
Complex & Intelligent Systems (2023) 9:3787–3799
https://doi.org/10.1007/s40747-022-00809-3

ORIG INAL ART ICLE

Multi-layer stacking ensemble learners for low footprint network
intrusion detection

Saeed Shafieian1 ·Mohammad Zulkernine1

Received: 15 July 2021 / Accepted: 16 June 2022 / Published online: 5 July 2022
© The Author(s) 2022

Abstract
Machine learning has become the standard solution to problems in many areas, such as image recognition, natural language
processing, and spam detection. In the area of network intrusion detection, machine learning techniques have also been
successfully used to detect anomalies in network traffic. However, there is less tolerance in the network intrusion detection
domain in terms of errors, especially false positives. In this paper, we define strict acceptance criteria, and show that only very
few ensemble learning classifiers are able to meet them in detecting low footprint network intrusions. We compare bagging,
boosting, and stacking techniques, and show how methods such as multi-layer stacking can outperform other ensemble
techniques and non-ensemble models in detecting such intrusions. We show how different variations on a stacking ensemble
model can play a significant role on the classification performance. Malicious examples in our dataset are from the network
intrusions that exfiltrate data from a target machine. The benign examples are captured by network taps in geographically
different locations on a big corporate network. Among hundreds of ensemble models based on seven different base learners,
only three multi-layer stacking models meet the strict acceptance criteria, and achieve an F1 score of 0.99, and a false-positive
rate of 0.001. Furthermore, we show that our ensemble models outperform different deep neural networkmodels in classifying
low footprint network intrusions.

Keywords Network intrusion detection · Anomaly detection · Ensemble learning · Stacking ensemble learning ·
Low footprint intrusion

Introduction

A network intrusion is any attack on, or misuse of network
resources. There are two major network intrusion detec-
tion techniques; misuse detection and anomaly detection
[1].Misuse detection approaches are usually signature-based
methods that look for specific patterns, such as byte or packet
sequences in the network traffic that are already known to
be malicious. Therefore, they basically define the malicious
traffic patterns, and any traffic that matches those will be
flagged.

Anomaly-based intrusion detection systems, however,
mainly employ machine learning techniques to detect net-
work intrusions. These techniques train models on both

B Saeed Shafieian
saeed@cs.queensu.ca

Mohammad Zulkernine
mz@queensu.ca

1 School of Computing, Queen’s University, Kingston, Canada

benign and malicious network traffic to build a model that
would be able to classify new, unseen network data as mali-
cious or benign.

In this paper, we focus on Ensemble learning methods for
low footprint network intrusion detection. Ensemble learn-
ing methods combine base classifiers (learners) in different
ways using techniques such as bagging, boosting, or stack-
ing. The classification performance can be usually boosted
by combining many weak classifiers of the same type, but
each with different hyperparameters, or by training the same
type of learners on different datasets. Ensemble classifiers
can also be built by combing a few models each built using
a different strong classifier.

Ensemble learning aims to minimize two sets of errors;
variance and bias. Variance is error from sensitivity to small
fluctuations in training set; high variance can cause overfit-
ting. Bias is erroneous assumptions in the model; high bias
can cause underfitting. Ensemble methods are able to reduce
variance if the training sets are completely independent and
predictions are averaged. Averaging models in an ensemble

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-022-00809-3&domain=pdf
http://orcid.org/0000-0001-8069-0918

3788 Complex & Intelligent Systems (2023) 9:3787–3799

can also reduce bias by fitting one component at a time using
boosting techniques. Variance and bias usually vary in dif-
ferent directions, and as a result, finding a balance between
the two is very important.

Bootstrap aggregation, or bagging in short, creates an
ensemble model by training same base classifiers on ran-
dom subsets of training data called bootstrap samples. Each
bootstrap sample is formed by random sampling the training
set with replacement. This process is called bootstrapping,
and creates training sets with overlapping examples. The pre-
dictions are then combined (aggregated) to produce the final
result. Aggregation is done by normally majority voting, or
averaging the probabilities for each predicted class. Bagging
reduces variance without affecting bias. Base learners are
trained independently in bagging; therefore, the training pro-
cess can be done in parallel. One of the most well-known
and mostly used bagging classifier is Random Forest, which
combines decision trees [2]. Trees in a Random Forest can be
shallow or deep. Shallow trees have less variance, but higher
bias. Deep trees, on the other hand, have low bias but high
variance.

In boosting, only one classification algorithm is used, for
example a decision tree. The learning is done in a sequential
order. Each classifier tries to boost the previousmodel by giv-
ingmoreweights to themisclassified examples in the training
set. Boosting is a strong alternative to bagging. Instead of
aggregating predictions, boosters turn weak learners into
strong learners by focusing on where the individual mod-
els, usually Decision Trees, did not perform well. Since the
training is done in a sequential and iterative manner, it can-
not usually be done in parallel. One of the most well-known
and used boosting methods is eXtreme Gradient Boosting
(XGBoost) [3].

Stacking is different from bagging and boosting in a
number of ways. First, the base learners are normally hetero-
geneous in stacking, meaning that they each use a different
classification algorithm. This is different from bagging and
boosting that usually use homogeneous learners. The second
difference is in how the base classifiers are combined. In bag-
ging and boosting, the base classifiers are combined using a
deterministic algorithm, such as majority voting or averag-
ing. However, a meta classifier such as Logistic Regression
is trained in stacking to combine the base models.

