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Abstract
Brain tumor segmentation is one of the most challenging problems in medical image analysis. The goal of brain tumor
segmentation is to generate accurate delineation of brain tumor regions. In recent years, deep learning methods have shown
promising performance in solving various computer vision problems, such as image classification, object detection and
semantic segmentation. A number of deep learning based methods have been applied to brain tumor segmentation and
achieved promising results. Considering the remarkable breakthroughs made by state-of-the-art technologies, we provide this
survey with a comprehensive study of recently developed deep learning based brain tumor segmentation techniques. More
than 150 scientific papers are selected and discussed in this survey, extensively covering technical aspects such as network
architecture design, segmentation under imbalanced conditions, and multi-modality processes. We also provide insightful
discussions for future development directions.

Keywords Brain tumor segmentation ·Deep learning ·Neural networks ·Network design ·Data imbalance ·Multi-modalities

Introduction

Medical imaging analysis has been commonly involved in
basic medical research and clinical treatment, e.g. computer-
aided diagnosis [34], medical robots [126] and image-based
applications [84]. Medical image analysis provides useful
guidance for medical professionals to understand diseases
and investigate clinical challenges in order to improve health-
care quality. Among various tasks in medical image analysis,
brain tumor segmentation has attracted much attention in
the research community, which has been continuously stud-
ied (illustrated in Fig. 1a). In spite of tireless efforts of
researchers, as a key challenge, accurate brain tumor seg-
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mentation still remains to be solved, due to various challenges
such as location uncertainty, morphological uncertainty, low
contrast imaging, annotation bias and data imbalance. With
the promising performance made by powerful deep learn-
ing methods, a number of deep learning based methods have
been applied upon brain tumor segmentation to extract fea-
ture representations automatically and achieve accurate and
stable performance as illustrated in Fig. 1b.

Glioma is one of the most primary brain tumors that stems
from glial cells. World Health Organization (WHO) reports
that glioma can be graded into four different levels based
on microscopic images and tumor behaviors [92]. Grade I
and II are Low-Grade-Gliomas (LGGs) which are close to
benign with slow-growing pace. Grade III and IV are High-
Grade-Gliomas (HGGs)which are cancerous and aggressive.
Magnetic Resonance Imaging (MRI) is one of the most com-
mon imaging methods used before and after surgery, aiming
at providing fundamental information for the treatment plan.

Image segmentation plays an active role in gliomas
diagnosis and treatment. For example, an accurate glioma
segmentation mask may help surgery planning, postopera-
tive observations and improve the survival rate [6,7,94]. To
quantify the outcome of image segmentation, we define the
task of brain tumor segmentation as follows: Given an input
image from one or multiple image modality (e.g. multiple
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Fig. 1 Growth of scientific attention on deep learning based brain tumor
segmentation. a Keyword frequency map in MICCAI from 2018 to
2020. The size of the keyword is proportional to the frequency of the
word.We observe that ‘brain’, ‘tumor’, ‘segmentation’, and ‘deep learn-
ing’, have drawn large research interests in the community. b Blue line
represents the number of deep learning based solutions in The Multi-

modal Brain Tumor Segmentation Challenge (BraTS) in each year. Red
line represents the Top-1 whole tumor dice score of the test set in each
year. Researchers shift their interests to deep learning based segmenta-
tion methods due to the powerful feature learning ability and systematic
performance due to deep learning techniques since 2012 (green dashed
line). Best viewed in colors

Fig. 2 Exemplar input dataset with different MRI modalities and cor-
responding ground truth segmentation map. Each frame represents a
uniqueMRImodality. The last frame on the right is the ground truthwith
corresponding manual segmentation annotation. Different colors repre-
sent different tumor sub-regions, i.e., gadolinium (GD) enhancing tumor
(green), peritumoral edema (yellow) and necrotic and non-enhancing
tumor core (NCR/ECT) (red)

MRI sequences), the system aims to automatically segment
the tumor area from the normal tissues by classifying each
voxel or pixel of the input data into a pre-set tumor region
category. Finally, the system returns the segmentationmap of
the corresponding input. Figure 2 shows one exemplar HGG
case with a multi-modality MRI as input and corresponding
ground truth segmentation map.

Difference from previous surveys

A number of notable brain tumor segmentation surveys have
been published in the last few years. We present recent rel-
evant surveys with details and highlights in Table 1. Among
them, the closest survey papers to ours are presented byGhaf-
fari et al. [44], Biratu et al. [11] and Magadza et al. [93]. The
authors in [11,44,93] covered a majority of solutions from

BraTS2012 to BraTS2018 challenges, lacking, however, an
analyses based onmethodology category and highlights. Two
recent surveys by Kapoor et al. [71] and Hameurlaine et al.
[51] also focused on the overview of classic brain tumor
segmentation methods. However, both of them lacked the
technical analysis and discussion of deep learning based seg-
mentation methods. A survey of early state-of-the-art brain
tumor segmentation methods before 2013 was presented in
[49], where most of the proposals before 2013 combined
conventionalmachine learningmodelswith hand-crafted fea-
tures. Liu et al. [86] reported a survey on MRI based brain
tumor segmentation in 2014. This survey does not include
deep learning based methods as well. Nalepa et al. [98] ana-
lyzed the technical details and impacts of different kinds
of data augmentation methods with the application to brain
tumor segmentation, while ours focuses on the technical
analysis of deep learning based brain tumor segmentation
methods.

There is a number of representative survey papers pub-
lished with similar topics in recent years. Litjens et al. [84]
summarized recent medical image analysis applications with
deep learning techniques. This survey gave a broad study
on medical image analysis including several state-of-the-
art deep learning based brain tumor segmentation methods
before 2017. Bernal et al. [9] reported a review focusing
on the use of deep convolutional neural networks for brain
image analysis. This review only highlights the applica-
tion of deep convolutional neural networks. Other important
learning strategies such as segmentation under imbalance
condition and learning from multi-modality were not men-
tioned. Akkus et al. [2] presented a survey on deep learning
for brain MRI segmentation. Recently, Esteva et al. [40] pre-
sented a survey on deep learning for health-care applications.
This survey summarized how deep learning and general-
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Table 1 A summary of the existing surveys relates to the topic ‘brain tumor segmentation’

Survey Title Venue Year Remarks

Automated brain tumor segmentation using
multimodal brain scans: a survey based on
models submitted to the BraTS 2012–2018
challenges [44]

IEEE Reviews in Biomedical
Engineering

2019 A review of challenge submissions of BraTS
during 2012-2018.

A survey on brain tumor detection using
image processing techniques [71]

2017 7th International Conference on
Cloud computing, Data science &
Engineering-confluence

2017 A review of general brain tumor segmentation
methods.

Survey of brain tumor segmentation
techniques on magnetic resonance imaging
[51]

Nano Biomedicine and Engineering 2019 A general summary of classic brain tumor
segmentation methods.

State of the art survey on MRI brain tumor
segmentation [49]

Magnetic Resonance Imaging 2013 Review on convolutional neural networks
used for brain MRI image analysis.

A survey of MRI-based brain tumor
segmentation methods [86]

Tsinghua Science and Technology 2014 Review on MRI based brain tumor
segmentation methods.

Data augmentation for brain-tumor
segmentation: a review [98]

Frontiers in Computational
Neuroscience

2019 Analysed the technical details and impacts of
different kinds of data augmentation
methods with the application to brain tumor
segmentation.

A survey on deep learning in medical image
analysis [84]

Medical Image Analysis 2017 A comprehensive review on deep learning
based medical image analysis.

Deep convolutional neural networks for brain
image analysis on magnetic resonance
imaging: a review [10]

Artificial Intelligence in Medicine 2018 A review on use of deep convolutional neural
networks for brain image analysis.

