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Abstract
Aspect term extraction (ATE) aims at identifying the aspect terms that are expressed in a sentence. Recently, Seq2Seq learning
has been employed inATEand significantly improved performance.However, it suffers from someweaknesses, such as lacking
the ability to encode the more informative information and integrate information of surrounding words in the encoder. The
static word embeddings employed in ATE fall short of modeling the dynamic meaning of words. To alleviate the problems
mentioned above, this paper proposes the information-augmented neural network (IANN) which is a novel Seq2Seq learning
framework. In IANN, a specialized neural network is developed as the keymodule of the encoder, namedmultiple convolution
with recurrence network (MCRN), to encode themore informative information and integrate information of surroundingwords
in the encoder. The contextualized embedding layer is designed to capture the dynamic word sense. Besides, the novel AO
({Aspect, Outside}) tags are proposed as the less challenging tagging scheme. A lot of experiments have been performed
on three widely used datasets. These experiments demonstrate that the proposed IANN acquires state-of-the-art results and
validate that the proposed IANN is a powerful method for the ATE task.
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Introduction

In natural language processing (NLP), one of the hot research
fields is aspect-based sentiment analysis (ABSA) which is a
fine-grained subtask of sentiment analysis [1]. One of the
important tasks in ABSA is the ATE task, which aims at
identifying aspect terms (or targets) that are expressed in a
sentence [2–4]. Aspect terms can be explicit or implicit in a
sentence. Explicit aspect terms are explicitly expressed in a
sentence, implicit aspect terms are implicitly expressed in a
sentence. To give an example, in Fig. 1, the ATE task aims
at detecting two explicit aspect terms “food” and “service”
in sentence 1. In another sentence “The camera is too expen-
sive”, the target of the ATE task is the implicit aspect term
“price” because “expensive” is used to describe the aspect
term “price” of a camera. This paper focuses on the explicit
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ATE task.Not only in the academic community but also in the
business community, the ATE task has been paid much atten-
tion. For example, in e-commerce platform, people are more
interested in knowing different attributes toward the specific
product. Besides, a company can automatically detect these
attributes of a product or service from a customer’s review by
using the ATE technique. Also, business enterprises can fur-
ther enhance their products by analyzing customer reviews
using the ATE technique.

In conventional statisticmachine learning, previousworks
mainly employ hidden Markov model (HMM) [5] and con-
ditional random fields (CRF) [6] in the ATE task. The
hand-designed features have a great influence on the perfor-
mance of these models. The process of feature design is also
called feature engineering, which not only consumes a lot
of manpower and material resources but also requires extra
expert knowledge. Neural networks have achieved good per-
formance in many areas, the ATE task is no exception. Deep
neural network-based methods have dominated the ATE task
and achieved good performance in the ATE task [7]. Deep
learning can automatically extract high-level and the more
appropriate features which are the more suitable representa-
tions for the end task. These neural network-based methods
also treat the ATE task as the sequence labeling task. How-
ever, the overall semantics of a sentence cannot be well
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Fig. 1 The ATE task

captured by these neural network-based sequence labeling
methods in the ATE task. Besides, they have a weak capacity
in modeling dependencies between labels.

Recently, some works regard the ATE task as a sequence
to sequence (Seq2Seq) learning task, the Seq2Seq learning
can naturally tackle the problems of the sequence labeling-
based models [8]. However, Seq2Seq learning employed in
the ATE task still suffers from some weaknesses. Firstly,
the encoder in the Seq2Seq-based methods mostly employs
long-short term memory (LSTM) [9] or gated recurrent unit
(GRU) [10] in the ATE task. Only employing LSTM or other
methods is powerless in encoding the more informative
information in the encoder. Besides, since LSTM processes
the inputs in sequence order, it can’t focus on the surrounding
words toward a specific word. Hence, the encoder is also
weak in integrating information of the surrounding words
toward a specific word and detecting the local features.
Although the attention mechanism [11] can be used in the
encoder to focus on the surrounding words, it may introduce
some noises which can damage model performance [12].
Moreover, the word embeddings employed in the ATE
task are static word embeddings, which means the word
embeddings are fixed in different contexts. However, the
meaning of a word in human language is dynamic and
depends on its context. The static word embeddings fall
short of modeling the dynamic word sense.

This paper proposes an IANN which is a novel Seq2Seq
learning framework and can alleviate the above-mentioned
inadequacies. In IANN, a novel and specialized neural
network is developed as the key module of the encoder,
named MCRN, which combines multiple convolution with
recurrence operations. Combining multiple convolution with
recurrence operations in an appropriate way can improve the
ability of the encoder. The multiple convolution operations
of MCRN can integrate information of surrounding words
toward a specific word and detect the local features. Instead
of using vanilla RNN, the bidirectional GRU is employed in
MCRN which can not only model the sequence information
but also capture the bidirectional long-distance dependen-
cies. Therefore, MCRN can encode more informative infor-
mation than the encoder that consists of a single type neural
network and integrate information of the surrounding words
toward a specificword. TheMCRNmodel can be formed into
a single or multi-layer architecture encoder. The multi-layer
encoder learns the more informative higher-order features,

which are more appropriate representations for the ATE task
to someextent. Thedecoder of IANNconsists of the unidirec-
tional GRU, it is used to decode the encoding representations
to predict the labels of eachword. The contextualized embed-
ding layer is developed to model the dynamic word sense
and generate contextualized word embeddings by employ-
ing bidirectional encoder representation from transformers
(BERT) [13]. Besides, novel dual AO tags are proposed as
the less challenging tagging scheme in the ATE task. A lot of
experiments demonstrate that the proposed IANN gets bet-
ter performance than other state-of-the-art (SOTA) baselines
for the ATE task. Moreover, these experiments also verify
that the proposed IANN is independent of dataset type. In
general, this work makes the following contributions.

1. This paper proposes an IANN which is a novel Seq2Seq
learning framework and can alleviate the weaknesses
of the previous Seq2Seq-based model and static word
embeddings in the ATE task.

2. This paper designs a specialized hierarchical neural net-
work as a key module of the encoder, named MCRN
which combines multiple convolution with recurrence
operations, to encode the more informative information.
The MCRN model can not only integrate information of
surrounding words toward a specific word and detect the
local features but also model the sequence information
and capture the long-distance dependencies.

3. This paper proposes the multi-layer MCRN as the multi-
layer encoder, which can learn the more informative
higher-order features, which are more appropriate rep-
resentations for the ATE task.

4. This paper proposes the novel dual tags, named AO tags,
as the less challenging tagging scheme.

5. A lot of experiments have been performed on three
datasets which involvemany sources and domains. These
experimental results demonstrate that IANN obtains
SOTA performance and verify that the proposed IANN
is a powerful method for the ATE task. Besides, these
experiments also validate that IANN is independent of
dataset type.

Related work

ABSA is a promising technique in artificial intelligence and it
can be used inmany realistic scenarios [14, 15], ABSA is first
developed by Hu and Liu [16]. In the last few years, ABSA
has been widely researched [17]. Three subtasks which are
aspect level sentiment classification (ALSC), ATE, and opin-
ion term extraction (OTE) constitute ABSA [18]. The ATE
task aims at identifying aspect terms (or targets) that are
expressed in a sentence, and the ALSC task tries to detect
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sentiment polarities toward aspect terms that are given in
the specific sentence. This paper pays more attention to the
ATE task. The comprehensive surveys referring to the ATE
task can be found in Rana and Cheah’s survey [19]. Not only
different aspect extraction techniques and approaches are dis-
cussed, but they also cover detailed explanations and precise
comparisons. Tubishat et al. [20] focus on implicit aspect
extraction. They provided comprehensive comparison anal-
ysis and taxonomy in implicit aspect extraction. The related
and complicated problems are also reported in their research.

The ATE task is first studied by Hu and Liu [16]. They
developed several rules to deal with ATE. They employed
an association rule miner [21] to detect candidate aspect
terms and calculated the frequency of these aspect terms,
they filter out some aspect terms based on the given thresh-
old. Opinion terms are used to find the non-frequent aspect
terms by the dependency relations. To improve the perfor-
mance of the rule-based method, Popescu and Etzioni [22]
employed pointwise mutual information (PMI) to identify
aspect terms. To mitigate the vulnerability of syntactic rule-
based approaches, the TF-RBMmodel is developed by Rana
and Cheah [23]. The explicit aspect terms are discovered by
the sequential patterns-based rules. Then the concept extrac-
tion is performed in TF-RBM. However, these rule-based
methods suffer from some shortcomings, such as needing
elaborate rules, and the form of the sentence affects the per-
formance of the rules.

Many conventional statistical machine learning methods
have been explored in the ATE task. Compared to the rule-
based methods, they acquire better performance [24–26]. In
the traditional machine learning algorithms, both supervised
and unsupervised learning, such as HMM and latent Dirich-
let allocation (LDA) [27], are explored in the ATE task. LDA
is a document-level probabilistic model and it is powerless
in capturing co-occurrence relationships in a sentence. To
tackle the drawback, the Enriched LDA (ELDA) is designed
by Shams and Baraani-Dastjerdi [28]. The ELDA method
can integrate domain knowledge and LDA. The domain
knowledge can be obtained by calculating the co-occurrence
frequency and similarity between aspects and relevant top-
ics. Wang et al. [29] proposed an association constrained
LDA (AC-LDA) for capturing the co-occurrence relation-
ships in LDA. The features of the syntactic structure are used
to formalizeword association relationships. Ozyurt et al. [30]
proposed a sentence segment LDA (SS-LDA) to alleviate the
data sparsity problem in short texts for the ATE task. How-
ever, in practice, the supervised learning methods perform
better than the unsupervised learningmethods. The sequence
labeling learning is adopted in the ATE task in the supervised
learning methods. In order to combine the linguistic features
with HMM, Jin et al. [5] proposed the lexicalized HMM.
Shu et al. [31] proposed lifelong CRF (L-CRF) in supervised
ATE. L-CRF first learns prior knowledge from past domains,

and then it utilizes the knowledge by lifelong learning to
identify aspect terms in a new domain. However, these tradi-
tional statistical machine learning-based supervised learning
approaches highly depend on the designed features, which
can consume a lot of energy and time.

