
execute, while other methods take less time but provide
relatively worse results. Hence, the development of an
efficient and effective AF algorithm is a crucial need for
not compromising between accuracy and time.

– Performance of the k − mer -based AF methods highly
depends on the number of k. Existing studies show that
the accuracy of the method increases for choosing larger
k, but the space and time consumption also increaseswith
k which indicates less performance. However, there is no
effective algorithm to select the optimal value of k for
k − mer dynamically.

– Most of the existing AF algorithms suffer from high time
complexity and memory space consumption problem.
Practically, the time and memory required to measure
sequence similarity in existing methods are very high.
However, biological researchers expect a method with
less time and memory requirements.

– Traditional coordinate-based implementation of CGR
may be unable to represent the mutations or slight
changes in sequences. In addition, these techniques suffer
from floating-point errors. Although FCGR algorithms
can represent mutations, they have high time complexity.
Hence, a new CGR algorithm is needed in which sensi-
tivity and time complexity are optimized.

– Extracting a very few numbers of features from CGR
image degrades the accuracy. Again, a large number of
feature extraction from CGR images increases the dis-
tance calculation time. Hence, an optimal number of
feature extraction from a CGR image is a very challeng-
ing task.

– Applying a model on a small dataset having short
sequences may provide a good result, but it may not
be true for the benchmark dataset. For practical use, a
method having good results should be tested on bench-
mark datasets.

– A method should be tested in an open platform like
AFproject [40] web portal so that the researchers and
users can publicly see the performance. It will help to
compare a new model.

Hence,we aim to develop aDNAsequence similarity tech-
nique that will address all of the above limitations.
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Proposedmethodology

In this section, we describe the detailed procedure of our pro-
posed sequence similarity identification from raw sequences.
The overall procedure of our proposed method is presented
in Fig. 1.

Dynamic k for k−mer selection

In DNA sequence analysis research, the AF algorithm
works better than AB algorithms [28]. Generally, genome
sequences (e.g., “AATTTTTAACG”) are large string con-
sisted of different DNA bases (“A”,“T”,“C”,“G”). AB algo-
rithm considers whole string and aligns one by one base,
hence, these algorithms show huge time complexity for ana-
lyzingmultiple sequences. On the contrary, the AF algorithm
considers different smaller DNA sequence subsets which are
knownas k−mer and then applies different count, histogram,
network or probability algorithms. A k−mer is a subset of a
DNA sequence of a specific length [23]. However, AF algo-
rithms represent the large sequences by a different form, e.g.,
number rather than a string. Different researchers used vari-
ous lengths of subsets in their AF model. Safoury et al. [30]
used two different values of k for k−mer which is very time
consuming. However, the performance of a model highly
depends on choosing the right number of k [14,23]. As it has
a crucial role, choosing an appropriate number of k is very
challenging and developing a method to choose the dynamic
number of k is time demanding [23].

Therefore, we propose Algorithm 1 for finding the appro-
priate number of k for k − mer . In this algorithm, first, we
read N number of sequences from the dataset, then make a
vector V to keep the individual lengths of N sequences, then
the average length L is calculated from V . Based on L , the
algorithm selects the value of k.

Algorithm 1 Dynamic selection of k value for k − mer
1: Input: N sequences
2: Output: k
3: V ← SeqLengths(N )

4: L ← avg(V )

5: if L > 0 then
6: k ← 8, when 1 ≤ L ≥ 99999
7: k ← 9, when 100000 ≤ L ≥ 9999999
8: k ← 10, when L ≥ 10000000
9: end if
10: return k

DNA sequence to 2D k−mer count matrix

After choosing an appropriate number of k using Algo-
rithm 1, our process generates a 2Dmatrix usingAlgorithm 2

which is graphically presented in Fig. 1.Different researchers
used a coordinate-based CGR approach to generate a 2D
matrix from a sequence where they used a coordinate aver-
aging technique to move from the previous point to the next
point [2,10,30,38]. However, due to averaging technique,
these methods have suffered from floating-point error which
interrupts achieving high precision.Moreover, different stud-
ies used frequency chaos game representation (FCGR) for
the sequence to image conversion. Adetiba et al. [1] devel-
oped an FCGR from the derivatives of CGR images where
they found improved accuracy for increasing the number
of derivatives. But the derivative process is computation-
ally inefficient. Löchel et al. [20] developed a FCGR matrix
based on contraction ratio which is suffers from floating-
point error. Joseph et al. [16] also used the FCGR technique
by dividing the CGR image into 4 blocks where each block
was generated by averaging the coordinates of base points.
This method also suffers from floating-point error. Rizzo
et al. [29] used deep learning-based FCGR image analysis
where they calculated the frequency of a k − mer by iterat-
ing the whole sequence. So, their method consumes a huge
amount of time to execute.Messaoudi et al. [24] implemented
a technique for FCGR calculation bymoving a template win-
dow (k −mer ) among the whole sequence and counting the
number of full matches. They generate a different number of
orders of FCGR to enhance the performance. This method
also consumes huge CPU time which is almost O(n2). Dif-
ferent studies [11,19,25,39] developed FCGR matrix based
on coordinate averaging technique for detecting biological
sequence. Therefore, it is necessary to develop an accurate
and time-efficient CGR count matrix for sequence analysis.