Deep learning for brain MRI segmentation:
state of the art and future directions [2]

Journal of Digital Imaging 2017 A survey on deep learning for brain MRI
segmentation.

A guide to deep learning in healthcare [40] Nature Medicine 2019 A survey on deep learning for health-care.

Deep learning for generic object detection: A
survey [87]

International Journal of Computer
Vision

2020 A comprehensive review on deep learning
based object detection.

Deep learning [77] Nature 2015 An introduction review on deep learning and
its application.

Recent advances in convolutional neural
networks [50]

Pattern Recognition 2018 A survey on convolutional neural networks
and its application on computer vision,
language processing and speech.

Deep Learning Based Brain Tumor
Segmentation: A Survey

Ours - A comprehensive survey of deep learning
based brain tumor segmentation.

izedmethods promote health-care applications. For a broader
view of object detection and semantic segmentation, a survey
was recently published in [87], providing the implications on
object detection and semantic segmentation.

Narrowly speaking, theword “deep learning”means using
deep neural network models with stacked functional layers
[48].Neural networks are able to learn high dimensional hier-
archical features and approximate any continuous functions
[83,135]. Considering the achievements and recent advances
of deep neural networks, several surveys have reported the
developed deep learning techniques, such as [50,77].

Scope of this survey

In this survey,wehave collected and summarized the research
studies reported on over one hundred scientific papers. We

have examined major journals in the scientific community
such as Medical Image Analysis and IEEE Transactions on
Medical Imaging. We also evaluated proceedings of major
conferences, such as ISBI, MICCAI, IPMI, MIDL, CVPR,
ECCV and ICCV, to retain frontier medical imaging research
outcomes. We reviewed annual challenges and their related
competition entries such as The Multimodal Brain Tumor
Segmentation Challenge (BraTS). In addition, some pre-
printed versions of the established methods are also included
as a source of information.

The goal of this survey is to present a comprehensive tech-
nical reviewof deep learning based brain tumor segmentation
methods, according to architectural categories and strategy
comparisons. We wish to explore how different architectures
affect the segmentation performance of deep neural networks
and how different learning strategies can be further improved
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Fig. 3 Challenges in segmentation of brain glioma tumors. a Shows
glioma tumor exemplars with various sizes and locations inside the
brain. b, c Show the statistical information of the training set in the
multimodal brain tumor segmentation challenge 2017 (BraTS2017).
The left hand side of b shows the FLAIR and T2 intensity projection,
and the right hand side shows the T1ce and T1 intensity projection. c is
the pie chart of the training data with labels, where the top figure shows
the HGG labels while the bottom figure shows the LGG labels. We here
experience region and label imbalance problems. Best viewed in colors

for various challenges in brain tumor segmentation.We cover
diverse high level inspects, including effective architecture
design, imbalance segmentation andmulti-modality process.
The taxonomy of this survey is made (Fig. 5) such that our
categorization can help the reader to understand the technical
similarities and differences between segmentation methods.
The proposed taxonomy may also enable the reader to iden-
tify open challenges and future research directions.

Wefirst present the background information of deep learn-
ing based brain tumor segmentation in “Background” section
and the rest of this survey is organized as follows: In “Design-

ing effective segmentation networks” section, we review
the design paradigm of effective segmentation modules and
network architectures. In “Segmentation under imbalanced
condition” section, we categorize, explore and compare the
solutions for tackling the data imbalance issue, which is
a long-standing problem in brain tumor segmentation. As
multi-modality provides promising solutions towards accu-
rate brain tumor segmentation, we finally review themethods
of utilizing multi-modality information in “Utilizing multi
modality information” section. We conclude this paper in
“Conclusion” section. We also build up a regularly main-
tained project page to accommodate the updates related to
this survey.1

Background

Research challenges

Despite significant progress that has been made in brain
tumor segmentation, state-of-the-art deep learning methods
still experience difficulties with several challenges to be
solved. The challenges associated with brain tumor segmen-
tation can be categorized as follows:

1. Location uncertainty Glioma is mutated from gluey
cells which surround nerve cells. Due to the wide spa-
tial distribution of gluey cells, either High-Grade Glioma
(HGG) or Low-Grade Glioma (LGG) may appear at any
location inside the brain.

2. Morphological uncertaintyDifferent froma rigid object,
the morphology, e.g. shape and size, of different brain
tumors varieswith large uncertainty. As the external layer
of a brain tumor, edema tissues show different fluid struc-
tures, which barely provide any prior information for
describing the tumor’s shapes. The sub-regions of a tumor
may also vary in shape and size.

3. Low contrast High resolution and high contrast images
are expected to contain diverse image information [88].
Due to the image projection and tomography process,
MRI images may be of low quality and low contrast. The
boundary between biological tissues tends to be blurred
and hard to detect. Cells near the boundary are hard to
be classified, which makes precise segmentation more
difficult and harder to achieve.

4. Annotation bias Manual annotation highly depends on
individual experience, which can introduce an annota-
tion bias during data labeling. As shown in Fig. 3 (a),
it seems that some annotations tend to connect all the
small regions together while the other annotations can
label individual voxels precisely. The annotation biases

1 http://github.com/ZhihuaLiuEd/SoTA-Brain-Tumor-Segmentation.
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Fig. 4 The evolution of brain tumor segmentation with selective milestones over the past decade. Best viewed in colors

have a huge impact on the segmentation algorithm during
the learning process [28].

5. Imbalanced issue As shown in Fig. 3b, c, there exists an
imbalanced number of voxels in different tumor regions.
For example, the necrotic/non-enhancing tumor core
(NCR/ECT) region is much smaller than the other two
regions. The imbalanced issue affects the data-driven
learning algorithmas the extracted featuresmaybehighly
influenced by large tumor regions [15].

Progress in the past decades

Representative researchmilestones of brain tumor segmenta-
tion are shown in Fig. 4. In the late 90s’, researchers like Zhu
et al. [158] started to use a Hopfield Neural Network with
active contours to extract the tumor boundary and dilate the
tumor region. However, training a neural network was highly
constrained due to the computational resource limitation and
technical supporting. From late 90s’ to early 20s’, most of
the brain tumor segmentation methods focused on traditional
machine learning algorithmswith hand-crafted features, such
as expert systems with multi-spectral histogram [32], seg-
mentation with templates [72,108], graphical models with
intensity histograms [33,133], tumor boundary detection
from latent atlas [95]. These early works pioneered the use of
machine learning in solving brain tumor segmentation prob-
lems.However, early attempts have significant shortcomings.
First, most of the early works only focused on the segmenta-
tion of thewhole tumor region, that is, the segmentation result
has only one category. Compared with recent brain tumor
segmentation algorithms, early works are formulated with
strong conditions, relying on unrealistic assumptions. Sec-
ond, manually designed feature engineering is constrained
by prior knowledge, which cannot be fully generalized. Last

but not least, early research works fail to address some chal-
lenges such as appearance uncertainty and data imbalance.

With the revolutionary breakthrough by deep learning
technology [74], researchers began to focus on using deep
neural networks to solve various practical problems. Pio-
neering works from Zikic et al. [160], Havaei et al. [52]
and Pereira et al. [106] intend to design customized deep
convolutional neural network (DCNN) to achieve accurate
brain tumor segmentation. With breakthrough brought by
Fully Convolutional Network (FCN) [90] and U-Net [111],
later innovations [59,147] on brain tumor segmentation focus
on building fully convolutional encoder-decoder networks
without fully connected layers to achieve end-to-end tumor
segmentation.

A long-standing challenge in brain tumor segmentation
is data imbalance. To effectively deal with the imbalance
problem, researchers try different solutions, such as network
cascade and ensemble [64,67,130], multi-task learning [97,
150], and customized loss functions [120]. Another solution
is to fully utilize information from multi-modality. Recent
research focused on modality fusion [142] and dealing with
modality missing [152].

