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Abstract

Genome-wide association studies have succeeded in identifying genetic variants associated with complex diseases, but the
findings have not been well interpreted biologically. Although it is widely accepted that epistatic interactions of high-order
single nucleotide polymorphisms (SNPs) [(1) Single nucleotide polymorphisms (SNP) are mainly deoxyribonucleic acid
(DNA) sequence polymorphisms caused by variants at a single nucleotide at the genome level. They are the most common
type of heritable variation in humans.] are important causes of complex diseases, the combinatorial explosion of millions of
SNPs and multiple tests impose a large computational burden. Moreover, it is extremely challenging to correctly distinguish
high-order SNP epistatic interactions from other high-order SNP combinations due to small sample sizes. In this study, a
multitasking harmony search algorithm (MTHSA-DHETI) is proposed for detecting high-order epistatic interactions [(2) In
classical genetics, if genes X1 and X2 are mutated and each mutation by itself produces a unique disease status (phenotype) but
the mutations together cause the same disease status as the gene X1 mutation, gene X1 is epistatic and gene X2 is hypostatic,
and gene X1 has an epistatic effect (main effect) on disease status. In this work, a high-order epistatic interaction occurs
when two or more SNP loci have a joint influence on disease status.], with the goal of simultaneously detecting multiple
types of high-order (ki-order, ky-order, ..., k,-order) SNP epistatic interactions. Unified coding is adopted for multiple
tasks, and four complementary association evaluation functions are employed to improve the capability of discriminating
the high-order SNP epistatic interactions. We compare the proposed MTHSA-DHEI method with four excellent methods
for detecting high-order SNP interactions for 8 high-order epistatic interaction models with no marginal effect (EINMEs)
and 12 epistatic interaction models with marginal effects (EIMEs) ) and implement the MTHSA-DHEI algorithm with a
real dataset: age-related macular degeneration (AMD). The experimental results indicate that MTHSA-DHEI has power and
an F1-score exceeding 90% for all EIMEs and five EINMEs and reduces the computational time by more than 90%. It can
efficiently perform multiple high-order detection tasks for high-order epistatic interactions and improve the discrimination
ability for diverse epistasis models.
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[1], such as the lcauses of complex diseases, due to the
rapid development of high-throughput sequencing technol-
ogy and dramatic declines in sequencing costs. GWASs are
dedicated to detecting genetic variants associated with com-
plex traits/diseases from single nucleotide polymorphisms
(SNPs), which are the most common genetic variations in
human deoxyribonucleic acid (DNA) sequences [2-5].

Many important and interesting findings have been made
by GWASs using single-SNP-based and SNP-pair-based
methods. Single-SNP analysis approaches for GWASs, such
as the single-SNP test [5], compare the relative frequencies of
genotypes between case and control samples independently
of other SNP loci, and some results have been successfully
translated to candidate drugs [6, 7]. Nevertheless, most stud-
ies fail to effectively explain the causal SNPs of complex
diseases. One important reason is that most studies focus
on discovering the contribution of single SNPs to com-
plex disease status/traits in isolation, and SNPs with a small
effect on the phenotype were neglected in further analysis
[8]. In recent years, various multi-SNP methods have been
employed for GWASs, such as penalized regression [9-11],
which can eliminate SNPs associated only with the pheno-
type due to their linkage disequilibrium (LD) with causal
SNPs [11]. An increasing number of studies indicate that
epistatic interactions across the whole genome ubiquitously
exist in relation to complex diseases [12]. Epistatic inter-
action generally refers to joint interaction effects among
multiple genetic variants in the genome, where the effect of
a set of genes or SNPs on a phenotype is unequal to the sum
of their independent contributions [11]. Epistatic interactions
are now widely regarded to determine individual susceptibil-
ity to complex diseases [8, 13].

Detecting high-order epistatic interactions in the human
genome has become a very important goal in GWASs, but
it is also extremely challenging because there are hundreds
of thousands of SNPs in the human genome, creating a very
complex “combination explosion problem”. Current comput-
ers are not capable of determining whether each kth-order (k
> 2) SNP combination has an epistatic interaction effect in
a limited time. To address this problem, high-performance
computing and heuristic searches have been presented to
accelerate the detection of high-order epistatic interactions.
High-performance computing usually adopts graphics pro-
cessing units (GPUs) and parallel processing techniques to
improve the speed of computers. Guo et al. employed cloud
computing to detect high-order epistatic interactions [14],
and forty virtual machines were adopted to accelerate the
detection of such interactions. Yang et al. [15] developed

1 (*) In EIMEs, one or more SNP loci also have a marginal effect on
disease status, resulting in an epistatic interaction model with additive
effects. In EINMEs, each SNP locus has no or a very weak marginal
effect on disease status.
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a GPU-based permutation tool to accelerate the detection
of SNP-SNP interactions based on the likelihood ratio (LR)
test with the assumption that the statistic follows a x 2 distri-
bution. Cecilia et al. [16] presented a tool called MPI3SNP
that implements a multicentral processing unit (CPU) and
multi-GPU clusters to detect 3rd-order epistatic interactions.
Alex Upton et al. [7] reviewed high-performance comput-
ing and cloud computing used to detect epistasis in detail
and dissected different computational approaches to analyse
epistatic interactions in disease-related genetic datasets. GPU
and parallel processing techniques can speed up detection
but are insufficient for high-order (> 3) epistatic interactions
because the time complexity of detecting high-order SNP
epistatic interactions is not reduced if the search algorithm
still has high time complexity (i.e., exhaustive search algo-
rithm).

To reduce the computational burden, heuristic search tech-
niques, such as the Monte Carlo method [13, 17, 18], the
spanning tree method [19], and swarm intelligence search
algorithms (SISAs) [20, 21], use current information about
the target problem as heuristic information that can improve
search efficiency and reduce the number of searches. The
Monte Carlo method employs random sampling procedures
to explore potential SNP epistatic interactions and can speed
up epistasis detection, but its power is often unsatisfactory.
Zhang, Y et al. presented a Bayesian partition model (called
Beam) for detecting SNP epistatic interactions, and they
employed Markov chain Monte Carlo (MCMC) sampling
to compute the posterior probability of SNP markers [13].
Beam models have a very rapid search speed but easily miss
epistatic interactions with weak marginal effects on disease
status. Wang W introduced a minimum spanning tree struc-
ture for exhaustively detecting two-locus epistasis [19]. The
minimum spanning tree-based method is powerful for detect-
ing 2nd-order epistatic interactions with marginal effects
but largely inefficient for the detection of high-order SNP
epistatic interactions with weak marginal effects. Shanwen
Sun et al. analysed statistical modelling and machine learn-
ing approaches for identifying SNP epistatic interactions in
detail [11].

Due to the powerful exploration capability of a high-
dimensional search space, the SISA has received much
attention in recent years for high-order epistatic interaction
detection. Moore JH et al. employed a genetic algorithm
(GA) to discover complex genetic models [20, 21] and
presented a grid-based stochastic search algorithm (named
Crush-MDR) [22], which adopts genetic model-free mul-
tifactor dimensionality reduction (MDR) to calculate the
associations between SNP combinations and disease status
in order to accelerate the detection of high-order epistatic
interactions. Crush-MDR reduces the time complexity of
the search process, but the objective function MDR is
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computationally expensive. Wang et al. proposed a two-
stage ant colony optimization (ACO) algorithm (named
AntEpiSeeker) to detect epistatic interactions [23], which
employs the chi-square (x2) test to evaluate the scores of
SNP combinations. In the 1st stage of AntEpiSeeker, ACO
is used to select suspected SNP sets with high x? scores,
and the 2nd stage of AntEpiSeeker conducts an exhaustive
search with the suspected SNPs. Shang and Sun et al. con-
ducted an in-depth study on gene—gene interactions via ACO
[24-26], and their research concentrated on the identification
of epistatic models and the improvement of ACO. Differen-
tial evolution-based methods were adopted by Yang et al.
[27, 28] to detect epistatic interactions, and improved MDR
was used to measure associations. Aflakparast, M. et al. intro-
duced a cuckoo search epistasis (CSE) detection algorithm to
identify high-order SNP epistatic interactions in which each
single SNP has a small effect on disease status. The CSE
detection algorithm first divides all SNP loci into M groups
based on their relevance, and kth-order SNP combinations
are then chosen from the M groups [29].