In a two-layer stacking, all the base classifiers perform
their predictions, and then, a meta classifier is used to com-
bine these results into a final prediction. Figure 1 shows
how the simple two-layer stacking works. Usually, Logis-
tic Regression or a neural network is usually trained as the
meta classifier to combine the base models.

There are several different parameters that need to be
considered in creating a stacking ensemble model. These
parameters include:

– The base classifiers on each layer
– Each base classifier’s hyperparameters
– The meta classifier
– The meta classifier’s hyperparameters.

In machine learning, a hyperparameter is a parameter
that is set before model training begins, and controls the
learning process in some way. For example, the “number of
trees” in Random Forest is a hyperparameter. Hyperparam-
eter optimization, also known as hyperparameter tuning, is
the process of finding the most optimal hyperparameters for
a learning algorithm. For instance, the number of trees and
the max depth of each tree can be optimized in Random For-
est, so that a better classification is resulted. Hyperparameter
optimization techniques mostly use one of the optimiza-
tion algorithms, such as Grid Search, Random Search, or
Bayesian Optimization. We discuss how variations of the
above parameters can affect the performance of the stacking
ensemble classifiers.

One of the biggest challenges in using machine learning
to detect network intrusions is having access to real-world
network traffic. The network traffic in large corporations is
fundamentally different from those in small companies, or
educational institutes. Usually, amodel created based on data
from a large corporate network can also be applied to smaller
networks, but not vice versa [1].

In the network intrusion detection domain, one of themost
popular datasets used by researchers is KDD’99 [4]. How-
ever, this dataset is too old now to be used as a benchmark
for modern network intrusions. As a result, many researchers
have stopped using this dataset, and some have started using
the newer NSL-KDD dataset [5]. The NSL-KDD dataset
is basically an improved version of the original KDD’99
dataset. This newer dataset excludes many duplicate records
from the original dataset that could cause biases in classi-
fiers. Nevertheless, none of these datasets suit the needs of
today’s intrusion detection. We use corporate network traffic
that was captured in geographically different locations as our
benign dataset. We generate malicious traffic from the AWS
cloud targeting machines in a corporate network.

There has been a growing interest in both academia and
industry to use Deep Learning in different domains. It has
become the standard solution to problems in domains, such
as natural language processing and computer vision. Never-
theless, deep learning has its own drawbacks, which would
make it challenging to be used in some other domains includ-
ing intrusion detection. These drawbacks include, but are not
limited to the following [6]:

– Many hyperparameters to tune
– Theoretically infinite number of architectures to choose
from

123

Complex & Intelligent Systems (2023) 9:3787–3799 3789

Fig. 1 Stacking technique in
ensemble learning. A simple
stacking ensemble model with
base learners on the first layer,
and the meta learner on the
second layer. Meta learner
combines the predictions of the
base learners into a final
prediction

– Opaqueness into results (black-box models)
– Large datasets normally required to obtain accurate
results

– Relatively slower convergence on smaller datasets com-
pared to some traditional machine learning algorithms.

In a simple neural network model such as multi-layer per-
ceptron (MLP), the number of hidden layers and neurons on
each layer creates many different network architectures to
choose from. The choices of activation function for hidden
layers, the solver for weight optimization, alpha for penalty,
and learning rate for weight updates make many different
hyperparameter sets to tune.

Deep neural networks suffer from another disadvantage,
which is opacity into results. Most of the time, the mod-
els are black boxes due to the many layers, neurons, and
weights. This renders the model as being unexplainable, and
it is a major drawback in the intrusion detection domain. In
operational real-world intrusion detection systems, having
transparency into results is a key factor [1].

Another important drawback of deep learning is that a
large training dataset is usually required to achieve high
accuracy. This is practically a significant problem in some
domains where training examples are difficult or costly to
obtain. In domains such as intrusion detection, there are not
as many malicious as benign network traffic examples. The
other drawback of deep learning is longer running times for
both training and test, which is mostly due to model com-
plexity.

In this paper, we analyze and evaluate different ensemble
learning methods as alternatives to deep learning and tradi-
tional machine learning models. We focus on detecting low
footprint network intrusions. These are low-volume stealthy
intrusions that do not transfer volumetric data to or from the
target. Instances of such intrusions include Slow-Read dis-
tributed denial of service and data exfiltration using DNS
tunneling.

We define strict acceptance criteria for classification
performance, and perform experiments in detecting low foot-
print network intrusions. We show that among hundreds of
different models, only three stacking ensemble models are
able tomeet the acceptance criteria. All these top-performing
models use basic classification algorithms such as naive

Bayes and decision tree as their base learners. We also show
howsmall changes to each stacking ensemblemodel can have
drastic impacts on the performance of the resulting model.
We implement our experiments using scikit-learn [7], which
is a widely used machine learning library in Python.

The rest of the paper is organized as follows. The sec-
tion “Related work” presents related work. In the section
“Stacking ensemble learning”, we discuss stacking ensemble
learning techniques. The section “Training and test datasets”
presents our dataset and the feature selection process. In the
section “Experimental results”, we discuss our experimental
results, and finally, the section “Conclusion” section con-
cludes our work.