Based on the evolution, we generally categorize the exist-
ing deep learning based brain tumor segmentation methods
into three categories, i.e., methods with effective architec-
tures, methods for dealing with imbalanced condition and
methods of utilizing multi-modality information. Figure 5
shows a taxonomy of the research work in deep learning
based brain tumor segmentation.

Related problems

There are a number of unsolved problems that relates to brain
tumor segmentation. Brain tissue segmentation or anatom-
ical brain segmentation aims to label each unit with a
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Fig. 5 Our proposed taxonomy of deep learning based brain tumor segmentation methods. Best viewed in colors

unique brain tissue class. Their task assumes that the brain
image does not contain any tumor tissue or other anoma-
lies [12,102]. The goal of white matter lesion segmentation
is to segment the white matter lesion from the normal tis-
sue. In their task, the white matter lesion does not contain
sub-regions such as tumor cores, where segmentation may
be achieved through binary classification methods. Tumor
detection aims to detect abnormal tumors or lesion and
reports the predicted class of each tissue. Generally, this task
has the bounding box as the detection result and the label
as the classification result [37,38,46]. It is worth mention-
ing that some research methods in brain tumor segmentation
only return the single label segmentation mask or the center
point of the tumor core without sub-region segmentation. In
our paper, we focus on tumor segmentation with sub-region
level semantic segmentation as themain topic.Disorder clas-
sification is to extract pre-defined features from brain scan
images and then classify feature representations into graded
disorders such as High-Grade-Gliomas (HGGs) vs Low-
Grade-Gliomas (LGGs), Mild Cognitive Impairment (MCI)
[122], Alzheimer’s Disease (AD) [121] and Schizophre-
nia [107]. Survival Prediction identifies tumors’ patterns
and activities [136] in order to predict the survival rate as
a supplementary to clinical diagnosis [16]. Both disorder
classification and survival prediction can be regarded as
down-stream tasks, based on the tumor segmentation out-
comes.

Contributions of this survey

A large number of deep learning based brain tumor seg-
mentation methods have been published with promising
results. Our paper, as a platform, provides a comprehensive
and critical survey of state-of-the-art brain tumor segmenta-
tion methods. We anticipate that this survey supplies useful
guidelines and coherent technical insights to academia and
industry. The major contributions of this survey can be sum-
marized as follows:

1. We present a comprehensive review to categorize and
outline deep learning based brain tumor segmentation
methodswith a structured taxonomy of various important
technical innovation perspectives.

2. We present the reader with a summarization of research
progress of deep learning base brain tumor segmentation
with detailed background information and system com-
parisons (e.g. Tables 1, 5).

3. We carefully and extensively compares existing methods
based on results from public accessible challenges and
datasets (e.g. Tables 2, 3, 4), with critical summaries and
insightful discussions.
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Designing effective segmentation networks

Compared with complex feature engineering pipelines to
extract useful features, recent deep learning mainly relies on
designing effective deep neural networks to automatically
extract high-dimensional discriminative features. Designing
effective modules and network architectures has become
one of the most important factors for achieving accurate
segmentation performance. In this section, we reviewed
two important design guidelines for deep learning based
brain tumor segmentation: designing effective modules and
designing network architecture.

There are mainly two principles to follow when design-
ing effective modules. One is to learn high level semantics
and localize precious targets, through the enlargement of the
receptive field [81,91,144], attention mechanism [60,131,
150] feature fusion update [85,154] and other forms. The
other way is to reduce the amount of the network parameters
and speed up during training and inference, thereby saving
computational time and resources [4,14,22,29,105,117? ].

The design of the network architecture is mainly reflected
in the transition from a single-channel network to a multi-
channel network, from a network with fully connected layers
to a fully convolutional network, from a simple network to
a deep cascaded network. The purpose is to deepen the net-
work, enhance the feature learning ability of the network and
completes more precise segmentation. In the following, we
divide theses methods and review them comprehensively. A
systematical comparison between various network architec-
tures and modules is shown in Fig. 6.

Designing specializedmodules

Modules for higher accuracy

Numerous methods for brain tumor segmentation focus on
designing effective modules inside neural networks, aim-
ing to stabilize training, learning informative, discriminative
features for accurate segmentation. Early design attempts fol-
lowed the pattern of well-known networks such as AlexNet
[74] and gradually increased the network depth by stack-
ing convolutional blocks. Early research works such as
[39,110,147] stacked several blocks with convolutional lay-
ers composed of a large kernel size (typically greater than 5),
pooling layers and activation layers together. Blocks with a
large size convolution kernel enable us to capture details with
a large number of parameters to be trained. Other research
works such as [106,160] followed the pattern ofVGG[119] to
build convolutional layerswith a small sized kernel (typically
3) as basic block. Further research work such as [52] stacked
hybrid blocks with a combination of different kernel sizes,
where large sized kernels tend to find global features (such
as tumor location and size) with a large receptive field and

small kernels tend to contain local features (such as bound-
ary and texture) with a small receptive field. As stacking
two 3× 3 convolutional layers leads to equal sized reception
fields while maintaining less parameters, compared with a
single 5 × 5 layer, most recent tumor segmentation works
constructed basic network blocks, based on stacking 3 × 3
layers, and started to extend to volumetric reconstruction in
MRI with 3× 3× 3 kernels [18,62].

As the number of stacked layers increases, the network
is getting deeper, causing the issue of gradient explosion
and vanishing during the training process. In order to stabi-
lize system training and reach higher segmentation accuracy,
early brain tumor segmentation methods such as [21] and
[19] followed ResNet [53] and introduced residual connec-
tion into module design. Residual connection helps solving
the problem of gradient vanishing and explosion, by adding
the input of a convolution module to its output, which
avoids degradation and converges faster with better accuracy.
Now, residual connection has become one of the standard
operations for designing modules and complex network
architectures. In the following works [45,114,132,156], the
authors followed DenseNet [57] and expanded residual con-
nection to dense connection. Although dense connection
design looks more conducive to gradient back-propagation,
the complex close connection structure can cause multiple
usage of the computing memory during the network train-
ing.

By stacking convolution modules and using residual con-
nections inside and outside modules, neural networks can
be deeper and features can be learnt with higher dimen-
sions. However, this process may lead to the sacrifice of
spatial resolution. The resolution of high dimensional fea-
ture maps is much smaller than that of the original data.
In order to preserve the spatial resolution of feature whilst
still expanding the receptive field, [81,91,144] replaced the
standard convolution layer with the dilated convolution layer
[139]. The dilated convolution comes up with several ben-
efits. First, dilation convolution enlarges the receptive field
without introducing additional parameters. Larger receptive
fields are helpful for segmenting large-area targets, such as
edema. Second, dilated convolution avoids the loss of spatial
resolution. Thus, the position of the object to be segmented
can be accurately localized in the original input space. How-
ever, the problem of incorrect localization and segmentation
of small structures remains to be solved. In response, [30]
proposed to design a multi-scale dilation convolution or
atrous spatial pyramid pooling module, capturing the seman-
tic context that describes subtle details of the object.