Tuo et al. proposed three harmony search (HS)-based
epistatic detection algorithms (FHSA-SED [30], NHSA-
DHSC [31], and MP-HS-DHSI [32]) because of the perfor-
mance advantages of HS, such as its powerful exploration
ability and fast speed. HS is a very simple optimization
algorithm that has shown outstanding performance in solv-
ing both combinational optimization problems and real
number optimization problems. FHSA-SED aims to dis-
cover SNP-pair (2nd-order) interactions using HS and two
scoring functions (the Gini index and Bayesian network-
based K2 score) to evaluate the associations between SNP
pairs and disease status. NHSA-DHSC presents a niche HS
for detecting high-order epistatic interactions, in which a
niche strategy is used to record local optimal solutions and
avoid repeated searches in local regions. The MP-HS-DHSI
algorithm employs multipopulational and multiple scoring
functions to improve the exploration power of HS and over-
come the preference for disease models. In terms of search
speed and detection power, it outperforms FHSA-SED and
NHSA-DHSC in detecting high-order SNP epistatic inter-
actions, but for an unknown detection task, it also requires
the detection of 2nd-order, 3rd-order, ..., Kth-order epistatic
interactions one by one.

Although the SISA has made some progress in accelerat-
ing the detection of high-order epistatic interactions, it still
faces two challenges:

Search. Finding kth-order (a combination of kK SNP loci)
epistatic interactions among over hundreds of thousands of
SNPs in the whole genome in a limited time is very difficult
due to the large number of SNP combinations, which is a
complex combination explosion problem. For example, the
number of 3rd-order SNP combinations for 1,000,000 SNPs

is larger than 1.6667 x 10'7. In particular, if the SNPs in high-
order epistatic interactions have very weak or no marginal
effect on disease status/complex traits, the SISA is inefficient
or nearly powerless because there are no valid clues to guide
the population to locate the causal SNP epistatic interaction
among the extreme number of SNP combinations.

Discrimination. The discriminating function (objective
function) adopted to calculate the associations between SNP
combinations and phenotypes is crucial for the SISA. Faced
with such a large number of SNP combinations, discrimina-
tion functions with light computational requirements should
be considered first for SISAs. Bayesian network-based meth-
ods [33-35], Shannon entropy-based methods (i.e., mutual
information and conditional entropy) [36] and statistical test
methods (i.e., chi-square tests [37]) are lightweight methods
that have been widely used to evaluate associations, but none
of them are considered effective for all types of epistatic inter-
action models. Machine learning approaches, such as MDR
[38—40], random forest and neural networks, are statistical-
free methods with strong applicability for evaluating various
disease models, but the high computational burden limits the
usefulness of these methods as objective functions of SISAs.

To address the above challenges, this study aims to
improve performance in detecting high-order SNP epistatic
interactions in the following two aspects:

(1) A multitasking HS algorithm with three stages is devel-
oped to improve detection speed and power.

(2) Four complementary association evaluation functions
are employed to improve the discrimination ability of
various disease models.

To the best of our knowledge, the existing SISAs for
detecting SNP epistatic interactions, such as CSE [29],
MACOED [37], epiACO [25], and NHSA-DHSC [31], can
perform only one task (detecting a single kth-order epistatic
interaction) in each run and, therefore, must be run n times to
perform n tasks (detecting k1-order, ky-order, ..., k,-order
epistatic interactions). To collaboratively perform multiple
detection tasks simultaneously, a multitasking HS algorithm
(named MTHSA-DHEI) is developed for detecting high-
order epistatic interactions in this study. The contributions
of our work can be summarized as follows:

(1) A new multitask-based HS algorithm is proposed for
detecting k1-order, ky-order, ..., k,-order SNP epistatic
interactions simultaneously. The proposed algorithm is
divided into three stages: searching, screening and veri-
fying. The search stage aims to reduce the computational
burden. The purpose of screening and verifying is to
improve detection result accuracy.

(2) Unified coding is adopted to represent ki-order, k-
order, ..., k,-order combinations. For all tasks, the

@ Springer



640

Complex & Intelligent Systems (2023) 9:637-658

solutions (SNP combinations) are encoded with the
same length, which is equal to the number of SNPs
in the highest-order SNP epistatic interaction, and
this encoding scheme facilitates knowledge transfer
between tasks. Knowledge transfer between tasks can
significantly accelerate the detection of high-order SNP
epistatic interactions from high-dimensional genome
datasets.

(3) To improve the capability of identifying various models
and discriminating kth-order SNP epistatic interac-
tions from non-functional kth-order SNP combinations,
four complementary association evaluation functions
(Bayesian network, mutual entropy (ME), LR, and
normalized distance with joint entropy (ND-JE)) are
integrated as objective functions of the multitasking HS.

(4) T harmony memories (HM;, HM,, ..., HMy) are
employed to memorize the potential SNP epistatic com-
binations for T tasks, and four elite harmony sets (EHS1,
EHS,, EHS3, and EHS,) are used for each task to record
the elite solutions of four evaluation functions, with the
aims of reducing the preference of a single evaluation
function for a particular disease model and enhancing
the global search ability.

The rest of this paper is arranged as follows. ‘“Preliminary
and related work™ presents the related work and prelim-
inaries. The proposed method is introduced in detail in
“Proposed algorithm”. The experiments performed on sim-
ulation datasets and real datasets are given in “Simulation
experiments”. The subsequent sections are the conclusion
and discussion.

Preliminary and related work

Let X = {x1, xp, -+, xy} indicate N SNP markers for n
individuals and Y = {y1, y2, - - -, ys} denote disease status
(J is the number of disease statuses). The homozygous major
allele, heterozygous allele and homozygous minor allele in
the sample dataset are defined as 0, 1 and 2, respectively.
For a kth-order SNP combination, there are I = 3% geno-
type combinations. n; is the number of samples in the dataset
with SNP loci having the value of the ith genotype combina-
tion, and n;; represents the number of samples with the ith
genotype combination that are associated with disease state

Yj-

Definition (high-order SNP epistatic interaction). Let X =
(X515 X555 -+, X5} (1 < k < N, x5, € X) be a kth-order
SNP combination. f(Xk, Y) is a function for scoring the
association between X and disease state Y. A kth-order SNP
combination Xy is jointly associated with Y if and only if
VX' C Xip A f(Xi, Y) > f(X', Y), where > is defined for
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comparing the strength of association with the disease. X
is said to be strongly associated with Y if f(Xy, ¥Y) > 0 (0
is the threshold value for determining the association with
disease status). A kth-order SNP epistatic interaction occurs
if and only if a kth-order SNP combination Xy is truly a
disease-causing SNP combination associated with Y.

Multitasking optimization model

Multitasking optimization aims to solve K optimization prob-
lems simultaneously [41], and its goal is to concurrently
optimize all K tasks. Let the K tasks be maximization prob-
lems. The optimization model can be expressed as follows:

{ X5, .. X}}} = {argmax f1(X), .., argmax fm(X)}

where the objective function is defined as f; : S; — R and
X* € S; is the optimal solution of objective function f; in
the feasible space of S;.

