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Abstract
Sensor ontology is a standard conceptual model that describes information of sensor device, which includes the concepts
of various sensor modules and the relationships between them. The problem of heterogeneity between sensor ontologies
is introduced because different sensor ontology engineers have different ways of describing sensor devices and different
structures for the construction of sensor ontologies. Addressing the heterogeneity of sensor ontologies contributes to facilitate
the semantic fusion of two sensor ontologies, enabling the sharing and reuse of sensor information. To solve the above problem,
an ontology meta-matching method is proposed by this paper to find out the correspondence between entities in distinct sensor
ontologies. How to measure the degree of similarity between entities with a set of suitable similarity measures and how to
better integrate multiple measures to determine the equivalent entities are the challenges of the ontology meta-matching
problem. In this paper, two approximate measurement methods of the quality for ontology matching results are designed,
and a multi-objective optimization model for the ontology meta-matching problem is constructed based on these methods.
Eventually, a multi-objective particle swarm optimization (MOPSO) algorithm is propounded to dispose of the problem and
optimize the quality of ontologymeta-matching results, which is named density and distribution-based competitivemechanism
multi-objective particle swarm algorithm (D2CMOPSO). The sophistication of the D2CMOPSO based sensor ontology meta-
matchingmethod is verified through experiments. Comparing with other matching systems and advanced systems of Ontology
Alignment Evaluation Initiative (OAEI), the proposed method can improve the quality of matching results more effectively.

Keywords Sensor ontology · Ontology meta-matching · Multi-objective particle swarm optimization ·
Competitive mechanism · Ontology Alignment Evaluation Initiative

Introduction

Sensors are widely used in various areas and play an impor-
tant role in both military and civilian fields. A distributed
intelligent network system consisting of numerous sensor
nodes with wireless communication capability which are
widely distributed in the field of employment is called sen-
sor network. More specifically, a sensor web mainly consists
of the Internet of Things (IoT), the World Wide Web (web),
sensor network and databases [1,15,18,32]. However, due
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to the lack of semantic information about sensor devices,
data processing, etc., different sensor webs may have the
discrepancies, which lead these sensor data difficult to link
together, and results in poor coordination between various
fields and departments. To eliminate discrepancies between
sensor webs and achieve interoperability, the concept of
Semantic Sensor Web (SSW) is proposed. SSW technology
is a combination of sensor web and sensor ontologies, which
annotates sensor data and information such as capabilities,
performance, and conditions of use through ontologies, and
builds them into standard conceptual models [49]. Thus, the
problem of discrepancies between sensor networks is trans-
lated into the problemof heterogeneity of conceptualmodels:
since the same concepts in these conceptual models may be
depicted in distinct methods, heterogeneity’s trouble is intro-
duced [43].
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By eliminating the heterogeneity of different sensor
ontologies, the semantic fusion and interoperability of sensor
ontologies are realized, which leads to the sharing and reuse
of sensor information. For this reason, the concept of ontol-
ogy matching is proposed, and ontology matching method
aims at studying how to determine the equivalent relation-
ship between entities in two heterogeneous ontologies, which
is generally classifiable into two major categories, that is
ontology meta-matching method and ontology entity match-
ing method [50]. Both methods require the use of similarity
measures to calculate the similarity of different entities and
determine their relationships. The ontology meta-matching
problem mainly study how to combine and debug differ-
ent similarity measures to determine high-quality ontology
matching results, and this problem is a current research
hotspot in ontology matching’s area. To solve this problem,
the ontology meta-matching method first determines differ-
ent similarity matrices by means of similarity measures, and
then assigns appropriateweights and threshold to thesematri-
ces to obtain the finalmatching results [24]. Since theweights
and threshold take values in the range [0,1] of real numbers,
the ontology meta-matching problem is usually modeled as a
class of continuous optimization problems, which is solvable
by intelligent computation methods.

PSO is one of the swarm intelligence algorithms in intel-
ligent computing methods, first proposed by Eberhart and
Kennedy in 1995 [11], imitating the foraging behavior of
birds in nature, is a classical meta-heuristic algorithm, and is
used to resolve optimization problems in different areas own-
ing to fast convergence and high robustness widely. Some
properties of PSO make it also suitable for solving ontology
meta-matching problem: (1) First, for the objective func-
tions used to evaluate the results, PSO can easily adjust
and change them; (2) PSO can handle large scale inputs
and is easy in solving slightly larger scale problems such
as matching of large scale ontologies; (3) PSO has a high
degree of parallelism, which makes it possible to reduce time
consumption and improve matching efficiency when using
it to handle ontology meta-matching problems [5]. Differ-
ent users may have different needs for the two evaluation
metrics of ontology meta-matching results, i.e., recall and
precision [47], so they need to be optimized simultaneously.
Both metrics require experts to provide reference match-
ing results in advance, however, in practice, such matching
results do not exist, and constructing reference matching
results is time-consuming and costly in many cases [59].
To solve this problem, this work proposes two approximate
metrics of recall and precision to measure the quality of
matching results. Since these two approximate metrics are
contradictory to some extent, a multi-objective optimization
model is constructed in this work for the sensor ontology
meta-matching problem to better describe the nature of the
problem. To solve the multi-objective sensor ontology meta-

matching problem, this work further proposes the MOPSO
[8] to determine the Pareto Front (PF) solutions set. For
MOPSO, how to approach the more cutting-edge PF and
how to make the distribution of leader solutions more uni-
form are two challenging problems. The choice of the leader
solution is crucial, and it affects the convergence and diver-
sity of the population. To this end, this work proposes an
improvedMOPSOalgorithm,which selects a better andmore
uniformly distributed set of leader solutions by calculating
the sparsity of PF solutions, and then selects a suitable leader
solution for each particle in the set of leader solutions based
on the density value and the angle competition criterion, to
guide the particle to learn from the elite particle that are closer
to it convergence direction and approach the optimal PF. In
addition, since the sensor ontology meta-matching problem
is a multimodal problem, an oppositive solution strategy is
introduced into MOPSO to raise solutions’ diversity in solu-
tion space. Specifically, the contributions of this work are as
follows:

(1) In many previous ontology meta-matching systems, two
evaluation metrics of its results, i.e., recall and preci-
sion, need to use the standard matching results pro-
vided by experts in advance, but it is unreasonable and
time-consuming. So this work constructs an approxi-
mate recall and an approximate precision for ontology
meta-matching problem, which are used to measure the
matching results’ quality. They do not require the inter-
vention of standard reference matching results and are
only related to the similarity matrix, which enhances the
rationality of matching process.

(2) The sensor ontology meta-matching problem is con-
structed as amulti-objectivemathematicalmodel in terms
of the proposed two matching results approximation
evaluation metrics. By optimizing the parameters of the
model, the meta-matching problem of sensor ontology is
solved and the optimal matching result is found.

(3) Facing the challenging problems of MOPSO with many
parameters and uneven distribution of PF solutions, a new
D2CMOPSO is proposed to optimize multi-objective
sensor ontology meta-matching models. It has fewer
parameters, the weights and threshold need to be opti-
mized are encoded into the solutions of the algorithm, and
the sparsity index ofD2CMOPSO is used to select a set of
more uniformly distributed leader solutions. Then each
particle is judged to tend to exploration or exploitation
according to the density index, so that the corresponding
leader solution is selected from the set of leader solu-
tions according to the competitive mechanism, guiding
the particle to approach the optimal PF with a more uni-
form distribution. Further the solution on the optimal PF
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is found and output, i.e., a set of parameters that make the
meta-matching problem has a highest quality of results.

(4) The feasibility of the approach proposed in this work
are verified by comparing with other MOPSO-based
matching systems and advanced systems of OAEI in
the benchmark track, and the experiment results find
that D2CMOPSO can match different heterogeneous
ontologies more effectively; in addition, the suggested
method is compared with some other well-known sys-
tems through several sensor ontology test cases to
verify its effectiveness. Experiment results show that
D2CMOPSO the same possesses better performance in
resolving ontology heterogeneity problems in sensor
domain, which helps to achieve knowledge integration
and information sharing of different sensor networks.

Combined with the above content, the research in this
work is divided into the followingmodules: Section “Related
work” introduces reference alignment and partial reference
alignment-based matching systems, discusses several exist-
ing ontology matching techniques based on PSO as well as
the MOPSO algorithm and its variants; Section “Mathemati-
cal model for multi-objective ontology meta-matching” first
introduces the related definitions of ontology, ontology het-
erogeneity, ontology meta-matching and similarity measure
methods, and then describes themulti-objective optimization
model constructed in this work to solve the sensor ontology
meta-matching problem; Section “Methodology” introduces
and discusses the specific method, implementation process
of the D2CMOPSO; Section “Experiment and analysis” is
the part of experiments, where the OAEI’s benchmark and
several sensor ontologies are tested to illustrate the effective-
ness of the proposedmethod; Section “Conclusion and future
work” is the conclusion part, which summarizes the content
of the whole text, points out the shortcomings of the existing
work and indicates the focus and direction of future research.

Related work

Reference alignment and partial reference
alignment-basedmatching systems

In the ontology matching process, different optimization
methods can have different effects on the matching results.
According to whether and to what extent reference match-
ing results are introduced in the matching process, ontology
matching systems are classified as reference alignment (RA),
partial reference alignment (PRA) and no reference align-
ment (NRA)-based systems. Table 1 shows the shortcomings
of diffenrent RA and PRA-based matching systems. In
the process of ontology matching, the RA-based matching
method compare the solution with the reference alignment,
and these systems are mainly found in the literature [25–
27,46] and [4]. Although it can improve the precision of
the matching result to some extent, but it is not reasonable:
because it is time & labor-consuming to build the reference
alignment in practice. Earlier, PRA-basedmatchingmethods
have also been put forward to attempt to solve this problem.
The PRA-based matching approach first finds a small set of
anchor points or standard matching results, and then uses
these small-scale entity pairs to find other entity alignments.
It can avoid the unnecessary construction of a large number
of standard answers, and also improve the matching accu-
racy. SAMBO [20] is the most famous ontology matching
system based on PRA, which uses PRA in different steps of
the matching process. LSD [10] is also an automated ontol-
ogy matching system based on PRA, which requires the user
to provide a portion of matching elements to construct partial
reference matching results and then train the set of learners
through machine learning techniques. ECOMatch [33] also
requires the user to provide a part of matching elements,
on the basis of which the system parameters are set and the
ontology matching process is further completed. However,

Table 1 Reference alignment
and partial reference
alignment-based matching
systems and their shortcomings

Name Shortcomings

GOAL [26] It requires the reference matching
result to be given in advance

Martinez and Aldana [27] It needs the help of reference align-
ments

Xue et al. [46], Marjit [25], Biniz and El Ayachi [4] None of these methods escape the
constraints of reference alignment

SAMBO [20], LSD [10], ECOMatch [33] These methods require continu-
ous user participation and the
selected representative entities does
not accurately represent the original
ontology

Xue et al. [47] It is hard to choose a suitable set of
small-scale matching pairs to repre-
sent the original ontology
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these methods require continuous user participation and the
selected representative entities does not accurately represent
the original ontology. For this reason, Xue et al. [47] propose
a PRA-based system using clustering method, where entities
in the ontology are divided into different clusters, and entities
that can maximize the representation of the original ontol-
ogy are selected from these clusters. Then it combined with a
memetic algorithm to optimize the ontology meta-matching
model. But the semi-supervised approach also has certain
drawbacks, i.e., how to choose a suitable set of small-scale
matching pairs to represent the original ontology, especially
in the case of a large amount of data, the selection ofmatching
samples is crucial. The too small scale is not representative, it
is difficult to achieve the desired effect; too large scale can be
caught in the time-consuming problem of building standard
answers.

In recent years, as the defects of RA-based matching sys-
tems are gradually exposed, ontology matching technologies
based on NRA have become the focus of research, and a
NRA-based matching system that can both save costs and
improve the accuracy of matching results is urgently needed.
The ontology meta-matching technology presented in this
work uses approximate evaluation metrics, which belongs to
NRA-based matching system.