Hence, we aim to develop a method that will generate a
2D k − mer count matrix where the cells of the matrix are
distributed according to CGR formation. CGR is a method
that iteratively represents the bases (“A”,“T”,“C”,“G”) of a
DNA sequence using the coordinates of a square matrix M
or gray level image where the size of matrix is (2k × 2k),
here k is the length of k − mer string. This process assigns
one cell for each k − mer string using Algorithm 3, and
the value of each cell indicates the frequency of the specific
k−mer string using Algorithm 2. It is possible to reconstruct
the source sequence from the coordinates by backtracking.
This CGR square matrix or gray level image is suitable for
finding the similarities among DNA sequences [2,25]. Our
method calculates the position of a k − mer string in the
2D matrix using Algorithm 3 without averaging technique.
Hence, 2D count matrix generation by our method will be
highly effective in terms of accuracy and time. In Fig. 2, we
present the 2D matrix expansion process. Therefore, using
Algorithm 3 andAlgorithm 2we generate a 2D count matrix.
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Fig. 1 Overview of our
proposed DNA sequence
similarity identification model

N Species

DNA 
Sequence 
Dataset 

(DS)

Dynamic k 
for k-mer
Selec�on

2D k-mer
Count Matrix 
Genera�on

k-mer = 2
“AA”, “AT” 
“GG”, etc

Shrink M 
by SR=4 & 
Generate 

′Convert 
2D ′ to 
1D ′′

Feature 
Descriptor 

for N 
Species 

“cosine” 
distance 
matrix

“seqneigh
join” 

phylo Tree

Fig. 2 Two-dimensional
k − mer count matrix where
each cell represent a number of
count of a specific subset in the
whole string a 1 − mer has 4
count cells for the subset with
one base, b 2 − mer contains 16
count cells for subset
comprising of two bases, c
3 − mer has 64 count cells
where each subset is comprised
of 3 bases or a codon, d general
expansion formula for k length
subset or k − mer . Here, four
red color cells in (b) indicate
that it is expanded from one red
cell in (a), again, 16 red cells in
(c) indicate that it is expanded
from red cells of (b)

A G

C T

AA AG GA GG

AC AT GC GT

CA CG TA TG

CC CT TC TT

AAA AAG

AAC AAT

TTA TTG

TTC TTT

3-mer 
(8x8)

1-mer

2-mer

3-mer

k-mer

(a)

(c)

(d)

(b)
2-mer (4X4)

1-mer (2x2)

Algorithm 2 2D k − mer count matrix generation
1: Input: Sequence S, kmer length k
2: Output: Matrix M
3: M ← zeros(2k , 2k)
4: n ← length(S)

5: while i ≤ (n − k) do
6: V ← S(i : i + k − 1)
7: x, y ← stringMap(V ) [using Algorithm 3]
8: M(x, y) ← M(x, y) + 1
9: end while
10: return M

Matrix shrinking and feature descriptor

A k − mer count matrix contains the major detailed infor-
mation of a sequence. With the increase of k −mer , the size
of the count matrix also increases significantly. If we use the
whole matrix as a feature vector, it will be computationally

Algorithm 3 k − mer string mapping in 2D count matrix
1: Input: kmer string
2: Output: x and y positions
3: z ← length(kmer), i ← 1
4: while i ≤ z do
5: c ← kmer [z − i + 1]
6: if i = 1 then
7: x ← 1, y ← 1 when c = A
8: x ← 1, y ← 2 when c = C
9: x ← 2, y ← 1 when c = G
10: x ← 2, y ← 2 when c = T
11: else
12: b ← power(2, i)/2
13: x ← x + b when c = G
14: y ← y + b when c = C
15: x ← x + b, y ← y + b when c = T
16: end if
17: end while
18: return x and y
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ineffective. But, it is necessary to develop a method that will
work for long, medium and short length sequences [14]. So,
different researchers proposed different methods (e.g., linear
interpolation, bicubic interpolation [25]) for matrix or data
shrinking. In the 2D k − mer matrix, each cell is impor-
tant as it contains the number of occurrences of a specific
sequence in the whole sequence. Ni et al. [25] used bi-cubic
interpolation which shrinks the vector enormously but the
performance of their method on the benchmark dataset is
not very promising. Hence, we propose a method to shrink
the k − mer count matrix that calculates the square of the
mean value of neighboring elements. The detailed procedure
is presented in Algorithm 4.