Evolutionary multitasking optimization (EMO) has
received much attention in recent years in relation to implicit
parallel population-based optimization algorithms to search
multiple decision spaces of multiple optimization problems
[42]. The evolutionary multitasking algorithm can signif-
icantly accelerate convergence for multiple complex opti-
mizations by transferring learning between tasks. It has been
applied in the fields of engineering and science computing.
Li et al. employed a multifidelity evolutionary multitasking
method to extract hyperspectral endmembers [43]. Feng et al.
proposed evolutionary multitasking to solve the capacitated
vehicle routing problem [44] consisting of a weighted learn-
ing process for capturing transfer mapping. Eneko Osaba
et al. presented a novel adaptive metaheuristic algorithm
to address evolutionary multitasking environments called
the adaptive transfer-guided multifactorial cellular genetic
algorithm (AT-MFCGA) [45]. Nguyen Thi Tam introduced
evolutionary multitasking optimization to address the issues
of relay node assignment for wireless single-hop sensor and
multihop sensor networks in three-dimensional terrains [46].
To solve scheduling problems with batch distribution, Xu
et al. presented multitasking optimization [47]. Gao et al.
designed a transfer strategy based on the multidirectional
prediction method to improve the performance of the mul-
tiobjective multitasking optimization approach [48]. Zhao
et al. proposed a polynomial regression surface modelling
approach based on multitasking optimization for rational
basis function selection [49]. EMO can efficiently address
multiple different optimization problems simultaneously,
enhance the global search ability and improve the perfor-
mance of each task via knowledge transfer between tasks
[48].
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In the detection of high-order SNP epistatic interactions,
there may be an implicit relationship between kth-order SNP
epistatic interactions and (kth + i)-order SNP epistatic inter-
actions for the same disease.

For example, in a Sth-order SNP epistatic inter-
action (x1, x2, X3, X4, X5), the five single-SNP loci
x;(i=1,2,...,5) and all 2nd-order SNP combinations
(xl-, X j)(i # j) may have no explicit associations with dis-
ease status, while some 3rd-order SNP combinations, such as
(x1, x2, x4) and (x2, x3, Xx5), show associations with disease
status, which can guide the search algorithm to identify the
Sth-order SNP epistatic interaction by transferring learning
between the task of detecting 3rd-order epistatic interactions
and that of detecting Sth-order epistatic interactions. In the
task of detecting 3rd-order SNP epistatic interactions, some
3rd-order SNP combinations with very weak associations
with the disease but no disease-causing SNP interactions may
be part of the Sth-order epistatic interaction. Conversely,
some Sth-order SNP combinations may contain functional
loci for 3rd-order SNP interactions. Therefore, a multitask-
ing optimization model is well suited for accelerating the
detection of high-order SNP epistatic interactions through
knowledge transfer between multiple tasks.

Multitasking optimization model for detecting
high-order SNP epistatic interactions

The multitasking optimization model for detecting k1 - order,
ko - order, - - -, k;, - order SNP epistatic interactions can be
expressed as Eq. (1).

{Xi o X5,

= {argmaxfl (X,7Y, k), , argmax f, (X, 7, km)} s

ey

where X: (i=1,2,..
interaction and f(X, Y, k) denotes the objective function for
evaluating the association between kth-order SNP combina-
tion X and disease status Y.

,m) indicates a k; - order SNP epistatic

Discrimination functions for evaluating
the associations between SNP combinations
and disease status

Due to the small sample size and diversity of disease mod-
els, it is very difficult to discriminate kth-order SNP epistatic
interactions from all kth-order SNP combinations on a
genome-wide scale. Conventional evaluation methods (such
as mutual information and Bayesian networks) cannot iden-
tify all disease models well. Almost all evaluation methods
can correctly discriminate only a portion of disease models.

In this study, four discrimination functions with low com-
putational costs are employed to enhance the discrimination
ability.

Bayesian-network-based K2 Bayesian-
network-based K2 score is a statistical method for describing
relationships using a directed acyclic graph (DAG) G =
(V, E) [50]. It is a lightweight computing method and has
high discrimination precision for evaluating the association
between a kth-order SNP combination and disease status; it
can be expressed as Eq. (2):

score. The

ni+l njj

K2—Scorelog=2 Zlog(k) ZZlog(s) )

i=1 j=1s=1

The larger the K2 - Scorejo value is, the greater the asso-
ciation between a SNP combination and disease status.

ME score. The ME score aims to calculate the contribution
of a kth-order SNP combination X to disease status Y, defined
as in Eq. (3) [51],

ME - score = I(Y|x1, ..., Xk)

&)
=H(Y)+H(xy, .., xx) — HY, x1, ..., x¢),

where H(x)(see Eq. (4)) denotes the Shannon entropy of x

and H(xy, x2, ..., x;) represents the joint entropy of multiple
variables (x1, x2, ..., Xg).
J
H(Y) == p(y) x logy(p(y)), )
y=0
1 I
H(xy, .., xp) = — Z Z p (X1, ey X
x1=0 xx=0
x logy p (x1, ..., X)) . 5

LR score. The LR score is employed as arelated measure to
identify the likelihood difference between a kth-order SNP
epistatic interaction and a kth-order SNP combination that
is not involved in the disease process [52, 53] as shown in
Eq. (6):

LR - score = ZZZOU In <0”>

11]1

_222% In <"”>

i=1 j=1 (6)

where o0;; and e;; represent the observed number and
expected number of phenotypes, respectively, when a pheno-
type takes the ith disease state and a SNP combination takes
the jth genotype. The expected number e;; can be obtained
based on the Hardy—Weinberg principle [45, 58].

@ Springer
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ND-JE score. The ND-JE score is defined as the normal-
ized distance with joint entropy [32], which aims to uncover
clues for detecting high-order epistatic models with very
weak or no marginal effects, defined as in Egs. (7)—(9):

ND_JE - score = N D(X)/J E(Xcontrol)» @)

I d j control Jj,case 2
> > -

j=1i=0

ND(X) = , (8)

1
Z ‘ control _ pcase ’
l

1
n(;ontrol ngontrol

JE(Xcontrol) = = )~ log - ©)

g )
— peontrol peontrol
1=

where X = (x1, x2, - -+, Xx) is a kth-order SNP combi-
nation for all samples (including case and control samples);
X control indicates a kth-order SNP combination for only con-
trol samples; n] control and n7*“®® denote the numbers of
control samples and case samples in the dataset, respectively,
with the jth SNP locus taking the value of i (homozygous
major allele 0, heterozygous allele 1 and homozygous minor
allele 2); nfomml and n7%¢ represent the numbers of control
samples and case samples in the dataset, respectively, with
SNP combination X taking the value of the ith genotype
combination; and n°"! js the number of control samples.

The smaller the value of N D(X) is, the larger the dis-
tribution difference (distance) between the case and control
samples. The JE of the control samples is employed to nor-
malize the distance. The main goal of ND-JE is to uncover
a clue to guide the HS algorithm to detect potential disease-
causing SNP combinations.

Harmony search algorithm

The HS algorithm mimics the process of new music impro-
visation by jazz musicians, who address unknown complex
problems by exchanging information and learning between
individuals in a group [54-56]. Musicians improvise their
instruments’ pitches to search for a perfect state of har-
mony. The HS algorithm is characterized by its simplicity,
easy implementation, and powerful global search capabilities
and has been widely applied in combination optimization
problems on a large scale. (The standard HS algorithm is
introduced in detail in Supplementary file 1.)