Related work

Ensemble learning methods have been used to detect net-
work intrusions [8–12]. Shafieian et al. use Random Forest
to detect slow-read distributed denial of service attacks [13].
They showhow tuning the hyperparameters affects the classi-
fication performance. These authors also use heterogeneous
ensemble models to detect the stealthy DNS tunneling intru-
sion [14]. They discuss how aweighted ensemble of Random
Forest, k-NN, andMLP with different combination rules can
be used to achieve the lowest false positive rates. Gao et
al. propose a new ensemble model by adjusting the propor-
tion of training data and setting up multiple decision trees
[15]. They use the NSL-KDD dataset to test the accuracy
of their proposed method. They propose an intrusion detec-
tion framework based on Support Vector Machine (SVM)
ensemble with feature augmentation. Hsu et al. present a
stacking ensemble learning model that consists of Autoen-
coder, SVM, and Random Forest models [16]. They use
NSL-KDD, UNSW-NB15 [17], and a campus network log
as their datasets. They compare their method to a number of
different machine learning techniques. They find a weighted
combination of the base learners through grid search. Zhong
et al. propose an anomaly detection framework that is based
on combining Autoencoder with long short-term memory
(LSTM) network [18]. They use Damped Incremental Statis-
tics algorithm to extract features from network traffic, and a
weighted method to get the final abnormal score. They use

123

3790 Complex & Intelligent Systems (2023) 9:3787–3799

Fig. 2 Multi-layer stacking ensemble learning. First layer contains the base learners each producing a prediction on the dataset. Then, each prediction
is fed to each meta learner on the second layer. Finally, a meta learner on the last layer combines the predictions of the previous layer into the final
prediction

MAWILab [19] and IDS 2017 [20] datasets in their exper-
iments. Mirsky et al. present a network intrusion detection
system that uses an ensemble of Autoencoders [21]. They
utilize a feature extraction framework to track the patterns of
network channels. Their dataset consists of packets captured
on a video surveillance network, where they send malicious
traffic using available tools. Tama et al. propose a two-stage
ensemble classifier that utilizes rotation forest and bagging
[22]. They select features based on the classification perfor-
mance of a reduced error pruning tree classifier onNSL-KDD
and UNSW-NB15 datasets. Mirza et al. propose an ensem-
ble of neural network, logistic regression, and decision tree
using weighted majority voting [23]. They also use KDD’99
as their dataset for network intrusions.

Our work is different from existing work in several
aspects. First, we create our own datasets as opposed to
using old ones such as KDD’99 or NSL-KDD. Using these
datasets makes it easy to compare the results with those
of other researchers. Nonetheless, models and techniques
developed using these outdated datasets may not be appli-
cable to modern network intrusions [1]. Second, we use
stacking ensemblemodels built using non-deterministicmeta
classifiers as opposed to deterministic techniques. More
importantly, we define strict performance criteria which we
show are only met by a few specific stacking ensemble learn-
ers. Our goal is to show that simple base learners can be
combined in such a way that very high performing classifiers
are resulted. This is in contrast with deep learning and other
complex models that have a “black box” architecture.

Stacking ensemble learning

Similarly to bagging and boosting techniques, stackingmeth-
ods combine base learners to create an ensemble model.
However, there are two major differences between stacking
and bagging or boosting. First, stacking usually uses hetero-
geneous base learners (different classification algorithms) as
opposed to bagging and boosting that normally use homoge-
neous learners (same classification algorithms). Second, in
bagging and boosting base learners are combined in a deter-

ministic way. This is usually done using voting or a weighted
sum. However in stacking, the base learners are combined
using a non-deterministic algorithm via a meta learner.

As an example of stacking, one can use k-NN, MLP, and
SVM as the base, and then employ logistic regression as the
meta learner to combine the predictions. Here, k-NN, MLP,
and SVM are the base learners, and Logistic Regression that
combines their predictions is the meta learner. This means
that logistic regression will learn how to combine the three
predictions from the base learners, so that the best final clas-
sification is resulted. This process is done during the training
process similar to other supervised learning methods.

Stacking can be done in two or multiple layers. In a
two-layer stacking, all the base classifiers perform their pre-
dictions, and then, a meta classifier is used to combine the
results into a final prediction. In the multi-layer stacking
model, the predictions of each layer are fed to the next layer
as the input. The last layer consists of a single meta classifier
that combines the predictions into one final result. Figure
2 shows the multi-layer stacking technique. As the figure
shows, there are n base learners on the first layer that are
fully connected to the k meta learners on the second layer.
The base learners are trained on the dataset, and then, each
prediction from these base learners is fed to eachmeta learner
on the second layer. The second layer meta learners are then
trained on these predictions. There can be other layers of
meta learners in this architecture. Finally, a meta learner on
the last layer is trained to combine the predictions of its pre-
vious layer into the final prediction.

From a theoretical standpoint, any classification algorithm
canbe used on anyof the layers in a stacking ensemblemodel.
For instance, in the previous example, we could have used
Logistic Regression as a base classifier, and SVMas themeta
learner.Nonetheless, LogisticRegression or a neural network
is usually a good choice for the finalmeta classifier. The flexi-
bility in terms of the number of layers, the number of learners
on each layer, and the type of each learner makes stacking
very versatile and powerful for classification problems.

123

Complex & Intelligent Systems (2023) 9:3787–3799 3791

Training and test datasets

We use low footprint network intrusions in our datasets to
train and test the classification models. These are data exfil-
tration intrusions that steal sensitive data from a victim’s
machine through tunneling [14]. We employ different tools
to generate themalicious traffic to have a variety ofmalicious
packets in our datasets. We generate the intrusions from vir-
tual machines on Amazon AWS, targeting a machine in our
lab.

We use Dnscat2, Iodine, and Ozyman in our experiments
to generate malicious network traffic. These tools generate
data exfiltration and command and control (C&C) traffic.
These tools operate in different ways; for example, they use
different encoding, client–server architecture, etc. This helps
create a variety of malicious network traffic in our datasets.
The benign network packets were generated by capturing
network traffic on a corporate network at geographically
different offices in Canada and the US. The packets were
captured over a period of 5 weeks for a total of 1.5 GB of
data. We use a portion of this data using random sampling to
create our benign dataset.