PSO-based ontologymatching technologies

Current matching techniques are divided into two categories
according to whether the computational intelligence tech-
nology is used: deterministic ontology matching technolo-
gies and computational intelligence-based ontology match-
ing technologies. Deterministic ontology matching systems
emerged earlier and are characterized by the fact that the
relevant parameters in the matching process are given by
experts in advance, and it is difficult to adapt the parameters
when dealing with different ontology matching problems, so
they are not universally applicable. The computational intel-
ligence based ontology matching technology determines the

parameters of thematching process automatically through an
optimization algorithm, which considers how to find an opti-
mal set of parameters tomake the highest quality ofmatching
results, and can adapt to different matching problems with
greater flexibility. PSO is a classical swarm intelligence
computational method. It has fast convergence speed and
strong robustness, and is suitable for solving ontologymatch-
ing problem. Table 2 summarises the PSO-based ontology
matching techniques, including their shortcomings.Bock and
Hettenhausen [5] propose a PSO-based method for single-
object entity matching. Semenova and Kureychik [34] also
use a binary coding mechanism to model ontology matching
problem. Further, for different user preferences, Semenova
and Kureychik [35] propose an MOPSO-based ontology
meta-matching system. However, either of them ignore the
structural information of entities in the ontology and lack
the structure-based similarity measure. In addition, Marjit
[25] also propose anMOPSO-based ontologymeta-matching
method earlier. Moreover, Kureychik and Semenova [19]
use MOPSO to address the application of ontology meta-
matching in large-scale data processing. The saving of
matching time and memory are particularly important while
handle large-scale ontology matching problems. Recently, a
multi-objective discrete optimizationmodel is constructed by
Wang et al. [40] for the hydrological ontologymatching prob-
lem, using a compact MOPSO to tune model’s parameters.
Meanwhile, Xue et al. [48] also propose a compact MOPSO
algorithm to solve the biomedical ontology matching prob-
lem, using amethod calledmaximum-minimum to determine
the winner solution, and experimental results prove that the
approach can ameliorate the matching efficiency effectively.
The compact intelligent computing method is a compromise
strategy [30], although it can reduce the computation time
and memory consumption, however, the virtual population
strategy results in a smaller population size, and the accu-
racy of the matching results may be reduced.

At present, there is no ontology meta-matching system
based on MOPSO with using NRA. Considering the advan-

Table 2 PSO-based ontology
matching technologies and their
shortcomings

Name Shortcomings

Bock and Hettenhausen [5] Its parameters still need to be deter-
mined in advance via parameter file

Semenova and Kureychik [34] Either of them ignore the structural
information of entities in the ontol-
ogy and lack the structure-based
similarity measure

Marjit [25] Needs to use reference matching
results

Wang et al. [40], Xue et al. [48] The virtual population strategy
results in a smaller population size,
and the accuracy of the matching
results may be reduced
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tages and limitations of the above methods, this work first
constructs a multi-objective continuous optimization model
for ontologymeta-matching, applies different similaritymea-
sures to compute similarity, and uses improvedMOPSOwith
a more reasonable decimal coding mechanism to automati-
cally optimize the integrated weights of the measures.

MOPSO algorithm and variants

The improvedMOPSO is put forward to optimize the match-
ing model’s parameters, purpose to improve the quality of
matching results. MOPSO was first proposed in 1999 [29],
transforming the traditional single-objective PSO algorithm
into the algorithm for solving multi-objective problems, the
pbest of particle and gbest of population are selected accord-
ing to the non-dominance relation. Table 3 summarises some
of theMOPSOvariants, including their shortcomings. Coello
et al. [8] make an important improvement to MOPSO by
using the Pareto dominance relation to select a set of elite
solutions for the population and store them in an external
repository, which is updated for each iteration. In addition,
the method introduces the variation strategy into MOPSO
to improve the diversity of solutions, which results in better
PF solutions. More recently, Zhang et al. [57] innovatively
propose an MOPSO based on the competitive mechanism,
which makes the particles approach the PF better and faster.
However, this approach ignores external repository, which
result in the lack of historical optimum information of the
population. Yuen et al. [54] further improved the competitive
mechanismofZhang et al., this approach also has somedraw-
backs, i.e., it is not possible to accurately determine which
competitive strategy each non-elite solution should adopt to
select the appropriate leader solution.

In addition, there is a well-known framework for solving
multi-objective optimization problems, known as “Multi-
ple populations for multiple objectives”, which is also a
creative technique for dividing a population into several sub-
populations, each of which corresponds to an optimization
objective, and it is a promising research direction. It was
proposed by Zhan et al. and can effectively solve the fit-
ness assignment problem. Literature [55] first proposes a
co-evolutionary multi-population MOPSO, which uses an
external shared archive to store non-dominant solutions, and
different populations communicate through this archive; at
the same time, an elitist learning strategy (ELS) strategy is
introduced into the update process of the archive,which helps
the solutions to approach a more realistic PF. Further, the lit-
erature [22] also proposes a co-evolutionary based MOPSO,
which uses bottleneck objective learning strategy to improve
the convergence of the objective, while using elitist learning
strategy and juncture learning strategy to make the algorithm
covers different parts of the PF, effectively improving the
diversity and convergence of the algorithm’s solutions. Sim-

Table 3 MOPSO algorithm and variants and their shortcomings

Name Drawback

Coello et al. [8] The accuracy of the algorithmneeds
further improvement

Zhang et al. [57] This approach ignores external
repository, which result in the lack
of historical optimum information
of the population

Yuen et al. [54] It is not possible to accurately deter-
mine what competitive strategy
each non-elite solution should adopt
to select the appropriate leader solu-
tion

ilar multiple populations for multiple objectives frameworks
have been published in [7] and [56].

To address the problem mentioned in Table 3, the
D2CMOPSO in this work first uses a distributivity metric
to select elite solutions with better distribution, proposes
a density-based method to decide what competitive strate-
gies different non-elite solutions should choose to select
appropriate leader solutions for them among elite solutions,
and finally generates opposite solution for each particle to
increase diversity. This method not only allows the popula-
tion to be more uniformly distributed in the target space, but
also ensures that the solutions converge to amore realistic PF.
It has great advantages in solvingmultimodalmulti-objective
problems like sensor ontology meta-matching.

Mathematical model for multi-objective
ontologymeta-matching

Ontology and ontology heterogeneity problem

Ontologies are used to normalize and formalize heteroge-
neous information, to solve the problem of semantic and
syntactic heterogeneity, and are the basis for information
interoperability. The ontology consists of numerous entities,
which include classes representing concepts, relational prop-
erties between concepts and instances of classes, and can be
symbolized using a triple, i.e., (C, P, I), whereC, P, I represent
classes, properties and instances respectively. Figure 1 shows
a sensor ontology, the content in the rounded rectangle repre-
sents the class of the sensor ontology, and the line connecting
the rounded rectangles represents the relationship between
two classes. The bidirectional arrows in Fig. 1 indicate that
the two classes they connect have a property relationshipwith
each other: for example, “System” and “Procedure”, where
System implements Procedure and, conversely, Procedure
implements by System; while directional arrows represent a
one-way property relationship between the emitting class of
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Fig. 1 An example of sensor
ontology: contains class and
property

the arrow and the receiving class of the arrow: for example,
the relationship between “Procedure” and “Output” is that
Procedure has Output. However, for different ontology engi-
neers, an ontology for the same domain may have different
construction methods, and a concept may be expressed in
many distinct terms, which introduces the problem of ontol-
ogy heterogeneity [16]. Ontology heterogeneity is reflected
in three aspects, namely system heterogeneity, syntactic het-
erogeneity and hierarchical heterogeneity, and solving the
heterogeneity of ontology is the key to realize semantic fusion
and knowledge sharing. Ontology matching techniques can
effectively eliminate semantic heterogeneity and solve the
above problem. Figure 2 depicts two heterogeneous sensor
ontologies and their matching results. The rectangles and
their branches of the figure represent the entities of two
ontologies, respectively, and the “≡” represents that the two
entities are equivalents, connected by a bidirectional arrow.
The names of the entities are shown in the Fig. 2. The names
of these entities may be different, but the meanings they rep-
resent may be the same, and the two ontologies composed
of these entities are heterogeneous. The set of entity pairs
connected by bidirectional arrow is the matching result.

Similarity measures

The key to ontology matching is the calculation of similar-
ity, which eliminates heterogeneity by identifying entities
with equal relationships through similarity values. Measur-
ing the degree of similarity between entities needs to be
considered from three aspects, i.e., syntax, semantics, and

structure, because considering the similarity of entities from
only one aspect is one-sided and unconvincing. To evaluate
the true similarity between two entities, various similarity
metric techniques have been recommended and applied to
ontology’s process matching. The three types of similarity
measurement methods used in this work are: N-Graml [28],
Wu&Palmer [41] and numbered hierarchy similarity [44].

Multi-objective ontologymeta-matching problem

Ontology meta-matching aims to find the most appropriate
set of integration weights for different similarity measure-
ment methods, resulting in the highest quality of matching
results. Theflowchart of the ontologymeta-matchingprocess
is shown in Fig. 3. First, parsing two ontologies to bematched
to get the entities, then the parsed entities are pre-processed
and calculated the similarity values. The different types of
similarity values between entities are stored separately in a
similarity matrix, i.e., Matrix 1,Matrix 2 andMatrix 3 in Fig.
3. And the different similarity matrices become a combined
similarity matrix through the set of weightsW1,W2 andW3.
The combined similarity matrix is filtered by a threshold to
discard low similarity values, and a final similarity matrix
is obtained, then the final similarity matrix is used to find
the matching result. Find the element in the final similarity
matrix that is the maximum of both the row and column in
which it is located, and the two entities corresponding to that
element are considered to be equivalent.

The evaluation metrics for the quality of ontology meta-
matching results are mainly recall, precision and their
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Fig. 2 Two heterogeneous sensor ontologies and their matching results

Fig. 3 The flow chat of ontology meta-matching process

harmonic average f-measure [51]. For different users, the
importance of different evaluation metrics is also different.
Therefore, this work models the sensor ontology meta-
matching problem as a multi-objective optimization problem
to simultaneously optimize two conflicting metrics, recall
and precision, to satisfy the requirements of different users.

Definition of multi-objective problem

Unlike the single-objective optimization problem where
one objective is optimized at a time, the Multi-objective
Optimization Problem (MOP) requires the simultaneous
optimization of more than two conflicting objectives [9].

123



442 Complex & Intelligent Systems (2023) 9:435–462

MOPare common in the realworld andmany advancedmeth-
ods have been proposed to solve MOPs in different domains
[42,52]. For the maximum optimization problem, the prob-
lem is defined as follows:{
V − max f (x) = [ f1(x), f2(x), . . . , fn(x)]T
s.t . X ∈ Rm

(1)

where V -max denotes vector maximization; fk(x)(k =
1, 2, . . . , n) denotes the subobjective of the vector objec-
tive function f (x), each subobjective vector is maximized
as much as possible; x is the solution to the problem and
X ∈ Rm is the constraints and limitations of the MOP.

Solving an MOP requires determining a set of non-
dominated solutions, and the dominance relation of the
solutions is defined as follows:

(1) If there are solutions x1, x2 ∈ X , for any k = 1, 2, . . . , n
with fk(x1) ≥ fk(x2) and at least one fk(x1) > fk(x2),
then the solution x1 is said to dominate the solution x2,
denoted as x1 � x2;

(2) If there are solutions x1, x2 ∈ X , for any k =
1, 2, . . . , n, not all of them have fk(x1) ≥ fk(x2), then
the solution x1 and the solution x2 are said to bemutually
non-dominated, denoted as x1 � x2.

Formulaic multi-objective ontology meta-matching

The multi-objective ontology meta-matching problem is
defined by building a nonlinear optimization model consist-
ing of decision variables, constraints and objective functions.
The commonly used metrics to measure alignment’s quality
are recall and precision, which are defined as follows:

recall = |R ⋂
A|

|R| (2)

precision = |R ⋂
A|

|A| (3)

where R stands for the standard matching result given by
the expert and A stands for the matching result obtained by
the matching system. However, in reality, there is no refer-
ence result for two matching ontologies, and for large-scale
ontologies, the construction of reference results requires
high costs, and the approximate evaluation metrics can
effectively solve this problem. The two approximate eval-
uation metrics in this work are Substi tutiveRecall and
Substi tutivePrecision, which are used as substitutes for
recall and precision, respectively. They are calculated as
follows:

substi tutiveRecall(M) =
∑m

i=1
∑n

j=1 δ(|Mi j |)
min(m, n)

(4)

δ(|Mi j |) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, when elementMi j is largest in i th

row and j th c-

olumn in M matrix

0, otherwise

(5)

where M is the final similarity matrix; Mi j denotes the ele-
ment in the i-th row and j-th column of M ; m and n are the
cardinalities of the source and target ontologies, respectively.

substi tutivePrecision(M) =
∑m

i=1
∑n

j=1 ϒ(|Mi j |)∑m
i=1

∑n
j=1 δ(|Mi j |) (6)

ϒ(|Mi j |) =

⎧⎪⎨
⎪⎩

|Mi j |, when elementMi j is largest

in i th row and j th column

0, otherwise

(7)

The above two approximate evaluation metrics no longer
require reference alignment, using only the information from
the similarity matrix. The ratio of the matching pairs we find
to the maximum possible number of matching pairs can be
used to replace the recall; and the average of the similarity
values of the matching pairs we find can be used to replace
the precision. On this basis, the optimization model for the
multi-objective ontology meta-matching problem is defined
as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V − max [substi tutiveRecall(M), substi tutive

Precision(M)]T
s.t . I nte = (I nte1, I nte2, . . . , I nten, I nten+1)

T∑n
i=1 I ntei = 1, I ntei ∈ [0, 1]

I nten+1 ∈ [0, 1]

(8)

where I nte is the integration vector, the integration fac-
tor I ntei (i=1, …, n) represents the weight of similarity
measurement method, and I nten+1 represents the threshold
value.