Modules for efficient computation

Designing and stacking complex modules help effectively
learn high-dimensional discriminative features and achieve
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Fig. 6 Structural comparison between representativemethods based on
designing effective network modules and architectures. From top-left
to bottom-right: (a1) CNN in [160], (b1) CNN with (b2) residual con-
volution module [19], (c1) CNN with (c2) full resolution residual unit
[66], (d1) CNN with (d2) dense connection module [114], (e1) CNN

with (e2) residual dilation block [91], (f1) CNN with (f2) atrous con-
volution feature pyramid module [155], (g1) FCN with (g2) multi-fiber
unit [22], (h1) FCN with (h2) reversible block [14] and (i1) FCN with
(i2) modality fusion module [153]. Best viewed in colors
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precise segmentation, but it requires high computational
resources and long training and inference time. In response
to this request, many works have adopted lightweight ideas
in module design. With similar accuracy, fewer computing
resources are required by lightweight modules, training and
inference time is shorter, and the speed is faster. [3] is one of
the earliest researchworks aiming at speeding up brain tumor
segmentation. The authors of [3] reordered the input data (a
data sample rotated by 6-degrees) so that the samples with
high visual similarity are placed closer in the memory, in an
attempt to speed up I/O communication. Instead of manag-
ing the input data, [29] chose to build a U-Net variant with
decreased down-sampling channels to reduce the computa-
tional cost.

The above-mentioned works used less computational
resources, but lose learning information and decreased
segmentation accuracy. Inspired by reversible residual net-
work [14,47] introduced reversible blocks into U-Net where
each layer’s activation can be collected from the previ-
ous layer’s output during the backward pass process. Thus,
no additional memory is used to store intermediate activa-
tion and hence reduce memory cost. [105] further extend
reversible blocks by introducing Mobile Reversible Convo-
lution Blocks (MBConvBlock) used in MobileNetV2 [112]
and EfficientNet [125]. In addition to the reversible computa-
tion design, MBConvBlock replaced standard convolutions
with depthwise separable convolutions. Depthwise separa-
ble convolutions first split the computation of feature maps
accordingly using depthwise convolution and merge the fea-
ture maps together using 1× 1× 1 pointwise convolutions,
which further reduced parameters compared with the stan-
dard convolution.Later researchworks, including3DESPNet
[101] and DMFNet [22], further extend this idea with dilated
convolutions, requiring less computational resources while
preserving most spatial resolutions.

Designing effective architectures

A major factor that promotes prosperity and development of
deep neural networks in various fields is to invest efforts in
designing intelligent and effective network architectures. We
divide most deep learning based brain tumor segmentation
networks into single/multiple path networks and encoder–
decoder networks according to the characteristics of network
structures. Single and multiple path networks are used to
extract features and classify the center pixels of the input
patch. Encoder-Decoder networks are designed in an end-
to-end fashion, that is, the encoder enables deep feature to
be extracted from part of or the entire image, and then the
decoder conducts feature-to-segmentation mapping. In the
following subsections, we conduct a systematic analysis and
comparison of variant architecture designs.

Fig. 7 A high level comparison between single-path and two-path
CNN. Best viewed in colors

Multi-path architecture

Here we refer network path as the flow of data processing
(Fig. 7). Many research works, e.g. [106,128,160] use single
path networks due to computational efficiency. Compared
with single path networks, multi-path networks can extract
different features from different pathways of different scales.
The extracted features are combined (added or concatenated)
together for further processing. A common interpretation is
that a large scale path (path with a large size’s kernel or
input etc.) allows networks to learn global features. Small
scale’s paths (paths with a small size’s kernel or input etc.)
allows networks to learn features known as local features.
Similar to the functionalitymentioned in theprevious section,
global features tend to provide global information such as
tumor location, size and shape while local features provide
descriptive details such as tumor texture and boundary.
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The work of Havaei et al. [52] is one of the early multi-
path network based solutions. The author reported a novel
two pathway structure that learns local tumor information
as well as global contexts. The local pathway uses a 7 × 7
convolution kernel and the global pathway uses a 13 × 13
convolution kernel. In order to utilize CNN architectures, the
authors designed several variant architectures that concate-
nate CNN outputs. Castillo et al. [19] used a 3 pathway CNN
to segment brain tumors.Different from[52] that usedkernels
in different scales, [19] inputs each path with different sizes’
patches e.g. patches with low (15 × 15), medium(17 × 17)
and normal (27× 27) resolutions. Thus, each path can learn
specific features under the condition of different spatial reso-
lutions. Inspired by [52], Akil et al. [1] extended the network
structure with overlapping patch prediction methods, where
the center of the target patch is associated with the neighbor-
ing overlapping patches.

Instead of building multi-path networks with different
sizes’ kernels, other research works attempt to learn local-
to-global information from the input directly. For example,
Kamnitsas et al. [69] presented a dual pathway network
which considers the input with different sizes’ patches,
known as the normal resolution input of size 25×25×25 and
the low resolution input of size 19× 19× 19. Different from
[19], the authors in [69] applied small convolution kernels
with a size of 3 × 3 × 3 on both pathways. Later research
works by Zhao et al. [? ] also designed a multi-scale CNN
with a large scale path with the input size of 48×48, amiddle
scale path with the input size of 18 × 18 and a small scale
path with the input size of 12× 12.

Encoder–decoder architecture

The input of the single and multiple path network for brain
tumor segmentation is a patch or a certain area of the image,
and the output is the classification outcome of the patch or
the classification outcome of the central pixel of the input. It
is very challenging to promote an accurate mapping from the
patch level to the category label. First of all, the segmenta-
tion performance of single andmultiple path network is easily
affected by the size and quality of the input patch. A small
sized input patch holds incomplete spatial information, while
a large sized patch requires more computational resources.
Secondly, the feature-to-label mapping is mostly conducted
by the last fully connected layer. A simple fully connected
layer cannot fully represent the feature space where com-
plicated fully connected layers may overload the computer’s
memory. Last but not least, this feature-to-label mapping is
not of an end-to-end mode, which significantly increases the
optimization cost. To tackle these problems, recent research
works start to use fully convolutional network (FCN) [90]
and U-Net [111] based encoder-decoder networks, establish
an end-to-end fashion from the input image to the output

segmentationmap, and further improve the segmentation per-
formance of networks.

Jesson et al. [62] extended standard FCN by using amulti-
scale loss function. One limitation of FCN is that FCN does
not explicitly model the contexts in the label domain. In [62],
the FCNvariantminimized themulti-scale loss by combining
higher and lower resolution feature maps to model the con-
texts in both image and label domains. In [116], researchers
proposed a boundary aware fully convolutional neural net-
work, including twobranches for up-sampling. The boundary
detection branch aims to learn and model boundary informa-
tion of the whole tumor as a binary classification problem.
The region detection branch learns to detect and classify
sub-region classes of the tumor. The outputs from the two
branches are concatenated and fed to a block of two convo-
lutional layers with a softmax classification layer.

One important mutant of FCN is U-Net [111]. U-Net con-
sists of a contracting path to capture features and a symmetric
expanding path that enables precise localization. One advan-
tage of using U-Net, compared against traditional FCN, is
the skip connections between the contracting and the expand-
ing paths. The skip connections pass feature maps from the
contracting path to the expanding path and concatenate the
feature maps from the two paths directly. The original image
data through skip connections can help the layers in the con-
tracting path recover details. Several research works have
been proposed for brain tumor segmentation based onU-Net.
For example, Brosch et al. [13] used a fully convolutional
network with skip connections to segment multiple sclerosis
lesions. Isensee et al. [58] reported amodifiedU-Net for brain
tumor segmentation, where the authors used a dice loss func-
tion and extensive data augmentation to successfully avoid
over-fitting. In [35], the authors used zero padding to keep
the identical output dimension for all the convolutional lay-
ers in both down-sampling and up-sampling paths. Chang et
al. [21] reported a fully convolutional neural network with
residual connections. Similar to skip connection, the residual
connection allows both low- and high-level feature maps to
contribute towards the final segmentation.