Feature selection

Most of the time, the raw network packets that are captured
for anomaly detection have data that are not informative. For
instance, date, time, and even IP address are not providing
any information about the nature of the traffic, as they can
freely change over time.

One of the most important steps before training a machine
learning model is Feature Engineering. This step involves
selecting the features that have Predictive Power. In our sce-
nario, these are the features that have correlation to our target
classes; malicious or benign.

Table 1 shows the original features that we extracted from
the captured network packets. One initial processing that
often needs to be performed on datasets is data type con-
version. Many machine learning algorithms work only with
numerical features, so other data types must be converted
to have a numerical representation. This can be done in dif-
ferent ways, for example a naive way to do so would be
[c1, c2, c3, . . .] => [n1, n2, n3, . . .] where the first vec-
tor represents the categorical values, and the second one is
corresponding numerical values. The issue with this type of
conversion is that each categorical value is being assigned to
a numerical value with a different size, and this could cause
bias in some learning algorithms.

Data transformation

We use one-hot encoding [24] on categorical features. In this
method of encoding, a categorical feature will be converted

into an array of features each taking only 0 or 1 as values. For
example, if we have a categorical feature F with three differ-
ent values v1, v2, and v3, then we will replace feature F with
three new features F1, F2, and F3. If an example originally
had the value v1, it will now have the values 1, 0, 0 for F1,
F2, and F3, respectively. This ensures that all the categorical
values are treated the same, and there is no bias introduced
because of this conversion.

Other transformations that are usually used on the dataset
are normalization and standardization scaling. The two tech-
niques are similar in the way that they both limit the range of
values for each feature in the dataset.However, normalization
usually converts the values to be in the range [0, 1], whereas
standardization or z-score normalization converts the feature
values to have a standard normal distributionwithμ = 0 and
σ = 1. Formulas 1 and 2 show how these transformations
are done on a feature called X

Xstandard = X − μ

σ
(1)

Xnormal = X − Xmin

Xmax − Xmin
. (2)

Most classification algorithms benefit from feature scal-
ing, but some such as k-NN, SVM, and MLP that are
distance-based benefit more. However, even tree-based clas-
sifiers such as decision trees and Random Forest benefit from
scaling, as well.

Figure 3 shows the original feature set’s correlation heat
map. A darker red means more positive correlation to the
label, whereas a lighter mean more negative correlation. We
are looking for the features that are very positively or very
negatively correlated to the target. A positive correlation
between two variables means that they move in the same
direction (if one increases the other increases or decreases as
the other decreases). On the other hand, a negative correlation
means that the two variables move in different directions; as
once increases, the other decreases and vice versa. We select
a feature x , such that |Corrx | ≥ 0.4, where Corrx denotes
the correlation of feature x to the label.

Table 2 shows the selected features. We use Pearson Cor-
relation Coefficient (PCC) [25] values to choose our feature
set. PCC evaluates the value of an attribute by measuring its
correlation to the class. The higher the correlation, the better
that feature represents the corresponding class.

Experimental results

We use scikit-learn [7] to implement our models in Python.
This popular and widely used machine learning library pro-
vides APIs to implement the most common algorithms in an

123

3792 Complex & Intelligent Systems (2023) 9:3787–3799

Ta
bl
e
1

A
ll
ca
pt
ur
ed

ne
tw
or
k
pa
ck
et
fie

ld
s

Fe
at
ur
e

Ty
pe

D
es
cr
ip
tio

n

Q
ue
st
io
n
ty
pe

C
at
eg
or
ic
al

D
N
S
qu
er
y
qu
es
tio

n
ty
pe

su
ch

as
A
,C

N
A
M
E
,M

X
,e
tc
.