Methodology

Encodingmechanism

In this work, the integration factors, i.e., weights and thresh-
old information, are encoded into the solutions of the
algorithm using a decimal encodingmechanism. The specific
procedure is as follows: randomly generate n real numbers
in the range of [0,1], n is the number of similarity measures;
arrange n-1 random numbers in ascending order, and the nth
randomnumber represents the threshold; generateweights by
calculating the difference between the n-1 ascending num-
bers, with the following equation:
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Fig. 4 An example of integration factors encoding mechanism

I ntei =

⎧⎪⎨
⎪⎩
rand ′

1, i = 1

rand ′
i − rand ′

i−1, 1 < i < n

1 − rand ′
n−1, i = n

(9)

where I ntei denotes the weight, i is the ordinal number of
the weight, rand ′ denotes the sorted random number. Figure
4 gives an example to illustrate the encoding mechanism of
this work. As shown in Fig. 4, assuming n=5, the five ran-
dom numbers generated are 0.32, 0.72, 0.57, 0.15 and 0.86,
where 0.86 is taken as a threshold and the remaining four
numbers are arranged in ascending order, the corresponding
five weights are 0.15, 0.17, 0.25, 0.15 and 0.28, respectively.
While satisfying the constraints, this encoding method can
also reduce dimension.

MOPSO and its challenges

The traditional MOPSO uses the Pareto dominance relation-
ship to select dominated and non-dominated solutions, stores
the non-dominated particles in a repository, and updates the
external repository at each iteration. Each particle selects
an individual historical optimal solution based on the domi-
nance relation and selects the global optimal solution in the
external repository, updating the velocity and position based
on the Eqs. (10) and (11):

vel ′[i] = ω × vel[i] + r1

×(pbest[i] − pos[i]) + r2 × (rep[h] − pos[i])
(10)

pos′[i] = pos[i] + vel ′[i] (11)

where vel ′ and vel represent the velocity of the particle after
and before updating, respectively;ω is the inertia weight, and
r1 and r2 are random numbers in interval [0,1]; pos′ and pos
denote the position of the particle before and after updating,
respectively; pbest represents the historical optimal position
of the particle, rep[h] is the position of the elite solution
selected from the external repository, where h is the index of
the elite solution.

The two main challenging problems of MOPSO are (1)
how to make solutions better converge to the true PF; (2)
how to maintain the diversity of solutions and make the PF’s
solutions more uniformly distributed. To improve the con-
vergence efficiency and solution quality of the algorithm,
an MOPSO based on the competitive mechanism has been
proposed in recent years [57], which selects a part of par-
ticles in the population as elite solutions by non-dominated
sorting, and the particles of the population randomly select
two elite solutions at a time for comparison, the elite solu-
tion with the smallest angle to that particle is selected as its
leader solution.However, there are several problemswith this
approach: First, the absence of an external repository causes
the loss of historical information on the population, thus
affecting the diversity and authenticity of the elite solution.
Second, since this competitive mechanism selects only two
random elite solutions for comparison at a time, other more
closer elite solutions may be ignored; moreover, selecting
only the elite solution with the smallest angle to the current
particle as the leader solution would cause the particle to
prefer local exploration and ignore its social part, which is
not conducive to the balance of exploration and exploitation
for the population. In response to the above problems, Yuen
et al. make improvements to competitive mechanism-based
MOPSO [54], firstly reintroducing an external repository to
save the historical information of the population, secondly
each particle dynamically selects multiple elite solutions for
comparison according to the number of iterations and selects
the appropriate one as the leader solution. In addition, the
non-elite solutions are also divided into two equal parts, with
one part choosing the elite solution with the smallest angle
to it as the leader solution, and the other part choosing the
largest. Although this approach can effectively improve the
performance of the competitive mechanism-based MOPSO
proposed by Zhang et al., it still has some problems in select-
ing a more efficient set of elite solutions and determining
which particles need to be more inclined towards explo-
ration and which particles need to be more inclined towards
exploitation.

The proposed D2CMOPSOmethod

To solve the problems of the abovemethods, thiswork further
proposes a new MOPSO with density & distribution-based
competitive mechanism, which is noted as D2CMOPSO. It
is used to optimize the integration factors of the sensor ontol-
ogy meta-matching problem. A sparsity calculation method
[21] is first used to determine the elite solutions, and these
better distributed elite solutions are used to lead the parti-
cles’ update, making the distribution of the PF’s solutions
more uniform; to approach a better PF and balance the explo-
ration and exploitation, D2CMOPSO determines whether a
particle prefers exploration or exploitation based on its den-
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Fig. 5 The flowchart of D2CMOPSO

sity and chooses the appropriate leader solution for each
particle;moreover, basedon themultimodal nature of the sen-
sor ontology meta-matching model, oppositive solutions are
introduced into the updating process of particles to improve
the diversity of population in the solution space. The overall
flowchart of D2CMOPSO is shown in Fig. 5. The main parts
have been highlighted and will be explained in detail in the
following subsections.

Selection of elite solutions

The selection of the elite solution is an important step in
D2CMOPSO,which is crucial tomore accurately guide other
particles to the solution with better position and distribution.
Sparsity is a criterion to reflect and evaluate the distribution
of elite solutions in the objective space, which takes into
account both the density and the uniformity of particles, and
can more accurately reflect whether the solutions are evenly
distributed or not.

After the initialization of the population, all particles are
sorted in a fast non-dominated order, 20 (threshold of external
repository) solutions from the first, second,…PF are selected
in turn and stored in the external repository, and the sparsity
value of each particle in the external repository is calculated,
which is denoted as SP AS; after each iteration, the new non-
dominated solutions are merged with the current external
repository’s solutions, and then the non-dominated sorting is
carried out for the combined solutions. The first 20 solutions
are selected as the new external repository’s solutions, and
finally the SP AS values of these solutions are calculated.
According to the method proposed in the literature [21], the

sparsity value of each dimension of the particle is calculated
as follows:

SP AS(i) = Dens(i)

max(Dens)
× Even(i)

max(Even)
(12)

where i is the index of the particle; Dens and Even represent
the density and uniformity values of the particle in the objec-
tive space, respectively, which are calculated according to
Eqs. (13) and (14). And each dimension of the particle needs
to be sorted in ascending order according to the fitness value
before calculation:

Dens(i) = leni,1 + leni,2
Len

(13)

Even(i) = min(leni,1, leni,2)

max(leni,1, leni,2)
(14)

where leni,1 and leni,2 are the distances from the i th parti-
cle to the left and right neighbor particle, respectively, and
Len is the distance from the first particle to the last one.
The density and uniformity of a particle determine its spar-
sity. The larger Dens indicates that the density is smaller,
but the density does not account for the degree of sparsity of
one solution, because leni,1 and leni,2 can be one large and
the other small, and therefore cannot prove the distributivity
of the solution; therefore, a measure of the uniformity for
the solution, Even, is introduced to measure the difference
between leni,1 and leni,2, and a larger value indicates a more
uniform distribution of the solution. Regardless of which of
Dens and Even is too small, the sparsity of particles is not too
high, and the solutions with high SP AS can better balance
density and uniformity. In solving multidimensional prob-
lems, the SP AS value of a particle is the sum of the SP AS
values in each dimension, as is the case for Dens and Even.
The particles in external repository are sorted in descending
order of SP AS value, and the top 10 particles are selected as
elite solutions, they represent the best distributed solutions
in the current population.

Density-based competitive mechanism for selection of
leader solution

The main process of the competitive leader solution selec-
tion mechanism in this work is: firstly, the type of the particle
to be updated is judged, and if the particle belongs to the
elite solution, two solutions are randomly selected from the
set of elite solutions as the candidate leader solutions, and
these two candidate leader solutions are decided which is the
real leader solution through the competitive mechanism, i.e.,
which candidate solution has the smallest angle with the cur-
rent particle. Improving the convergence speed of particles
while enhancing the diversity of population. If the parti-
cle does not belong to the elite solution, the neighborhood
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density of the particle is judged, i.e., its Dens value of the
objective space is calculated. The Dens of each dimension is
calculated according to Eq. (13). The larger the Dens value
the smaller the density of the particle, the more space around
it can be explored. And the particle tends to local search, for
which the solution with the smallest angle among the can-
didate leader solutions is selected; conversely, the smaller
the value of Dens the greater the density of the particle, the
greater the need to explore other unknown regions. So choose
the solutionwith the largest angle among the candidate leader
solutions for it.

For different non-elite solutions, the number of candidate
leader solutions varies. Particles with small density need to
enhance local search, so the number of their candidate leader
solutions should gradually become smaller as the number
of iterations increases, which ensure the diversity of candi-
date leader solutions in the early iterations and provide more
choices for the particles. The probability that elite solution
closer to the particle are selected increases, while the particle
also have a relatively greater probability of exploring other
regions. The particle can approach different solutions of the
PF to avoid local convergence; in the late iteration, the num-
ber of alternative leader solutions should be reduced to ensure
convergence speed and reduce the number of comparisons.
While particles with high density require more global search
to get rid of local optimum, at the beginning of the iteration,
the population diversity is still high, equipping them with
a smaller number of candidate leader solutions to improve
the computation speed; as the iteration proceeds, the diver-
sity of the population decreases and the particle needs more
candidate leader solutions to choose from, thus enhancing
the diversity of solutions. Therefore, the number of candi-
date leader solutions for particles with high density should
increase linearly. Figures 6, 7 and 8 depict the competitive
leader solution selection mechanisms for elite and non-elite
solutions, respectively, and the solid points in the figures are
the candidate leader solutions, labeled with letters; the hol-
low points are the solutions that need to be updated, and the
current solution that needs to be updated is marked with the
letter S; the numbers represent the different angles. For the
elite solution, choose the one with the smallest angle among
the two candidate leader solutions, i.e., point A in Fig. 6; for
non-elite solutions with small density, the onewith the small-
est angle among multiple candidates is chosen, i.e., point C
in Fig. 7; while for non-elite solutions with large density,
the one with the largest angle among multiple candidates is
chosen, i.e., point A in Fig. 8.

The particles in the population update their velocity and
position according to their chosen leader solution, and the
update equations are:

Fig. 6 Leader solution competitive selection mechanism for elite
solution

Fig. 7 Leader solution competitive selection mechanism for non-elite
solution with small density

Fig. 8 Leader solution competitive selection mechanism for non-elite
solution with large density

velt+1
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω × r1 × velti + r2 × (postl − posti ),

Densti ≥ MedDenst

ω × r1 × velti + r2 × (postg − posti ),

Densti < MedDenst

(15)

post+1
i = posti + velt+1

i (16)
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where t is the number of current iteration; i is the index of
the current particle; ω is the inertia weight; r1 and r2 are
random numbers in interval [0, 1]; vel and pos represent
the velocity and position of the particle, respectively; l and
g are the indexes of the leader solution with the minimum
and maximum angle to particle i , respectively; MedDens
denotes the median of the particle density of the population.
Whether the particle density is large or small is determined
by the relationship between Dens and MedDens.

The competitive mechanism can ameliorate the algo-
rithm’s convergence speed, it establishes a linkage between
the particles convergence direction and the angle, and selects
the leader solution among a set of elite solutions based on
the angle relationships, thus achieving a balance between
exploration and exploitation. The convergence speed and the
diversity of solutions also require a reasonable approach to
balance. Different particles choose appropriate leader solu-
tions according to whether they are elite solutions and the
density of the solutions, which is more conducive to the
exploration of particles to unknown regions while ensuring
convergence and avoiding falling into local convergence. At
the same time, the particle flying towards thewell-distributed
solutions is also beneficial to guide the update of the elite
solutions and obtain the more advanced PF’s solutions with
better distributivity.

Oppositive solution

Oppositive solution learning (OBL) was first introduced as
a new computational intelligence scheme in 2005 [37]. In
the last few years, OBL has been successfully applied to
various population-based evolutionary algorithms.OBLgen-
erates solutions with opposite positions for the algorithm to
further improve the space utilization to find the solution with
better fitness value. The oppositive candidate solution has
a higher probability of reaching the global optimum than a
random solution [38]. Therefore, in the algorithm’s optimiza-
tion process, the introduction of oppositive solutions is more
helpful to avoid the loss of population diversity and falling
into local optimum.

The OBL strategy is applied to solve the sensor ontology
meta-matching problem in this work: the upper and lower
bounds of the multidimensional space are used to gener-
ate oppositive particles thus provide more diverse solutions
to D2CMOPSO. The particles generate their corresponding
oppositive solutions in the solution space after each update
of position, thus making the solutions in the objective space
more diverse, which has a positive effect on overcoming the
limitations of the solutions for multimodal problems such as
sensor ontologymeta-matching. Themathematical definition
of the oppositive solution is as follows:

oppdi = lowd
i + uppdi − posdi (17)

where i is the index of the particle; d is the dimension of the
solution; low and upp represent the lower and upper bounds
of the solution, respectively; pos is the current position of the
solution; and opp is the position of the generated oppositive
solution.