In order to extract information from the original volumet-
ric data,Milletari et al. [96] introduced amodified 3Dversion
of U-Net, called V-Net, with a customized dice coefficient
loss function. Beers et al. [8] introduced 3DU-Nets based on
sequential tasks, which uses the entire tumor ground truth as
an auxiliary channel to detect enhancing tumors and tumor
cores. In the post-processing stage, the authors employed two
additional U-Nets that serve to enhance prediction for better
classification outcomes. The input patches consist of seven
channels: four anatomical MR and three label maps corre-
sponding to the entire tumor, enhancing tumor, and tumor
core.
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Table 2 Comparison between novel methods focuses on effective network design

Methods Input Dim Loss Dice Hausdorff Dataset

WT TC ET WT TC ET Year Type

Designing effective Modules [39] P 2D – 0.81 0.79 – – – – 2014 V

[147] I 2D Softmax 0.84 0.73 0.62 – – – 2015 T

[110] P 2D – – – – – – – – –

[18] I 3D CE 0.91 0.83 – – – – 2015 CV

[114] I 2D CE+Soft Dice 0.87 0.68 – – – – 2017 V

[45] I 3D Dice 0.9 0.82 0.78 5.14 6.64 7.71 2020 V

[155] I 2D – 0.86 0.77 0.74 – – – 2018 V

[132] I 2D CE+Dice+MP 0.91 0.85 0.79 4.71 5.7 35.01 2020 V

[3] P 3D Multinomial Logistic – – – – – – – –

[29] I 2D Dice+Edge+Mask 0.9 0.82 0.78 5.41 7.26 5.282 2019 V

[14] I 3D Dice 0.91 0.86 0.81 5.61 7.83 3.35 2018 V

[105] I 3D – – – – – – – – –

[101] I 2D mIoU 0.85 0.78 0.67 9.6 8.67 5.5 2018 T

[22] I 3D Generalized Dice 0.91 0.85 0.8 4.66 6.44 3.06 2018 V

Designing effective architectures [160] P 2D Log Loss 0.84 0.73 0.69 – – – 2013 V

[106] P 2D Categorical CE 0.78 0.65 0.75 15.83 26.54 6.99 2015 T

[52] P 2D Surrogate Loss 0.84 0.71 0.57 – – – 2013 T

[19] P 3D – – – – – – – 2015 CV

[67] P 3D CE/IoU 0.9 0.8 0.74 4.23 6.56 4.5 2017 V

[? ] P 2D – – – – – – – – –

[62] I 3D Categorical CE 0.9 0.75 0.71 4.16 8.65 6.98 2017 V

[58] I 3D Dice 0.9 0.8 0.73 7 9.48 4.55 2017 V

[35] I 2D Soft Dice 0.86 0.86 0.65 – – – 2015 CV

[21] I 2D – 0.89 0.83 0.78 8 10 5.9 2016 T

[26] P 2D KL 0.87 0.74 0.65 – – – 2017 V

[25] P 3D KL 0.89 0.74 0.73 – – – 2017 V

[103] I 2D Softmax 0.82 0.63 0.57 – – – 2017 V

[27] I 3D Dice 0.84 0.78 0.68 9.2 7.71 4.52 2018 T

[43] I 2D – 0.86 0.73 0.72 7.5 9.5 5.7 2018 V

[56] I 3D Focal 0.9 0.84 0.77 5.18 6.28 3.51 2018 V

[59] P 3D Dice 0.91 0.86 0.81 4.27 6.52 2.41 2018 V

[79] I 3D Dice 0.88 0.79 0.72 29.21 11.06 7.93 2018 V

[97] I 3D Dice+L2+KL 0.91 0.87 0.82 4.52 6.85 3.92 2018 V

[148] P 3D CE+Dice 0.91 0.84 0.75 4.57 5.58 3.84 2019 V

[140] I 3D Jaccard+Focal 0.91 0.85 0.79 4.09 5.88 18.19 2020 V

[54] I 2D Dice 0.91 0.85 0.8 4.3 5.69 20.56 2020 V

We categorize the methods based on their main contributions. In column Input, ‘P’ means patch and ‘I’ means image. ‘Dim’ means the dimension
of the network. In column Loss, ‘CE’ means cross-entropy loss, ‘mIoU’ means the mean Intersection of Union and ‘KL’ means KL-divergence. In
column Dice and Hausdorff, ‘WT’ means whole tumor, ‘TC’ means tumor core and ‘ET’ means enhancing tumor. Column Dataset indicates the
associated dataset with the segmentation performance. In column Type, ‘CV’ means cross-validation on the BraTS training set, ‘V’ means BraTS
validation set and ‘T’ means BraTS test set. ‘-’ means the entry has not been reported in the original paper
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Fig. 8 A high level comparison between different fully convolutional networks (FCNs). Best viewed in colors

Summary

In this section, we review and compare the work focused on
module and network architecture design in brain tumor seg-
mentation. Table 2 shows the results generated by methods
focused on module and network architecture design in brain
tumor segmentation. We drawn key information of these
research works and list it below.

1. By designing custom modules, the accuracy and speed
of the network can be improved.

2. By designing a customized architecture, it can help the
network learn features at different scales, which is one of
the most important steps to achieve accurate brain tumor
segmentation.

3. The design of modules and networks heavily relies
on human experience. In the future, we anticipate the
application of network architecture search for search-
ing effective brain tumor segmentation architectures
[5,73,157,159].

4. Most of the existing network architecture designs do
not combine domain knowledge about brain tumor, such
as modeling degree information and physically inspired
morphological information within tumor segmentation
network.

Segmentation under imbalanced condition

One of the long standing challenges for brain tumor seg-
mentation is the data imbalance issue. As shown in Fig. 3c,
imbalance is mainly reflected in the number of pixels in the

Fig. 9 The structure of cascaded convolutional networks for brain
tumor segmentation, modified from the original structure reported in
[130]. WNet, TNet and ENet are used for segmenting the whole tumor,
tumor core and enhancing tumor core, respectively

sub-regions of the brain tumor. In addition, there is also an
imbalance issue in patient samples, that is, the number of the
HGG cases is much more than that of the LGG cases. At the
same time, labeling biases introduced by manual experts can
also be treated as a special form of data imbalance (differ-
ent experts have different standards, resulting in imbalanced
labeling results). Data imbalance plays a significant effect
on learning algorithms especially deep networks. The main
manifestation is that learning models trained with imbal-
anced data tend to learn more about the dominant groups,
e.g. to learn the morphology of the edema area, and to learn
HGG instead of LGG patients) [36,65,120].
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Numerous works have presented many improvement
strategies to address data imbalance. According to core com-
ponents of these strategies, we divide the existing methods
into three categories: multi-network driven, multi-task
driven and custom loss function driven approaches.

Multi-network driven approaches

Even if complex modules and architectures have been
designed to ensure the learning of high-dimensional dis-
criminative features, a single network often suffers from
the problem of data imbalance. Inspired by the methods
such as multi-expert systems, people have started to con-
struct complex network systems to effectively deal with
data imbalance and achieved promising segmentation per-
formance. Common multi-network systems can be divided
into network cascade and network ensemble, according to
data flows shared between multiple networks.

Network cascade

The definition of network cascade is that, in a serially con-
nected network, the output of an upstream network is passed
to the downstream network as input. This topology simu-
lates the coarse-to-fine strategy, that is, the upstream network
extracts rough information or features, and the downstream
network subdivides the input and achieves a fine-grained seg-
mentation.