Is
St
an
da
rd

qu
er
y

B
oo
le
an

W
he
th
er

th
e
qu
er
y
is
a
st
an
da
rd

D
N
S
qu
er
y

Is
A
ut
ho
ri
ta
tiv

e
B
oo
le
an

W
he
th
er

th
e
na
m
e
se
rv
er

is
au
th
or
ita
tiv

e
fo
r
th
e
qu
er
y

Is
R
ep
ly

su
cc
es
s

B
oo
le
an

W
he
th
er

th
er
e
is
an

er
ro
r
in

th
e
qu
er
y
re
sp
on
se

Is
R
ev
er
se

lo
ok
up

B
oo
le
an

W
he
th
er

th
is
is
a
re
ve
rs
e
D
N
S
lo
ok
up

R
ou

nd
tr
ip

tim
e

N
um

er
ic

R
ou

nd
tr
ip

tim
e
(R
T
T
)
fo
r
th
e
pa
ck
et

R
eq
ue
st
an
sw

er
co
un
t

N
um

er
ic

N
um

be
r
of

re
so
ur
ce

re
co
rd
s
in

th
e
an
sw

er
se
ct
io
n
fo
r
re
qu
es
t

R
eq
ue
st
au
th
or
ity

co
un
t

N
um

er
ic

N
um

be
r
of

na
m
e
se
rv
er

re
so
ur
ce

re
co
rd
s
in

th
e
au
th
or
ity

re
co
rd
s
se
ct
io
n
fo
r
re
qu
es
t

R
eq
ue
st
A
dd
iti
on
al
co
un
t

N
um

er
ic

N
um

be
r
of

re
so
ur
ce

re
co
rd
s
in

th
e
ad
di
tio

na
lr
ec
or
ds

se
ct
io
n
fo
r
re
qu
es
t

Q
ue
st
io
n
le
ng
th

N
um

er
ic

L
en
gt
h
of

th
e
D
N
S
qu
er
y
qu
es
tio

n
in

by
te
s

Q
ue
st
io
n
in
fo

bi
ts

N
um

er
ic

Sy
nt
he
tic

fe
at
ur
e
es
tim

at
in
g
nu

m
be
r
of

bi
ts
to

en
co
de

a
D
N
S
qu

es
tio

n

Q
ue
st
io
n
en
tr
op
y

N
um

er
ic

Sy
nt
he
tic

fe
at
ur
e
m
ea
su
ri
ng

th
e
en
tr
op
y
of

th
e
D
N
S
qu
es
tio

n

R
es
po
ns
e
an
sw

er
le
ng
th

N
um

er
ic

L
en
gt
h
of

th
e
D
N
S
re
sp
on
se

an
sw

er
in

by
te
s

R
es
po
ns
e
an
sw

er
in
fo

bi
ts

N
um

er
ic

Sy
nt
he
tic

fe
at
ur
e
es
tim

at
in
g
nu
m
be
r
of

bi
ts
to

en
co
de

D
N
S
re
sp
on
se

an
sw

er

R
es
po
ns
e
an
sw

er
co
un
t

N
um

er
ic

N
um

be
r
of

re
so
ur
ce

re
co
rd
s
in

th
e
an
sw

er
se
ct
io
n
fo
r
re
sp
on
se

R
es
po
ns
e
ad
di
tio

na
lc
ou
nt

N
um

er
ic

N
um

be
r
of

re
so
ur
ce

re
co
rd
s
in

th
e
ad
di
tio

na
lr
ec
or
ds

se
ct
io
n
fo
r
re
sp
on
se

R
es
po
ns
e
au
th
or
ity

co
un
t

N
um

er
ic

N
um

be
r
of

na
m
e
se
rv
er

re
so
ur
ce

re
co
rd
s
in

th
e
au
th
or
ity

re
co
rd
s
se
ct
io
n
fo
r
re
sp
on
se

R
es
po
ns
e
qu
es
tio

n
co
un
t

N
um

er
ic

N
um

be
r
of

qu
es
tio

ns
in

th
e
re
sp
on
se

R
es
po
ns
e
an
sw

er
T
T
L

N
um

er
ic

T
im

e
to

liv
e
fo
r
re
sp
on
se

an
sw

er
se
ct
io
n

R
es
po
ns
e
an
sw

er
le
ng
th

N
um

er
ic

L
en
gt
h
of

an
sw

er
se
ct
io
n
in

re
sp
on
se

R
es
po

ns
e
au
th
or
ity

le
ng

th
N
um

er
ic

L
en
gt
h
of

au
th
or
ity

se
ct
io
n
in

re
sp
on

se

R
es
po
ns
e
au
th
or
ity

in
fo

bi
ts

N
um

er
ic

Sy
nt
he
tic

fe
at
ur
e
es
tim

at
in
g
nu
m
be
r
of

bi
ts
to

en
co
de

re
sp
on
se

au
th
or
ity

R
es
po
ns
e
ad
di
tio

na
ll
en
gt
h

N
um

er
ic

L
en
gt
h
of

ad
di
tio

na
lr
ec
or
ds

se
ct
io
n
in

re
sp
on
se

R
es
po

ns
e
ad
di
tio

na
li
nf
o
bi
ts

N
um

er
ic

Sy
nt
he
tic

fe
at
ur
e
es
tim

at
in
g
nu

m
be
r
of

bi
ts
to

en
co
de

ad
di
tio

na
lr
ec
or
ds

se
ct
io
n
in

re
sp
on

se

R
es
po
ns
e
in
fo

bi
ts

N
um

er
ic

Sy
nt
he
tic

fe
at
ur
e
es
tim

at
in
g
nu
m
be
r
of

bi
ts
to

en
co
de

a
D
N
S
re
sp
on
se

R
es
po
ns
e
en
tr
op
y

N
um

er
ic

Sy
nt
he
tic

fe
at
ur
e
m
ea
su
ri
ng

en
tr
op
y
of

th
e
D
N
S
qu
er
y
re
sp
on
se

123

Complex & Intelligent Systems (2023) 9:3787–3799 3793

Fig. 3 Features heat map. The darker means more correlation to the label (class). Darker red means more positive correlation, and lighter red means
more negative correlation

Table 2 Selected features with a correlation (≥ 0.4)

Feature Correlation

Question Type 0.843047

Question Length 0.675164

Question Info Bits 0.668894

Question Entropy 0.839315

Response Answer Length 0.590283

Response Answer Info Bits 0.574044

Response Authority Length 0.466657

Response Authority Info Bits 0.439765

Response Info Bits 0.521971

Response Entropy 0.422856

efficient way. We run our experiments on a MacBook Pro
with a 2.6 GHz 6-Core Intel Core i7 processor, and 6 GB
2400 MHz DDR4 memory on macOS Catalina. We discuss
how bagging, boosting, and stacking ensemble learners com-
pare against each other and other classifiers in detecting low
footprint network intrusions.

We do not use cross validation or hold-out sets to measure
the performance of our models. Training and testing on dif-
ferent portions of the same dataset are not reliable in network
intrusion detection [22]. These validation techniques could
cause biased results; as such, we validate our model on a

dataset that has different characteristics. This means that the
test dataset has examples that have been generated using dif-
ferent tools, or captured on geographically different network
locations. This ensures that not only the test data have differ-
ent examples, but they also have different characteristics.