Recently, the deep neural network has made significant
progress and dominated inmany areas, includingATE. There
is no need for carefully designing features by hand, these
methods can automatically produce the more suitable and
abstract features for the end task. The field of computer cod-
ing has also made some progress [32]. In the ATE task,
the convolutional neural network (CNN) [33], LSTM [34,
35], GRU [10], and recursive neural network [36] are often
employed in extracting aspect terms. Aspect extraction in
a deep learning manner is first studied by Poria et.al [37].
They proposed a 7-layer CNN architecture to tag each word
in a sentence. To further improve the performance, they com-
bined the CNN classifier with a series of linguistic rules. Luo
et al. [38] proposed an incremental deep learningmethod that
combines bidirectional LSTM (BiLSTM) andCRF. The tree-
structured knowledge is encoded from the given dependency
tree by either of two propagations. Xu et al. [7] proposed a
dual embeddings CNN (DE-CNN) which explored the dif-
ferent embeddings in the ATE task. In addition to the general
domain embedding, the specific domain embedding is also
considered in DE-CNN. Zhang et al. [39] proposed a topic-
aware dynamic CNN (TADC) to extract aspect terms. In the
TADC model, a neural topic model is used to improve the
ability to identify aspect terms.

Phan et al. [40] combined syntactical information with
the contextualized word embeddings such as BERT [13] to
further enhance the ability of the model toward identifying
aspect terms (or targets) that are expressed in a sentence.
Venugopalan et al. [41] proposed a guided LDA model with
BERT for each aspect category. Oh et al. [42] proposed a
deep contextualized relation-aware network (DCRAN) for
aspect extraction. They designed two modules to capture the
association relationship between subtasks of ABAE with the
contextualized information. Lekhtman et al. [43] studied the
domain adaptation of aspect extraction and proposed a cus-
tomized pre-training method for BERT with the unlabeled
data. Nguyen et al. [44] proposed a novel weakly supervised
method for the ATE task. An uncertainty-aware objective
function is developed to utilize seed words in the weakly-
supervised method. Zhang et al. [45] treated the ATE task
as a question-answering task. Hu et al. [46] viewed the
aspect extraction task as amulti-label learning problem. They
employed the prototypical network to develop a few-shot
learning model and designed two attention mechanisms to
alleviate the noise.

Different attention mechanisms are often employed in the
ATE task [47–49]. The attention mechanism can pay more
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attention to the important words that are relevant to the spe-
cific task and ignore the inessentialwords that are not relevant
to the specific task in a sentence. Some works also simul-
taneously perform the ATE and ALSC tasks or the ATE
and OTE tasks. For the aspect term-polarity co-extraction, a
dual recurrent neural network with other units, named Dual
crOss-sharEd RNN (DOER), is proposed by Luo et al. [8].
A span-based model is developed by Zhao et al. [50]. The
model is trained with other tasks and aspect-opinion pairs
are detected by the span boundaries. Chen et al. [51] pro-
posed two transformer-based decoders for the ATE, OTE,
and ALSC tasks. Mukherjee et al. [52] developed a pointer
network-based model for the aspect sentiment triplet extrac-
tion. Besides, sufficient annotated data is essential in ATE.
To obtain more data, the conditional generation method is
employed to generate data in Li et al. [53], the process of gen-
erating was controllable and can generate more diversified
sentences. They employed Transformer [11] to implement
the conditional strategy. To alleviate the problem of insuffi-
cient annotated data,Wang et al. [54] proposed a self-training
framework for the ATE task, and they utilized the discrimi-
nator to deal with the problem of the pseudo-labels.

These deep learning-based approaches treat ATE as the
sequence labeling task and use BIO labels to tag each
word. However, the overall semantic of a sentence can-
not be well captured by the sequence labeling learning.
The dependency relations between the output tags are also
important in ATE, whereas the sequence learning is weak
at capturing the dependencies between tags. To alleviate the
weaknesses mentioned above, Ma et al. [55] developed a
Seq2Seq learning-based model, named Seq2Seq4ATE. The
encoder of the model consists of a bidirectional GRU. The
decoder of the model is composed of another unidirectional
GRU. Instead of using BIO tags, Hu et al. [56] developed the
span boundaries-based framework to detect aspect terms in
the ATE task. They employed BERT as the default back-
bone network. Our proposed model is different from the
Seq2Seq4ATE and the span boundaries-based method. The
encoder of the proposed IANN can integrate information of
surrounding words toward a word in a sentence by MCRN
which can capture the more informative information for the
ATE task. The dynamicmeaning of words can bemodeled by
the contextualized embedding layer in our proposed model.
Besides, the novel AO tags are used as the tagging scheme
in the proposed IANN.

Methodology

The ATE task is defined and the proposed IANN model is
discussed in detail in this part. Table 1 exhibits the notations
that are used in the proposed model.

Table 1 The notations used in the proposed IANN

Notation Category The relevant explanation

S Set A text sequence of the specific
sentence

wi Vector The one-hot vector form of the ith
word

n Scalar The length of a specific sentence

Sinput Set A specific input token sequence
∣
∣Sinput

∣
∣, p Scalar The length of the specific input token

sequence except for [CLS] and
[SEQ]

BERT() Function The BERT function

d Scalar The size of the hidden dimension of
the BERT model

hbert Matrix The output of the BERT model in the
embedding layer

hberti Vector The ith term in hbert excluding [CLS]
and [SEQ]

ŝih, ŝ
i
w Scalar The size of the convolution kernel in

the ith convolution operation

hci Matrix i ∈ [1, 2, 3, 4, 5], the output
representations of the ith
convolution operation

di Scalar i ∈ [1, 2, 3, 4, 5], the number of
output channels produced by the ith
convolution

Wi, Ui Matrix i ∈ {m, z, r, h, g, u}, the weight
parameter matrix in IANN

bi Vector i ∈ {m, z, r, h, g, u}, the bias in
IANN

dm Scalar The dimension of the hidden
representation of MLP in MCRN

dg Scalar The size of the output in GRU

dn Scalar The output size of MLP in the
multi-layer encoder

rt , zt Vector The value toward reset gate and
update gate

N Scalar The number of hops in the
multi-layer encoder

−→
h t,

←−
h t, ht Vector The forward, backward, and

bidirectional outputs of the tth time
step in GRU

r Scalar The size of each label embedding

MCRN() Function The MCRN function

hlit Vector The output of the tth token in MCRN
of a multi-layer encoder in hop i

hgit Vector The output of the tth token in MLP of
a multi-layer encoder in hop i

het Vector The output of the tth token in a
multi-layer encoder

hut Vector The output of the tth token in the
unidirectional GRU unit in
decoding layer
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Table 1 (continued)

Notation Category The relevant explanation

du Vector The output size of the unidirectional
GRU unit in the decoding layer

ê Vector The specific label embedding

ỹt Vector The one-hot vector of a specific
predicted label at time step t

E Matrix The label embedding matrix

lookup() Function The lookup table operation

hvt Vector The hidden representation of MLP in
the decoding layer at time step t

dv Vector The output size of MLP of the
decoding layer

hst Vector The tth time step output in the
softmax

softmax() Function The softmax function

c Scalar The number of the predicted labels

ŷt Scalar The predicted label toward the word
at time step t

Task definition

Given a sentence S � {w1, w2, ..., wn−1, wn}, the length
of the word sequence is n, the ATE task aims at detecting
explicit aspect termsA � {a1, a2..., am} toward an entity, the
total number of the explicit aspect terms is m in the specific
sentence S. Each aspect term may consist of one or more
words in the specific sentence S.

An overview of the IANNmodel

For the purpose of modeling the more informative informa-
tion and integrating surrounding words’ information toward
the specific word in the encoder, as well as to capture the
dynamic word sense in the specific sentence, this paper
designs a novel Seq2Seq learning framework, named IANN.
In IANN, the contextualized embedding layer is used to cap-
ture the dynamic meaning of words. In the contextualized
embedding layer of IANN, BERT is employed to generate
contextualized word embeddings. At the encoder layer of
IANN, a novel hierarchical neural network, named MCRN,
is designed to not only encode themore informative informa-
tion and integrate information of surroundingwords toward a
specific word but also tomodel the sequence information and
capture the long-distance dependencies by combining multi-
ple convolution and recurrence operations. MCRN is the key
component of the encoder in IANN. The encoder in IANN
is either a single-layer architecture or a multi-layer archi-
tecture. The decoder layer of IANN is designed to decode
the encoding information and convert the final word rep-
resentations into appropriate features that are suitable for

predicting labels. Besides, AO dual tags are proposed as the
less challenging tagging labels. Figure 2 illustrates the entire
framework of the designed IANN with novel AO tags.

Contextualized embedding layer

The word embedding can map words from the discrete,
sparse one-hot vector into the continuous, dense represen-
tation. One advantage of word embedding is that the word
sense and syntax can be captured in the embedding space to
some extent. The static word embedding such as Glove is
the fixed word embedding. However, in different contexts,
some aspect terms are domain-dependent and one term may
or may not be an aspect term in the ATE task. For instance,
in a laptop review “the memory is enough for use”, mem-
ory is an aspect term, while in the sentence “memory is sad
for me”, memory is not an aspect term. The embedding of
memory should be different in different contexts. One solu-
tion is to use contextualized word embedding such as BERT,
which can capture the specific meaning of a word and obtain
different embedding of a word in different contexts. Hence,
this paper designs the contextualized embedding layer for
modeling dynamic word meaning.