In HS, a candidate solution X = (x1, x2, ..., XK) IS
referred to as a harmony. A set of candidate solutions is
referred to as a harmony memory (HM), which is similar
to the memory of a tabu search (TS) algorithm and the popu-
lation of a GA. The number of harmonies in an HM is called
the harmony memory size (HMS). An HM is a matrix of
order HMS x N or an augmented matrix of order HMS x
(N + 1) [50, 57] as in Eq. (10):

@ Springer

x! F(XL Y, k)
X2 f(X2, Y, k)

HM =
XHMS f(XHMS, Y, k)
(10)
xloox) o xk | fXL YR
xox3 o x| fXA YK

x{{MS X?Ms . xllng FXHMS y f)
where X! (i=1,2,..., HMS) is the i-th harmony in HM and
f(x') denotes the value of the objective function.

The worst harmony X4~ Worst in HM is iteratively updated
by new harmony X"%, which is improvised through the fol-
lowing three operators:

(1) HM consideration performs a combination operation of
HM with the probability harmony memory considering
rate (HMCR).

(2) Pitching adjusts with probability PAR, which performs
a local adjustment operation on X"V,

(3) Random consideration is performed with probability 1-
HMCR, which introduces stochastic disturbance in a
feasible search space to explore unknown space.

HS has been widely used to solve complex engineering
and science optimization problems.

Proposed algorithm
Framework

Figure 1 shows the framework of our proposed MTHSA-
DHETI algorithm.

MTHSA-DHEI is divided into three stages: the search
stage, screening stage and verification stage. In the search
stage, a multitasking HS is adopted to find potential SNP
combinations that have a strong association with disease sta-
tus. The G-test [30, 32, 59] statistical method is employed to
test the significance level of the difference between control
samples and case samples in the screening stage, and the SNP
combinations with significance level p values larger than the
threshold value 6; are discarded. In the verification stage,
MDR [38] is further used to verify the classification ability.

The goal of this study is to develop a fast and effective
search algorithm; therefore, the focus is on the design of the
search stage.

In the search stage of MTHSA-DHEI, four scoring func-
tions (Bayesian network-based K2 score, LR-based score,
ME-based score and ND-JE-based score) are employed as
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Fig. 1 The general flowchart of
the proposed algorithm
MTHSA-DHEIL In the search
stage, the multitasking harmony
search aims to discover some
potential SNP combinations that
have a strong association with
disease status. In the screening
stage, the G-test is employed to
eliminate some SNP
combinations without a
significance level. MDR is used
to verify the classification ability
of candidate solutions in the 3rd
stage

Searching Stage

Screening Stage

Verifying Stage

Randomly initialize the harmony memory (HM) for each task

HM, for Task 1

HM, for Task 2

HMy for Task T

Evaluate each harmony of HM; (i=1,2,*-,T) using K2, LR,
ME and ND-JE, respectively.

v

t=1 <

Generate a new harmony
by transferring learning
from another task (see

Algorithm 1)

Generate a new harmony by
transferring learning from
the current t-th task (see

Algorithm 2)

L

Update the harmony memory and Elite
harmony sets for t-th task(see Algorithm 3).

i

t=t+ 1

erminal condition is me

The solutions of four elite sets for t-th task are combined into G-

test candidate set(GCS)

i-th solution x is selected from GCSt (t=1,:*-,T)

p-value = G-test(x)

The solution X is
discarded.

The solution x is put into MDR candidate set (MCS;)

CA = MDR(x)

The solution x is
discarded.

NY

be an acceptable solution for

The candidate solution will

current task
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Fig. 2 Four tasks are separately
employed to detect 2nd-order,
3rd-order, 4th-order and
Sth-order SNP interactions
simultaneously. The -th task
possesses an HM (HM;) for

EHS,"

A

EHS, "

A

EHS;"

A

Elite harmony set for task 1

Elite harmony set for task 2

EHS,?

T

EHS;?

T

EHS,? EHS,?

T

EHS,"

A

recoding the potential SNP
combinations and has four elite
harmony sets (EHS;’, EHS,’,
EHS3" and EHS,") for storing the
elite solutions. In EHS’, the
association of SNP combinations
is calculated with the K2 score
based on a Bayesian network.
The association of SNP
combinations is calculated with
the LR in EHS,’. In EHS3’ and
EHS,!, the association of SNP
combinations is separately
calculated based on the ME and
ND-JE scores. The tasks

Knowledge
Transfer

HM, for task-1

HM, for task-4

Knowledge
<« Transfer HM, for task-2

Knowledge
Transfer

edge
Tran&ér\\
A
HM; for task- 3
Knowledge
Transfer

exchange information with each
other to improve the search
capability and speed

v

EHS,“

v

EHS,

v

EHS;“

Elite harmony set for task 3

objective functions to improve the ability to discriminate SNP
interactions with nonfunctional SNP combinations. 7' tasks
are employed to detect 2nd-order, 3rd-order, ..., Tth-order,
(Tth + 1)-order SNP epistatic interactions simultaneously.
As shown in Fig. 2, four tasks are concurrently employed to
detect 2nd-order, 3rd-order, 4th-order and Sth-order SNP
interactions, in which the t-th task has an HM and four elite
harmony sets (EHS?, EHS,’, EHS3’ and EHS4"). Each har-
mony in the HM has four association scores (K2 score, LR
score, ME score and ND-JE score). Each harmony in the
elite harmony set has only one association score. The K2
score, LR score, ME score and ND-JE score are separately
adopted by EHS{’, EHS,’, EHS3' and EHS,’. Unified cod-
ing is applied to the harmonies and elite harmony sets of all
tasks, which is intended to allow the harmonies among the
K tasks to transfer knowledge from each other and further
improve detection speed.

In MTHSA-DHEI, all tasks employ the same code length,
but only the previous ¢ + 1 values are considered to be the
solution for the 7-th task. For example, task 1 aims to detect
2nd-order SNP interactions. Only the association of the 2nd-
order SNP combination (x|, x}) in X'(i = 1, 2, ..., HMS)
is calculated between (xi, xé) and disease status Y, and other
SNPs are ignored, as follows:
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x{'lMS x?MS X:],;IMS XEMS f((x{'[MS, x?MS), Y, 2)

In Fig. 1, the general flow of the search stage is presented,
in which Algorithm 1 and Algorithm 2 introduce the improvi-
sation of new harmonies based on knowledge transfer from
other tasks and the current task, respectively. Algorithm 3
presents the process of updating the harmony memory and
elite harmony sets (EHS{?, EHS,’, EHS3' and EHS,") of the
t-task.

Improvising new harmonies with knowledge
transfer

Inthe proposed MTHS A-DHEI approach, improvising a new
harmony for the current 7-th task has two steps: (1) knowledge
transfer from other tasks and (2) generation of a new solution
in the current task by using HM,, EHS{’, EHS,’, EHS3’ and
EHS,’. Figure S1 shows an example in which task 2 transfers
knowledge to task 1 (see Supplementary file 1).

In the 1st method, the new harmony is improvised using
three classical operators of HS, but the knowledge is from
another task ¢, € {1, 2, ---, T}, t, # t, which aims to obtain
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the information from another task #,.. If task 7. has a higher
order than the current task, it may carry one or more func-
tional SNPs that were missing in the current task. Conversely,
if task ¢, has a lower order than the current task, some clues
(SNPs with marginal effects) that can help the current task
accelerate the detection of epistatic SNP interactions may be
found.

Algorithm 1 describes the steps of improvising a new har-
mony X"V = (x]V, x3%, ..., x%Y) for the r-th task by
transferring learning from the #,-th task (¢ # ¢,), in which
the HM consideration is from the four EHSs of the 7,-th
task; there are three strategies with equal probability of pitch
adjustment X"¥. For X"V if x]'*V = x}lew (i # j),the value
of x*" or the value of x*" will be randomly regenerated
from the search space. X"V will be randomly regenerated if
it exists in the HM or in EHS. (r = 1, 2, 3, 4).

Algorithm 1.
X = (xlnm,x;w .

Improvise a new harmony
X ) for the t-th task by knowledge

transfer from ¢, -task.