Hence, according toAlgorithm4 for a known k or k−mer ,
the dimension of the count matrix M is (d × d) where d =
4k/2 and k is length of k − mer . If we shrink the vector by
shrink rate Sr then the output matrix Ms will be (d ′ × d ′)
where d ′ = d/sqrt(Sr )). Then, convert 2D Ms to 1D D′

s by
row column shifting. Hence, D′

s is the feature descriptor.

Algorithm 4 2D k − mer count matrix shrinking algorithm
using square of mean value of neighboring elements.
1: Input: Matrix M, Shrink rate Sr
2: Output: Matrix Ms
3: st ← sqrt(Sr )
4: d′ ← f loor(d/st ) [where M is d × d dim]
5: while i ≤ (d − st ) do
6: c ← 1
7: while j ≤ (d − st ) do
8: tM ← M(i : i + st − 1, j : j + st − 1)
9: Ms(r , c) ← (mean(tM ))2

10: j ← j + st
11: c ← c + 1
12: end while
13: i ← i + st
14: r ← r + 1
15: end while
16: return Ms matrix of d′ × d′ dimension

Cosine distance and phylogenetic tree construction

Statistical distance calculation methods highly depend on
data and pattern distributions [23]. Cosine similarity provides
good results for k−mer probabilities or the count matrix [5,
23,27]. Let the length of descriptor D be the dimension of
the vector. It calculates the angle between two vectors using
Eq. 2. The smaller value of angle indicates a good similarity
which also indicates the two vectors are parallel. However,
cosine distance is measured by 1 − cosine value.

Let, the two descriptors for two sequences are x = Ds1

and y = Ds2 and their cosine is the inner product of two
vectors divided by their magnitude defined in Eq.1.

Cos(θ) = x.y
‖x‖‖y‖ =

∑n
k=1 xk .yk√∑n

k=1 x
2
k

√∑n
k=1 y

2
k

, (1)

where n is the length of descriptor x and y, here both descrip-
tors are of same length. The upper part of the equation
represent the dot product of the vectors and ‖x‖ and ‖y‖
represent the magnitude of the vector x and y respectively.
Again, xk is the kth element of descriptor x and yk is the kth

element of descriptor y.

L = 1 − Cos(θ), (2)

where Cos(θ) is measured in Eq. 1.
Hence, the L value is the cosine distance between two

sequences. Therefore, we can apply this technique for more
than two sequences by adopting the one-to-one comparison
technique. If the number of sequences is n, then the length
of L will be z = (n ∗ (n − 1))/2, thus the dimension will be
1 × z, respectively.

Again, a phylogenetic tree is a prime tool to visualize the
genetic relationship [3]. We use seqneighjoin function which
takes a new value from distance matrix L that is considered
as a new node q. Then it computes the distance of q versus all
existing nodes.Hence, in each iteration, a newq is considered
and overall similarity values are updated. For any node q the
distance matrix calculation is presented in Eq. 3.

L(q, p) = x ∗ L(i, p) + (1 − x) ∗ L( j, p)

−x ∗ L(q, i) − (1 − x) ∗ L(q, j), (3)

where L is the distance matrix, q is a new node, i and j are
the iteration variable, p is the set of all existing nodes, x is
1/2 for eqiuvar [31], and 0 to 1 for firstorder [12] method.

Results and discussion

In this section, we discuss dataset collection, the perfor-
mance achieved on benchmark and existing datasets, the
effectiveness of our model, and some comparison with exist-
ing works. We use a total of 6 standard genome datasets that
are collected from different benchmarks and existing stud-
ies. Among them, we use the first 2 datasets for benchmark
testing, the second 2 for comparing the accuracy and the rest
2 for memory and space analysis.

The details of the 6 standard genome datasets are (i)
complete mitochondrial DNA sequences of 25 cichild fish
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Table 1 Description of 25
cichlid fish genome sequences