Pseudocode and complexity analysis

Combining the methods and strategies discussed in Section
“The proposed D2CMOPSO method”, the pseudo-code of
D2CMOPSO is shown in Algorithm 1:

Algorithm 1 D2CMOPSO
Input: Population P , population size N , external repository A, max-

imum number of iterations T , elite solutions set E , candidate
solutions set C and leader solution L

Output: The optimal PF
1: Initialization of a population P
2: Evaluate the fitness of each particle in P , t = 0
3: Calculate Dens and Even for each particle according to Equation

13, Equation 14
4: Non-dominated sort for each particle and obtain F1, F2, . . .
5: Initialize A according to F1, F2, . . .
6: Evaluate the sparsity value for each particle in A according to Equa-

tion 12
7: Select top 10 particles with best sparsity value into E
8: while t ≤ T do
9: t++
10: for i = 1 : N do
11: if P[i] ∈ E then
12: candidates = 2
13: scenario = 1
14: else if Dens[i] ≥ MedDens then
15: candidates = floor(11 - 9 ∗t/T )
16: scenario = 2
17: else
18: candidates = ceil(1 + 4 ∗t/T )
19: scenario = 3
20: end if
21: Select candidates particles from E into C
22: for j = 1 : candidates do
23: Calculate angle between C[ j] and P[i]
24: end for
25: if scenario == 1 ‖ scenario == 2 then
26: L[i] ← C[ j] with smallest angle
27: else
28: L[i] ← C[ j] with largest angle
29: Update the velocity and position of particle P[i] according

to Equation 15, Equation 16
30: Generate oppositive solution for each particle according

to Equation 17
31: Update particles according to P[i] and its oppositive solu-

tion
32: Update Dens and Even for each particle
33: end if
34: end for
35: Update F1, F2, . . .
36: Update A and E
37: end while
38: output the optimal PF
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The first step is the initialization and selection of elite
particles: for population initialization, the velocity of each
particle is set to 0 and the positions are generated ran-
domly. Two target values are evaluated for each particle
and their respective Dens and Even values are calculated
using Eqs. (13) and (14), which are used to measure den-
sity and uniformity. Determining different PFs based on fast
non-dominated sorting and storing the particles from PFs in
turn in the external repository A. The SPAS values of parti-
cles in A are calculated according to Eq. (12), then the best
top 10 particles are selected to add the elite solutions set E .
The follows are iterative process, including the competitive
selection mechanism for leader solutions: follow the method
described previously, if the particle with large Dens, a cer-
tain number of elite solutions in E are selected as candidate
leader solutions, the number of candidate leader solutions
decreases linearly with iteration (line 15); conversely, for
particles with small Dens, the number of candidate leader
solutions selected in E increase linearly with iteration (line
18). Each particle updates its velocity and position accord-
ing to the chosen leader solution, after which an oppositive
solution is generated for each particle and the better one is
chosen as the updated solution. Finally, the new Dens and
Even values for each particle are updated, and the new non-
dominated solutions are merged with A, then generate new
A by fast non-dominated sorting of the merged A. E for the
next iteration are obtained by new A in the same way as in
the first step. Output the optimal PF until the end condition
is satisfied.

In the above D2CMOPSO algorithm, assuming that the
population size is N , in the worst case, the number of com-
putations required to initialize A is N ∗ (N − 1)/2, and its
computational complexity is O(N 2). The number of compu-
tations required for each particle to select the leader solution
and update, the update of A is N ∗ candidates + N ∗ (N −
1)/2, the total computational complexity is O(T ∗ N 2) at a
number of iterations T . So the computational complexity of
the algorithm is O((T + 1) ∗ N 2).

Experiment and analysis

Experimental design

The OAEI’s benchmark track [36] and 7 test cases consisting
of 5 sensor ontologies are used to validate the effective-
ness and advancement of the proposed method, where the
5 sensor ontologies are SSN, SOSA, IoT, SN and OSSN.
Their detailed descriptions are given in Section “Compari-
son with OAEI’s advanced systems” and Section “Results
and analysis of sensor ontology matching”. The experiment
is split into four portions: the first part is the verification
of the effectiveness of the proposed method’s strategy and

framework, which compares the NRA-based D2CMOPSO
matching system with the RA-based D2CMOPSO matching
system, NRA-based MOPSO matching system, NRA-based
MCMOPSO(a competitivemechanism-basedMOPSOwith-
out density and sparsity calculations) matching system and
NRA-based D2CMOPSO matching system without OBL.
Since the ontology meta-matching problem is considered as
an MOP in this work, and the PF of the ontology match-
ing problems could not be known in advance, so HV is used
to compare their solutions’ convergence and distributivity in
benchmark test set. In addition, because the knee solution
(representative solution) is often used in the verification of
MOP-based ontology matching’s result [45,46], so another
comparison is used to illustrate the quality of the representa-
tive solution of different methods, which further demonstrate
the superiority of the matching framework without reference
alignment and effectiveness of the proposed strategies. The
second part is comparison among D2CMOPSO, MOPSO
and other three latest related algorithms: SS-MOPSO [31],
MO_Ring_PSO_SCD [53] and TriMOEA-TA&R [23], the
convergence and distributivity of the solutions obtained by
different algorithms are shown by their HV values in bench-
mark track. The third portion of the experiment compares
the matching system proposed in this work with participants
of OAEI, which are some start-of-art matchers, to demon-
strate its sophistication. The test set used in the first three
parts of the experiment is benchmark. The forth portion of
the experiment applies the proposed system to the field of
sensor ontology matching and compares it with other sensor
ontology matching systems, to prove that the method of this
work is also applicable to solve the problems in sensor field.
Two objective function values, i.e., recall and precision are
counted in this work, and these average values are the results
after 30 independent runs. Before the proposedmethod is val-
idated by experiments, a set of suitable parameters need to
be configured into the D2CMOPSO-based matching system
to maximize the performance of the method.

Parameter configuration

In this work, parameter sensitivity experiment is used to
configure an optimal set of parameters for D2CMOPSO so
that it performs as best as possible on all test cases. For
D2CMOPSO, several important parameters are: the popu-
lation size N , the inertia weight ω and the maximum number
of iterations T , which possess an important effect on the algo-
rithm’s performance, so these parameters are determined by
experiments. There are three scenarios, each with one vari-
able parameter and two other fixed parameters, as shown in
Table 4. All tests in this section are executed on the 304 test
case. Tables 5, 6 and 7 record the three scenarios of Table 4
respectively, the numbers before and in parentheses represent
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Table 4 Determination of the three main parameters, using the control
variable method

Scenario ID Fix value Changed value

1 ω = 0.5, T = 50 N = 10, 15, …, 60

2 N = 55, T = 50 ω = 0.1, 0.2, …, 1.0

3 N = 55, ω = 0.5 T = 10, 20, …, 100

Table 5 Results of sensitivity experiments for population size N

Population size N recall precision

10 0.659(0.418) 0.925(0.143)

15 0.771(0.369) 0.876(0.165)

20 0.921(0.057) 0.969(0.013)

25 0.948(0.056) 0.959(0.023)

30 0.935(0.065) 0.966(0.011)

35 0.968(0.006) 0.962(0.004)

40 0.952(0.044) 0.956(0.008)

45 0.955(0.045) 0.959(0.007)

50 0.932(0.059) 0.957(0.012)

55 0.969(0.003) 0.960(0.001)

60 0.937(0.057) 0.958(0.010)

the mean and standard deviation, respectively, and optimal
results are bolded.

Population size N : Table 5 shows the experimental results
for the first scenario in Table 4. Considering the quality of
solution, the best performance of D2CMOPSO is achieved
when the population size is 55. Whether the population size
is smaller or larger than 55, the final result is not the best,
because the population size is too small, its search speed
becomes lower; while the large population size leads to the
individual optimal solution is difficult to dominate the evo-
lution direction of overall solutions, and bring redundant
information, thus reducing the performance of the algorithm.
Therefore, the population size of D2CMOPSO is 55.

Inertia weight ω: The parameter ω is the inertia weight,
which is used to control the effect of the particle’s velocity
in the previous generation on the next generation, so that
the particle maintains the inertia of motion and gives it the
tendency to expand the search space and the ability to explore
new regions. Table 6 shows the experimental results for the
second scenario: the algorithm gives the best results when ω

is 0.3 or 0.5. If the inertia weight is too large or too small,
the result will be affected, because if the ω is large, then the
global search ability of the D2CMOPSO is stronger and the
search space of the particles is relatively large; conversely,
the local search ability of theD2CMOPSO is stronger and the
search space of the particles is relatively small. To balance
the local and global search capability of D2CMOPSO, its

Table 6 Experimental results on the sensitivity of inertia weights ω

Inertia weight ω recall precision

0.1 0.966(0.007) 0.956(0.007)

0.2 0.965(0.008) 0.956(0.008)

0.3 0.970(0.000) 0.959(0.003)

0.4 0.938(0.064) 0.955(0.014)

0.5 0.969(0.003) 0.960(0.001)

0.6 0.938(0.059) 0.955(0.011)

0.7 0.954(0.045) 0.960(0.008)

0.8 0.909(0.073) 0.951(0.010)

0.9 0.915(0.066) 0.955(0.012)

1.0 0.710(0.223) 0.764(0.310)

inertia weight value are supposed to set to 0.3 or 0.5. In this
paper, 0.5 is selected as the inertia weight value.

Maximum number of iterations T : If T is too small, the
population can hardly converge; in the later stages of the
iteration, when the results of the algorithm hardly change, a
larger T will cause the waste of time and storage space. In the
third scenario in Table 4, the values of the two parameters N
andω are determined by the above procedure, and the number
of iterations is changed from 10 to 100 with a step size of
10. The results are shown in Table 7: D2CMOPSO performs
best when the maximum number of iterations is 50. If the
number of iterations exceeds 50, the experimental results no
longer change significantly. Therefore, 50 is considered to
be the most suitable number of iterations for D2CMOPSO.

Validation of the D2CMOPSO strategy and the
effectiveness of the NRA-basedmatching framework

The benchmark track of OAEI is used to validate the effec-
tiveness of the density and distribution-based competitive
mechanism strategy and thematchingmodel proposed in this
work. The benchmark track is an ontology test cases set con-
taining five different heterogeneous cases covering a wide
range of topics, which is suitable for evaluating the strengths
and weaknesses of different matchers, the relevant descrip-
tions of it are given in Table 8. Table 9 shows the HV values
of NRA-basedD2CMOPSO, RA-basedD2CMOPSO,NRA-
based MOPSO, NRA-based MCMOPSO matching system
andNRA-basedD2CMOPSOmatching systemwithoutOBL
in benchmark track, including mean and standard devia-
tion. A larger HV indicates better convergence and a more
uniform distribution of the solutions, and the HV value of
the best performing system on each test case is bolded.
As can be seen from Table 9, the HV values of the pro-
posed D2CMOPSOmatching system are better than those of
MOPSO, MCMOPSO and other two D2CMOPSO match-
ing systems on most test cases: On test cases 101∼104,
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Table 7 Experimental results on
the sensitivity of the maximum
number of iterations T

Maximum number of iterations T recall precision

10 0.944(0.029) 0.964(0.014)

20 0.962(0.012) 0.962(0.004)

30 0.951(0.034) 0.954(0.010)

40 0.954(0.045) 0.959(0.007)

50 0.969(0.003) 0.960(0.001)

60 0.965(0.044) 0.956(0.008)

70 0.965(0.036) 0.957(0.009)

80 0.965(0.036) 0.959(0.012)

90 0.969(0.013) 0.960(0.007)

100 0.969(0.006) 0.959(0.004)

Table 8 Relevant descriptions
of OAEI’s benchmark track

Ontology ID Lexical feature Linguistic feature Structural feature

101∼104 Same Same Same

201∼206 Different Different Same

221∼247 Same Same Different

250∼261 Different Different Different

301∼304 – – –

203, 221, 222, 224∼237, 241 and 247, the highest HV
values are obtained for almost all of these methods, while
on the other test cases, NRA-based D2CMOPSO and RA-
based D2CMOPSO achieved better HV values than the other
methods. Furthermore, the number of test cases in which
NRA-based D2CMOPSO achieved the best HV value is
higher than that of RA-based D2CMOPSO, which proves the
effectiveness of the proposed strategy and matching frame-
work.