1: Randomly select one task ¢, € {1,2,---,T},?, #¢.

2: Randomly generate a random integer R € {1,2,3, 4} .

3:Fori=1toK
4: Ifrand(0,1) <HMCR

5: X foS’;' € EHS;,

6: If rand(0,1) < PAR

7: r< randInt({1,2,3}).

8: If =—=

9: X'« x‘iHs‘;‘bm € EHS"

10: Else if r=—=

11: L= x:HSI"“" - HM, (b,,a))

12: X[« x" + F xrand(0,1)x L
13: Else

14: L= xlesl';h -HM, (b,,4))

15: X" <= x" + F xrand(0,1)x L
16: End

17: EndIf

18: Else

19: X =refl,2,--,N}

20:  EndIf

21: EndFor

22: While X" e HM, || X" € EHS.
23: J=ie{l,2,---,k}

24: xfew =re{l,2,---,N}

25: EndWhile

In the 2nd method, a new harmony is improvised through
the components (HM,, EHS;’, EHS,’, EHS3’, and EHS4")
of the current t-th task. HM; is for harmony memory consid-
eration with probability HMCR. The best harmonies of four

elite harmony sets (EHS?, EHS,’, EHS3!, and EHS4") are the
focus of consideration when employing the pitch adjustment
operator.

Algorithm 2. Improvise a new harmony
X = (xf”,x;m
EHS11, EHS, t, EHS; t, EHS4 [) of the t-th task
I:Fori=1to K