Hyperparameter tuning

We useGrid Search for hyperparameter tuning to find the set
that achieves the best F1 score. This metric performs a better
evaluation of a model when false-positive and false-negative
rates are more important. On the other hand, if true-positive
and true-negative rates are crucial, hyperparameters can be
tuned to achieve the highest accuracy instead. In case of a
tie for F1 scores between two or more hyperparameters, we
choose the one that has the lowest false-positive rate. This
would help choose the model that is more useful in practice.
Avoiding false positives or false alarms is critical in a real-
world intrusion detection system.

Performancemetrics

Formula 3 shows the metrics used to measure the perfor-
mance of eachmodel in classifying the low footprint network
intrusions. The two mostly used metrics in general are Accu-
racy and F1 score. Accuracy is used when true positives and

123

3794 Complex & Intelligent Systems (2023) 9:3787–3799

Fig. 4 Bagging performance for
two different techniques:
Random Forest vs. Extremely
Randomized Trees. Random
Forest outperforms in all three
performance metrics

true negatives are more important, whereas F1 score is used
when false positives and false negatives matter the most. In
intrusion detection, a false alarm is the type of error that the
system strives to avoid; thus, F1 score is a more important
metric here.We do not report Precision or Recall, as F1 score
is the harmonized mean of the two

Precision = T P × (T P + FP)−1

Recall = T P × (T P + FN)−1

Accuracy = (T P + T N) × (T P + T N + FP + FN)−1

F1 = 2 × (Precision × Recall)

× (Precision + Recall)−1

AUC =
∫ 1

x=0
T PR(FPR−1(x))dx . (3)

Bagging performance

We use Random Forest and Extremely Randomized Trees
[26] as our bagging ensemble classifiers. An Extremely Ran-
domized Tree is very similar to a Random Forest in terms of

building multiple trees for the model. However, extremely
randomized trees do not use bootstrapping by default, which
means that they sample the dataset without replacement. The
other difference between the two is that splitting a parent node
into child nodes is based on best split in Random Forest, but
is random in extremely randomized trees.

Figure 4 shows the classification performance of the
two bagging algorithms. These are the best performances
achieved by each classifier based on a Grid Search. As
the figure shows, Random Forest outperforms Extremely
Randomized Tree in every metric. However, neither of the
bagging ensemble classifiers has a high F1 score or accu-
racy. More specifically, Extremely Randomized Tree’s very
low F1 score is due to its very high false-negative rate.

Boosting performance

Weuse three boosting classifiers:Gradient Boost, AdaBoost,
and XGBoost. Figure 5 shows how the three different algo-
rithms perform on the low footprint intrusion dataset. As the
figure shows, they all have very similar performance with no

Fig. 5 Boosting performance
for three techniques: Gradient
boost, Ada boost, and XGBoost

123

Complex & Intelligent Systems (2023) 9:3787–3799 3795

Table 3 List of all the classifiers
used in building stacking
ensemble learners along with
their hyperparameters

Classifier Hyperparameters tuned

k-nearest neighbors n_neighbors, metric, weights

Support vector machine Kernels, C, penalty

Decision tree max_depth

Stochastic gradient Descent Alpha

Naive bayes Distribution

Logistic regression Solver, penalty, C

Multi-layer perceptron Activation, hidden_layer_sizes, solver, alpha, learning_rate

one outperforming the others. F1 scores are approximately
0.5, and the Accuracy and AUC hover at 0.64. Similarly to
the bagging classifiers, the boosting ensemble classifiers per-
form poorly in classifying the low footprint intrusions.

Stacking performance

We evaluate two different stacking techniques; simple and
multi-layer. The former consists of only one meta classifier,
whereas the latter uses multiple meta classifiers on differ-
ent layers. For a simple stacking learner, the architecture is
limited to the choice of classifiers on the first layer, and the
meta classifier on the second (last) layer. However, there are
many different architectures to choose from in a multi-layer
stacking model.

Table 3 shows all the classifiers used to build the stack-
ing ensemble learners and their hyperparameters. These
hyperparameters are tuned via Grid Search to find the best-
performing model for each classifier.

Figure 6 shows the performance of individual classifiers
on the low footprint network intrusions dataset. Except deci-
sion tree and k-NN, the other classifiers have high accuracy,
AUC, and F1 scores. These are the best results for each clas-
sifier based on Grid Search.

Table 4 shows the performance of single-layer stacking
models for the best two-, three-, and four-learner models. All
the models have very high accuracy, AUC, and F1 scores.

The false-positive rates are very low too. In general, the
three-learner had slightly better performance than the two-
or four-learner models, especially in terms of false-positive
rate, which is crucial in intrusion detection. This experiment
also shows that having more base learners does not necessar-
ily improve the performance, as the best four-learner model
has a lower performance compared to the best three-learner
model. However, the latter performs better than a two-learner
model.