SL Description Accession Seq. Length

1 Tropheus duboisi 009063 16,747

2 Tropheus moorii 018814 16,826

3 Petrochromis trewavasae 018815 16,828

4 Neolamprologus brichardi 009062 16,823

5 Oreochromis aureus 013750 16,867

6 Oreochromis niloticus 013663 16,866

7 Oreochromis sp. KM_2006 009057 16,865

8 Tanganyika Tylochromis polylepis 011171 17,118

9 Hypselecara temporalis 011168 16,782

10 Astronotus ocellatus 009058 16,807

11 Ptychochromoides katria 011169 16,794

12 Paratilapia polleni 011170 16,760

13 Paretroplus maculatus 011177 16,723

14 Etroplus maculatus 011179 16,693

15 Abudefduf vaigiensis 009064 16,943

16 Amphiprion ocellaris 009065 16,888

17 Cymatogaster aggregata 009059 16,771

18 Ditrema temminckii 009060 16,810

19 Pseudolabrus eoethinus 012055 16,745

20 Pseudolabrus sieboldi 009067 16,747

21 Pteragogus flagellifer 010205 17,034

22 Halichoeres melanurus 009066 17,039

23 Parajulis poecilepterus 009459 16,896

24 Alepocephalus agassizii 013564 16,677

25 Bajacalifornia megalops 013577 17,290

Table 2 Description of 8
Yersinia strains

SL Description Accession Seq. Length

1 Y. pestis Antiqua CP000308 4,702,289

2 Y. pestis Nepal516 CP000305 4,534,590

3 Y. pestis F_15-70 NC009381 4,517,345

4 Y. pestis CO92 AL590842 4,653,728

5 Y. pestis KIM AE009952 4,600,755

6 Y. pestis 91001 AE017042 4,595,065

7 Y. pestis pseudotuberculosis IP32954 BX936398 4,744,671

8 Y. pestis pseudotuberculosis IP31758 AAKT 02000001 4,721,828

samples (Table 1), (ii) 8 Yersinia strains (Table 2), (iii) 16S
ribosomal DNA of 13 Bacteria [8,9], (iv) 18 Eutherianmam-
mals [8,9], (v) HIV-1 [25], and (vi) HEV [25].

Among them, the first 2 are open challenge datasets from
AFproject [40] where they evaluate the performance and
ranking of different AF algorithms used for sequence sim-
ilarity identification. Rest 2 (16S ribosomal, 18 Eutherian
mammals) are collected from different existing works [8,9].
We use another 2 datasets (HIV-1, HEV) for memory and

space analysis those are taken from Ni et al. [25] which can
be found from the following URL.2

Software and server configuration

We simulate our method in 2.80 GHz Intel(R) Core i5 com-
puter with 8GB DDR3 RAM. As a development tool, we
use the MATLAB 2021a version. The details of the dataset
and implemented code are publicly available (https://drive.

2 https://gitee.com/chinamax2007/fcgr-pih-alignment-free/.
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Table 3 k and Sr selection
using four datasets

Dataset 1k RF distance for Different Sr

Sr = 1 Sr = 4 Sr = 16 Sr = 64 Sr = 256

Fish (Table 1) 8 2 2* 8 12 12

9 2 2 4 6 10

10 2 2 4 8 12

Yersinia (Table 2) 8 2 2 2 6 10

9 0 0* 2 2 6

10 0 0 2 4 6

16S Ribosomal 8 0 0* 4 6 12

9 0 0 4 10 16

10 0 0 4 10 18

18 Eutherian 8 0 0 0* 2 10

9 0 0 2 6 6

10 0 0 2 4 10

Note: Column 1 tells about the dataset used in the experiment, column 2 indicates the k value used for 2D
matrix generation, columns 3–7 show RF distance obtained using different Sr . Here, (*) sign indicates the
best combinations of k and Sr

Table 4 RF distances for different distance method and phylogenetic tree generation method for Fish dataset in Table 1 using k = 8 and Sr = 4

Distance method Seqlinkage Seqneighjoin

Average Single Complete Weighted Centroid Median Equivar Firstorder

Euclidean 18 22 20 14 34 34 2* 6

Squaredeuclidean 18 22 20 14 34 32 4 8

Seuclidean 44 44 44 44 44 44 8 8

Cityblock 8 16 8 10 28 26 4 4

Minkowski 18 20 20 14 34 34 2* 6

Chebychev 38 40 38 38 40 40 36 36

Cosine 8 6 16 16 20 18 2* 2*

Correlation 14 20 16 16 32 30 2* 10

Hamming 8 10 10 10 10 30 4 4

Jaccard 8 16 8 8 30 24 4 4

Spearman 6 14 8 8 26 24 4 4

Note: First column indicates the methods used for PD calculation from feature vectors, columns 2–9 represent the RF distance value achieved by
differentphylogenetic tree generation techniques: columns 2–7: methods are under seqlinkage, columns 8–9: under seqneighjoin technique. Here,
(*) indicates top result

google.com/drive/folders/1NIJUqtHryV7nhzPRbKyJT8U
6ZTYpre2U?usp=sharing).

k for k−mer and shrink rate (Sr) selection

In AF algorithms, the right number of k selections plays
a vital role in achieving the overall performance of a
model [14,23]. However, increasing the number of k also
exponentially increases time complexity. Again, it is not opti-
mal to use the full k − mer count matrix as a feature vector
because it increases the distance calculation time. So, we
develop Algorithm 4 to shrink the vector size. Hence, to
build an optimal model, we need to choose the best com-
bination of k and Sr with respect to different datasets. Here,

Sr = 1 means no shrink. For each k and Sr , we experi-
ment with different combinations of pairwise distance (PD)
and phylogenetic tree generation methods. Hence, we find
88 combinations (details are available in Table 4) and find 88
RF distances. Among them, we consider the minimum RF
value which is listed in Table 3. Therefore, the best result
will be the minimum RF value achieved for the combination
of a smaller number of k and a larger number of Sr .