The earliest work of adopting the cascade strategy was
undertaken by Wang et al. [130] (Fig. 9). In their work, the
author proposed to connect three networks in series. First,
WNet segmented Whole Tumor, and output the segmenta-
tion result of Whole Tumor to TNet, and TNet traces Tumor
Core. Finally, the segmentation result of TNet is handed
over to ENet for the segmentation of Enhancing Tumor.
This design logic is inspired by the attributes of the tumor
sub-region, where it is assumed that Whole Tumor, Tumor
Core, and Enhancing Tumor are included one by one. There-
fore, the segmentation output of the upstream network is the
Region-of-Interest (RoI) of the downstream network. The
advantage of this practice is to avoid the interference caused
by the unbalanced data. The introduction of astropic con-
volution and the manually cropped input effectively reduces
the amount of network parameters. But there are two disad-
vantages: First, the segmentation effect of the downstream
network is heavily dependent on the performance of the
upstream network. Second, only the upstream segmentation
result is considered as the input so that the downstream net-
work cannot use other image areas as auxiliary information,
which is not conducive to other tasks such as tumor location
detection. Similarly, Hua et al. [56] also proposed a net-
work cascade based on the physical inclusion characteristics
of tumor. Unlike Wang et al. [56,130] replaced the cascade

unit with a V-Net, which is suitable for 3D segmentation to
improve performance. Fang et al. [43] trained two networks
to act as upstream networks at the same time according to
different characteristics highlighted by different modalities,
respectively training for Flair and T1ce. The results of the
two upstream networks can be passed to the downstream net-
work for final segmentation. Jia et al. [63] replaced upstream
and downstream networks with HRNet [123] to learn feature
maps with higher spatial resolutions.

Combining 3D networks for cascading can bring better
segmentation performance, but the combination of multiple
3D networks requires a large amount of parameters and high
computational resources. In response to this, Li [79] pro-
posed a cascading model that mixes 2D and 3D networks.
2D networks learn from multi views slices of a volume to
obtain the segmentation mask of the whole tumor. Then, the
whole tumor mask and the original 3D volume are fed to
the downstream 3D U-Net. The downstream network pairs
tumor core and enhancing tumor for fine segmentation. Li et
al. [80] also adopted a similar method by connecting mul-
tiple U-Nets in series for coarse-to-fine segmentation. The
segmentation results at each stage is associated with differ-
ent loss functions. Vu et al. [129] further introduced dense
connection between the upstream and downstream networks
to enhance feature expression. The two-stage cascaded U-
Net designed by Jiang et al. [64] has been further enhanced
at the output end. In addition to the single network archi-
tecture, they also tried two different segmentation modules
(interpolation and deconvolution) at the output end.

In addition to cascaded coarse-to-fine segmentation, there
are other attempts to introduce other auxiliary functions.
Liu designed a novel strategy in [89] to pass the segmen-
tation result of the upstream network to the downstream
network. The downstream network reconstructs the origi-
nal input image according to the segmentation result of the
upstream network. The loss of the recovery network is also
back-propagated to the upstream segmentation network, in
order to help the upstream network to outline the tumor area.
Cirillo et al. [31] introduced adversarial training to tumor seg-
mentation. The generator network constitutes the upstream
network, and the discriminator network is used as the down-
stream network to determine whether a segmentation map
is from ground truth or not. Chen et al. [23] introduced left
and right symmetry characteristics of the brain to the system.
The added left and right similarity masks at the connection
of the upstream and downstream networks can improve the
robustness of network segmentation.

Network ensemble

One main drawback of using a single deep neural network
is that its performance is heavily influenced by the hyper-
parameter choices. This refers to a limited generalization
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capability of the deep neural network. Cascaded network
intends to aggregatemultiple networks’ output in a coarse-to-
fine strategy, however downstream networks’ performance
heavily relies on the upstream network, which still limits the
capability of a cascaded system. In order to achieve a more
robust and more generalized tumor segmentation, the seg-
mentation output from multiple networks can be aggregated
together with a high variance, known as network ensem-
ble. Network ensemble enlarges the hypothesis space of the
parameters to be trained by aggregating multiple networks
and avoids falling into local optimum caused by data imbal-
ance.

Early research works presented in multi-path network
(“Multi-path architecture” section) such asCastillo et al. [19],
Kamnitsas et al. [68,69] can be regarded as a simplified form
of network ensemble, where each path can be treated as a
sub-network. The features extracted by the sub-network are
then ensembled and processed for the final segmentation. In
this section, we pay more attention to explicit ensemble of
segmentation results frommultiple sub-networks, rather than
implicit ensemble of the features extracted by sub-paths.

Ensembles of multiple models and architectures
(EMMA) [67] is one of the earliest well-structured works
using ensemble deep neural networks for brain tumor seg-
mentation. EMMA ensembles segmentation results from
DeepMedic [68], FCN [90] and U-Net [111] and associated
the final segmentation with the highest confidence score.
Kao et al. [70] ensembles 26 neural networks for tumor
segmentation and survival prediction. [70] introduced brain
parcellation atlas to produce a location prior information
for tumor segmentation. Lachinov et al. [75] ensembles two
variant U-Net [59,97] and a cascaded U-Net [76]. The final
ensemble result out-performs each single network 1–2%.

Instead of feeding sub-networkswith the same input, Zhao
et al. [146] averaged ensembles 3 2D-FCNs where each FCN
takes different view slices as input. Similarly, Sundaresan et
al. [124] averaged ensembles 4 2D-FCNs, where each FCN is
designed for segmenting a specific tumor region. Chen et al.
[24] used a DeconvNet [100] to generate a primary segmen-
tation probability map and another multi-scale convolutional
label evaluation net is used to evaluate previously generated
segmentationmaps. False positives can be reducedusing both
the probability map and the original input image. Hu et al.
[55] ensembles a 3D cascaded U-Net with a multi-modality
fusion structure. The proposed two-level U-Net in [55] aims
to outline the boundary of tumors and the patch-based deep
network associates tumor voxels with predicted labels.

Ensemble can be regarded as a boosting strategy for
improving final segmentation results by aggregating results
from multiple homogeneous networks. The winner of the
BraTS2018 [97] ensembles 10models,which further boosted
the performance with 1% on dice score compared with the
best single network segmentation. Similar benefits brought

by ensembling can be observed fromSilva et al. [118] aswell.
BraTS2019 winner [64] also adopted an ensemble strategy
where the final result is generated by ensembling 12 models,
which slightly improves the result (around 0.6−1%) com-
pared with the best single model’s performance.

Multi-task driven approaches

Most of the work described above only perform single-task
learning, that is, design and optimize a network for pre-
cise brain tumor segmentation only. The disadvantage of
single-task learning is that the training target of a single-
task may ignore the potential information in some tasks.
Information from related tasksmay improve the performance
of tumor segmentation. Therefore, in recent years, many
research works have started from the perspective of multi-
task learning, introducing auxiliary tasks on the basis of
precise segmentation of brain tumors. The main setting of
multi-task learning is a low-level feature representation that
can be shared among multiple tasks. There are two advan-
tages from the shared representation. One is to share the
learnt domain-related information with each other through
shallow shared representations so as to promote learning and
to enhance the ability to obtain updated information. The
second is mutual restraint. When multi-task learning per-
forms gradient back-propagation, it will take into account
the feedback ofmultiple tasks. Since different tasksmay have
different noise patterns, the model that learns multiple tasks
at the same time will learn a more general representation,
which reduces the risk of over-fitting and increases the gen-
eralization ability of the system.