In the contextualized embedding layer, the BERTmodel is
employed to generate contextualized word embeddings that
are able to capture dynamic word meaning to some extent.
BERT is a new language representationmodel. Unlike ELMo
[57] which employs LSTMs as its backbones, BERT adopts
transformers as its backbones. Compared to GPT [58] which
is an autoregressive language model and employs unidirec-
tional transformers to model the unidirectional information
toward a word in a sentence, BERT is an autoencoder lan-
guage model, it masks a few words in a sentence. One of
the training objectives of BERT is that the randomly masked
word can be accurately recovered by the bidirectional infor-
mation. BERT can simultaneously model the bidirectional
information toward a word in a sentence.

BERT has two-parameter models: BERTBASE and
BERTLarge. In the BERTBASE model, it has 12 layers, the
head number is 12 in the multi-head attention. The size of
output representations of the transformer encoder is 768.
There are about 110 M parameters in BERTBASE. In the
BERTLarge model, it has 24 layers, the head number is 16
in the multi-head attention. The size of output representa-
tions of the transformer encoder is 1024. There are about
340M parameters in BERTLarge. As our computing ability is
limited, hence the BERTBASE model is used as the backbone
network in the contextualized embedding Layer.

In the ATE task, the inputs that are fed into the BERT are
explicitly transformed into a series of tokens in a sequence.
Given a sentence S � {w1, w2, ..., wn−1, wn}, a specific
symbol [CLS] is inserted first at the front of a specific sen-
tence S. Also, another specific symbol [SEP] is inserted
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Fig. 2 The overall framework of IANN. The encoder layer is composed of the single-layer encoder in the current diagram. The output labels are
the dual AO tags

at the end of the specific sentence S. A token sequence
Sinput � {[CLS], w1, w2, ..., wn−1, wn, [SEP]} can be
obtained, it is then fed into the developed IANN, and the
total length of the word sequence S is n. Figure 2 shows the
specific input form. The output representation in contextual-
ized embedding layer is defined by formula (1):

hbert � BERT(Sinput) (1)

where hbert ∈ R|Sinput |×d,|Sinput|� n + 2, n is the total length
of the raw sentence S, the output dimension of BERT is d,
|Sinput| is the overall length of the transformed input ofBERT,
BERT() denotes all operations in BERT.

In the outputs from the BERT model, except for output
representations of special tokens [CLS] and [SEQ] which
are separately denoted as hbert[cls] and hbert[seq], the other output
representations in BERT are sent to the next layer, which is
denoted as hberti ∈ Rd, i ∈ [1, n].

MCRN

In the proposed model, the encoder is either a single-layer
architecture or a multi-layer architecture. In the single-layer

architecture, the encoder consists of an MCRN model. In
other words, an MCRNmodel is employed as the encoder in
the single-layer encoder. In the multi-layer architecture, the
encoder mainly consists of multiple MCRN models.

The MCRN model is a hierarchical architecture. As the
key component of the encoder, the multiple convolution
layer, fully connected layer, and bidirectional GRU make
up MCRN. The MCRN model can integrate information of
surrounding words toward a specific word by using multiple
convolution operations as well as capture the bidirectional
long-distance dependencies and model the sequence infor-
mation by employing the bidirectional GRU. Therefore,
MCRN can model more informative information than the
single-type neural network. In the single-layer encoder,
MCRN is the encoder. The overall architecture of MCRN
can be seen in Fig. 3.

Multiple convolution layer

The operations of the convolution are the key techniques
for integrating information of surrounding words toward a
specific word and are sensitive to local patterns in a spe-
cific sentence. Convolution can model the current word and
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Fig. 3 The overall architecture of MCRN

its surrounding words within a specified window. The size
of the specified window decides the scope of the neighbor
words. Only within the specified scope, the current word and
its surrounding words can be modeled and integrated. Hence
convolution is sensitive to local patterns and features in a spe-
cific sentence. The larger the window size, themore neighbor
words are modeled. The specific architecture of the multiple
convolution layer can be found in Fig. 3. In the multiple con-
volution layer, there are five convolution operations. In Fig. 3,
these five convolution operations are separately denoted as

Conv2d-1, 2, 3, 4, and 5. The symbol “⊕” denotes the con-
catenation of the vectors in Fig. 3. The output representations
of the convolution operations are defined by formula (2) to
formula (6):

hc1 � g
(

Conv2d
(

hbert |̂s1h, ŝ1w
))

(2)

hc2 � g
(

Conv2d
(

hbert |̂s2h, ŝ2w
))

(3)

hc3 � g
(

Conv2d
(

[hc1 ; hc2 ]|̂s3h, ŝ3w
))

(4)
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hc4 � g
(

Conv2d
(

hc3 |̂s4h, ŝ4w
))

(5)

hc5 � g
(

Conv2d
(

hc4 |̂s5h, ŝ5w
))

(6)

where Conv2d represents the specific convolution opera-
tion, the notation "|" implies that the convolution operation
dependents on the parameter ŝih and ŝiw, which are hyper-
parameters. The symbols ŝih and ŝiw separately represent the
height and the width of the filter in the convolution operation,
and the notation i represents the ith convolution operation.
The concatenation operation is denoted by the symbol “;”,
it means concatenating in the column of the matrix in for-
mula 4. for the sake of simplicity, |Sinput| is represented by p,
hbert ∈ Rp×d is the output representation of the BERTmodel,
hc1 ∈ Rp×d1 , hc2 ∈ Rp×d2 , hc3 ∈ Rp×d3 , hc4 ∈ Rp×d4 , and
hc5 ∈ Rp×d5 are the output representations of the five convo-
lution operations, respectively. The dimension of the output
channels of each convolution operation is d1, d2, d3, d4, and
d5, respectively. The parameters d1, d2, d3, d4, and d5 are
all hyper-parameters and customized in the multiple convo-
lution layer.

In each convolution operation of the proposed MCRN
model, for keeping the number of input sequences the same,
the padding is added to both sides in the first dimension of
the input representations in all convolution operations. The
stride of each convolution operation is set to 1, and the value
of padding of each convolution operation is (̂sih − 1)/2.

Fully connected layer

For the purpose of transforming output representations of
the multiple convolution layer into suitable features for the
next layer or module, the fully connected layer is designed in
the MCRNmodel. The multi-layer perception (MLP) makes
up the fully connected layer. The computational formula is
given as formula (7):

hm � relu(hc5 · Wm + bm) (7)

where Wm ∈ Rd5×dm is the learned parameter, the bias term
is bm ∈ Rdm in the fully connected layer, both parameters
are learned in the training process, the operation “·” denotes
the dot product operation, hm ∈ Rp×dm , dm represents the
output dimension in the MLP.

Bidirectional GRU layer

In the ATE task, the sequence information and long-distance
dependencies are important. The vanilla RNN isweak in cap-
turing long-distance dependencies because the problem of
vanishing gradient damages the model performance, espe-
cially when dealing with long sentences. To overcome the

problem in the vanilla RNN, the GRU model has been
developed, it is a variant of the vanilla RNN. GRU is
good at modeling the sequence information and capturing
the long-term dependencies. Instead of unidirectional GRU,
bidirectional GRU is employed in MCRN. The advantage
of the bidirectional GRU is that not only the forward but
also backward information of the sentence can be mod-
eled. Forward information is historical information, future
information is backward information toward a token in the
sentence. The architecture of the bidirectional GRU can be
found at the top of Fig. 3.

The forward and backward GRU forms the bidirectional
GRU. As shown in Fig. 3, the sequence input order of the
forward GRU is the same as the word order, the sequence
input order of the backward GRU is from right to left. In the
unidirectional GRU, it is composed of two gates and one hid-
den. Let’s take the forward GRU as an example, the outputs
can be obtained by formula (8) to formula (11):

zt � σg(Wzh
m
t + Uzht−1 + bz) (8)

rt � σg(Wrh
m
t + Urht−1 + br) (9)

h̃t � g(Whh
m
t + Uh(rt � ht−1) + bh) (10)

ht � (1 − zt)�ht−1 + zt � h̃ (11)

where σg represents the logistic function, g represents the
hyperbolic tangent function in the current GRU of MCRN,
the output of tth token in GRU is ht ∈ Rdg×1, dg is the
output size of the GRU unit, hmt ∈ Rdm×1 is the hidden
representation of the fully-connected layer toward the tth
token, in other words, hmt is the input of GRU toward the tth
token in a sentence. The update and reset gates are zt and
rt in GRU, respectively. The element-wise multiplication is
denoted by the symbol �. For simplicity, the symbol

−→
h t is

used to denote the final output of the forward GRU and the
symbol

←−
h t is used to denote the output representation of the

backward GRU toward the tth token in a sentence. The final
output representations of bidirectional GRU can be obtained
as formula (12):

ht � [
−→
h t;

←−
h t] (12)

where
−→
h t ∈ Rdg×1,

←−
h t ∈ Rdg×1, ht ∈ R2dg×1, the concate-

nating vector operation is represented by the symbol “;” in
the formula 12.

Multi-layer encoder

The single-layer encoder can be extended to a multi-layer
encoder. The overall architecture of the multi-layer encoder
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Fig. 4 The overall framework of the multi-layer encoder with three computational layers (hops) in IANN

with three computational layers (hops) is exhibited in Fig. 4.
The multi-layer architecture can capture more useful infor-
mation. For the specific end task, the multi-layer encoder can
learn the more appropriate and informative representations
with the increment of the layers.

Each computational layer (hop) except the last computa-
tional layer (hop) is composed of an MCRN model with an
MLP. The last computational hop only consists of anMCRN.
Compared to previous hops, the last hop does not involve an
MLP, because the last hop does not need to transform the
output features to the input representations that are appropri-
ate for the modeling in the next hop. The final outputs of the
multi-layer encoder are the output features generated by the
last hop, the final output representations are directly fed into
the decoder.