From Table 3, we see that for the Fish dataset (Table 1),
best result RF = 2 achieved for k = 8 and Sr = 4. In case of
Yersinia dataset (Table 2), best RF = 0 found for k = 9 and
Sr = 4. In 16S Ribosomal dataset, best RF = 0 for k = 8
and Sr = 4, and in the 18 Eutherian Mammal dataset, best
RF = 0 for k = 8 and Sr = 16. Generally, with the increase
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Table 5 RF distances for different distance methods and phylogenetic tree generation methods for Yersinia dataset in Table 2 using k = 9 and
Sr = 4

Distance method Seqlinkage Seqneighjoin

Average Single Complete Weighted Centroid Median Equivar Firstorder

Euclidean 6 4 6 6 8 8 2 2

Squaredeuclidean 6 4 6 6 6 6 0* 0*

Seuclidean 10 10 10 10 10 10 0* 0*

Cityblock 6 4 6 6 8 8 2 0*

Minkowski 6 4 6 6 8 8 2 2

Chebychev 10 10 10 10 10 10 10 10

Cosine 6 4 6 6 6 6 0* 0*

Correlation 6 4 6 6 6 6 0* 0*

Hamming 4 4 6 4 8 8 4 4

Jaccard 4 4 6 4 8 8 4 4

Spearman 4 4 6 4 6 6 0* 0*

Note: First column indicate methods used for PD calculation from feature vectors, columns 2–9 represent RF distance achieved by different
phylogenetic tree generation techniques. Columns 2–7 show distance for seqlinkage technique, columns 8–9 for seqneighjoin technique. Here, (*)
indicates top results

Table 6 Benchmark test result for 25 complete mitochondrial DNA
sequences of cichlid fishes dataset in AFproject test platform

Rank Method RF Accuracy

1* (4)SR(K)MER_FEM1 2.00* 95*

1 8KMERHist+LBP 2.00 95

1 AFKS–d2_star 2.00 95

1 AFKS–d2z 2.00 95

1 AFKS–euclidean_z 2.00 95

1 AFKS–n2r 2.00 95

Here, we present top 5 methods among around 100 methods. Bold and
(*) sign represents the performance of our method

of Sr value, the performance degrades for all k. Moreover,
we found that minimum k value 8 provides the best result
for three datasets except for Yersinia. In the case of Yersinia,
k = 9 provides the best result. We investigate the reason and
find that the average length of the sequences in the dataset
plays a crucial role in selecting k value. When the average
length is less than 105, then k value 8 provides the best result.
For Yersinia, the best result for k is 9 because its average
length is 5 × 106. In the case of Sr , all datasets except 18
Eutherian mammals provide the best result for large Sr = 4
whereas the 18 Eutherian dataset provides the best result for
Sr = 16. Therefore, we set Sr = 4 for the four datasets.

Based on the RF distance in Table 3, we develop Algo-
rithm 1 to dynamically select the k value. Therefore, we can
say that our model is suitable for any DNA sequence sim-
ilarity dataset and our Algorithm 1 is very effective for the
length of k − mer selection. Also, Algorithm 4 shrinks the
matrix efficiently.

PD and sequence joiningmethod selection

To calculate the DNA sequence similarity, we need to mea-
sure distances using feature vectors. It involves two steps,
first finding the PDs from feature vectors and then generat-
ing a phylogenetic tree from distances. MATLAB provides
different PDs and phylogenetic tree generation methods.
Generally, there may be performance variations in choosing
different combinations of PD and phylogenetic tree genera-
tion methods. Hence, choosing an appropriate combination
of both is a great challenge. Here, we use the best combi-
nations of k and Sr selected from Experiment 4.2. To find
out which combination is best for our model, first, we apply
each tree generation method with each distance method for
the Fish dataset k = 8 and Sr = 4 and calculate their RF dis-
tance presented in Table 4. Further, tree generation methods
are of two types, e.g., seqlinkage and seqneighjoin. Hence,
we find 88 RF distances for the Fish dataset for 88 different
combinations. From Table 4, we see that the minimum RF
distance of 2 marked by * sign is achieved by cosine distance
and seqneighjoin with firstorder or equivar method. How-
ever, we also observe that for all PD methods, seqneighjoin
technique provides better results than seqlinkage. For this
dataset, our method achieves the best result (RF distance) in
5 combinations. Interestingly, in all cases, the seqneighjoin
phylogenetic tree method provides the best results. There-
fore, the combinations of cosine and seqneighjoin is the best
pair for Fish dataset sequence similarity.