Early attempts such as [115,149] adapt the idea of multi-
task learning and split the brain tumor segmentation task
into three different sub-region segmentation tasks, i.e. seg-
menting whole tumor, tumor core and enhancing tumor indi-
vidually. In [149], the author incorporated three sub-region
segmentation tasks into an end-to-end holistic network, and
exploited the underlying relevance among the three sub-
region segmentation tasks. In [115], the author designed three
different loss functions, corresponding to the segmentation
loss of whole tumor, tumor core and enhancing tumor. In
addition, more recent works introduce auxiliary tasks differ-
ent from image segmentation. The learnt features from other
tasks will support accurate segmentation. In [116], the author
additionally introduces a boundary localization task. The fea-
tures extracted by the shared encoder are not only suitable for
tumor segmentation, but also for tumor boundary localiza-
tion. Precise boundary localization can assist in minimizing
the searching space and defining precise boundaries during
tumor segmentation. [99] introduced the idea of first detect-
ing and then segmenting, that is, detecting the location of
tumors, and then performing precise tumor segmentation.
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Fig. 10 The structure of multi-task networks for brain tumor segmentation. Image courtesy of [97]. The shared encoder learns generalized feature
representation and the reconstruction decoder performs multi-task as regularization

Another commonly used auxiliary task is to reconstruct
the input data, that is, the encoded feature representation can
be restored to the original input using an auxiliary decoder.
[97] is the first method to introduce reconstruction as an aux-
iliary task to brain tumor segmentation. [134] introduced two
auxiliary tasks, reconstruction and enhancement, to further
enhance the ability of feature representation. [61] introduced
three auxiliary tasks, including reconstruction, edge seg-
mentation and patch comparison. These works regard the
auxiliary task as a regularization to the main brain tumor seg-
mentation task. Most multi-task designs use shared encoder
to extract features and independent decoders to process dif-
ferent tasks. From the perspective of parameter update, the
role of auxiliary task is to further regularize shared encoder’s
parameter. Different from L1 or L2 that explicitly regular-
ize parameter numbers and values, the auxiliary task shared
low-level sub-space with main task. During training, auxil-
iary task is helpful for the network to train in the direction
that simultaneously optimize the auxiliary task and the main
segmentation task, which reduces the search space of the
parameters, makes the extracted features more generalized
for accurate segmentation [17,41,113,143].

Customized loss function driven approaches

During network training, the gradient is likely dominated by
the excessively large sample given an imbalanced dataset.
Therefore, a number of works propose a custom loss func-
tion to regulate gradients during the training of a brain tumor
segmentation model. Designing a custom loss function aims
to reduce the weights of the easy-to-classify samples in the
loss function, whilst increasing the weights of the hard sam-

ples, so that the model is more focused on the samples of a
small proportion, reducing the impact of gradient bias gen-
erated while learning from imbalanced datasets.

Early research works tend to uses the standard loss func-
tions, e.g. categorical cross-entropy [106], cross-entropy
[127], and dice loss [20]. [109] is the first attempt to cus-
tomise the loss function. In [109], the authors enhance
the loss function to give more weights to the edge pixels,
which significantly improve segmentation accuracy at clas-
sifying tumor boundaries. Experimental results show that
the weighted loss function for edge pixels helps to improve
the performance of segmentation dice by 2 − 4%. Later on,
[116] proposed a customised cross-entropy loss for boundary
pixels while using an auxiliary task that includes boundary
localization. In [89], the reconstruction task is adopted as reg-
ularization, so the loss function aims at improving pixel-wise
reconstruction accuracy. In [85], the space loss function was
designed to ensure that the learnt features can keep spatial
information as much as possible. [99] further used a focal
loss to deal with imbalanced issues. [58] used a multi-class
dice loss, that is, the smaller the proportion of the category,
the higher the error weight during back-propagation. In [62],
a multi-scale loss function was added to perform in-depth
supervision on the features of different scales at each stage
of the encoder, helping the network to learn the features in
multi-scale resolutions that aremore conducive to object seg-
mentation. In [43], from the perspective of amodal, two types
of losses were designed for T1ce and Flair respectively. [29]
proposed a weighted combination of the dice loss, the edge
loss and the mask loss. The result shows that the combined
losses can improve dice performance by about 2%. [104] also
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Fig. 11 The illustration of cross-modality feature learning framework. Image courtesy from [141]

proposed a combination loss set, which includes the categor-
ical cross-entropy and the soft dice loss.

Summary

Table 3 shows the results generated by methods focused on
dealing with data imbalance in brain tumor segmentation.
From the above comparison, we can find several interesting
observations.

1. From the perspective of the network, the strategy to solve
the imbalance problem ismainly to combine the output of
multiple networks. Commonly used combination meth-
ods include network cascade and network ensemble. But
these strategies all depend on the performance of each
network. The consumption of the computing resources is
also increased proportionally to the number of the net-
work candidates.

2. From the perspective of a task, the strategy to solve the
imbalance problem is to set up auxiliary tasks for the reg-
ulating networks so that the networks can make full use
of the existing data and learn more generalized features
that are beneficial to the auxiliary tasks as well as the
segmentation task.

3. From the perspective of the loss function, the strategy
to solve the imbalance problem is to use a custom loss
function or an auxiliary loss function. By weighting the
hard samples, the networks are regulated to pay more
attention to the small data.

Utilizingmulti modality information

Multi-modality imaging has played a key role in medical
image analysis and applications. Differentmodalities ofMRI

Fig. 12 The structure of the modality-aware feature embedding mod-
ule. Image courtesy of [142]

emphasize on different tissues. Effectively utilizing of multi-
modality information is one of the key factors in MRI-based
brain tumor segmentation. According to the completeness of
the available modalities, we divide the multi-modality brain
tumor segmentation into two scenes: leveraging information
based on multiple modalities and limited information pro-
cessing with missing modality.

Learning withmultiple modalities

In this paper, we follow the BraTS competition standard,
that is, a complete multi-modality set refers the input data
modalities include but not limit to T1, T1ce, T2, and Flair. In
order to effectively use multi-modality information, existing
works focus on effectively learning multi-modality informa-
tion. The designed learning methods can be classified into
three categories based on their purposes:Learning to Rank,
Learning to Pair and Learning to Fuse.

Learning to Rank Modalities In multi-modality process-
ing, the existing data modality is sorted by relevance based
on the learning task, so that the network can focus on learn-
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ing the modality with high relevance. This definition can be
re-named as modality-task modeling. Early work from [110]
can be treated as basic learning to rank formation. In [110],
the author transformed each modality to a single CNN. In
[110], each CNN corresponds to a different modality and the
features extracted byCNNare independent of each other. The
loss returned by the final classifier is similar to the scoring
of the input data and the segmentation is undertaken accord-
ing to the score. A similar processing method was used in
[142]. For each of the two modalities, two independent net-
works were used formodeling relationshipmatching, and the
parameters of each network are affected by the influence of
different supervision losses. [141] extracted features of dif-
ferent embedding modalities (as shown in Fig. 11), modeled
the relationship between themodalities and the segmentation
of different tumor sub-regions, so that the data of different
modalities were weighted and sorted corresponding to indi-
vidual tasks.

Learning to Pair Modalities Learning to rank modali-
ties refers to the sorting of the modality-task relation for
a certain segmentation task. Another commonly used mod-
eling is the modality-modality pairing, which selects the
best combination from multi-modality data to achieve pre-
cise segmentation. [82] is one of the early works to model
themodality-modality relationship. The authors paired every
two modalities and sent all the pairing combinations to the
downstreamnetwork. [141] further strengthens themodality-
modality pairing relationship through the cross-modal fea-
ture transition module and the modal pairing module. In the
cross-modality feature transition module, the authors con-
verted the input and output from one modality’s data to
the concatenation of a modality pair. In the cross-modality
feature fusion module, the authors converted the single-
modality feature learning to the single-modality-pair feature
learning, which predicts the segmentation masks of each
single-modality-pair.

Learning to Fuse Modalities More recent works focus on
learning to fuse multi-modality. Different from the modal-
ity ranking and pairing, modality fusion is to fuse features
from each modality for accurate segmentation. The early
fusion method is relatively simple, usually concatenates or
adds features learned from different modalities. In [110], the
authors used 4 networks to extract features from each modal-
ity and concatenates the extracted modality aware features.
The features after concatenation are sent to RandomForest to
classify the central pixel of the input patch. In [43], features
from T1ce and Flair were added and sent to the downstream
network for entire tumor segmentation. Similarly, in [141],
modality aware feature extraction is performed and sent to the
downstream network for further learning. These two fusion
methods do not introduce additional parameters and are very
simple and efficient. In [141], even though the authors fused

the features from more complex cross-modal feature pair-
ing and single-modal feature pairing modules. In addition,
there are other works such as [82,127] that used additional
convolutional modules to combine and learn features from
different modalities so as to accomplish modality fusion.