The parameter sharing strategy is used to accelerate the
training process and avoid having too many parameters in
the model. The parameters of MCRNs and MLPs in each
hop are shared. Take the multi-layer encoder with the three

computational hops as an example, the outputs of the multi-
layer encoder can be obtained by formula (13) to formula
(17):

hl1t � MCRN
(

hbertt

)

(13)

hg1t � Relu
(

Wg

[

hl1t ; h
bert
t

]

+ bg
)

(14)

hl2t � MCRN
(

hg1t
)

(15)

hg2t � Relu
(

Wg

[

hl2t ; h
bert
t

]

+ bg
)

(16)

het � hl3t � MCRN
(

hg2t
)

(17)

where het ∈ R2dg×1 denotes the final output representations
of the multi-layer encoder, hl1t ∈ R2dg×1, hl2t ∈ R2dg×1 and
hl3t ∈ R2dg×1 are respectively the outputs of MCRN in hop1,
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Fig. 5 The overall framework of the decoder

hop2, andhop3 toward tth token, the dimensionof the hidden
representation in the GRU unit of MCRN is dg, h

g1
t ∈ Rdn×1

and hg2t ∈ Rdn×1 are respectively the outputs of MLP in hop
1 and hop 2 toward tth token, the dimension of hidden repre-
sentation in MLP of the multi-layer encoder is dn, MCRN()
denotes the operations of MCRN, Wg ∈ Rdn×(2dg+d) and
bg ∈ Rdn are separately the weight and bias in the MLP, they
are learned in the training process.

Decoder layer

The decoding layer receives the output representation from
the encoder layer as the input. The initial state of the uni-
directional GRU in the decoding layer is initialized by the
last forward hidden output of the bidirectional GRU of the
last hop. The decoder layer is used to decode the encoding
representations to generate the labels ofwords. The fully con-
nected layer, softmax layer, and GRU make up the decoding
layer. Besides, this paper proposes the novel AO tags which
are consisted of two labels: aspect and outside. The overall
architecture of the decoder can be seen in Fig. 5. The fol-
lowing subsections discuss the details of each layer of the
decoder.

GRU layer

In the decoding layer, it is not possible to utilize future infor-
mation (backward information) to predict the current label in
a real scenario. Hence, the unidirectional GRU is employed
in the decoder. The details of the GRU have been discussed
in the previous section, these details are not described in this
section. It is worth pointing out that the initial state of the uni-
directionalGRU in the decoder is assigned by the last forward
hidden representation in the bidirectional GRU. The overall
meaning of a whole sentence is important for predicting the
labels in the ATE task. For example, “The memory is nearly
full” in a laptop review, the explicit aspect term is the word
“memory”, however, in another sentence “The memory is a
little fuzzy”, the word “memory” is not an aspect term. The
last forward output representation of the bidirectional GRU
ofMCRN can capture and model the overall semantics of the
sentence. In other words, the representation of the specified
sentence is obtained by the last forward output representation
of the bidirectional GRU of MCRN. Hence, the model can
improve performance by considering the overall meaning of
a whole sentence in the ATE task.

For the specific token, the label information of its previous
token is also important to accurately obtain its label. The
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Fig. 6 The difference between
BIO tags and AO tags

decoder can directly make use of the previous word’s label
information to improve the model performance by feedback
on previous label information. The outputs of the GRU layer
in the decoder can be obtained by formula (18) to formula
(19):

hut � GRU([het ; ê]) (18)

ê � lookup(̃yt) � E · ỹt (19)

where hu0 � −→
h

e
p, h

u
t ∈ Rdu×1 denotes the outputs of the

unidirectional GRU unit belonging to the decoding layer, du
is the size of the outputs, GRU() denotes all operations of the
GRU unit in formulas 8–11, the parameters of the GRU unit
in the decoding layer are different from the parameters of
the bidirectional GRU unit in the encoding layer, ê ∈ Rr×1

is the label embedding, the size of the label embedding is
r, E ∈ Rr×c is the label embedding matrix, ỹt ∈ Rc×1 is
the predicted label’s one-hot vector toward the tth token in
a sentence, the number of output labels is c for each token,
lookup() denotes the lookup table operation.

Fully connected layer

In order to transform the hidden states of GRU into the appro-
priate features for the label prediction, the fully connected
layer is employed. In the decoder, the fully connected layer
receives outputs of the unidirectional GUR as the inputs. An
MLP constitutes the fully connected layer in the decoder. The
MLP in the decoder is different from theMLP in the encoder,
the former does not involve a nonlinear operation. The out-
puts of the fully connected layer are denoted as formula (20):

hvt � Wvh
u
t + bv (20)

where hvt ∈ Rdv×1, Wv ∈ Rdv×du , bv ∈ Rdv are the weight
and bias in the MLP of the decoding layer, they are also

learned in the training process, and the output size of MLP
is dv in the decoder layer.

Softmax layer

For the purpose of getting the probabilities of each label
toward a specific word, the softmax layer is developed in the
decoder which consists of the softmax function. The label
toward a certain word is obtained by finding the label with
the maximum value after the softmax function. The compu-
tational process can be seen from formula (21) to formula
(22):

hst � softmax (hvt ) (21)

ŷt � argmax
c

(hst ) (22)

where hst ∈ Rc×1 is the probability distribution value of the
tth token in the softmax function, c is the total number of all
label classes.

AO labels

This paper develops the novel dual tags, named AO tags,
as the less challenging tagging scheme. The AO tags con-
tain two labels: A (Aspect) and O (Outside). The Aspect tag
denotes that the current word is the aspect term, and the Out-
side tag denotes that the current term is a non-aspect term.
For instance, It has a bad memory but a great battery life,
memory and battery life are two aspect terms, the output
label sequence of the specific sentence using AO tags can
be seen in Fig. 6. The AO tags are the less challenging tag-
ging scheme. Because modeling the probability distribution
of two types of tags is easier than modeling the probability
distribution of three types of tags.
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Algorithm 1 The process of extracting different aspect terms under AO tags
Input: the batch output sequence array of AO tags (T), the length of the specific input 

sequence (n), the batch raw input text array (R), the output “0” in T denotes Outside tag, 
the output “1” in T denotes Aspect tag

Output: the aspect terms list (AT) 
1. A = [] // initialization of the aspect term list 
2. B = T // initially array for BIO tags 
3. repeat s in Output (B) // selecting each sentence 
4.  a = n - 1 
5.  repeat a 
6.    i = 0 
7.    if s[i] == 1 or s[i] == 2 
8.      j = i + 1 
9.      if s[j] == 1 
10.        s[j] = 2 
11.   i = i +1 
12.  end repeat
13. end repeat
14. a = 0 
15. repeat sentence (s) in Output (B) 
16.  start_index = 0, end_index = 0 
17.  predict_terms = [] // initially empty array of predicting for the current sentence 
18.  i = 0 
19.  repeat n  
20.    if s[i] == 1 
21.      start_index = i 
22.      flag = False 
23.      j = 0  
24.      repeat sentence (k) in Output (B[i+1: ])  
25.        if k[j] != 2 
26.          if flag is False 
27.            end_index = start_index        
28.          else
29.            end_index = start_index + 1 
30.          break
31.        if k[j] == 2  
32.          end_index = i + 1 + j
33.          flag = True 
34.        j = j + 1 
35.      end repeat
36.      aspect = R[a][start_index : end_index] 
37.      add aspect in predict_terms 
38.    i = i + 1 
39.  end repeat
40.  a = a + 1 
41.  add predict_terms to AT 
42. end repeat
43. Output: the aspect term list (AT) 

The most important thing about AO tags is how to get
the different aspects under the AO tags in the ATE task. For
BIO tags, it is easy to identify the different aspect terms by B
tag. In a general way, the B tag denotes the beginning of an
aspect term. For AO tags, the different aspects are separated
by O tag, the difference between AO tags and BIO tags is
illustrated in Fig. 6. The rules of detecting these different

aspect terms under the AO tags are designed in Algorithm 1.
Algorithm 1 explains in detail how to transform AO tags into
BIO tags and then detect the different aspect terms.
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Experiments

All datasets are described and abundant experiments are per-
formed to show the excellent performance of IANN. The
corresponding results are reported and the reasons why the
proposed model can outperform other SOTA baselines are
discussed in detail.

Datasets

To maintain consistency with previous studies, the laptop,
restaurant, and twitter datasets are used to perform abundant
experiments. These datasets are from different sources. The
laptop dataset is from SemEval 2014 [59] which contains
product reviews in a laptop domain. The restaurant dataset
consists of SemEval 2014, 2015, and 2016 [60, 61] from
the restaurant domain. The twitter dataset is built by Michell
et al. [62] and is composed of twitter posts. The training
and testing sets already exist in the laptop and restaurant
datasets, IANN is trained on the training set and tested on the
testing set. Following Li et al. [63] and Hu et al. [56], in the
experiments, ten-fold cross-validation is used on the twitter
dataset, as there is no training and testing set in the twitter
dataset. In all datasets, the gold labels of all aspect terms are
available, all aspect terms are labeled with the corresponding
tags. Table 2 shows the statistics of three datasets, such as
the number of all aspect terms and sentences, the max length
of all aspect terms. Besides, the maximum number of all
aspect terms within a sentence for the laptop, restaurant, and
twitter dataset is 9, 25 and 9, respectively. For each fold of
the twitter dataset, the training and testing sets contain 2115
and 235 sentences, respectively.