Similarly, we evaluate our method on Yersinia dataset
(Table 2) with k = 9 and Sr = 4 in Experiment 4.2. The
result is presented in Table 5. This time, we obtain best result
RFdistance of 0 for 11 different combinations. Five PDmeth-
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ods (cosine, squaredeuclidean, seuclidean, correlation, and
spearman) are combined with seqneighjoin which provide
good results. However, for both Fish and Yersinia datasets,
the combination of cosine and seqneighjoin provides the top
score. Hence, after rigorous experiment on two datasets for
176 combinations, we select cosine and seqneighjoin meth-
ods as the best combination which can be very effective for
sequence similarity analysis.

Performance evaluation on fish benchmark dataset

To evaluate the strength of our proposed algorithm we
apply our method in the Fish (Table 1) dataset from AFpro-
ject [40]. About one hundred algorithms were submitted
for benchmark ranking in the fish dataset. There are 25
sequences for the cichlid genome and their length varies
from 16 to 17 thousand bases. These sequences are very
similar. Therefore, it is very challenging to identify the accu-
rate similarity or hierarchy for this dataset. AFproject [40]
considers three parameters for evaluating algorithms. These
are (i) Robinson–Foulds (RF) distance [4,21] to calcu-
late the distance among phylogenetic trees, (ii) normalized
Robinson–Foulds (nRF) that calculates a topological mis-
match for a given tree with respect to a reference tree and
(iii) normalized quartet distance (nQD). We can convert nRF
value to accuracy using Eq. 4.

A = (1 − nRF ) ∗ 100, (4)

where nRF is normalized Robinson–Foulds value.
To compare the performance among the methods we

consider three parameters from AFproject [40] (URL3. In
Table 6, we list the top 5 methods where our model is on
the top rank with RF distance 2.0 and accuracy 95%. Also,
in Fig. 3, we present the phylogenetic tree generated by our
method. We use k = 8 for matrix generation and Sr = 4
for shrinking matrix. The comparative results and phyloge-
netic tree indicate that our method provides the best result
for sequence similarity identification. Besides, Ni et al. [25]
applied k = 8 for k−mer CGRmatrix with a dimensionality
reduction technique on the same dataset and they achieved
rank 2 with RF distance 4.0 and accuracy 91%. However,
among 25 sequences 4 sequences are highly similar to one
another, due to the reason none of the AF algorithms can
achieve 100% accuracy for this dataset. This clearly demon-
strates that our method is one of the top-performingmethods.

3 http://afproject.org/app/benchmark/genome/std/assembled/
fish_mito/results/.

Table 7 Benchmark test result for 8 Yersinia strains dataset in AFpro-
ject test platform

Rank Method RF Accuracy

1* (4)SR(K)MER_FEM1 0.00* 100*

1 3M-S64-(K)Mer 0.00 100

1 AFKS–canberra 0.00 100

1 AFKS–chi_squared 0.00 100

1 AFKS–d2_star 0.00 100

1 AFKS–d2s 0.00 100

Here, we present top 5 methods among 80 methods. Bold and (*) sign
represents the performance our method

Performance evaluation onYersinia benchmark
dataset

Again, we apply our method in Yersinia (Table 2) bench-
mark dataset from AFproject [40]. It consists of 8 sequences
of Yersinia species where the length varies from 4.5 to
4.7 million bases. However, this dataset is practically large.
Approximately 80 algorithmshavebeen submitted for bench-
mark ranking in the Yersinia dataset. We conduct experiment
on similar way of Experiment 4.4 AFproject [40] which can
be found on (URL4. In Table 7, we list the top 5 methods
where our method scores top rank with RF distance 0.00
and accuracy 100%. We also present the similarity identifi-
cation result using a phylogenetic tree in Fig. 4. Based on
Experiment 4.2, to achieve the best result, we use k = 9 and
Sr = 4 for 2D matrix generation and shrinking. However,
according to Table 7, our method achieves the best result
for this large dataset which is also inferred in the phyloge-
netic tree. Hence, it indicates that our method is the best fit
for sequence similarity identification. Again, Ni et al. [25]
mentioned that if the size of the descriptor is large then it
keeps more information than the smaller descriptor. Hence,
our solution achieves top ranking among almost 80 algo-
rithms which clearly demonstrates that our method is very
suitable for similarity identification from a large sequence
dataset.

Phylogenetic analysis of 16 S ribosomal DNA of 13
bacteria

We choose another dataset fromDelibaş et al. [9] which con-
sists of 13 bacterial data of 16S Ribosomal DNA sequences
with description, accession code to access fromNCBIURL5,
and sequence length. Each sequence has a length of approx-

4 http://afproject.org/app/benchmark/genome/hgt/unsimulated/
yersinia/results/.
5 https://www.ncbi.nlm.nih.gov/genome/.
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Fig. 3 Phylogenetic tree of 25
fish genome sequences
described in Table 1. using our
proposed method with
k − mer = 8 and Sr = 4

Fig. 4 Phylogenetic tree of 8
Yersinia genome sequences
described in Table 2 using our
proposed method with k = 9
and Sr = 4

imately 1500 bases. Among the sequences, some of the
sequences are highly similar, and the rest are well separated.