Tables 10 and 11 show the results of representative
solutions ofNRA-basedD2CMOPSOmatching system, RA-
based D2CMOPSO matching system, NRA-based MOPSO
matching system, NRA-basedMCMOPSOmatching system
andNRA-basedD2CMOPSOmatching systemwithoutOBL
strategy on different test case, where Table 10 shows the
mean and standard deviation of their recall and Table 11
shows the mean and standard deviation of their precision.
The numbers in front of the parentheses represent the mean
recall/precision values, and the numbers in parentheses
represent the standard deviation,which is used tomeasure the
stability of the system. In addition, t-test are used to measure
the difference in performance of different matchers. Specif-
ically, the t-statistical test used in this work is as follows: a
hypothesis test is conducted to compare the performance of
two different algorithms. The null hypothesis is that the per-
formance of the D2CMOPSO matching system proposed in
this work is the same as the other compared systems, and the
alternative hypothesis is that the performance of the system
proposed in thiswork is different from the other systems.Cal-
culate the t-value and determine whether the t-value is in the

rejection domain, if the t-value is in the rejection domain,
the null hypothesis is invalid, that is, there is a difference
between the two systems. Then the strength and weakness
of the systems are determined by comparing their average
function values; otherwise the null hypothesis is valid and
there is no difference between the two algorithms. The sig-
nificance level used in this work is 0.05 and the total sample
size is 30. Since the original hypothesis is that there is no
difference between the two systems, the t-test is a bilateral
test and the rejection region of the t-test is |t| ≥ 2.045. Tables
12 and 13 show the t-values of recall and precision for
the NRA-based D2CMOPSOmatching system and the other
four comparison systems, respectively. The values indicating
significant differences have been bolded and the “Score” in
last row indicate that the number of net winning cases. It can
be seen that the t-values on most of the test cases are greater
than 2.045 except for some cases in 101∼104 and 221∼247,
because all these cases can be found best result by differ-
ent systems, i.e., 1.00, indicating that the performance of the
proposed NRA-based D2CMOPSOmatching system and the
other fourmatching systems are significantly different. Then,
by comparing their average recall and precision values in
Tables 10 and 11, it can be found that the framework based
on NRA can guarantee the quality of matching results even
at the expense of a certain degree of accuracy, and the frame-
work can achieve unattended automatic matching, which is
more superior. While the NRA-based D2CMOPSO system
outperforms the NRA-based MOPSO system, NRA-based
MCMOPSO system and NRA-based D2CMOPSO system
without OBL, indicating that the competitive mechanism
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Table 9 HV values of different matching systems in benchmark track

ID NRA-based
D2CMOPSO

RA-based
D2CMOPSO

NRA-based
MOPSO

NRA-based
MCMOPSO

NRA-based
D2CMOPSO
without OBL

101 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

103 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

104 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

201 0.94(8.62e−3) 0.95(8.01e−3) 0.90(1.64e−2) 0.92(5.98e−2) 0.92(8.67e−3)

203 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

204 0.98(7.67e−3) 0.97(7.46e−3) 0.87(1.84e−2) 0.93(1.88e−2) 0.95(7.75e−3)

205 0.94(2.72e−3) 0.94(7.85e−3) 0.85(7.63e−2) 0.89(2.13e−2) 0.92(7.84e−3)

206 0.96(4.43e−3) 0.96(3.98e−3) 0.88(8.33e−2) 0.90(6.67e−2) 0.95(4.30e−3)

221 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

222 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

223 0.97(5.39e−3) 0.96(7.26e−3) 0.90(5.60e−2) 0.95(3.91e−2) 0.96(6.57e−3)

224 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

225 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

228 1.00(0.00e0) 1.00(0.00e0) 0.99(1.00e−2) 1.00(0.00e0) 1.00(0.00e0)

232 1.00(0.00e0) 1.00(0.00e0) 0.98(2.00e−2) 1.00(0.00e0) 1.00(0.00e0)

233 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

236 1.00(0.00e0) 1.00(0.00e0) 0.99(1.00e−2) 1.00(0.00e0) 1.00(0.00e0)

237 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

238 0.96(5.09e−3) 0.97(6.02e−3) 0.85(2.68e−2) 0.92(2.55e−2) 0.96(6.64e−3)

239 0.98(4.09e−3) 0.98(6.70e−3) 0.94(5.09e−2) 0.96(2.88e−2) 0.96(5.37e−3)

240 0.98(6.39e−3) 0.98(6.58e−3) 0.94(2.77e−2) 0.95(8.45e−2) 0.97(6.48e−3)

241 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

246 0.98(8.22e−3) 0.98(9.02e−3) 0.93(6.31e−2) 0.95(3.21e−2) 0.96(8.81e−3)

247 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

250 0.95(7.17e−3) 0.97(7.60e−3) 0.88(5.31e−2) 0.91(8.51e−3) 0.94(7.66e−3)

257 0.95(8.58e−3) 0.95(7.17e−3) 0.88(2.70e−2) 0.90(3.14e−2) 0.94(8.02e−3)

258 0.87(9.15e−3) 0.88(9.33e−3) 0.76(3.29e−2) 0.80(2.77e−2) 0.85(5.98e−3)

259 0.91(3.30e−3) 0.91(6.90e−3) 0.82(5.97e−2) 0.85(5.43e−2) 0.89(6.37e−3)

260 0.83(5.08e−3) 0.85(5.81e−3) 0.75(7.35e−2) 0.78(4.70e−2) 0.83(5.97e−3)

261 0.75(2.58e−3) 0.75(6.61e−3) 0.68(6.93e−2) 0.70(4.36e−2) 0.75(5.24e−3)

301 0.76(4.19e−3) 0.76(4.98e−3) 0.66(1.72e−2) 0.69(8.27e−3) 0.74(4.83e−3)

302 0.66(5.02e−3) 0.66(7.85e−3) 0.54(5.89e−2) 0.60(8.66e−2) 0.64(8.17e−3)

303 0.62(3.63e−3) 0.62(4.68e−3) 0.53(6.23e−2) 0.58(3.01e−2) 0.60(4.10e−3)

304 0.96(3.28e−3) 0.96(7.25e−3) 0.87(7.51e−2) 0.90(7.34e−2) 0.93(3.96e−3)

strategy based on density and distribution and OBL strategy
can effectively improve the accuracy of the MOPSO algo-
rithm.

Comparison with other algorithms

The proposedmethod is comparedwith other latest advanced
algorithms and tested in benchmark track using HV metric.
These algorithms all adopt the NRA-based matching frame-
work, and the larger the HV value is, the more advantageous

the method is. Table 14 shows the HV values of the dif-
ferent algorithms, with the best-performing data shown in
bold. It can be seen that all methods except MOPSO can
obtain maximum HV values in cases 101∼104, 221, 222,
224∼237, 241 and 247. SS-MOPSO performed best and
MOPSO performed worst in the other test cases, followings
are some specific analysis: for 101∼104 cases, each solu-
tion in the resulting solution set is optimal, regardless of the
algorithm, because the lexical, linguistic, and structural fea-
tures of these cases are the same, and any combination of
weights and threshold can yield (1.00, 1.00); case 203 does
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Table 10 Mean and standard deviation of recall for different matching systems

ID NRA-based
D2CMOPSO

RA-based
D2CMOPSO

NRA-based
MOPSO

NRA-based
MCMOPSO

NRA-based
D2CMOPSO
without OBL

101 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

103 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

104 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

201 0.93(0.01) 0.96(0.02) 0.90(0.02) 0.93(0.02) 0.93(0.02)

203 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

204 0.99(0.01) 0.98(0.01) 0.89(0.02) 0.96(0.02) 0.97(0.01)

205 0.92(0.02) 0.92(0.02) 0.82(0.03) 0.85(0.02) 0.91(0.01)

206 0.92(0.02) 0.92(0.02) 0.88(0.02) 0.90(0.02) 0.92(0.02)

221 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

222 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

223 0.96(0.02) 0.96(0.01) 0.89(0.03) 0.93(0.02) 0.94(0.01)

224 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

225 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

228 1.00(0.00) 1.00(0.00) 0.97(0.02) 1.00(0.00) 1.00(0.00)

232 1.00(0.00) 1.00(0.00) 0.98(0.02) 1.00(0.00) 1.00(0.00)

233 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

236 1.00(0.00) 1.00(0.00) 0.97(0.02) 1.00(0.00) 1.00(0.00)

237 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

238 0.95(0.02) 0.97(0.02) 0.88(0.03) 0.95(0.02) 0.95(0.02)

239 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

240 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

241 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

246 1.00(0.00) 1.00(0.00) 0.93(0.02) 1.00(0.00) 1.00(0.00)

247 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

250 0.94(0.01) 0.98(0.02) 0.90(0.02) 0.90(0.02) 0.92(0.02)

257 0.94(0.01) 0.94(0.01) 0.89(0.03) 0.92(0.02) 0.92(0.02)

258 0.83(0.02) 0.87(0.02) 0.77(0.03) 0.80(0.03) 0.82(0.01)

259 0.88(0.02) 0.88(0.02) 0.80(0.03) 0.84(0.02) 0.86(0.02)

260 0.83(0.02) 0.86(0.01) 0.78(0.02) 0.80(0.02) 0.83(0.02)

261 0.79(0.01) 0.79(0.01) 0.79(0.02) 0.79(0.01) 0.79(0.01)

301 0.82(0.01) 0.82(0.01) 0.75(0.03) 0.76(0.02) 0.80(0.01)

302 0.65(0.01) 0.63(0.02) 0.62(0.02) 0.62(0.02) 0.63(0.02)

303 0.83(0.01) 0.83(0.01) 0.76(0.03) 0.79(0.02) 0.81(0.01)

304 0.97(0.00) 0.97(0.01) 0.91(0.03) 0.93(0.03) 0.95(0.02)

not have high requirements on the accuracy of the lexical and
linguistic based matcher, the lexical and linguistic similarity
measurement method in this work can effectively measure
the similarity. Therefore, algorithms with good convergence
can converge to the optimal solutions in this case; for cases
221, 222, 224∼237, 241 and 247, the lexical and linguistic
features are the same, the matcher based on good structural
similarity measurement method and algorithms with good
convergence can obtain solution (1.00, 1.00) on all these
cases. In other test cases, SS-MOPSO achieved the highest

number of best HV values, followed by TriMOEA-TA&R,
although the proposed method is slightly inferior to them, it
is still within the acceptable range and better than MOPSO.
In conclusion, the similarity measurement method used in
this work is more accurate and the matching framework is
more reasonable. Since the ontologymeta-matching problem
is not a complex multimodal problem, D2CMOPSO and SS-
MOPSO, MO_Ring_PSO_SCD and TriMOEA-TA&R can
obtain satisfactory solutions on benchmark track due to their
good convergence and distribution.
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Table 11 Mean and standard deviation of precision for different matching systems

ID NRA-based
D2CMOPSO

RA-based
D2CMOPSO

NRA-based
MOPSO

NRA-based
MCMOPSO

NRA-based
D2CMOPSO
without OBL

101 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

103 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

104 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

201 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

203 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

204 1.00(0.00) 1.00(0.00) 0.96(0.03) 0.98(0.02) 1.00(0.00)

205 0.96(0.02) 0.96(0.02) 0.89(0.03) 0.92(0.02) 0.94(0.01)

206 0.98(0.01) 0.98(0.01) 0.92(0.02) 0.94(0.02) 0.96(0.02)

221 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

222 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

223 0.98(0.01) 0.98(0.01) 0.94(0.03) 0.96(0.02) 0.98(0.01)

224 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

225 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

228 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

232 1.00(0.00) 1.00(0.00) 0.98(0.01) 1.00(0.00) 1.00(0.00)

233 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

236 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

237 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

238 0.97(0.02) 0.98(0.01) 0.94(0.02) 0.97(0.02) 0.97(0.02)

239 0.97(0.01) 0.97(0.01) 0.97(0.02) 0.97(0.01) 0.97(0.01)

240 0.97(0.01) 0.97(0.01) 0.97(0.02) 0.97(0.01) 0.97(0.01)

241 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

246 0.97(0.01) 0.97(0.01) 0.96(0.01) 0.97(0.01) 0.97(0.01)

247 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

250 1.00(0.00) 1.00(0.00) 0.98(0.01) 0.98(0.01) 1.00(0.00)

257 1.00(0.00) 1.00(0.00) 0.96(0.02) 0.98(0.01) 1.00(0.00)

258 1.00(0.00) 1.00(0.00) 0.96(0.02) 0.99(0.01) 1.00(0.00)

259 1.00(0.00) 1.00(0.00) 0.92(0.03) 0.96(0.02) 1.00(0.00)

260 0.96(0.01) 0.98(0.01) 0.96(0.02) 0.96(0.01) 0.96(0.01)

261 0.93(0.02) 0.93(0.02) 0.87(0.03) 0.93(0.02) 0.93(0.02)

301 0.91(0.01) 0.91(0.01) 0.88(0.02) 0.88(0.02) 0.89(0.02)

302 0.89(0.01) 0.88(0.01) 0.85(0.02) 0.85(0.02) 0.87(0.02)

303 0.67(0.01) 0.67(0.01) 0.62(0.02) 0.64(0.01) 0.66(0.01)

304 0.96(0.00) 0.96(0.00) 0.96(0.01) 0.96(0.01) 0.96(0.01)