Experiment and hyperparameter setting

The publicly available BERTBASE is employed in the con-
textualized embedding layer of the proposed model. In the
single-layer MCRN encoder, the size of the convolution ker-
nel is 3 inConv2d-1, and the size of the filter is 5 inConv2d-2,
3, 4, and 5. The dimension of the outputs in Conv2d-1 and
Conv2d-2 is 128, and the dimension of the outputs inConv2d-
3, 4, and 5 is 256. The dimension of hidden representations
of the unidirectional GRU unit in the encoder and decoder is
300. The dimension of label embedding is 100. The Adam
optimizer is adopted to optimize parameters in IANN, and
the learning rate of Adam is set to 0.00002. In the training
stage, the warmup strategy is adopted and the value of the
warmup is 0.1. The training epoch is 100 and the batch size
is 32 in our experiments. The dropout is used in the proposed
model and it is set to 0.55.

In this work, the evaluating metrics are the precision,
recall, and F1 in the proposed model. Their computational

formulas can be seen from formula (23) to formula (25):

P � TP

TP + FP
(23)

R � TP

TP + FN
(24)

F1 � 2 × P × R

P + R
(25)

where P means precision, R means recall, TP is the true pos-
itives, FP is the false positives and FN is the false negatives.

Baselines

Some baselines related to the ATE task are described in this
section. For validating the efficacy of the important layers or
modules in IANN, the corresponding variants toward IANN
are designed. To show the superior performance of IANN,
this paper describes the SOTA models which are used to be
compared to the proposed model in the ATE task.

Variants of IANN

In the proposed model, the contextualized embedding layer
and the MCRN model are fundamental in the proposed
IANN. For verifying the validity of the layers or components
of IANN, some variants of IANN are developed. IANN-v1
is designed to verify the contextualized embedding layer.
IANN-v2, IANN-v3, and IANN-v4 are proposed to validate
the effectiveness of the MCRNmodel. IANN-v5 is designed
to verify the method of capturing the overall semantics of a
sentence which are used in the decoder in IANN. IANN-v6
is designed to verify the AO tags.

1. IANN-v1: This variant of IANN discards the con-
textualized embedding layer and employs fixed word
embeddings in IANN. In other words, the BERT model
is not used in this model, the 300d-Glove [64] word
embeddings are employed tomap thewords into the fixed
word embeddings. The difference between IANN-v1 and
IANN is that IANN-v1 lacks the ability tomodel dynamic
word meaning, in other words, IANN-v1 employs static
pre-trained word embedding.

2. IANN-v2: This variant of IANN discards the multiple
convolution operations and only remains the recurrence
operations in MCRN. Hence, there is only the bidirec-
tional GRU in MCRN, not including the convolution
operations. The inputs of the bidirectional GRU in
MCRN are the outputs of the contextualized embedding
layer. The major difference between IANN and IANN-
v2 is that this variant removes the multiple convolutional
operations in MCRN. In IANN-v2, it cannot model the
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Table 2 The information for all datasets

Dataset Total Training Testing

#Sent #Aspect #Max #Sent #Aspect #Max #Sent #Aspect #Max

Laptop 1869 2936 11 1458 2302 9 411 634 11

Restaurant 3900 6603 25 2481 4314 25 1419 2289 16

Twitter 2350 3243 22 – – – – – –

#Max denotes the maximum length of all aspect terms, #Aspect and #Sent denote the number of all aspect terms and sentences separately

information of the surrounding words toward a specific
word and detect local features.

3. IANN-v3: This variant of IANN removes the recurrence
operations in MCRN, there are only the multiple con-
volutional operations in MCRN. The major difference
between IANNand this variant is that the lattermodel dis-
cards the bidirectional GRU in MCRM. In other words,
IANN-v3 lacks the ability to model the word order infor-
mation and capture the long-term dependencies.

4. IANN-v4: This variant of IANN employs the multi-
ple transformers in the encoder, not using the multiple
convolution and recurrence operations of MCRN. The
difference between IANN and this variant is the latter
model employs multiple transformers rather thanMCRN
as task-specific layers on top of BERT.

5. IANN-v5: This variant of IANN employs the average
pooling of the forward outputs of the bidirectional GRU
in MCRN to capture the overall semantics of a sen-
tence, instead of using the last forward outputs of the
bidirectional GRU in MCRN. In the decoder, the differ-
ence between IANN and IANN-v5 is that IANN-v5 uses
the average pooling of the forward outputs of MCRN
and concatenates average pooling representations, label
embedding, and outputs of the encoder as inputs of the
decoder.

6. IANN-v6: This is sixth the variant of IANN. Instead of
AO tags, BIO tags are used in IANN-v6. The difference
between IANN-v6 and IANN is that IANN-v6 uses BIO
tags in the decoding stage, however, IANN uses AO tags
in the decoding stage.

State-of-the-art methods

Some state-of-the-art methods in ATE are used to compare
with IANN, they are CRF, WDEmb, Bi-LSTM, BiLSTM-
CNN-CRF, DE-CNN, HAST, Seq2seq4ATE, DOER, TAG,
SPAN, and BERT-BiGRU-CRF. The CRF and WDEmb fall
into the category of utilizing CRF. The Bi-LSTM, BiLSTM-
CNN-CRF, DE-CNN, and BERT-BiGRU-CRF fall into the
category of employing neural networks in the ATE task.
The HAST is the joint method for extracting opinion and

aspect terms simultaneously. The Seq2seq4ATE belongs to
the seq2seq model for the ATE task. The DOER, TAG, and
SPANare theBERT-basedmethods for theATE task and they
are also the joint methods for identifying aspect terms and
the corresponding sentiment polarity. As most of these base-
lines employ the BIO tags as the tagging labels, IANN with
the BIO tags, named IANN-BIO, is also used to demonstrate
the superior performance of the developed framework.

1. CRF: CRF makes use of the Glove [64] word embed-
ding as well as some basic feature templates in the CRF
model for the ATE task.

2. WDEmb:WDEmb is the first to learn embeddings of the
words and dependency paths. The optimization objec-
tive can be formalized as w1+r ≈ w2, where w1, w2 are
words, r is the corresponding path. The model employs
CRF as the decoder, and the learned word embeddings
and dependency path embeddings are used to predict
the label in the ATE task [65].

3. Bi-LSTM: Bi-LSTM applies different kinds of Bi-
RNN in the ATE task, such as Elman/Jordan-type
RNN. Besides, different kinds of embeddings are also
employed in the method, such as google embedding or
amazon embedding [66].

4. BiLSTM-CNN-CRF: BiLSTM-CNN-CRF is the out-
standing method for identifying all named entities in
a sentence. It employs CNN and Bi-LSTM to model
character and word-level representations, separately.
The CRF is used to generate the appropriate transitions
between labels [67].

5. DE-CNN: DE-CNN applies both Glove embedding and
domain embedding in the multilayer convolutional neu-
ral network for extracting aspect terms [7].

6. HAST: HAST deals with the ATE task using two useful
additional information with LSTMs which are opinion
summary and aspect detection history [68].

7. Seq2seq4ATE: Seq2seq4ATE is the first to view the
ATE task as the seq2seq labeling task. Besides, the
decoder can leverage the word representations by a
gated unit network. For considering the information of
adjacent words in the decoding stage, position-aware
attention is designed in the encoder [55].
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Table 3 The experiments of different variants on each dataset

Method Laptop Restaurant Twitter

P R F1 P R F1 P R F1

IANN-v1 81.47 80.44 80.95 78.04 88.82 83.08 68.12 64.94 66.48

IANN-v2 84.84 87.38 86.09 85.39 90.65 87.94 74.19 77.43 75.76

IANN-v3 84.87 88.49* 86.64 85.43* 90.35 87.82 73.22 78.29 75.66

IANN-v4 82.32 87.38 84.77 84.70 90.00 87.27 73.89 77.81 75.78

IANN-v5 84.00 86.12 85.05 84.38 90.87 87.51 72.34 78.17 75.12

IANN-V6 86.40 88.15 87.27* 85.25 91.32* 88.18* 74.50* 78.34* 76.37*

IANN 86.22* 88.80 87.49 85.48 91.52 88.40 74.54 78.68 76.54

The precision is denoted by “P”, the recall is denoted by “R”, and the F1 value is denoted by “F1”. The best result is expressed in bold, and the
second-best result is indicated by an asterisk

8. DOER:DOER is a dual architecturemethod. Themodel
can learn the corresponding different features for differ-
ent tasks. In order to model the correlation of two tasks,
a cross-shared unit is proposed in DOER [8].

9. TAG: TAG performs the ATE task by the paradigm of
the sequence labeling method, it employs BERT as an
encoder and uses a CRF as the decoder [56].

10. SPAN: SPAN is the SOTA model in the ATE task. It
employs aspect term span boundaries to detect aspect
terms, not viewing ATE as the sequence tagging prob-
lem. There are two pointers, namely the start position
and the end position, in a span boundary. The BERT
model is employed as the backbone network in SPAN,
and it can identify multiple aspect terms in a sentence
at the same time [56].

11. BERT-BiGRU-CRF: BERT-BiGRU-CRF employs the
BERT, the single-layer bidirectional GRU, and CRF for
ATE.

The architectures of CRF, WDEmb, Bi-LSTM, BiLSTM-
CNN-CRF, HAST, and Seq2seq4ATE are the same as the
architectures that are presented inMaet al. [55]. The architec-
tures ofDE-CNNandDOERare in linewith the architectures
that are described in Luo et al. [8]. The architectures of TAG
and SPAN are as with the architectures that are described in
Hu et al. [56].

Overall results

The experimental results of the developed method and other
baselines are reported in this section. Besides, this paper also
demonstrates the effect of the proposed method and pro-
vides a comprehensive analysis to explain why the proposed
method can perform better than other baselines.

Results of IANN variants

The ablation experiments are used to verify the efficacy of
the important modules or layers of IANN. Specifically, six
variants are used to compare with IANN. The corresponding
results of these variants toward each dataset are reported in
Table 3, and the average performance of each variant toward
all datasets is shown in Fig. 7.