First, we generate aNewick tree usingMEGA7/X software
with the following setup: ClustalW alignment with default
settings of pairwise and multiple alignments. Then we use
UPGMAmega tree to build the phylogenetic tree andNewick
tree string. Second, we generate phylogenetic tree using our
proposed method with k = 8 and Sr = 4 which are cho-
sen from Experiment 4.2. The phylogenetic tree generated

by our method is shown in Fig. 5. Then, we compare the
Newick tree generated by MEGA and our method, and the
comparative result is presented in Table 8. We can see that
our method achieves 100% accuracy for this dataset which
is very promising and definitely ahead of Delibaş et al. [9]
result. It also indicates our method is very effective for the
sequence similarity identification of smaller sequences (e.g.,
16S Ribosomal DNA of 13 bacteria).
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Fig. 5 Phylogenetic tree of 16S Ribosomal DNA sequences of 13 bacteria using our proposed method with k = 8 and Sr = 4

Fig. 6 Phylogenetic tree of 18 Eutherian mammals using our proposed method with k = 8 and Sr = 4

Phylogenetic analysis of 18 Eutherianmammals

We choose another existing dataset 18 Eutherian Mammal
used by Delibaş et al. [9], Jin et al. [15] etc. Sequence length
varies approximately from 16 to 17 thousand. In this dataset,
we experiment in two steps like 16S Ribosomal dataset
Experiment 4.6.We generate a phylogenetic tree using k = 8
and Sr = 4 is shown in Fig. 6 and then compare the Newick

tree with MEGA7. The comparative result is presented in
Table 9. We can see that our method achieves 100% accu-
racy for this dataset too which is very promising and clearly
ahead (19% more accurate) from Delibaş et al. [9] result. It
also indicates our method is very effective and efficient for
whole genome DNA sequence similarity identification.
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Table 8 DNA similarity identification accuracy comparison for 16S
Ribosomal DNA dataset

Method Param 1 Param 2 Accuracy

Proposed method k = 8 Sr = 4 100*

Delibaş et al. [9] n − gram = 4 top − k = 15 91

Here, Column 1 represents the methods, Columns 2 and 3 list most
important two parameters, and last column represents the performance
achieved by each method. Bold and (*) sign indicates the best result

Performance in terms of time and space

The effectiveness of any computer algorithm is measured by
several parameters.Among them, the timecomplexity ismost
important [37]. Because it indicates how faster an algorithm
can provide results. Different researchers including Delibaş
et al. [9] computed the complexity in terms of machine clock
cycle. However, we discuss our time complexity in two steps.
First, we express time complexity using θ and O notation.
Let, the sequence dataset consists of N number of sequences,
where each sequence has a maximum of L length and k is
the length of k −mer string. There are several steps to com-
pute the time complexity which are presented in Table 10.
Hence, total complexity is O(N × L × 2k). Second, we cal-
culate the time using tic and toc function. We also compare
the results with existing work in Table 11. Further, space is
another parameter that can express the quality of the devel-
oped algorithm. We have calculated memory consumption
using memory function. To compare the memory consump-
tion of our method, we consider HIV-1 and HEV datasets.

From Table 11, we can see that in case of HEV dataset our
method is 7,079 times faster than Ni et al. [25]. An almost
similar result is obtained for the HEV dataset. Again, our
method is approximately 21 times faster thanDelibaş et al. [9]
for 18 Eutherian mammal dataset. In terms of memory con-
sumption, our method takes 12.85MB less memory than Ni
et al. [25] for the HIV-1 dataset. Therefore, we can say that
to provide faster results with less memory consumption, our
method is the best fit among all existing methods.

Impact of proposed shrinking algorithm

In our system, most time and space consumption part is the
count matrix and the next is the pairwise distance calcula-
tion. Let, a vector F with the dimension of (N × P), where
N is the number of sequences and P is the length of the 1D
descriptor which is termed as D′

s in “Matrix shrinking and
feature descriptor” section. Hence, the computational com-
plexity of pairwise distance calculation is N (N−1)

2 ×3P [23].
Therefore, in our case, the computation highly depends on
the value of P as N is very small compared to P . That is
why we aim to reduce the size of P . In Table 12, we com-
pare phylogenetic tree generation time using different shrink

Table 9 DNA Similarity identification accuracy comparison for 18
Eutherian mammals mitochondrial DNA dataset