Although concatenation and addition are used, these two
fusion methods do not change the semantics of learned fea-
tures and cannot highlight or suppress features. To tackling
this problem, many research works in recent years have
adopted attention mechanisms to strengthen the learnt fea-
tures. [60,85,131,154] used a spatial and channel attention
based fusion module. The proposed attention mechanism
highlights useful features and suppresses redundant features,
resulting in accurate segmentation.

Dealing withmissingmodalities

The modality learning methods mentioned above work in
a complete multi-modality set. For example, in BraTS, we
obtain the data of four modalities: T1, T1ce, T2, and FLAIR.
However, in actual application scenarios, it is very difficult
to obtain complete and high-quality multi-modality datasets,
refers to as missing modality scenarios. Yu et al. [137] is
one of the earliest works targeting learning under missing
modality. The authors in Yu et al. [137] constructed the
only available modal T1 and used generative adversarial
networks to generate the missed modalities. In Yu et al.
[137], the authors used the existing T1 modality as input
to generate Flair modality. The generated Flair data is sent
as a supplement with the original T1 data to the down-
stream segmentation network. [151,153] learnt the implicit
relationship between modalities and examined all possible
missing scenarios. The results show that multi-modality have
an important influence on accurate segmentation. In [138],
the intensity correction algorithm was proposed for different
scenarios of the single modality input. In this framework, the
intensity query and correction of the data of multiple modal-
ities makes it easier to distinguish the tumor and non-tumor
regions in the synthetic data.

Summary

Table 4 shows the results generated by methods focused
learning with multi-modality in deep learning based brain
tumor segmentation. We can collect several common obser-
vations in utilizing the information from multi modalities.

1. For task-modality modeling, learning to rank modalities
can help the network choose the most relative and con-
ducive modality for accurate segmentation. Most of the
research worksmodel the implicit ranking while learning
the modality aware features.
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Fig. 13 The structure of the
modality correlation module.
Image courtesy of [153]

Table 5 Opensourced projects from deep learning based brain tumor segmentation. where ‘3rd Party’ means the code is re-implemented by a third
party based on the associated paper

Paper Title Code Link

Brain tumor segmentation with Deep Neural Networks (3rd Party) https://github.com/naldeborgh7575/brain_
segmentation

DeepMedic on Brain Tumor Segmentation https://github.com/deepmedic/deepmedic

Multi-dimensional Gated Recurrent Units for Brain Tumor
Segmentation

https://github.com/zubata88/mdgru

Volumetric Multimodality Neural Network For Brain Tumor
Segmentation

https://github.com/BCV-Uniandes/BCVbrats

Brain Tumor Segmentation and Radiomics Survival Prediction:
Contribution to the BRATS 2017 Challenge

(3rd Party) https://github.com/pykao/Modified-3D-UNet-
Pytorch

Residual Encoder and Convolutional Decoder Neural Network for
Glioma Segmentation

https://github.com/kamleshpawar17/BratsNet-2017

Automatic Brain Tumor Segmentation Using Cascaded Anisotropic
Convolutional Neural Networks

https://github.com/taigw/brats18_docker

No New-Net https://github.com/MIC-DKFZ/nnUNet

3D MRI Brain Tumor Segmentation Using Autoencoder
Regularization

(3rd Party) https://github.com/IAmSuyogJadhav/3d-mri-brain-
tumor-segmentation-using-autoencoder-regularization

3D-ESPNet with Pyramidal Refinement for Volumetric Brain Tumor
Image Segmentation

https://github.com/sacmehta/3D-ESPNet

One-pass Multi-task Networks with Cross-task Guided Attention for
Brain Tumor Segmentation

https://github.com/chenhong-zhou/OM-Net

Multi-step Cascaded Networks for Brain Tumor Segmentation https://github.com/JohnleeHIT/Brats2019

An Ensemble of 2D Convolutional Neural Network for 3D Brain
Tumor Segmentation

https://github.com/kamleshpawar17/Brats19

Knowledge Distillation for Brain Tumor Segmentation https://github.com/lachinov/brats2019

Label-Efficient Multi-Task Segmentation using Contrastive Learning https://github.com/pfnet-research/label-efficient-brain-tumor-
segmentation

Vox2Vox: 3D-GAN for Brain Tumour Segmentation https://github.com/mdciri/Vox2Vox

Brain tumor segmentation with self-ensembled, deeply-supervised 3D
U-net neural networks: a BraTS 2020 challenge solution.

https://github.com/lescientifik/open_brats2020

Brain tumour segmentation using a triplanar ensemble of U-Nets on
MR images

https://git.fmrib.ox.ac.uk/vaanathi/truenet_tumseg

A Two-Stage Cascade Model with Variational Autoencoders and
Attention Gates for MRI Brain Tumor Segmentation

https://github.com/shu-hai/two-stage-VAE-Attention-gate-
BraTS2020

HDC-Net: Hierarchical Decoupled Convolution Network for Brain
Tumor Segmentation

https://github.com/luozhengrong/HDC-Net
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2. For modality-modality modeling, learning to pair modal-
ities can help the network find the most suitable modality
combination for segmentation. However, existing pairing
works show modality pairs through exhaustive combina-
tion with large computing resources.

3. The fusion of multi-modality information can improve
the expressive ability and generalization of features.
Existing fusion methods have their own advantages
and disadvantages. Addition or concatenation does not
introduce additional parameters, but lacks the physi-
cal expression of features. Using a small network, an
attention module can optimize feature expression, but
introduce additional parameters and computational cost.

4. Missingmodalities are one of themost common scenes in
clinical imaging. Existing works focus on the perspective
of generation, using existing modality data to generate
missing modalities. However, the performance and qual-
ity of the generator modal heavily relies on the quality of
the existing modality data.

Future trends

Deep learning based brain tumor segmentation methods
have achieved satisfying performance, there are challenges
remaining to be solved. In this section, we briefly discuss
several open issues and also point out potential directions for
possible future works.

Segmentation with less supervision

Most existing research methods belong to fully supervised
methods, which rely on complete dataset with precious anno-
tated segmentation masks. However, it is very challenging to
obtain segmentation mask without annotation bias, which
is time-consuming and labor-intensive. Recently, research
attempts such as [? ] evaluate the self-supervised representa-
tion for brain tumor segmentation. In the future, brain tumor
segmentation methods expected to be powered by self, weak
and semi-supervised training with fewer labels.

Neural architecture search based segmentation

As we discussed in Sect. “Designing effective segmentation
networks”, the design ofmodules and networks heavily relies
on human experience. In the future, we anticipate the combi-
nation between domain knowledge (e.g. tumor degree, tumor
morphology) with neural architecture search algorithms for
searching effective brain tumor segmentation networks.

Protect patient’s privacy

Current methods heavily mining the data information, espe-
cially for downstream tasks such as survival prediction for
learning to segment brain tumor with patient statistics. In the
future, privacy-preserved learning framework are expected
to be explored aiming at protecting patients privacy [78].

Conclusion

Applying various deep learning methods to brain tumor seg-
mentation is a challenging task. Automated brain tumor
segmentation benefits several aspects due to the powerful
feature learning ability of deep learning techniques. In this
paper, we have investigated relevant deep learning based
brain tumor segmentation methods and presented a compre-
hensive survey. We structurally categorized and summarized
the deep learning based brain tumor segmentation methods.
We have widely investigated this task and discussed several
key aspects such as methods’ pros and cons, designing moti-
vation and performance evaluation.
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