2: Ifrand(0,1) <HMCR

~~~,x,"f“’) through the components (HMj,

3 X" <~ HM, (b,a)

4 If rand(0,1) < PAR

5 r < generate a random integer in {1,2,3}
6: If =1, then X < x, * eEHS,
7 Else if r==2

8 L=x"" —HM,(b,a)

9: X" «—x" + F xrand(0,1)x L
10: Else

11: L= xlesl’iM —-HM, (b,,a,)

12: X' «—x'" + Fxrand(0,1)x L
13: EndIf

14: If x™>NJ| x""<1

15: x & re{l2, -, N}

16: End

17: End

18: Else

19: X =refl,2,-,N}

21: EndIf

22: EndFor

22: While X" eHM, || X" e EHS. (r=1,2,...,4)
23 J=ie{l,2,--,k}

24: x:’ew:re{l,Z,---,N}

25: EndWhile

Algorithm 2 describes the steps of improvising a new har-
mony X"V = (x]°%, x3%, ..., x%Y) for the t-th task by
self-learning from HMlandEHS£(r =1,2,3,4).

In Algorithm 1 and Algorithm 2,a € {1, ---, K},a; €
{1,---, K}b € {1,---,HMS}, by € {1,2,---, HMS},
by € {1,..., HMS}LR € {1, 2, 3, 4},Ro € {1, 2, 3, 4} and
r € {1, 2, 3, 4} are all randomly generated integers, and
HM; (i, j) denotes the j-th note (variable) of the i-th har-
mony in HM, . EHS!. is the r-th elite harmony set of the #-th

task. xg HS;. b denotes the a-th SNP value of the b-th harmony
in the r-th elite harmony set of the 7-th task. F' is the scale
factor for adjusting the step of the local search.

In Algorithm 1 and Algorithm 2, the scale factor F is
important for the performance of the proposed MTHSA-
DHEI method. It is analysed in the simulation experiment
described in “Simulation experiments”.
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Update the harmony memory and elite harmony
sets

For each new harmony generated for the ¢-th task, HM;,
EHS/, EHS,/, EHS3' and EHS4' are considered to be
updated. The update rate of HM; is associated with FEs.
Algorithm 3 describes the update operator in detail.

Algorithm 3: Update HM,, ens, (k=1, 2, 3, 4) for the t-th task

1: (1) Calculate the association between X" and Y.

new new,l new,2 new,3 new,4 | _ ey !
2: Score :[sc ,8¢""7 5¢™ 8¢ :|—f(X " Y,D")

new,i .
3 s =sce  (1=1,2,3,4)
max_score

4: (2) Update the HM,.
5: Fori=1 to HMS
6: C= Sum(Score""w > Scoreyy, )

70 I C2s¢"™™ > sy & & r < (1-FEs/maxFEs)

M,

8: HM, (i,:) <~ X™";  break;
9: EndIf
10: EndFor

11: (3) Update elite harmony sets.
12: Fork=1to4

13:  If size (EHSk) < EliteSize
14: put X" into EHSk.

id_worst

. new,k
15:  Elseif sc > ScEHs;

16: X BHS «— X"
17: EndIf
18: EndFor

new

C is the number of scores in Score™” that are higher than the

corresponding scores in Score’ .
FEs are the number of SNP combinations that have been evaluated
to date for their association with disease status.

EHS[#-"r o . ‘
X is the worst individual in Ess, .

In Algorithm 3, the i-th fitness value sc™":/ of X"V is
divided by max_ score’ to normalize the fitness value to the
interval [1]. The value of max_ score’ is the maximum value
of the i-th scoring function in the initial population, and its
value is not changed during iterations. The condition C >
2 | schew-4 > SCﬁf/{, &&rand(0, 1) < (1 — FEs/maxFEs)
is critical. C > 2 means that the i-th harmony HM, (i, :) of
HM; is replaced by X™% only when at least two scores of
X% are higher than the corresponding scores of HM,(i,

)).schew. 4 scf_’lﬁ,ll&& rand(0, 1) < (1 — FEs/maxFEs)
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indicates that HM; (i, :) can be replaced by X™" with prob-
ability (1 — FEs/maxFEs) if sc™"-4 > sc;'_’[i,[[, which means
that the ND-JE score is different from the other three scores.
In this work, the goal of the ND-JE score is to discover some
clues to guide the algorithm to locate SNP interactions with
no marginal effect on disease status.

In the proposed MTHSA-DHEI algorithm, four comple-
mentary discriminating functions (evaluation functions) are
adopted to calculate the associations between high-order
SNP combinations and disease status, with the aim of improv-
ing the ability to identify various diseases, and have the
following benefits:

(1) All four evaluation methods are lightweight. For a kth-
order SNP combination, the four scoring values can be
calculated simultaneously by counting only the values
ofn; andn;; (i=1,2,...,I;j=1,2), and the calculations
are not additive.

(2) The four evaluation methods are complementary to each
other. The K2 score has high power for detecting SNP
interactions and is superior in discriminating certain dis-
ease models with weak marginal effects. However, it
has low accuracy for interaction models with low minor
allele frequencies (MAFs) and low genetic heritability
(H2). The ME score aims to calculate the contribution of
a kth-order SNP combination to disease status. The LR
score aims to discover the likelihood difference between
a functional SNP combination and a nonfunctional SNP
combination via statistical theory, and it has good adapt-
ability to unknown disease models. The ND_JE score
aims to guide the HS to uncover clues for detecting high-
order epistatic interactions.

Simulation experiments

To investigate the performance of the proposed MTHSA-
DHEI method, four 4th-order and eight Sth-order epistatic
interaction models with marginal effects (EIMEs), eight
high-order epistatic interaction models with no marginal
effects (EINME:s) (including two 3rd-order models, three
4th-order models and three Sth-order models) and one real
disease dataset (age-related macular degeneration, AMD)
were tested. The experimental results were compared with
the results of four high-order epistatic interaction detec-
tion algorithms: CSE, epiACO, NHSA-DHSC and MP-HS-
DHSI. All experiments were performed on a Windows 10
64-bit system with an Intel(R) Core (TM) i7-8700 CPU
@3.2 GHz, 16 GB memory, and all the program codes were
written and run in MATLAB R2018a.
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Evaluation criteria for performance

(1) Power is a measure of the capability of identifying a
kth-order SNP epistatic interaction from genomic data and
is expressed as

#S
Power = —,

#T
where #S is the number of true kth-order epistatic interac-
tions found from the simulation datasets, in which a total of
#T true kth-order epistatic interactions are available.

Note that in this work, power is used mainly to evaluate
the search ability of the proposed method. If the disease-
causing SNP combination (epistatic interaction) has been
found within the specified iterations (maximum number of
objective functions evaluated, maxFEs), the search is con-
sidered successful.

(2) FEs represent the number of evaluations of the asso-
ciations between kth-order SNP combinations and disease
status until the kth-order SNP epistatic interaction is found
or the terminal condition of the algorithm is met. In simu-
lation experiments, the search is stopped immediately when
the kth-order SNP epistatic interaction is found, and FEs is
the number of SNP combinations that have been evaluated
for their association with disease status. In this work, the aim
of the FEs is to measure the capability of the algorithm to
reduce the computational burden.

(3) Runtime denotes the mean runtime that an algorithm
takes to detect the kth-order SNP epistatic interaction before
the algorithm is terminated, and it is intended to measure the
time cost of detecting high-order SNP epistatic interactions.

To further investigate the reliability of the results obtained

in the search stage, the G-test method is adopted to screen out
the SNP combinations that differ significantly between case
and control samples (Pvalue < max(1078, 0.05/C1]§,)), and
MDR is then used to verify the classification accuracy of
the SNP combinations selected by the G-test [59]. The false
discovery rate (FDR) and F1-score are employed to further
evaluate the reliability of the results.

(4) The FDR is defined as:

FP
FP+TP’

where F' P and T P represent the false-positive rate and true-
positive rate, respectively.

(5) The F1-score can be expressed as follows:

TP
recall = ———,
TP+ FN
.. TP
precision = ————,
TP+ FP

2 x recall x precision
F1 — score = .

recall + precision

Datasets

(1) EINME datasets. Eight EINMEs were employed to test
the capability of detecting high-order epistatic interactions
with no marginal effect. For each EINME, 1500 control sam-
ples and 1500 case samples for the functional SNPs were
generated using a multiobjective optimization algorithm that
aims to maximize the joint effects of k-SNPs, minimize the
marginal effects of individual SNPs and limit Hardy—Wein-
berg equilibrium (HWE) constraints [60]. The samples of
nonfunctional SNPs were randomly generated according to
HWE. To investigate the performance of the proposed algo-
rithm, simulation datasets with 100 SNPs, 1 k SNPs and 10 k
SNPs were generated for each EINME. The eight EINMEs
are described in Table S1 of Supplementary file 1.

(2) EIME datasets. Four 5th-order additive EIMEs, four
Sth-order threshold EIMEs and four 4th-order multiplica-
tive EIMEs [61] were employed to test the performance of
detecting epistatic interactions with marginal effects. For
each model, 100 datasets with 2000 control samples and 2000
case samples that had 100 SNPs, 1000 SNPs and 10 k SNPs
were separately generated using GAMETES software [62].
The parameters of the 12 EIMEs are listed in Table S2 of
Supplementary file 1.

(3) AMD dataset. The AMD dataset contains 103,611
SNPs genotyped for 50 controls and 96 cases [63]. This
experiment aims to detect 2nd-order, 3rd-order, 4th-order
and Sth-order SNP epistatic interactions from the 103,611
SNPs for AMD. We conducted two experiments for AMD:

A. All 103,611 SNPs were detected to identify epistatic
interactions.

B. Three widely reported SNPs (rs380390, rs1329428, and
rs1363688) were first removed, and the rest of the SNPs
were detected to identify epistatic interactions in which
each SNP had a small effect on disease status.

Parameter analysis and settings

(1) Effect of parameters on the performance of MTHSA-
DHEI

In this section, the effect of two important parameters (TP
and F) on the performance of MTHSA-DHEI are investi-
gated.

As shown in Fig. 3, for the EINMEs, when TP > 0.5, the
power begins to drop gradually, and the FEs and runtime