Method Param 1 Param 2 Accuracy

Proposed method k = 8 Sr = 4 100*

Delibaş et al. [9] n − gram = 13 top − k = 4 81

Here, Column 1 represents the methods, Columns 2 and 3 list most
important two parameters in each method, and the last column rep-
resents the performance achieved by each method. Bold and (*) sign
indicates the best result

rates and without shrink for all datasets. For all cases, we
generate a 2D k − mer count matrix based on the k value
of the second column, then we calculate the required time
using t ic and toc time functions. In this table, we see that
with the increase of Sr rate for all datasets the required time
is decreasing. When we do not use any shrinking, then the
algorithm consumes the most CPU time. It is also observed
that if we increase the Sr rate, our method consumes less
time. Therefore, we can say that number of features (P) in
the matrix plays an important role in time consumption and
obviously our proposed shrinking algorithm has a consider-
able impact on overall performance.

Conclusion

In this research, we develop a method for sequence similar-
ity measurement of any sequence dataset that dynamically
selects k for k−mer and effectively generates a 2D k−mer
count matrix with appropriate shrinking and then applies the
best combinations of PD and phylogenetic tree generation
method. After comprehensive experiments, we can conclude
that our dynamic k for k − mer selection algorithm is very
essential to achieving the best result. After rigorous exper-
iments on benchmark datasets, comparison with existing
studies, phylogenetic analysis and RF distances from refer-
ence trees, we can conclude that our 2D k−mer count matrix
generation is very much faster, accurate, effective and robust
for DNA sequence analysis. Our matrix shrinking, effective
position calculation, and optimal combination of PD and
phylogenetic tree generation method selection achieve the
best performance in terms of time and space. Hence, we can
conclude that for sequence similarity analysis our method is
novel, robust, faster and accurate. Therefore, we can use it
with a good level of reliability.

The contributions of our method are as follows:

– We achieve a top rank score in two benchmark datasets
(Fish and Yersinia) among two hundred methods.

– We achieve 100% accuracy for two other datasets (18
Eutherian, 16 s Ribosomal) which are clearly better than
other existing methods.
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Table 10 Step-wise time
complexity calculation for our
proposed method

Step Method Time complexity

Step 1 Dynamic k − mer selection N + 2 (Algorithm 1)

Step 2 2D k − mer matrix generation L × k × 6

Step 3 Matrix shrinking 2k × 2k

Step 4 1D feature descriptor 2k

Step 5 Distance and phylogenetic tree 2 × N

Final complexity O(N × L × 2k)

Table 11 Time complexity and
memory space consumption
comparison with existing works

Dataset Method Time in seconds Memory in MB

16S Ribosomal Our proposed 0.092079* 9.0742

Delibaş et al. [9] 0.1461 –

18 Eutherian Our proposed 0.741836* 16.0156

Delibaş et al. [9] 16.2565 –

HIV-1 Our proposed 0.541657* 16.1836*

Ni et al. [25] 3600.00 208.00

HEV Our proposed 1.101700* 24.7422*

Ni et al. [25] 7200.00 205.00

Fish Our proposed 1.032676 16.0469

Yersinia Our proposed 81.321820 75.0531

Column 1 represents name of dataset, Column 2 expresses the method applied on dataset, Column 3 indicates
time consumption and Column 4 shows memory consumption. Here, Bold and (*) indicates comparative best
result

Table 12 Impact analysis of proposed shrinking algorithm in terms of time complexity

Dataset k-mer value Required time without shrinking Required time with shrinking

Sr=4 Sr=16 Sr=64 Sr=256

16S Ribosomal 8 0.145714 0.092079 0.007845 0.002434 0.000945

18 Eutherian 8 1.765345 0.741836 0.069044 0.021210 0.008604

HIV-1 8 1.284576 0.541657 0.012567 0.009631 0.003608

HEV 8 11.65471 1.101700 0.123601 0.087569 0.014063

Fish 8 10.63547 1.032676 0.102035 0.060645 0.010249

Yersinia 9 963.6387 81.32182 9.320472 4.403627 0.990544

– Our proposed method is faster than existing AF-based
methods as well as AB algorithms.

– Proposed system consumes several times less memory
than existing methods.

– Our method dynamically choose the value of k to gener-
ate 2D k − mer matrix using Algorithm 1.

– It takes less time to generate 2D kmer matrix in compar-
ison to others because of our Algorithms 2 and 3.

– Our smart systemautomatically shrinks the size of feature
vector usingAlgorithm4 resulting in higher accuracy and
minimizing time complexity.

However, ourmethod achieves extraordinary performance
for six datasets. In the future, researchers can usemore bench-
mark datasets including COVID 19 and others. Moreover,

time and space consumption rates are still a major concern.
Finally, researchers can investigate deep learning-based text
processing techniques and rough set algorithms for improved
performance.
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8. Delibaş E, Arslan A (2020) Dna sequence similarity analysis using
image texture analysis based on first-order statistics. J Mol Graph
Model 99:107603
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