As shown in Table 3, IANN acquires the best precision,
the best recall, and the best F1 scores in most of the datasets.
The paired t test has been performed in Table 3, and the
results are p < 0.05. In Fig. 7, the experimental results show
that IANN acquires the highest average precision, recall, and
F1 values on all datasets. All these experiments validate the
effectiveness of the important modules and layers that are
designed in the proposed IANN model.

The difference between IANN and IANN-v1 is that
IANN-v1 does not consider the dynamicmeaning ofwords in
different contexts. The significant performance degradation
from IANN in precision, recall, and F1 indicates that captur-
ing the dynamic meaning of the words is very important in
ATE. Besides, it proves that the contextualized embedding
layer in IANN successfully models the dynamic meaning of
the words and improves the model performance.

IANN-v2, IANN-v3, and IANN-v4 verify the efficacy
of MCRN. IANN-v2 throws away the multiple convolution
operations, it only employs the bidirectional GRU to capture
the long-term dependency and encode sequence information
in the encoder. When comparing IANN-v2 and IANN, the
performance of IANN-v2 drops on all datasets. IANN-v2
cannot integrate information of surrounding words toward
a specific word and detect the local features in a sentence.
Even if the information of surrounding words toward a spe-
cific word is captured and the local features are detected,
the performance of the model may be unsatisfactory. The
performance degradation of IANN-v3 validates this view,
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Fig. 7 The average performance of variants of IANN on all datasets. a Shows the average precision, b shows the average recall, c shows the average
F1 score

the information of surrounding words and local features are
considered in IANN-v3, but it does not consider modeling
the sequence information and capturing long-distance depen-
dencies. There are many alternatives such as transformers on
top of BERT. However, their performance does not perform
as well as MCRN. This is illustrated by IANN-v4. IANN
employs MCRN to model the more informative information.
MCRN can not only integrate the information of surround-
ingwords toward a specificword and detect the local features
but also model the sequence information and capture long-
distance dependencies.

IANN-v5 demonstrates that using the forward last hidden
state of the bidirectional GRU in MCRN as the initializing
the decoder is more effective than concatenating the average
pooling of the forward outputs of the encoder, label embed-
ding, and outputs of the encoder as the inputs of the decoder.
That is to say, themethodwhich is employed in IANN ismore

appropriate than the average method which is employed in
IANN-v5 in terms of capturing the overall semantics of a
sentence for the decoder.

IANN-v6 validates the validity of the proposed AO tags.
IANN-v6 employs the BIO tags in the decoding stage. As
shown in Table 3, IANN-v6 achieves the second-best per-
formance on all datasets. Besides, the experimental results
in Fig. 7 also show that IANN-v6 acquires the second-best
results on the average performance of all datasets. On the one
hand, the experimental results fully prove that the AO tags
are less challenging than BIO tags in the ATE task, the model
performance can be improved by the AO tags to some extent.
On the other hand, compared to other variants of IANN, the
experiments further imply the significance of the designed
contextualized embedding layer and the MCRN model.

Table 3 shows that IANN-v2 outperforms IANN-v3 on
the restaurant dataset and twitter dataset. The main reason
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is that sequence information and long-distance dependen-
cies are more important in the ATE task. Capturing the word
order information and long-distance dependencies can pro-
vide more useful information to determine whether a word is
an aspect term in the ATE task. However, the performance of
IANN-v3 is more than the performance of IANN-v2 in the
laptop dataset which is shown in Table 3, and IANN-v3 also
achieves better average performance than IANN-v2 which
is presented in Fig. 7. As shown in Table 2, the scale of the
laptop dataset is relatively small, in this scenario, modeling
the information of surroundingwords toward aword can pro-
vide more useful information for ATE than the information
provided by modeling sequence information and capturing
long-distance dependencies. Therefore, integrating the infor-
mation of surroundingwords is a powerfulmethod in theATE
task. Besides, themaximumword number of a specific aspect
termwithin the laptop dataset is less than themaximumword
number of a specific aspect termwithin the restaurant dataset
and twitter dataset. Hence, the importance degree of long-
term memory in the laptop dataset is less important than the
importance degree in the restaurant and twitter dataset.

As can be seen from Table 3, IANN-v1 obtains the worst
performance in the twitter dataset than the performance of
IANN-v1 in the laptop and restaurant datasets. Themain rea-
son why it performs worst on the twitter dataset is that the
sentence in twitter is casual and the meaning of words in a
sentence highly depends on the context. The pre-trainedword
embeddings in IANN-v1 are fixed and cannot capture contex-
tualized information. In other words, modeling the dynamic
word sense by employing contextualized word embedding
can effectively alleviate the problem in IANN-v1. This is
demonstrated by the performance of other variants and the
proposed IANN.

Results of state-of-the-art methods

To be consistent with the previous works which generally
employ F1 as the metric, this paper presents F1 values of the
SOTA baselines and our model with the BIO tags, named
IANN-BIO. The results of TAG and SPAN using their codes
with the base type of BERT are shown in Table 4. The F1 val-
ues of DE-CNN and DOER are reported from Luo et al. [8].
The results of the other state-art-the-art methods are reported
from Ma et al. [55] where they do not report twitter and
restaurant collection from2014, 2015, and2016datasets. The
results of these baselines and the novel IANN with BIO tags
can be seen in Table 4. IANN-BIO means that the proposed
IANNemploys theBIO tagging scheme in the decoding state.
As can be seen from Table 4, the IANN-BIO model acquires
the best F1 score on all datasets when the IANN-BIO model
is compared with other SOTA methods. IANN-BIO outper-
forms other baselines on all datasets by around 0.22–1.85%
than other methods. For the reason that some methods only

Table 4 The F1 values of the baselines and the proposed method

Method Laptop Restaurant Twitter

CRF 74.01 – –

Bi-LSTM 75.25 – –

WDEmb 75.16 – –

BiLSTM-CNN-CRF 77.80 – –

DE-CNN 81.26 78.98 63.23

HAST 79.52 – –

Seq2seq4ATE 80.31 – –

DOER 82.61 81.06 71.35

TAG 85.36 87.53 76.07

BERT-BiGRU-CRF 85.42* 87.61* 76.15*

SPAN 84.91 85.24 75.78

IANN-BIO 87.27 88.18 76.37

The best result is expressed in bold, and the second-best result is indi-
cated by an asterisk. The symbol ‘–’ denotes that the corresponding
experiment is not performed in the original paper

report F1 values on the laptop dataset in Table 4, hence,
this paper performs the paired t test about DE-CNN, DOER,
TAG, BERT-BiGRU-CRF, SPAN, and IANN-BIO. The val-
ues of paired t test between these baselines and the proposed
IANN are all p < 0.05 in Table 4. The <precision, recall>
pairs ofTAGrespectively are <84.76, 85.96>, <85.04, 90.17>
and <75.69, 76.53> on laptop, restaurant, and twitter dataset.
The <precision, recall> pairs of BERT-BiGRU-CRF respec-
tively are < 84.73, 86.12>, <85.16, 90.21>, and <75.72,
76.58> on laptop, restaurant, and twitter dataset. The <preci-
sion, recall> pairs of SPAN respectively are < 84.64, 85.17>,
<83.76, 86.76>, and <78.24, 73.84> on laptop, restaurant,
and twitter dataset. The <precision, recall> pairs of IANN-
BIO respectively are <86.40, 88.15>, <85.25, 91.32>, and
<74.50, 78.34> on laptop, restaurant, and twitter dataset.

The additional experiments are also performed on the pro-
posed AO tags, the methods used for comparison are TAG-
AO, BERT-Multilayer BiGRU-CRF (BMBC), and IANN.
The TAG model with AO tags is abbreviated as TAG-AO.
TheBMBCmodel consists of BERT,multilayer bidirectional
GRU, and CRF. The number of layers of BMBC and IANN
is identical. The experimental results of these methods in all
datasets are illustrated in Fig. 8. As shown in Fig. 8, IANN
still acquires the best results in all datasets with AO tags.

The first reason that our method can achieve superior per-
formance is that this paper explicitly models the dynamic
meaning ofwords in a sentence by the contextualized embed-
ding layer. The contextualized word embeddings generated
by the contextualized embedding layer can provide more
precise and beneficial information to the next layers or
modules, the beneficial information can enhance the model
performance. The experimental results of IANN-v1 validate
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Fig. 8 The performance of different methods on three datasets with AO tags. a–c Show the performance in the laptop dataset, d–f show the
performance in the restaurant dataset, g–i show the performance in the twitter dataset

the efficacy of the contextualized embedding layer and our
assumption.

The second reason that our model can achieve supe-
rior performance is that MCRN can learn more informative
information. The MCRN model can not only integrate the
information of surrounding words toward a word and detect
the local features but also model the sequence information
and capture long-distance dependencies. In the encoder, these
abilities are important for the model. Therefore, the MCRN
model can capture more informative information. The base-
line model IANN-v2 eliminates the multiple convolution
operations, which leads to a model ignoring integrating the
information of surrounding words and detecting the local
features, hence, resulting in poor performance. Also, the
baseline model IANN-v3 removes the bidirectional GRU,
which leads to the model lacking the ability to model
sequence information and capture long-distance dependen-
cies.

To further validate the effectiveness of MCRN toward
capturing long-distance dependencies and integrating the
information of surrounding information, the BMBC model
and IANNon theAO tags are compared in detail. The BMBC
model consists of BERT, multilayer bidirectional GRU, and
CRF. The number of layers in the multilayer bidirectional
GRU of BMBC is the same as the number of layers in the
multilayer MCRN of IANN. The performance of different
methods can be seen in Fig. 8. The experimental results show
that IANN outperforms BMBC in Fig. 8, and these results
also provide sounder evidence for verifying the efficacy of
MCRN in IANN.