Performance acceptance criteria

Our acceptance criteria for an ensemble classifier that can
effectively detect low footprint network intrusions are as fol-
lows:

F1_score ≥ 0.99

Accuracy ≥ 0.99

AUC ≥ 0.99

FPR ≤ 0.001. (4)

Our goal is to design a stacking model (single or multi-
layer) that satisfies the criteria in Eq. 4. From all the different
stacking models that we created, the ensemble models that
combinedStochasticGradientDescent (SGD),DecisionTree
(Tree), Naive Bayes (NB), and Logistic Regression (LR)

Fig. 6 Individual classifier
performances on the dataset.
Most single classifiers have very
high accuracy, AUC, and F1
scores. k-NN and decision tree
are lagging behind others in
terms of performance. They are
too simple to be able to create
robust models in this scenario

123

3796 Complex & Intelligent Systems (2023) 9:3787–3799

Table 4 Top-performing
single-layer ensemble models

Meta classifier Learners Accuracy AUC F1 FPR

MLP NB + SGD 0.978 0.978 0.978 0.005

MLP SVM + NB + SGD 0.994 0.994 0.994 0.004

MLP k-NN + SVM + NB + SGD 0.987 0.987 0.987 0.006

Fig. 7 Different multi-layer
stacking models based on
different placement of the
classifiers. The best stacking
ensemble models were created
by placing NB and SGD on the
first layer and LR and Tree on
the second layer with NLP as
the meta classifier

achieved the highest performance in terms of accuracy, AUC
and F1 scores. Nevertheless, the layer where every single
classifier is placed plays a big role in the performance of
the final stacking ensemble model. Figure 7 shows all the
six possible stacking ensemble models created from the four
classifiers that built the best model. The best overall stacking
ensemble was created by placing NB and SGD on the first,
and LR and Decision Tree on the second layer. This com-
bination resulted in an almost perfect model with F1 score,
accuracy and AUC of 0.99, and FPR of 0.001. On the other
hand, placing LR and Decision Tree on the first layer, and
NB and SGD on the second layer resulted in a model with
poor performance

Table 5 shows all the stacking ensemble models that
achieved the performance criteria (Eq. 4). Only multi-layer
stacking ensemble models were able to produce such high
performance models. Neither single-layer stacking models,
nor bagging or boosting models satisfied the performance
criteria. Figure 8 shows the variations in stacking ensemble
models F1 scores when the same base learners are placed
on different layers. As the figure shows, the F1 score varies

Fig. 8 Variations in stacking ensemble F1 score when the same base
learners are placed on different layers

from less than 0.1 for some outlier models to 0.99 for the
top-performing models.

Figure 9 shows the impact of using different meta clas-
sifiers when the learners on each layer are unchanged. The

Table 5 The only ensemble
models satisfying the
performance criteria

Meta classifier Layer1 learners Layer2 learners Accuracy AUC F1 FPR

MLP NB + SGD LR + Tree 0.999 0.999 0.999 0.001

MLP NB + SGD SVM + Tree 0.998 0.998 0.997 0.001

MLP NB + SGD k-NN + Tree 0.998 0.998 0.998 0.001

123

Complex & Intelligent Systems (2023) 9:3787–3799 3797

Fig. 9 Variations in stacking ensemble F1 score when different meta
classifier used, while base learners kept unchanged

learners are those that had the best performance (Table 5).
As the box plot shows, there is a noticeable difference in F1
score between the best meta classifier (MLP) and others such
as logistic regression. Moreover, the very low false-positive
rate of 0.001 was only achievable whenMLPwas used as the
meta classifier.

Another observation from creating a stacking ensemble
model is that a classifier that performs poorly as an indi-
vidual learner may do well in an ensemble model. In our
experiments, Decision Tree did not perform well (Fig. 6)
individually. However, this classifier performed better when
used as a base learner in combination with other learners.
In fact, it was a part of all the three ensemble models that
satisfied the performance criteria (Table 5). The role that the
simpleDecisionTree plays in the stacking ensemble is to help
reduce the false-positive rate. This then leads to increasing
F1, accuracy, and AUC.

Figure 10 shows the time taken to train anMLPmodel ver-
sus each of the top-performingmulti-layer ensemble models.
The MLP model has only one hidden layer of size 100. As
the figure shows, it is quite faster to train the multi-layer
ensemble models than training a basic MLP. The difference
in training speed is mostly due to the higher complexity of
the MLP compared to the other models. More specifically,
the relative slowness is caused by the number of multiplica-
tions required to compute the activation of all the neurons in
the neural network.

Fig. 10 Training times between MLP and the top-performing multi-
layer ensemble models. The MLP has one hidden layer of size 100. It
is faster to train the ensemble model than a simple MLP

Deep neural networks

To compare the classification performance of stacking
ensemble models with deep neural network models, we
implemented a Deep Neural Network (DNN) and a Convolu-
tional Neural Network (CNN) model. We used PyTorch [27]
to implement the deep learning models. We used four linear
layers on the DNN and four convolution layers on the CNN
model. We train both models using batching and apply Batch
Normalization. We used ReLU activation function and did
not use Dropout during training of final models as it reduced
the classification performance. Both models use backpropa-
gation and employ the BCEWithLogitsLoss loss function.

We tuned both models by evaluating different network
topologies, number of epochs, batch sizes, and optimizers.
Table 6 shows the classification performance of the bestDNN
and CNN models along with their parameters. As the table
shows, both DNN and CNN models had a very similar and
rather high classification performance. Nonetheless, these
deep learning models were outperformed by out stacking
ensemble models that had accuracy and F1 scores of higher
than 0.99.

Conclusion

In this paper, we show that stacking ensemble models that
combine simple base learners can outperform many other

Table 6 Deep learning models’
parameters and classification
performance

Model # Layers Batch size # Epochs Optimizer Accuracy F1

DNN 4 (Linear) 64 50 SGD 0.9634 0.9633

CNN 4 (Conv1d) 128 15 Adam 0.9651 0.9650

123

3798 Complex & Intelligent Systems (2023) 9:3787–3799

models in detecting low footprint network intrusions. We
show that stacking techniques are superior to bagging and
boosting methods. We further show that multi-layer stacking
performs better than single-layer stacking.