Comparison with OAEI’s advanced systems

To verify the sophistication of the matching model pro-
posed in thiswork, comparative experiments are conducted in
benchmark. D2CMOPSO is compared with other advanced
systems participating in OAEI, which are edna, AML [13],
CroMatch [14], LogMap [17], LogMapLt [17], XMap [12]
and LogMapBio [17]. Tables 15 and 16 show the results
of comparing the OAEI’s participants with D2CMOPSO
in terms of recall and precision values in benchmark,
respectively. The numbers in the first column indicate the

ID number of the test case, and the numbers in the remaining
columns indicate the recall/precision values. The numbers
in the last row of Tables 15 and 16 are the average of the
recall/precision for all test cases. In addition, Tables 17
and 18 respectively show the significance test results of recall
and precision in benchmark for the participants of OAEI and
proposed method. As the 7 comparison methods are deter-
ministic methods, Friedman test is used to verify whether
there are significant differences among different methods,
and the significance level is 0.05. The numbers in the first
column indicate ID, the numbers in the remaining columns

123



Complex & Intelligent Systems (2023) 9:435–462 453

Table 12 t-test for recall between different systems

ID Versus
RA-based
D2CMOPSO

Versus
NRA-based
MOPSO

Versus
NRA-based
MCMOPSO

Versus
NRA-based
D2CMOPSO
without OBL

101 0.00 0.00 0.00 0.00

103 0.00 0.00 0.00 0.00

104 0.00 0.00 0.00 0.00

201 7.35 7.35 0.00 0.00

203 0.00 0.00 0.00 0.00

204 2.45 19.36 5.81 7.75

205 0.00 15.19 13.56 2.45

206 0.00 7.75 3.87 0.00

221 0.00 0.00 0.00 0.00

222 0.00 0.00 0.00 0.00

223 0.00 10.63 5.81 4.90

224 0.00 0.00 0.00 0.00

225 0.00 0.00 0.00 0.00

228 0.00 8.22 0.00 0.00

232 0.00 5.48 0.00 0.00

233 0.00 0.00 0.00 0.00

236 0.00 8.22 0.00 0.00

237 0.00 0.00 0.00 0.00

238 −3.87 10.63 0.00 0.00

239 0.00 0.00 0.00 0.00

240 0.00 0.00 0.00 0.00

241 0.00 0.00 0.00 0.00

246 0.00 19.17 0.00 0.00

247 0.00 0.00 0.00 0.00

250 −9.80 9.80 9.80 4.90

257 0.00 8.66 4.90 4.90

258 −7.75 9.11 4.56 2.45

259 0.00 12.15 7.75 3.87

260 −7.35 9.68 5.81 0.00

261 0.00 0.00 0.00 0.00

301 0.00 12.12 14.70 7.75

302 4.90 7.35 7.35 4.90

303 0.00 12.12 9.80 7.75

304 0.00 10.95 7.30 5.48

Score −1 19 13 11

and last row represent the rank of methods and sum rank of
each method respectively. After calculation, the test values
are both greater than the critical value 14.07, so there are
obvious differences among the proposed method and other 7
comparisonmethods. Then according toTables 15 and16, the
average values of both recall and precision of the proposed
method are higher than most other matching systems, and
only lower than CroMatch. The experimental results show
that the method in this paper works well in the face of differ-

ent heterogeneous situations of ontologymatching problems,
it can effectively solve different kinds of heterogeneous prob-
lems, and has a positive effect on the realization of knowledge
integration. The specific analysis is as follows:

For test cases 101∼104, all of the above systems are able to
achieve good results because these ontologies have the same
lexical, linguistic and structural features, and the matcher
based on any of the above features can accurately mea-
sure the similarity of the two heterogeneous ontologies and
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Table 13 t-test for precision between different systems

ID Versus
RA-based
D2CMOPSO

Versus
NRA-based
MOPSO

Versus
NRA-based
MCMOPSO

Versus
NRA-based
D2CMOPSO
without OBL

101 0.00 0.00 0.00 0.00

103 0.00 0.00 0.00 0.00

104 0.00 0.00 0.00 0.00

201 0.00 0.00 0.00 0.00

203 0.00 0.00 0.00 0.00

204 0.00 7.30 5.48 0.00

205 0.00 10.63 7.75 4.90

206 0.00 14.70 9.80 4.90

221 0.00 0.00 0.00 0.00

222 0.00 0.00 0.00 0.00

223 0.00 6.93 4.90 0.00

224 0.00 0.00 0.00 0.00

225 0.00 0.00 0.00 0.00

228 0.00 0.00 0.00 0.00

232 0.00 10.95 0.00 0.00

233 0.00 0.00 0.00 0.00

236 0.00 0.00 0.00 0.00

237 0.00 0.00 0.00 0.00

238 −2.45 5.81 0.00 0.00

239 0.00 0.00 0.00 0.00

240 0.00 0.00 0.00 0.00

241 0.00 0.00 0.00 0.00

246 0.00 3.87 0.00 0.00

247 0.00 0.00 0.00 0.00

250 0.00 10.95 10.95 0.00

257 0.00 10.95 10.95 0.00

258 0.00 10.95 5.48 0.00

259 0.00 14.61 10.95 0.00

260 −7.75 0.00 0.00 0.00

261 0.00 15.19 0.00 0.00

301 0.00 7.35 7.35 4.90

302 3.87 9.80 9.80 4.90

303 0.00 12.25 11.62 3.87

304 0.00 0.00 0.00 0.00

Score −1 15 11 5

obtainmore correctmatching results. The201∼202 test cases
have ontologies with different lexical and linguistic features,
which are similar only in terms of structural features, and
the difficulty of matching has increased. Matchers with bet-
ter and more accurate syntax and semantics-based similarity
techniques can achieve better results. Except for CroMatch,
the proposed method performs better than other systems in
these cases, and although the precision is slightly lower than
AML, the recall is much higher than it. Since CroMatch

better combines syntax and semantics-based matchers, it
achieves more effective lexical and semantic mapping. So
CroMatch’s performance is considered to be the best among
these participants. However, our method requires less simi-
larity techniques, and it can be regarded as a more reasonable
method for solving small-scale matching problems that can
guarantee the quality of matching results while improving
matching speed and efficiency. The test cases 221∼247 have
the same lexical and linguistic characteristics and are less
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Table 14 HV values of other related algorithms-based matching systems in benchmark track

ID D2CMOPSO SS-MOPSO MO_Ring_PSO_SCD TriMOEA-TA&R MOPSO

101 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

103 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

104 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

201 0.94(8.62e−3) 0.96(8.71e−3) 0.95(6.62e−3) 0.95(6.03e−3) 0.90(1.64e−2)

203 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

204 0.98(7.67e−3) 0.99(7.63e−3) 0.98(7.60e−3) 0.98(7.68e−3) 0.87(1.84e−2)

205 0.94(2.72e−3) 0.94(2.75e−3) 0.95(9.79e−3) 0.94(7.82e−3) 0.85(7.63e−2)

206 0.96(4.43e−3) 0.96(3.52e−3) 0.96(6.43e−3) 0.96(5.09e−3) 0.88(8.33e−2)

221 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

222 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

223 0.97(5.39e−3) 0.97(1.67e−3) 0.97(7.68e−3) 0.97(5.93e−3) 0.90(5.60e−2)

224 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

225 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

228 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 0.99(1.00e−2)

232 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 0.98(2.00e−2)

233 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

236 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 0.99(1.00e−2)

237 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

238 0.96(5.09e−3) 0.97(3.55e−3) 0.97(7.93e−3) 0.97(7.62e−3) 0.85(2.68e−2)

239 0.98(4.09e−3) 0.98(7.45e−3) 0.98(3.79e−3) 0.98(2.84e−3) 0.94(5.09e−2)

240 0.98(6.39e−3) 0.98(8.26e−3) 0.98(9.45e−3) 0.98(8.38e−3) 0.94(2.77e−2)

241 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

246 0.98(8.22e−3) 0.98(8.22e−3) 0.98(9.97e−3) 0.98(4.08e−3) 0.93(6.31e−2)

247 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0) 1.00(0.00e0)

250 0.95(7.17e−3) 0.95(7.05e−3) 0.95(9.26e−3) 0.95(4.94e−3) 0.88(5.31e−2)

257 0.95(8.58e−3) 0.95(5.34e−3) 0.95(8.41e−3) 0.95(8.39e−3) 0.88(2.70e−2)

258 0.87(9.15e−3) 0.88(6.78e−3) 0.87(9.13e−3) 0.87(2.50e−3) 0.76(3.29e−2)

259 0.91(3.30e−3) 0.91(8.87e−3) 0.91(7.18e−3) 0.91(4.26e−3) 0.82(5.97e−2)

260 0.83(5.08e−3) 0.85(7.10e−3) 0.83(5.31e−3) 0.85(8.62e−3) 0.75(7.35e−2)

261 0.75(2.58e−3) 0.75(2.23e−3) 0.75(3.79e−3) 0.75(2.32e−3) 0.68(6.93e−2)

301 0.76(4.19e−3) 0.78(5.02e−3) 0.76(7.38e−3) 0.78(6.30e−3) 0.66(1.72e−2)

302 0.66(5.02e−3) 0.66(7.94e−3) 0.66(6.52e−3) 0.66(3.23e−3) 0.54(5.89e−2)

303 0.62(3.63e−3) 0.64(3.62e−3) 0.62(7.62e−3) 0.64(9.06e−3) 0.53(6.23e−2)

304 0.96(3.28e−3) 0.97(2.92e−3) 0.96(3.12e−3) 0.97(2.47e−3) 0.87(7.51e−2)

demanding for structure-based similarity measures, so most
of the matching systems involved in the comparison are able
to achieve high results on both objective function values. The
proposedmethod achieves the best results on both recall and
precision of most of cases. Another heterogeneous case is
that all the above three features are different, and the test cases
consisting of the ontologies with that heterogeneous feature
are 250∼261, which aremore demanding for themetric tech-
nique based on the above three features. Facing these cases,
the method in this work can achieve satisfactory results. The
final 301∼304 ontologies are belong to real-world, partici-
pants of OAEI do not test them.

In summary, the matching method proposed in this work
integrates a variety of different similarity measures that can
mine the potential correspondence between two heteroge-
neous ontologies from different perspectives. And a set of
bestweights and threshold are automatically assigned to them
by intelligent computing techniques, which enables to find a
larger number of more correct matching pairs. Therefore, the
matching technique put forward in this work can attain more
excellent results on the four different heterogeneous cases
in benchmark, which fully proves the sophistication of the
proposed matching model.
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Table 15 Comparison on
OAEI’s participants and
D2CMOPSO in terms of recall
in benchmark track

ID edna AML CroMatch LogMap LogMapLt XMap LogMapBio D2CMOPSO

101 1.00 0.00 1.00 0.96 0.99 1.00 0.56 1.00

201 0.03 0.00 1.00 0.00 0.00 0.00 0.00 0.93

202 0.01 0.00 0.82 0.00 0.00 0.00 0.00 0.08

221 1.00 0.34 1.00 0.95 0.99 1.00 0.56 1.00

222 1.00 0.33 1.00 n/a 0.99 0.67 n/a 1.00

223 1.00 0.34 1.00 0.95 0.99 1.00 0.56 0.96

224 1.00 0.34 1.00 0.95 0.99 1.00 0.56 1.00

225 1.00 0.34 1.00 0.96 0.99 1.00 0.56 1.00

228 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

232 1.00 0.34 1.00 0.95 0.99 1.00 0.56 1.00

233 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

237 1.00 0.33 1.00 n/a 0.99 0.67 n/a 1.00

238 1.00 0.34 1.00 0.96 0.99 1.00 0.56 0.95

239 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

240 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

241 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

246 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

247 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

250 0.79 0.82 0.88 0.79 0.79 0.79 0.79 0.94

257 0.79 0.85 0.82 0.79 0.79 0.79 0.79 0.94

258 0.79 0.29 0.86 n/a 0.78 0.51 n/a 0.83

259 0.79 0.30 0.94 0.74 0.78 0.71 n/a 0.88

260 0.81 0.81 0.88 n/a 0.81 0.81 n/a 0.83

261 0.79 0.82 0.85 0.79 0.79 0.79 n/a 0.79

Ave 0.87 0.58 0.96 0.85 0.87 0.83 0.71 0.93

Results and analysis of sensor ontologymatching

The validatedD2CMOPSO-based ontologymatching system
is used to solve the sensor ontology matching problem. The
sensor ontology matching problem to be solved consists of
five ontologies, which brief descriptions are given in Table
19, and they form seven test cases. The method in this work
is compared with several classical matchers, namely Leven-
shtein distance-based [3], JaroCWinkler distance-based [39],
WordNet similarity-based [2] and similarity flooding (SF)-
based [6] ontology matcher. Table 20 shows the matching
results of each system. The results show that in most of the
test cases, the proposed approach achievedbetter or equal val-
ues for recall and precision than the othermatchers, and the
recall is lower than that of the Levenshtein distance-based,
Jaro-Winkler distance-based and WordNet similarity-based
matchers only on the SSN-OSSN case, because the match-
ing results of the sensor ontology may not be all one-to-one,
there are also one-to-many cases, while our method can only
find one-to-one relationships. In addition, the Wordnet dic-
tionary does not contain some specialized vocabulary related

to the sensor field, resulting in inaccurate semantic similar-
ity measures and reduced precision of matching results on
SOSA-SN case.