The third reason that our model can achieve superior
performance is because of the multi-layer structure in the
encoder. The multi-layer MCRN can learn the more infor-
mative higher-order features, which are more appropriate
representations for theATE task. To further validate the valid-
ity of the multilayer architecture in the proposed model. The
IANN model is compared with other multilayer architecture
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Fig. 9 The performance gain of different models with multilayer archi-
tecture in the laptop dataset and restaurant dataset

models, such asBERT-MultilayerBiGRU-CRF (BMBC) and
IANN-v4, in terms of performance gain in different layers
on the laptop and restaurant datasets under the AO tagging
scheme. In IANN-v4, it replaces themultiple convolution and
recurrence operations of MCRN with multilayer transform-
ers. The BMBC model is an alternative sequence labeling
method. The performance gain of the model is calculated
from 1 to 2 layers and 6 layers on the laptop and restau-
rant datasets, respectively. Because the performance gain of
IANN-v4 is negative, the absolute value of the performance
gain of IANN-v4 is used. Figure 9 reports the experimental
results of performance gain. The IANN model acquires the
best performance gain when compared with other models.
It also demonstrates the influence of higher-order features
captured by IANN.Themain reason that themultilayer archi-
tecture designed in the proposed model can acquire the best
performance gain is that MCRN can encode the more infor-
mative information and integrate information of surrounding
words in a sentence, as well as the multi-layer MCRN can
further improve the model’s ability to encode information.
Hence, the proposed model’s performance with multilayer
architecture can acquire better performance than other mod-
els.

This paper also reports the proposedmodel’s performance
on both AO tags and BIO tags. Table 5 reports the corre-
sponding results. It can be seen from Table 5 that IANNwith
AO tags outperforms IANN with the BIO tags (IANN-BIO)

in all datasets. The important reason is that AO tags are a
less challenging task. To further validate the efficacy of AO
tags, additional experiments toward TAG on both AO tags
and BIO tags are performed. The compared models are TAG
and TAG-AO. TAG consists of a BERT model and a CRF.
The labeling scheme of TAG is the BIO tags. The structure
of TAG-AO is the same as the TAG, but the labeling scheme
of TAG-AO is the AO tags. The precise, recall and F1 of
both models on three datasets are shown in Fig. 10. The AO
tags roundly outperform the BIO tags on three datasets. The
TAG-AO model respectively exceeds the TAG by 0.99 F1,
0.15 F1, and 0.41 F1 in the laptop dataset, restaurant dataset,
and twitter dataset. The experimental results again prove the
validity of the AO tags.

To make the architecture of the model clearer, the hyper-
parameters and settings of some baselines mentioned above
are presented in Table 6. The notation “n_layers” represents
the number of layers of the multilayer architecture in the
model. The notation “Lap” denotes the laptop dataset, “Res”
denotes the restaurant dataset, and “Twi” denotes the twitter
dataset.

Analysis of the effect of sentence lengths

To further study the proposed model’s performance and fur-
ther reveal the potency of the proposed model, additional
experiments concerning different sentence lengths on lap-
top and restaurant datasets are performed. Figure 11 reports
the corresponding results, the models to be compared with
the proposed model are the TAG and SPAN models. The
experimental results of TAG and SPAN concerning differ-
ent sentence lengths are reported from the original paper.
From Fig. 11a, the experimental results show that the pro-
posed IANN with the BIO tagging scheme (IANN-BIO)
outperforms other baselines by 1.07 F1 and 3.81F1 when
the sentence length is less than 40 and surpasses TAG by
5.69 F1 when the length exceeds 40 on laptop dataset. As
can be seen from Fig. 11b, the IANN-BIO model surpasses
other models by 1.98 F1, 4.61 F1, and 14.14 F1 about all
sentence lengths on the restaurant dataset. The performance
of the TAG and SPAN models dramatically decreases as the
sentence length increases, while the IANN-BIO model can
achieve the more robust performance than other models for

Table 5 The experiments of the proposed model on both AO tags and BIO tags

Method Laptop Restaurant Twitter

P R F1 P R F1 P R F1

IANN-BIO 86.40 88.15 87.27 85.25 91.32 88.18 74.50 78.34 76.37

IANN 86.22 88.80 87.49 85.48 91.52 88.40 74.54 78.68 76.54

The precision is denoted by “P”, the recall is denoted by “R”, and the F1 value is denoted by “F1”. The best result is expressed in bold
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Fig. 10 The performance of models on the laptop, restaurant, and twitter datasets

Table 6 The hyper-parameters
and settings of the methods Methods Learning rate Regularization n_layers Tagging scheme

Lap Res Twi

IANN-v1 2e−5 Dropout 2 6 1 AO tags

IANN-v2 2e−5 Dropout 2 6 1 AO tags

IANN-v3 2e−5 Dropout 2 6 1 AO tags

IANN-v4 2e−5 Dropout 2 6 1 AO tags

IANN-v5 2e−5 Dropout 2 6 1 AO tags

IANN-v6 2e−5 Dropout 2 6 1 BIO tags

TAG 2e−5 Dropout – – – BIO tags

BERT-BiGRU-CRF 2e−5 Dropout – – – BIO tags

SPAN 2e−5 Dropout – – – span boundaries

IANN-BIO 2e−5 Dropout 2 6 1 BIO tags

TAG-AO 2e−5 Dropout – – – AO tags

BMBC 2e−5 Dropout 2 6 1 AO tags

IANN 2e−5 Dropout 2 6 1 AO tags

The symbol ‘–’ denotes that the model is the signal layer architecture
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Fig. 11 F1 on laptop and
restaurant w.r.t different sentence
lengths. a Reports the results in
the laptop dataset, b reports the
results on the restaurant dataset

Fig. 12 F1 on laptop and
restaurant w.r.t different aspect
term lengths. a Reports the
results in the laptop dataset,
b reports the results in the
restaurant dataset

short and long sentences. The experimental results verify that
the developedmethod is suitable for short and long sentences
due to the advantages that it can consider the dynamic word
meaning, model the more informative information, and inte-
grate the information of surrounding words.

Besides, from Fig. 11a, the experimental results show
that SPANoutperforms IANN-BIOwhen the sentence length
exceeds 40 on the laptop dataset. The reason is that the scale
of the laptop dataset limits the proposedmodel’s performance
in the scenario where the sentence length is long, and the
size of the laptop dataset is small. Compared to SPAN, the
proposed model is complicated and has more parameters.
The small dataset results in the proposed model underfitting
and causes the proposed model to fail to learn more use-
ful information when the sentence length exceeds 40. The
large dataset can alleviate the problem and it is validated by
Fig. 11b.

Analysis of the effect of aspect term lengths

To gain more insights on performance improvements of the
proposedmodel, additional experiments concerning different
aspect term lengths on the restaurant dataset and the laptop
dataset are performed. Figure 12 reports the experimental

results. The compared state-of-the-art methods are TAG and
SPAN. From Fig. 12, the experimental results show that the
performance of TAG and SPAN significantly decreases as
the aspect term length becomes longer, while our proposed
model is more robust for long aspect terms. The main reason
is that other baselines are weak in encoding the more infor-
mative information and integrating surrounding information
toward a specific word when they identify long aspect terms.
Our proposed model, on the contrary, can naturally allevi-
ate such problems because MCRN can effectively encode
the more informative information, which can not only inte-
grate the surrounding information toward a specificword and
detect the local features but also model the sequence infor-
mation and capture the long-distance dependencies.

Effect of the number of layers in multi-layer encoder

To analyze the proposed model’s performance concerning
different numbers of layers of the multi-layer framework of
the proposed IANN model and how to decide the optimal
number of layers of the multi-layer encoder for the ATE task.
Additional experiments toward different numbers of layers
in the multi-layer encoder of IANN are performed to validate
the influence of different numbers of layers of IANN on the
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Fig. 13 F1 of IANN toward different numbers of layers on three datasets

twitter dataset, the restaurant dataset, and the laptop dataset.
The corresponding results are shown in Fig. 13.

Figure 13 shows that different numbers of layers indeed
have different effects on the proposed model’s performance.
The optimal numbers of layers are different in different types
of datasets. In the laptop dataset and the restaurant dataset,
the optimal number of layers is 2 and 6, respectively. When
the model has fewer layers, dependency information and sur-
rounding information will not be effectively learned in the
model. Moreover, the model will suffer from over-fitting and
generating redundant information when the number of layers
is too large. In the twitter dataset, the number of layers has
little effect on model performance. The optimal number of
layers is 1 in the twitter dataset. The model is easy to over-
fit and learn noise information in the twitter dataset, which
decreases model performance.

Effect of the dimension of the label embedding

For the purpose of researching the effect of the dimension of
the label embedding, experiments with different dimensions
of label embeddings are performed on the laptop dataset,
restaurant dataset, and twitter dataset. The dimensions to be
compared are 50, 100, 150, and 200 respectively. Figure 14
reports the corresponding results.

As shown in Fig. 14, the dimension of label embedding
has a certain degree of influence on the proposed IANN. The
optimal dimension of label embedding is 100 in all datasets.
From Fig. 14, the experimental results show that there are
two obvious trends. The performance increases as the dimen-
sion increases when the dimension is less than 100, and the
performance decreases as the dimension increases when the
dimension is greater than 100. The main reason is that the
smaller dimension does not learn enough information and
the larger dimension makes the model overfit.

Fig. 14 F1 of IANN with respect to the different dimensions of label
embedding on three datasets

Effect of different sizes of the filter

In order to show the influence of the size of the convolution
kernel (i.e., filter), this paper performs experiments concern-
ing the size of thefilter in themultiple convolutionoperations.
Different sizes of the multiple convolutions are divided into
two groups, Group 1 involves Conv2d-1, Group 2 involves
Conv2d-2, 3, 4, and 5. The size of each of Group 2 is the
same. The sizes to be compared respectively are 3, 5, 7, and 9.
The experiments are performed on the laptop and restaurant
datasets. The corresponding results are reported in Fig. 15.