increase with an increasing TP value, except for EINME-4.
However, as shown in Fig. 4, for the EIMEs, the FEs and
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Fig.3 Effect of TP on the
performance of MTHSA-DHEI
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runtime decrease with an increasing TP value, but the power
remains constant. This result demonstrates that a larger TP
value will decrease the performance of MTHSA-DHEI for
detecting EINME interactions but enhance the performance
for the detection of EIME interactions. With a compromise,
we believe that TP = 0.5 is a better choice when we have
unknown disease models.

Next, we investigate the effect of parameter F on the per-
formance of the proposed method. Figures 5, 6 and 7 show
the power, FEs and runtime of MTHSA-DHETI for values of
parameter F' from 2 to 20 (step = 2). MTHSA-DHEI has the
same power values for the three EIMEs for all F values, and
it has high power for EINMEs when F equals 10. As shown
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in Fig. 6 and Fig. 7, MTHSA-DHEI with a small F value (F
< 12) requires more FEs and runtime to find epistatic interac-
tions than MTHSA-DHEI with a large F value for EINMEs,
but for the three EIMEs, the opposite result occurs. There-
fore, we recommend that F be set to 10.

In addition, a 6, value set to 0.6 has the highest accuracy
for all EINMEs and EIMEs. When 6, < 0.55, the false-
positive rate starts to increase, and when 6, > 0.65, the false
negative rate starts to increase. For PAR, the algorithm has a
greater search speed and improved detection power when its
value is in the interval [0.4, 0.7].

(2) Parameter settings
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Fig.4 Effect of TP on the
performance of MTHSA-DHEI
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The parameters of the algorithms are described in
Table 1.

Experimental results and analysis

(1) EINME

Figure 8 shows the power, FEs and runtime used to detect
eight high-order EINMES using five intelligent search algo-
rithms, and the results show that the power of MTHSA-DHEI
exceeds that of the other four algorithms in all EINMEs
except for MP-HS-DHSI, which has the same power value
as MTHSA-DHEI on EINME-3, EINME-4 and EINME-6.
Both MTHSA-DHEI and MP-HS-DHSI have much higher
power than the other algorithms (Fig. 8a). As shown in
Fig. 8b, MTHSA-DHETI took the fewest FEs among all five
algorithms to find the kth-order SNP epistatic interactions

except for EINME-3, EINME-4 and EINME-6. Except for
EINME-5, EINME-7 and EINME-8, MTHSA-DHEI has a
more than 99% success rate in detecting kth-order (k =
3,4,5) epistatic interactions from 100 SNPs with no more
than 10,000 FEs, which is much lower than the number of FEs
(€340=161,700, C1,,=3.921,225, (3,,=75,287,520) obtained
by an exhaustive search.

As shown in Fig. 8¢, MP-HS-DHSI took the least time
among the five algorithms on EINME-1, EINME-3, EINME-
4 and EINME-6 to find the high-order SNP epistatic inter-
actions. The runtime taken by the proposed MTHSA-DHEI
method is slightly more than that of MP-HS-DHSI, but it is
less than the runtime required by the other three algorithms.
Importantly, in the simulation experiments, MP-HS-DHSI,
NHSA-DHSC, epiACO and CSE were performed only on a
kth-order epistatic interaction task (where k is the number of
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Fig.7 Effect of parameter F on the runtime of MTHSA-DHEI

functional SNPs in an epistatic interaction); however, the pro-
posed MTHS A-DHEI method aims to simultaneously detect
2nd-order, ..., kth-order epistatic interactions, which con-
sumes much of the computational cost of MTHSA-DHEI to
detect potential 2nd-order, ..., (k — 1)-order epistatic inter-
actions. Overall, MTHS A-DHEI has evident advantages over
the other four approaches in eight EINMEs with 100 SNPs.

To further investigate performance as the number of SNPs
increases, we conducted the proposed method on EINME
datasets with 1 k and 10 k SNPs. The results are summarized
in Table S3 (see Supplementary file 1). Figure 9 displays
the change curves of the power, FEs, runtime and F1-score
of the MTHSA-DHEI with an increasing number of SNPs,
from which we can see that the power and F1-scores decrease
rapidly and the FEs and runtime increase significantly when
conducting EINME-5, EINME-7 and EINME-8; however,
for the other five models, the changes in these metrics are
not very significant. We found that in EINME-5, EINME-
7 and EINME-8, the marginal effect of each functional SNP
was very small, especially for EINME-8, and the joint effects
could be seen only when three or more of the five func-
tional SNPs were combined, making it very difficult to search
for epistatic interactions among over thousands of SNPs.
Compared with the exponential growth in the number of
SNP combinations, the increases in FEs and runtime and
the decrease in power are very small and acceptable.

(2) EIME
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Table 1 Parameters of the five algorithms for detecting high-order epistatic interactions

Algorithm Parameters
MTHSA-DHEI HMCR =0.98,PAR=0.5,TP=05,T=K - 1,F =10
(1) For EINME and EIME simulation datasets, the HMS of each task is set to max(50, K x min(N/10,200)) (K is
the highest-order SNP interactions that will be detected). MaxFEs = min(50 x K x N, 2 x K x 50,000),
6, = max(1078, 0.05/C%)), 6, = 60%
(2) For the AMD dataset, HMS = 300, K = 4, MaxFEs = 5 x 107.6; = 1 x 1077, 6, = 70%
MP-HS-DHSI MaxFEs =2 x K x 50,000, HMCR = 0.98, PAR = 0.35, HMS = 100, size of candidate sets is equal to 5
NHSA-DHSC MaxFEs = 2 x K x 50,000, HMCR = 0.95, PAR = 0.35, HMS = 50, size of candidate sets is equal to 10. FEs in
the local search is set to MaxFEs/4
epiACO MaxFEs =2 x K x 50,000, AntNumber = 200, evaporation coefficient p = 0.2; others are the same as the
parameters of the author’s source code
CSE MaxFEs =2 x K x 50,000, NestNumber = 100, SNP number in each group is set to 5; others are the same as the

parameters of the author’s source code

Table 2 summarizes the results (power, FEs, and runtime)
of the five approaches in twelve high-order EIMEs, from
which it can be clearly seen that the proposed MTHSA-DHEI
method outperforms or is equivalent to the other four methods
in terms of power. MTHS A-DHEI took fewer FEs than CSE,
NHSA-DHSC and epiACO for almost all 12 models, and it
had 100% power to detect epistatic interactions with very few
FEs. Compared with MP-HS-DHSI, MTHSA-DHEI took
fewer FEs on four multiplicative datasets (EIME-9-EIME-
12) with 1000 SNP loci. MTHSA-DHEI took less runtime
than CSE, NHSA-DHSC and epiACO, but it took more
time than MP-HS-DHSI. However, the runtimes and FEs of
MTHSA-DHEI are composed of the runtimes required to
perform multiple tasks (detection of 2nd-order, 3rd-order,
..., and kth-order SNP epistatic interactions), while the run-
times of the other four methods correspond to the time of
performing only a single task (detection of kth-order SNP
epistatic interactions). In summary, compared with the four
excellent SISAs, MTHSA-DHEI has significant advantages
in power, especially for more complex disease models (i.e.,
multiplicative models).

Experiments on the 12 EIME datasets with 100, 1 k and
10 k SNPs are conducted, and the results are summarized
in Table S4 (see Supplementary file 1), which demonstrates
that the proposed algorithm can maintain high power (1st and
2nd power) for all datasets with different SNPs. Moreover,
its runtime and FEs increases are not very significant, where
the Ist power denotes the ability to find functional epistatic
interactions by the multitasking HS algorithm and the 2nd
power is the number of epistatic interactions that pass the
threshold value 6;. However, for EIME-5, EIME-8, EIME-9
and EIME-10, the 3rd power is equal to zero because the
ability to classify functional SNP epistatic interactions can-
not pass the threshold value 6, (= 60%). When MDR was
used to evaluate the four disease models, their average clas-
sification accuracy was equal to 56.8%, 58.6%, 56.3% and

58.4%. Comparing the EIMEs with EINMEs, each functional
SNP in the EIMESs has an obvious marginal effect on disease
status, which allows the HS algorithm to quickly locate the
functional SNPs.

(3) AMD. The proposed MTHSA-DHEI method is
adopted to simultaneously detect 2nd-order, 3rd-order, 4th-
order and 5th-order epistatic interactions from AMD data,
with 146 samples and 103,611 SNPs. A total of 526 2nd-
order SNP combinations, 1059 3rd-order SNP combina-
tions, 638 4th-order SNP combinations and 322 Sth-order
SNP combinations were found to be associated with AMD,
of which 168 2nd-order SNP combinations (CA > 75%, p
value < 1 x1077), 631 3rd-order SNP combinations (CA >
80%, p value < 1 x 10’10), 546 4th-order SNP combinations
(CA > 85%, p value < 1 x 10719), and 285 5th-order SNP
combinations met the significance level for the G-test [30, 32,
59], and the classification accuracy with MDR for each SNP
combination was greater than 75%, 80%, 85% and 90% for
the 2nd-order, 3rd-order, 4th-order and Sth-order combina-
tions, respectively (see Supplementary file 2 for details). To
better analyse the interactions among the identified SNPs, we
employed Cytoscape software (https://cytoscape.org/) [67] to
generate the interaction networks (see Fig. 10a, Figs. S2(a),
S3(a) and S4(a)).

To detect epistatic interactions in which each SNP has
a small effect on disease status, we removed three impor-
tant SNPs (rs380390, rs1329428 and rs1363688) that have
been widely reported to be associated with AMD, and
MTHSA-DHEI was applied to the remaining SNPs. Twenty-
four 2nd-order SNP combinations (CA > 75%, p value < 1
X 10’7), 33 3rd-order SNP combinations (CA > 80%, p value
<1 x10719), 56 4th-order SNP combinations (CA > 85%, p
value < 1 x10719) and 89 5th-order SNP combinations (CA
> 88%, p value < 1 x 107 ') were found to be strongly asso-
ciated with AMD. Figure 10b, Figs. S2(b) and S3(b) show
the interaction networks.
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Figure 10a shows the 2nd-order SNP combinations (p