Conclusion and future work

This work aims to solve the sensor ontology meta-matching
problem. Because of the difference of sensor equipment
and data processing in sensor networks of different fields
and departments, the communication and interoperability
between these sensors is difficult. Establishing linkages
for sensors contribute to share and reuse sensor informa-
tion, improve the connection between different departments,
promote communication and cooperation, and enable bet-
ter coordination of measurement, monitoring, detection and
rescue efforts. For this purpose, sensor ontologies are con-
structed and relationships are established for different sensors
by eliminating the ambiguity of heterogeneous ontology.
Ontology matching is an effective method and technique
for achieving semantic fusion, eliminating ambiguity, and
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Table 16 Comparison on
OAEI’s participants and
D2CMOPSO in terms of
precision in benchmark track

ID edna AML CroMatch LogMap LogMapLt XMap LogMapBio D2CMOPSO

101 0.64 1.00 1.00 0.94 0.56 0.94 0.50 1.00

201 0.02 1.00 1.00 1.00 0.00 1.00 0.00 1.00

202 0.01 1.00 0.89 1.00 0.00 1.00 0.00 0.80

221 0.64 1.00 1.00 0.94 0.56 0.94 0.50 1.00

222 0.63 1.00 1.00 n/a 0.57 0.94 n/a 1.00

223 0.64 1.00 1.00 0.94 0.56 0.94 0.50 0.98

224 1.00 1.00 1.00 0.94 0.83 0.94 0.50 1.00

225 0.64 1.00 1.00 0.94 0.56 0.94 0.50 1.00

228 0.38 1.00 1.00 0.85 0.32 1.00 0.66 1.00

232 1.00 1.00 1.00 0.94 0.83 0.94 0.50 1.00

233 0.38 1.00 1.00 0.85 0.32 1.00 0.66 1.00

236 1.00 1.00 1.00 0.85 0.67 1.00 0.66 1.00

237 0.99 1.00 1.00 n/a 0.84 0.94 n/a 1.00

238 1.00 1.00 1.00 0.94 0.83 0.94 0.50 0.97

239 0.38 1.00 1.00 0.85 0.32 1.00 0.66 0.97

240 0.38 1.00 1.00 0.85 0.32 1.00 0.66 0.97

241 1.00 1.00 1.00 0.85 0.67 1.00 0.66 1.00

246 1.00 1.00 1.00 0.85 0.67 1.00 0.66 0.97

247 1.00 1.00 1.00 0.85 0.67 1.00 0.66 1.00

250 0.30 1.00 1.00 0.84 0.27 1.00 0.62 1.00

257 0.79 1.00 1.00 1.00 0.67 1.00 0.70 1.00

258 0.78 1.00 1.00 n/a 0.82 0.92 n/a 1.00

259 0.79 1.00 0.98 0.94 0.81 0.93 n/a 1.00

260 0.30 1.00 1.00 n/a 0.27 1.00 n/a 0.96

261 0.30 1.00 0.93 0.87 0.27 1.00 n/a 0.93

Ave 0.64 1.00 0.99 0.91 0.53 0.97 0.53 0.98

solving ontology heterogeneity problems, of which ontol-
ogy meta-matching is a popular research area. Currently, the
main challenges of ontology matching problem are how to
optimize the ontology matching process with better no refer-
ence alignment method and how to find the most appropriate
integration weights for a set of similarity measures. In this
work, two approximate measures for the quality of ontol-
ogy matching results are designed, and a multi-objective
optimization model of ontology meta-matching problem is
constructed. An MOPSO with density & distribution-based
competitive mechanism is further suggested to work out the
sensor ontology meta-matching problem and optimize its
solution, denoted as D2CMOPSO. D2CMOPSO uses spar-
sity to measure the distributivity of PF’s solutions and selects
elite solutions from them, which have the characteristics of
both low density and uniform distribution. In addition, each
particle decides to prefer local or global search according to
its own density, selects a variable number of candidate solu-
tions among the elite solutions, and then chooses the leader
solution among the candidate solutions based on the com-

petitive mechanism to guide the update of its flight direction
and position, which can effectively balance exploration and
exploitation. Finally, three sets of experimentations prove the
effectiveness and advanced nature of the proposed strategy
and model, which is appropriate to solve different hetero-
geneous species of ontologies matching problems and has a
positive effect on achieving sensor ontology matching and
fusion.

This work also has some shortcomings, as the problems
solved are small-scale matching problems, D2CMOPSO can
ensure the quality of matching results without consuming
much time. However, the efficiency of D2CMOPSO-based
ontology meta-matching techniques may be reduced when
faced with large-scale sensor ontology matching tasks. In
next work, we will consider upgrading D2CMOPSO to make
it applicable to large-scale matching problems, and a refine-
ment step of matching results is needed to further improve
the accuracy of sensor ontology matching.
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Table 17 Friedman test for recall among D2CMOPSO and OAEI’s participants in benchmark track

ID edna AML CroMatch LogMap LogMapLt XMap LogMapBio D2CMOPSO

101 2 8 2 6 5 2 7 2

201 3 6 1 6 6 6 6 2

202 3 6 1 6 6 6 6 2

221 2.5 8 2.5 6 5 2.5 7 2.5

222 2 6 2 7.5 4 5 7.5 2

223 2 8 2 6 4 2 7 5

224 2.5 8 2.5 6 5 2.5 7 2.5

225 2.5 8 2.5 6 5 2.5 7 2.5

228 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

232 2.5 8 2.5 6 5 2.5 7 2.5

233 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

236 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

237 2 6 2 7.5 4 5 7.5 2

238 2 8 2 5 4 2 7 6

239 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

240 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

241 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

246 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

247 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

250 6 3 2 6 6 6 6 1

257 6 2 3 6 6 6 6 1

258 3 6 1 7.5 4 5 7.5 2

259 3 7 1 5 4 6 8 2

260 4.5 4.5 1 7.5 4.5 4.5 7.5 2

261 5 2 1 5 5 5 8 5

Sum rank 89.5 140.5 67 141 118.5 106.5 155 80
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Table 18 Friedman test for precision between D2CMOPSO and OAEI’s participants in benchmark track

ID edna AML CroMatch LogMap LogMapLt XMap LogMapBio D2CMOPSO

101 6 2 2 4.5 7 4.5 8 2

201 6 3 3 3 7.5 3 7.5 3

202 6 2 4 2 7.5 2 7.5 5

221 6 2 2 4.5 7 4.5 8 2

222 5 2 2 7.5 6 4 7.5 2

223 6 1.5 1.5 4.5 7 4.5 8 3

224 2.5 2.5 2.5 5.5 7 5.5 8 2.5

225 6 2 2 4.5 7 4.5 8 2

228 7 2.5 2.5 5 8 2.5 6 2.5

232 2.5 2.5 2.5 5.5 7 5.5 8 2.5

233 7 2.5 2.5 5 8 2.5 6 2.5

236 3 3 3 6 7 3 8 3

237 4 2 2 7.5 6 5 7.5 2

238 2 2 2 5.5 7 5.5 8 4

239 7 2 2 5 8 2 6 4

240 7 2 2 5 8 2 6 4

241 3 3 3 6 7 3 8 3

246 2.5 2.5 2.5 6 7 2.5 8 5

247 3 3 3 6 7 3 8 3

250 7 2.5 2.5 5 8 2.5 6 2.5

257 6 3 3 3 8 3 7 3

258 6 2 2 7.5 5 4 7.5 2

259 7 1.5 3 4 6 5 8 1.5

260 5 2 2 7.5 6 2 7.5 4

261 6 1.5 3.5 5 7 1.5 8 3.5

Sum rank 128.5 56.5 62 130.5 176 87 186 73.5

Table 19 Brief description of
the five sensor ontologies

Sensor ontology Description Ontology scale

SN SensorOntology2009 ontology 152 entities

OSSN Original semantic sensor network ontology 107 entities

SSN Semantic sensor network ontology 55 entities

IoT IoT-lite ontology 40 entities

SOSA Sensor, observation, sample, and actuator ontology 42 entities

Table 20 Comparison on the proposed method and other classical matchers in terms of recall on sensor ontology test cases

Sensor ontol-
ogy matching
task

Levenshtein
distance-
basedmatcher

Jaro-Winkler
distance-
basedmatcher

WordNet
similarity-
basedmatcher

SF-based matcher Our way

SSN-SN 1.00 1.00 1.00 0.56 1.00

SSN-OSSN 1.00 1.00 0.97 0.35 0.93

SOSA-SN 1.00 1.00 1.00 1.00 1.00

SOSA-OSSN 1.00 1.00 1.00 0.50 1.00

SSN-IoT 1.00 1.00 1.00 1.00 1.00
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Table 21 Comparison on the proposed method and other classical matchers in terms of precision on sensor ontology test cases

Sensor ontol-
ogy matching
task

Levenshtein
distance-
basedmatcher

Jaro-Winkler
distance-
basedmatcher

WordNet
similarity-
basedmatcher

SF-based matcher Our way

SSN-SN 1.00 0.90 0.52 0.02 1.00

SSN-OSSN 1.00 0.94 0.80 0.06 1.00

SOSA-SN 0.75 0.75 0.33 0.07 0.92

SOSA-OSSN 1.00 1.00 0.67 0.20 1.00

SSN-IoT 1.00 1.00 0.33 0.01 1.00
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14. Gulić M, Vrdoljak B, Banek M (2016) CroMatcher-Results for
OAEI 2016. In: Proceedings of the 11th InternationalWorkshop on
OntologyMatching Co-located with the 15th International Seman-
tic Web Conference, Kobe, Japan

15. Hill J, Culler D (2002) A wireless embedded sensor architecture
for system-level optimization. UC Berkeley Technical Report: 1-2

16. Jiang C, Xue X (2021) A uniform compact genetic algorithm for
matching bibliographic ontologies. Appl Intel 7:1–16. https://doi.
org/10.1007/s10489-021-02208-6

17. Jimenez-Ruiz E, Cuenca Grau B, Cross V (2016) LogMap family
participation in theOAEI 2016. In: Proceedings of the 11th Interna-
tional Workshop on Ontology Matching Co-located with the 15th
International Semantic Web Conference, Kobe, Japan

18. Kahn JM, Katz RH, Pister KS (1999) Next century challenges:
mobile networking for “Smart Dust”. In: Proceeding of the 5th
Annual ACM/IEEE International Conference on Mobile Comput-
ing and Networking, Seattle, WA, USA, pp 271–278. https://doi.
org/10.1145/313451.313558

19. Kureychik V, Semenova A (2017) Combined method for integra-
tion of heterogeneous ontology models for big data processing and
analysis. Computer Science on-line Conference. Springer, Cham,
pp 302–311

20. Lambrix P, LiuQ (2009)Using partial reference alignments to align
ontologies. In: European Semantic Web Conference, Springer,
Berlin, Heidelberg, pp 188–202. https://doi.org/10.1007/978-3-
642-02121-3_17

21. Li D, Guo W, Lerch A, Li Y et al (2021) An adaptive particle
swarm optimizer with decoupled exploration and exploitation for

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.trc.2020.01.005
https://doi.org/10.1016/j.trc.2020.01.005
https://doi.org/10.1016/j.ins.2010.08.013
https://doi.org/10.1016/j.ins.2010.08.013
https://doi.org/10.1016/j.procs.2015.07.214
https://doi.org/10.1016/j.procs.2015.07.214
https://doi.org/10.1109/TEVC.2004.826067
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1145/375663.375731
https://doi.org/10.1145/375663.375731
https://doi.org/10.1007/s10489-021-02208-6
https://doi.org/10.1007/s10489-021-02208-6
https://doi.org/10.1145/313451.313558
https://doi.org/10.1145/313451.313558
https://doi.org/10.1007/978-3-642-02121-3_17
https://doi.org/10.1007/978-3-642-02121-3_17


Complex & Intelligent Systems (2023) 9:435–462 461

large scale optimization. Swarm and Evolutionary Computation
60(7):100789. https://doi.org/10.1016/j.swevo.2020.100789

22. Liu X, Zhan Z, Gao Y, Zhang J et al (2018) Coevolutionary particle
swarm optimization with bottleneck objective learning strategy for
many-objective optimization. IEEETransEvolComput 23(4):587–
602. https://doi.org/10.1109/TEVC.2018.2875430

23. LiuY,YenGG,GongD (2018)Amultimodalmultiobjective evolu-
tionary algorithm using two-archive and recombination strategies.
IEEE Trans Evol Comput 23(4):660–674. https://doi.org/10.1109/
TEVC.2018.2879406