As shown in Fig. 15a, the proposed IANN acquires the
best results when the size of the convolution kernel in Group
1 is 3 on both datasets. It can be seen from Fig. 15b, the
proposed IANN acquires the best result when the size of the
convolution kernel in Group 2 is 5 on both datasets. Hence,
the default sizes of the convolution kernel of Group 1 and
Group 2 respectively are 3 and 5 in the proposed model.

Time complexity

Accurate analysis of the time complexity of themodel is very
challenging. For the purpose of incarnating the time com-
plexity of different methods, this paper performs additional
experiments concerning the running time of some methods,
such as Seq2Seq4ATE, TAG, SPAN, and IANN-BIO with a
single layer encoder, on the laptop dataset. The training envi-
ronment of all models is the same, Nvidia RTX 2080Ti GPU
is used in the experiments.

The experiments of the runtime of some state-of-the-art
methods in the training stage on BIO tags are reported in
Fig. 16. As shown in Fig. 16, the runtime of the proposed
method is 7 s less than Seq2Seq4ATE because the latter has
extra complex attention and gated unit computing operations.
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Fig. 15 F1 w.r.t different sizes of
the convolution kernel in Group
1 and Group 2. a Reports the
results in Group 1, b reports the
results in Group 2

Fig. 16 Running time of one epoch of different methods in the training
stage on the laptop dataset

Although the proposed model has complex operations in the
GRUunit along the sequential sequence, it still achieves com-
parable results compared with other methods that are not
based on GRU, such as TAG and SPAN.

Case study

Table 7 presents some cases sampled from the state-of-the-art
methods such as TAG, SPAN, and IANN-BIO. As observed
in the first two examples, TAG incorrectly predicts the aspect
terms by missing the phrase “-year computer accidental pro-
tectionwarranty”, and the predictions of SPAN are all wrong.
The main reason is that models such as TAG and SPAN are
less effective when dealing with the long aspect terms. How-
ever, the proposedmodel ismore robust about the long aspect
terms. In the scenario of long sentences, such as sentence
2 and sentence 3, the TAG and SPAN methods also per-
form worse. They are less able to deal with long sentences.
Moreover, as observed in the last examples, TAG and SPAN
sometimes predict redundant results (e.g., “space” in sen-
tence 4). The main reason is that TAG and SPAN consider

the noise information, encode the redundant information, and
lack the ability to encode the more informative information.
However, the proposed model can effectively alleviate these
problems by employing the multi-layer MCRN model in the
encoder.

Discussion

To give deeper insights into our obtained results, how to
improve the model performance is discussed in detail and the
reasons why the proposed model can achieve better results
than other models for identifying aspect terms are explained
in this section. The important ideas to alleviate the short-
comings of the current sequence-to-sequence learning and
fixed word representations are that the sequence-to-sequence
model should consider the more informative information and
can model dynamic word meaning in a sentence for identi-
fying aspect terms.

The first reason that the proposed model acquires bet-
ter results than the previous seq2seq-based models (e.g.,
Seq2Seq4ATE) is that a contextualized embedding layer to
model dynamic word meaning is designed in a sentence. A
word has different meanings or parts of speech in differ-
ent contexts, the meaning or part of speech of the word
plays an important role in determining if the word is an
aspect term. Hencemodeling the dynamic wordmeaning can
provide supplementary information for the learning of the
model and improve model performance. The word embed-
dings can map a word into an embedding space where the
representation of the word is a continuous, dense, real-valued
vector. The distributional semantic of a word can be cap-
tured in the embedding space, that is to say, the meaning and
syntax characters of a word can be reflected through vec-
tors in the embedding space. For example, in the specific
embedding space, the cosine similarity between two word
vectors can reflect their semantic similarity to a certain extent.
However, in the static word embedding space, the represen-
tation of a specific word within a sentence is fixed regardless
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Table 7 The predictions of
different methods Sentence TAG SPAN IANN-BIO

1. But themountain lion is
just too slow

Mountain lion None (✘) Mountain lion

2. I opted for the
SquareTrade 3-Year
Computer Accidental
Protection Warranty
($1500–2000) which
also support "accidents"
like drops and spills that
are NOT covered by
AppleCare

Squaretrade 3 (✘),
applecare

Accidental protection
warranty (✘),
applecare

Squaretrade 3-year
computer accidental
protection warranty,
applecare

3. I work as a designer and
coder and I needed a
new buddy to work with,
not gaming

Coder (✘), gaming Coder (✘), gaming Gaming

4. The smaller size was a
bonus because of space
restrictions

Size, space (✘) Size, space (✘) Size

The gold results are marked in bold. Incorrect predictions are marked with ✘

of the context. The fixed word embedding is weak at cap-
turing the different meanings of a word. The contextualized
word embedding can alleviate the problem, it can capture the
dynamic meaning of a word. Because contextualized word
embedding can map a word within a sentence into different
representations by the context.

Besides, contextualized word embedding can alleviate the
word sense ambiguity in somedegree. The base type ofBERT
is employed in the contextualized embedding layer and is
pre-trained on a large open-domain datasetwhere awordmay
appear in a different context. In the distributional hypothesis,
the word meaning can be decided by the context. Hence the
pre-trained BERT can capture the generally different mean-
ing of aword by the context to some extent. Besides, BERT is
fine-tuned in a specific domain during the training of IANN.
For the meaning of a word in the specific domain, it can be
modeled by fine-tuning on the specific domain to a certain
extent. Hence, the contextualized embedding layer of IANN
can capture the word sense by the context to some extent.

The second reason that the proposed model acquires bet-
ter results than the previous seq2seq-based models is that
this paper proposes MCRN to model the more informative
information. The MCRN model can not only integrate sur-
rounding information toward a word and detect the local
features but alsomodel the sequence information and capture
the long-term dependency. The multiple convolutional oper-
ations are used to integrate surrounding information toward
a specific word and detect the local features. Different sizes
of the filter determine different scopes of the surrounding
words toward a specific word. Different convolution kernels
can capture the different scopes of the surrounding words

toward a specific word. Hence, multiple convolutional oper-
ations can model more informative surrounding information.
The bidirectional GRU in MCRN can capture the long-term
dependency and model the sequence information. All these
characters enable MCRN to better learn the more informa-
tive information in the encoder and they are not available in
vanilla CNN and GRU. Besides, the experimental results in
Fig. 8 also provide sounder evidence and validate the validity
of MCRN.

The third reason that the proposed model acquires better
results than the previous seq2seq-based models is that the
multi-layer MCRN is employed as the multi-layer encoder
in our model. The multi-layer MCRN can learn the more
abstract and higher-order features as the number of layers
increases, which may generate more appropriate represen-
tations for the ATE task. The experimental results in Fig. 9
also demonstrate the validity of multi-layer MCRN in the
proposed method.

The reason why the proposed AO tagging scheme per-
forms better than the BIO tagging scheme is that the
two-label-based AO tags are less challenging than the three-
label-based BIO tags in the decoding stage. When compared
with the BIO tags, the number of predicted labels of the AO
tags in each state is reduced from three to two. The perfor-
mance of the model can be effectively enhanced by reducing
the number of predicted labels of a specificword.Besides, the
AO tags can also be used in other seq2seq-based or sequence
labeling-based models.

The first reason that the proposed model acquires bet-
ter results than the BERT-based models is that the proposed
model can take full advantage of the features generated from
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BERT by the seq2seq learning in theATE task. The contextu-
alized word embeddings are not directly sent into performing
the labeling task, but rather they are viewed as the basic rep-
resentations, and then the labeling task is performed through
the seq2seq learning framework. In the encoder of the pro-
posed model, MCRN can not only integrate the surrounding
information toward a word and detect local features but also
capture the long-term dependencies and model the word
order information in a sentence. These functions are not avail-
able in the previous BERT-based methods.

The second reason that the proposedmodel acquires better
results than the BERT-based models is that seq2seq learning
can fully utilize the overall semantic of a sentence and ismore
conducive to dealing with dependencies between labels. The
overall meaning of a whole sentence is crucial for determin-
ingwhether aword is an aspect term.Hence, the performance
of the model can be enhanced by capturing dependencies
between labels and taking advantage of the overall semantic
of a sentence.

Conclusion

This paper proposes an IANN, which is a novel sequence-
to-sequence learning framework, for the ATE task. The
problems existing in the previous sequence-to-sequence
learning and fixed word embedding in the ATE task can be
effectively alleviated by the IANN model. The IANN model
has two important layers or modules, they are the contex-
tualized embedding layer which consists of BERT, and the
MCRN model which consists of multiple convolution and
recurrence operations. Besides, this paper also proposes a
less challenging tagging scheme, named AO tags, which
consists of “Aspect” and “Outside” labels. The contextu-
alized embedding layer is designed to model the dynamic
word meaning. BERT is employed to generate the contextu-
alized word embeddings in the contextualized embedding
layer. The MCRN model is designed to model the more
informative information. It can not only integrate surround-
ing information toward a word and detect the local features
but also capture the long-distance dependencies and model
the sequence information. Besides, the multi-layer MCRN
can learn the more informative higher-order features. Three
widely used datasets are employed to perform abundant
experiments to validate the performance and generalization
of the proposed IANN. The experimental results show that
our model acquires state-of-the-art results. Moreover, the
number of layers in the multi-layer encoder is given accord-
ing to different types of datasets. In the next work, the
proposedmodel can be tried to apply to other sequence label-
ing tasks. Besides, common knowledge can be incorporated
into the proposed model as an external learning source.
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