value < 1 x 10~7) with a classification accuracy greater
than 75%, with SNPs rs380390, rs1329428 and rs10272438
shown to interact with many other SNPs. Both rs380390
and rs1329428 are in the CFH gene, which has been widely
reported to be associated with AMD [3, 24, 26, 34, 63, 64].
rs10272438 is an intron variant of the BBS9 gene that is asso-
ciated with Bardet Biedl syndrome [65] and was reported in
our previous study [31]. In Fig. 10b, rs10272438 is the only
central node that interacts with 21 SNPs.

@ Springer

Figure S2(a) displays the interaction network of 3rd-order
SNP combinations with a classification accuracy greater than
80%, of which the degrees of five central nodes, namely,
rs380390, rs1363688, rs1329428, rs618499 and rs555174,
are equal to 193, 124, 3, 47 and 13, respectively. In Figure
S2(a), the SNPs rs380390 and rs1329428 are indicated to
have important roles in 3rd-order SNP combinations, and
rs1363688 (at position 174,609,731 of chromosome 15, not
in a gene-coding region) [14, 31, 32] and rs618499 (in gene
ATM) were reported to be associated with osteosarcoma [66]
and AMD [14]. rs555174 (not in a gene-coding region) has
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Fig.9 Change curves of the power, FEs, runtime and F1-score of MTHSA-DHEI with an increasing number of SNPs for EINMEs

also been reported to be associated with AMD [31, 34]. In
Figure S2(b), rs10272438 and rs2022251 are two important
nodes, where rs2022251 (on chromosome 17, the difference
p value = 0.1 between the case and control samples) has
never been reported to be associated with disease.

Figure S3(a) shows the potential 4th-order SNP combi-
nations with a classification accuracy greater than 85% and
significance level less than 1 x 1070, from which it can
be seen that the SNPs rs1329428, rs3922799, rs2207553,
rs4585932, rs10494614, and rs967358 are central nodes,
among which rs1329428 is the only SNP that has been
reported. In Figure S3(b), rs10272438, rs10482918 and
rs6104678 are three central nodes, where rs10482918 is in
the NCAM?2 gene on chromosome 21, and rs6104678, which

is on chromosome 20, has been reported previously [30, 31,
68].

Figure S4(a) shows the Sth-order SNP interaction
network, in which SNPs rs1363688, rs1329428 and
rs207389 are central nodes. Figure S4(b) shows that
rs10482918, rs10272438, rs1982756 and rs6104678 are
central nodes. There are two 5th-order SNP combina-
tions, namely, (rs380390, rs7322610, rs2556560, rs4689888,
and rs10496217) and (rs2050733, rs207389, rs1178123,
rs1329428, and rs1363688), that have a very high classifi-
cation accuracy (97.9% and 95.8%, respectively) measured
with MDR in the first combination, except for SNP rs380390,
which shows a significant difference (p value = 6.19921E-
07) between the case and control samples. The other four
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Fig. 10 A 2nd-order SNP interaction network. A node denotes a SNP
locus, and an edge indicates that the 2nd-order SNP combination con-
nected by that edge is strongly associated with AMD (the significance

SNPs (157322610, rs2556560, rs4689888, and rs10496217)
have very small effect sizes, and their p values are equal to
0.282, 0.283, 0.864 and 0.220, respectively. For the 2nd SNP
combination, the p values of the five SNPs were equal to
0.324,0.088, 0.011, 5.99E — 06 and 3.84E — 05.

To complete detection with 5 x 107 FEs, the proposed
MTHSA-DHEI method took no more than 20 h to simul-
taneously detect 2nd-order, 3rd-order, 4th-order and Sth-
order SNP epistatic interactions from the AMD dataset.
The time required for MP-HS-DHSI to perform the detec-
tion of 2nd-order, ..., Sth-order SNP epistatic interactions
one by one was more than 48 h; NHSA-DHSC, CSE and
epiACO required more than one days. According to the
AMD detection results, MTHSA-DHEI found almost all the
SNPs that have been reported to be associated with AMD,
such as rs380390, rs1329428, rs1363688, rs10272438, and
rs555174, and found some SNPs that have been reported to
be associated with other complex diseases. Some previously
unreported SNPs were also found by MTHSA-DHEI and are
worthy of further study by biologists.

level for the G-test is < 1 x 1078, and the classification accuracy of
the 2nd-order SNP combination is > 75%). The larger the node is, the
greater the number of nodes connected to it

Conclusion

According to the experimental results, the proposed
MTHSA-DHEI method is significantly superior to the other
four algorithms in terms of power, FEs and runtime for the
EINME:s. The EIME:s also outperform others with respect to
power and FEs, but they take more time than MP-HS-DHEI
for most EIMEs. In the AMD experiment, MTHSA-DHEI
also showed a powerful ability to detect high-order epistatic
interactions from hundreds of thousands of data points, and
it found almost all the SNPs that have been reported to be
associated with AMD. Although the results of simulation
experiments indicate that our method outperforms the four
compared SISAs and shows very effective performance for
detecting high-order SNP epistatic models, such as EINME-
1, EINME-4, and EINME-6, additive models and threshold
models, it still cannot ensure the identification of casual
epistatic interactions from a dataset of over 10,000 SNPs in a
limited amount of time (30 min), and detection power starts
to degrade rapidly, such as for EINME-8. For the four multi-
plicative models, the heritability and population prevalence
values have a very important influence on the detection power
of the algorithm. The larger the heritability and population
prevalence values of the disease model are, the higher the
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detection power of the algorithm. However, SNP loci typi-
cally have a small effect and only modest heritability [2, 69].
To enhance the detection power of the proposed MTHSA-
DHEI method on datasets with more than 10,000 SNPs, we
can set a large size for HM and EHS and set a large value for
MaxFEs to make the algorithm run for a longer time. Large
sizes of harmony memory and large values of MaxFEs for
our algorithm can improve detection power, but the compu-
tational burden will also increase rapidly.

Discussion

Traditional methods for detecting high-order SNP epistatic
interactions can perform only a single task and ignore the
sharing of information between tasks, which makes the com-
putational burden of detecting SNP epistatic interactions
from unknown disease data very high. To address this prob-
lem, this study aimed to improve detection power, reduce the
computational burden and enhance the ability to discrimi-
nate high-order SNP epistatic interactions from a significant
number of high-order SNP combinations. We proposed a
novel multitasking HS algorithm for detecting high-order
SNP epistatic interactions, where multitasking is applied to
accelerate detection using concurrent collaborative computa-
tion, transfer learning is adopted to enhance the information
exchange between tasks, and four complementary evaluation
functions are employed to promote the ability to identify var-
ious disease models and overcome the preference of a single
evaluation function for a specific disease model. In addition,
for the epistatic interaction model with no marginal effects,
it is very difficult to uncover clues that can guide the search
algorithm to locate the functional SNP loci. The proposed
MTHSA-DHEI algorithm integrates ND-JE into the evalu-
ation functions to seek clues of the functional SNP locus
that has no or a very weak marginal effect on disease sta-
tus.

MTHSA-DHEI is a metaheuristic search algorithm, and
its time complexity is determined by four objective functions
(K2-score, ME score, LR score and ND-JE-score) of the 1st
stage and the MaxFEs (maximum number of evaluations of
associations between SNP combinations and disease status).
In the 2nd stage and 3rd stage, only the G-test and MDR are
employed to test and verify the number of candidate solutions
that were found in the Ist stage, and the associated time
complexity is negligible. The time complexity of evaluating
objective functions is O(k x S) (where k is the order of SNP
combinations and S is the number of samples). Therefore,
the time complexity of MTHSA-DHEI is roughly equivalent
to O(k x § x MaxFEs), which is much less than the time
complexity O(k x S x N¥) of the exhaustive method, where N
is the number of SNPs in the dataset. Since N and MaxFEs
are much larger than k and S, the time complexity of the

@ Springer

traditional exhaustive method is O(N*), which is much higher
than the time complexity O(k x S x MaxFEs) of MTHSA-
DHEI

To the best of our knowledge, this study is the first to detect
high-order SNP epistatic interactions by using a multitask-
ing search algorithm. There is still much room for improving
the performance of this type of algorithm. In the future, we
should try to develop an explicit-encoding-based multitask-
ing search algorithm to improve the search speed and design
more effective evaluation functions for identifying various
disease models.

In addition, the fuzzy set-based optimization algorithm
[70] has received much attention in recent years and has
been successfully applied to solid assignment [71, 72] and
transportation [73] problems, and it can also be considered a
focal method for future studies on high-order SNP epistatic
interaction detection. In addition, it is also very important
to develop an effective scoring function for seeking clues to
guide the SISA to locate the positions of potential SNP inter-
actions. The proposed MTHSA-DHEI method can only be
applied to detect associations between common SNPs (MAF
> 0.05 && MAF < 0.5) and disease status. This needs to be
further studied for its application to rare variants.

Availability and implementation

The supplementary files, MATLAB codes and Python
code are available at https://github.com/shouhengtuo/
MTHSADHEIL

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s40747-022-00813-7.
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