24. Lv Q, Jiang C, Li H (2020) Solving ontology meta-matching
problem through an evolutionary algorithmwith approximate eval-
uation indicators and adaptive selection pressure. IEEE Access
9:3046–3064. https://doi.org/10.1109/ACCESS.2020.3047875

25. Marjit U (2015) Aggregated similarity optimization in ontology
alignment throughmultiobjective particle swarmoptimization. Int J
Adv Res 4(4):258–263. https://doi.org/10.17148/IJARCCE.2015.
4257

26. Martinez-Gil J, Alba E, Aldana-Montes JF (2008) Optimizing
ontology alignments by using genetic algorithms. In: Proceedings
of theWorkshop onNatureBasedReasoning for the SemanticWeb,
Karlsruhe, Germany, pp 1–15

27. Martinez-Gil J,Aldana-Montes JF (2011)Evaluation of twoheuris-
tic approaches to solve the ontology meta-matching problem.
Knowl Inf Syst 26(2):225–247. https://doi.org/10.1007/s10115-
009-0277-0

28. Mascardi V, Locoro A, Rosso P (2009) Automatic ontologymatch-
ing via upper ontologies: a systematic evaluation. IEEE Trans
Knowl Data Eng 22(5):609–623. https://doi.org/10.1109/TKDE.
2009.154

29. Moore J (1999) Application of particle swarm to multiobjective
optimization. Technical report

30. Neri F, Mininno E, Iacca G (2013) Compact particle swarm opti-
mization. Inf Sci 239:96–121. https://doi.org/10.1016/j.ins.2013.
03.026

31. Qu B, Li C, Liang J, Yan L et al (2020) A self-organized specia-
tion basedmulti-objective particle swarmoptimizer formultimodal
multi-objective problems. Appl Soft Comput. 86: https://doi.org/
10.1016/j.asoc.2019.105886

32. Rabaey J, Ammer J, Da Silva JL, Patel D (2000) PicoRadio: Ad-
hoc wireless networking of ubiquitous low-energy sensor/monitor
nodes. In: Proceedings IEEEComputer SocietyWorkshop onVLSI
2000. System Design for a System-on-Chip Era, FL, USA, USA,
IEEE, pp 9–12. https://doi.org/10.1109/IWV.2000.844522

33. Ritze D, Paulheim H (2011) Towards an automatic parameteriza-
tion of ontology matching tools based on example mappings. In:
Proc. 6th ISWC Ontology Matching Workshop, Bonn, pp 37–48

34. Semenova A, Kureychik V (2016) Application of swarm intel-
ligence for domain ontology alignment. In: Proceedings of the
First International Scientific Conference “Intelligent Information
Technologies for Industry”(IITI’16), Springer, Cham, pp 261–270.
https://doi.org/10.1007/978-3-319-33609-1_23

35. Semenova A, Kureychik V (2016) Multi-objective particle swarm
optimization for ontology alignment. In: 2016 IEEE 10th Inter-
national Conference on Application of Information and Commu-
nication Technologies (AICT), Baku, Azerbaijan, IEEE, pp 1–7.
https://doi.org/10.1109/ICAICT.2016.7991672

36. ShvaikoP,Euzenat J, Jimnez-RuizE,CheathamMet al. (2016)Pro-
ceedings of the 11th InternationalWorkshoponOntologyMatching
(OM-2016). Ontology matching workshop. Kobe, Japan, pp 1–252

37. Tizhoosh HR (2005) Opposition-based learning: a new scheme
for machine intelligence. In: International Conference on Compu-
tational Intelligence for Modelling, Control and Automation and
International Conference on Intelligent Agents, Web Technologies
and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria,
IEEE, pp 695-701. https://doi.org/10.1109/CIMCA.2005.1631345

38. Wang H, Wu Z, Rahnamayan S, Liu Y et al (2011) Enhancing
particle swarm optimization using generalized opposition-based
learning. Inf Sci 181(20):4699–4714. https://doi.org/10.1016/j.ins.
2011.03.016

39. WangY,Qin J,WangW (2017) Efficient approximate entitymatch-
ing using jaro-winkler distance. International Conference on Web
Information Systems Engineering. Springer, Cham, pp 231–239

40. Wang Y, Yao H, Wan L, Li H et al (2020) Optimizing hydrography
ontology alignment through compact particle swarm optimization
algorithm. In: International Conference on Swarm Intelligence,
Springer, Cham, pp 151-162. https://doi.org/10.1007/978-3-030-
53956-6_14

41. Wu Z, Palmer M (1994) Verb semantics and lexical selection. In:
Proceedings of the 32nd annual meeting on Association for Com-
putational Linguistics, Las Cruces, NM, USA

42. Xu B, Mei Y, Wang Y, Ji Z et al (2021) Genetic Programming with
Delayed Routing for Multi-Objective Dynamic Flexible Job Shop
Scheduling. Evol Comput 29(1):75–105. https://doi.org/10.1162/
evco_a_00273

43. Xue X, Jiang C,Wang H, Tsai PW et al (2021) An improved multi-
objective evolutionary optimization algorithm with inverse model
for matching sensor ontologies. Soft Computing 2:1–14. https://
doi.org/10.1007/s00500-021-05895-y

44. Xue X, Jiang C, Yang C, Zhu H et al (2021) Artificial Neural Net-
work Based Sensor OntologyMatching Technique. In: Companion
Proceedings of the Web Conference 2021, Ljubljana, Slovenia, pp
44-51. https://doi.org/10.1145/3442442.3451138

45. XueX,WangY (2017) Improving the efficiency of NSGA-II based
ontology aligning technology. Data Knowl Eng 108:1–14. https://
doi.org/10.1016/j.datak.2016.12.002

46. Xue X, Wang Y, Hao W (2013) Using MOEA/D for optimizing
ontology alignments. Soft Computing 18(8):1589–1601. https://
doi.org/10.1007/s00500-013-1165-9

47. Xue X, Wang Y, Ren A (2014) Optimizing ontology alignment
through memetic algorithm based on partial reference align-
ment. Expert Syst Appl 41(7):3213–3222. https://doi.org/10.1016/
j.eswa.2013.11.021

48. Xue X, Wu X, Chen J (2020) Optimizing biomedical ontology
alignment through a compact multiobjective particle swarm opti-
mization algorithm driven by knee solution. Discrete Dynamics in
Nature and Society 2020. https://doi.org/10.1155/2020/4716286

49. Xue X, Wu X, Jiang C, Mao G et al (2021) Integrating sen-
sor ontologies with global and local alignment extractions. Wirel
Commun Mob Comput 10:1–10. https://doi.org/10.1155/2021/
6625184

50. Xue X, Yang C, Jiang C, Tsai PW et al (2021) Optimizing ontol-
ogy alignment through linkage learning on entity correspondences.
Complexity. https://doi.org/10.1155/2021/5574732

51. Xue X, Yao X (2018) Interactive ontology matching based on
partial reference alignment. Applied Soft Computing 72:355–370.
https://doi.org/10.1016/j.asoc.2018.08.003

52. Xue Y, Zhu H, Liang J, Slowik A (2021) Adaptive crossover oper-
ator based multi-objective binary genetic algorithm for feature
selection in classification. Knowl Based Syst 227(5):1–9. https://
doi.org/10.1016/j.knosys.2021.107218

53. Yue C, Qu B, Liang J (2017) A multiobjective particle swarm opti-
mizer using ring topology for solving multimodal multiobjective
problems. IEEE Trans Evol Comput 22(5):805–817. https://doi.
org/10.1109/TEVC.2017.2754271

54. Yuen MC, Ng SC, Leung MF (2020) A competitive mecha-
nism multi-objective particle swarm optimization algorithm and
its application to signalized traffic problem. Cybe Syst 52(3):1–32.
https://doi.org/10.1080/01969722.2020.1827795

55. Zhan Z, Li J, Cao J, Zhang J et al (2013) Multiple populations for
multiple objectives: A coevolutionary technique for solving multi-

123

https://doi.org/10.1016/j.swevo.2020.100789
https://doi.org/10.1109/TEVC.2018.2875430
https://doi.org/10.1109/TEVC.2018.2879406
https://doi.org/10.1109/TEVC.2018.2879406
https://doi.org/10.1109/ACCESS.2020.3047875
https://doi.org/10.17148/IJARCCE.2015.4257
https://doi.org/10.17148/IJARCCE.2015.4257
https://doi.org/10.1007/s10115-009-0277-0
https://doi.org/10.1007/s10115-009-0277-0
https://doi.org/10.1109/TKDE.2009.154
https://doi.org/10.1109/TKDE.2009.154
https://doi.org/10.1016/j.ins.2013.03.026
https://doi.org/10.1016/j.ins.2013.03.026
https://doi.org/10.1016/j.asoc.2019.105886
https://doi.org/10.1016/j.asoc.2019.105886
https://doi.org/10.1109/IWV.2000.844522
https://doi.org/10.1007/978-3-319-33609-1_23
https://doi.org/10.1109/ICAICT.2016.7991672
https://doi.org/10.1109/CIMCA.2005.1631345
https://doi.org/10.1016/j.ins.2011.03.016
https://doi.org/10.1016/j.ins.2011.03.016
https://doi.org/10.1007/978-3-030-53956-6_14
https://doi.org/10.1007/978-3-030-53956-6_14
https://doi.org/10.1162/evco_a_00273
https://doi.org/10.1162/evco_a_00273
https://doi.org/10.1007/s00500-021-05895-y
https://doi.org/10.1007/s00500-021-05895-y
https://doi.org/10.1145/3442442.3451138
https://doi.org/10.1016/j.datak.2016.12.002
https://doi.org/10.1016/j.datak.2016.12.002
https://doi.org/10.1007/s00500-013-1165-9
https://doi.org/10.1007/s00500-013-1165-9
https://doi.org/10.1016/j.eswa.2013.11.021
https://doi.org/10.1016/j.eswa.2013.11.021
https://doi.org/10.1155/2020/4716286
https://doi.org/10.1155/2021/6625184
https://doi.org/10.1155/2021/6625184
https://doi.org/10.1155/2021/5574732
https://doi.org/10.1016/j.asoc.2018.08.003
https://doi.org/10.1016/j.knosys.2021.107218
https://doi.org/10.1016/j.knosys.2021.107218
https://doi.org/10.1109/TEVC.2017.2754271
https://doi.org/10.1109/TEVC.2017.2754271
https://doi.org/10.1080/01969722.2020.1827795


462 Complex & Intelligent Systems (2023) 9:435–462

objective optimization problems. IEEE trans cyber 43(2):445–463.
https://doi.org/10.1109/TSMCB.2012.2209115

56. Zhang X, Zhan Z, Fang W, Qian P et al. (2021) Multi population
ant colony system with knowledge based local searches for multi-
objective supply chain configuration. IEEE Trans Evol Comput

57. Zhang X, Zheng X, Cheng R, Qiu J et al (2017) A competitive
mechanism based multi-objective particle swarm optimizer with
fast convergence. Inf Sci 427:63–76. https://doi.org/10.1016/j.ins.
2017.10.037

58. Zhang Y, Zuo T, Zhu M, Huang C et al (2021) Research on
multi-train energy saving optimization based on cooperative multi-
objective particle swarm optimization algorithm. Int J Energy Res
45(2):2644–2667. https://doi.org/10.1002/er.5958

59. Zhu H, Xue X, Jiang C, Ren H (2021) Multiobjective sen-
sor ontology matching technique with user preference metrics.
Wirel CommunMobComput 5:1–9. https://doi.org/10.1155/2021/
5594553

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/TSMCB.2012.2209115
https://doi.org/10.1016/j.ins.2017.10.037
https://doi.org/10.1016/j.ins.2017.10.037
https://doi.org/10.1002/er.5958
https://doi.org/10.1155/2021/5594553
https://doi.org/10.1155/2021/5594553

	A multi-objective particle swarm optimization with density and distribution-based competitive mechanism for sensor ontology meta-matching
	Abstract
	Introduction
	Related work
	Reference alignment and partial reference alignment-based matching systems
	PSO-based ontology matching technologies
	MOPSO algorithm and variants

	Mathematical model for multi-objective ontology meta-matching
	Ontology and ontology heterogeneity problem
	Similarity measures
	Multi-objective ontology meta-matching problem
	Definition of multi-objective problem
	Formulaic multi-objective ontology meta-matching


	Methodology
	Encoding mechanism
	MOPSO and its challenges
	The proposed D2CMOPSO method
	Selection of elite solutions
	Density-based competitive mechanism for selection of leader solution
	Oppositive solution

	Pseudocode and complexity analysis

	Experiment and analysis
	Experimental design
	Parameter configuration
	Validation of the D2CMOPSO strategy and the effectiveness of the NRA-based matching framework
	Comparison with other algorithms
	Comparison with OAEI's advanced systems
	Results and analysis of sensor ontology matching

	Conclusion and future work
	Acknowledgements
	References