We introduce performance acceptance criteria that require
very high accuracy, AUC, and F1 score and a very low false-
positive rate. We show that among hundreds of potential
ensemble models that can be created using our seven base
learners, only threemulti-layermodelsmeet our performance
criteria. Thesemodels have naive Bayes and stochastic gradi-
ent descent on the first, and two of logistic regression, support
vector machine, k-NN, and decision tree on their second lay-
ers. All these top models use multi-layer perceptron as the
final meta learner. These models achieved accuracy, AUC,
and F1 score of higher than 0.99 and false-positive rates of
as low as 0.001.

Another interesting result from our experiments is that
there is a sweet spot for a single-layer stacking in terms of
the number of learners. Based on our experiments, combin-
ing three learners leads to the best results, and adding or
removing learners will reduce the performance. If we remove
learners, underfitting will happen. On the other hand, if we
add learners, overfitting will occur. Since the test dataset has
different types of network intrusion samples, a model over-
fitted (or underfitted) on the training set would not perform
as well as a “balanced” mode. The other key finding is that
placing the learners on the right layer plays an important role
in the classification performance. We show that the F1 score
can vary more than 80% between two multi-layer stacking
models when the same base learners are placed on different
layers. Finally, we show that our stacking ensemble models
outperform deep learningmodels in classifying low footprint
intrusions.

Nevertheless, there are limitations in creating stacking
ensemble models that achieve very high classification per-
formance results. One drawback of these ensemble models is
that they have a bigger memory and processor footprint com-
pared to somenon-ensemblemodels. This could be important
where real-time traffic is being classified, and thus, themodel
is required to run on a more powerful machine. However,
based on our experiments, a multi-layer stacking ensemble
is still faster to train and test examples than a feedforward
neural network such as MLP with only one hidden layer. In
industrial intrusion detection systems, there is usually little
tolerance for false positives (false alarms). As a result, if
achieving a very high F1 score and near-zero false-positive

rates is desired, then this drawback could be traded off with
the high performance.

Funding No funding was received to assist with the preparation of this
manuscript.

Declarations

Conflicts of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Sommer R, Paxson V (2010) Outside the closed world: On using
machine learning for network intrusion detection. In: IEEE sym-
posium on security and privacy. IEEE 2010, p. 305–316

2. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
3. Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting

system. In: Proceedings of the 22nd acm sigkdd international con-
ference on knowledge discovery and data mining, p. 785–794

4. Archive UK (1999) Kdd cup 1999 dataset. http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html. Accessed 19 February 2022

5. Tavallaee WLM, Bagheri E, Ghorbani A (2009) Nsl-kdd dataset.
https://www.unb.ca/cic/datasets/nsl.html. Accessed 30 March
2022

6. Young S, Abdou T, Bener A (2018) Deep super learner: A deep
ensemble for classification problems. In: Canadian Conference on
Artificial Intelligence. Springer, p. 84–95

7. PedregosaF,VaroquauxG,GramfortA,MichelV,ThirionB,Grisel
O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas
J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E
(2011) Scikit-learn: machine learning in Python. JMach Learn Res
12:2825–2830

8. AburommanAA, ReazMBI (2017) A survey of intrusion detection
systems based on ensemble and hybrid classifiers. Comput Secur
65:135–152

9. Vanerio J, Casas P (2017) Ensemble-learning approaches for net-
work security and anomaly detection. In: Proceedings of the
Workshop on Big Data Analytics and Machine Learning for Data
Communication Networks, p. 1–6

10. Folino G, Sabatino P (2016) Ensemble based collaborative and
distributed intrusion detection systems: a survey. J Netw Comput
Appl 66:1–16

11. Syarif I, Zaluska E, Prugel-Bennett A, Wills G (2012) Applica-
tion of bagging, boosting and stacking to intrusion detection. In:
International Workshop on Machine Learning and Data Mining in
Pattern Recognition. Springer, p. 593–602

12. Gu J, Wang L, Wang H, Wang S (2019) A novel approach to
intrusion detection using svm ensemble with feature augmentation.
Comput Secur 86:53–62

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html

Complex & Intelligent Systems (2023) 9:3787–3799 3799

13. Shafieian S, ZulkernineM,HaqueA (2015)Cloudzombie: Launch-
ing and detecting slow-read distributed denial of service attacks
from the cloud. In: 2015 IEEE International Conference on Com-
puter and Information Technology; Ubiquitous Computing and
Communications; Dependable, Autonomic and Secure Comput-
ing; Pervasive Intelligence and Computing. IEEE, p. 1733–1740

14. Shafieian S, SmithD, ZulkernineM (2017)Detecting dns tunneling
using ensemble learning. In: International Conference on Network
and System Security. Springer, p. 112–127

15. Gao X, Shan C, Hu C, Niu Z, Liu Z (2019) An adaptive ensemble
machine learning model for intrusion detection. IEEE Access 7:82
512-82 521

16. Hsu Y-F, He Z, Tarutani Y, Matsuoka M (2019) Toward an online
network intrusion detection system based on ensemble learning.
In: 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD). IEEE, p. 174–178

17. Moustafa N, Slay J (2015) Unsw-nb15: a comprehensive data set
for network intrusion detection systems (unsw-nb15 network data
set). In Military Communications and Information Systems Con-
ference (MilCIS) 2015, p. 1–6

18. Zhong Y, Chen W, Wang Z, Chen Y, Wang K, Li Y, Yin X, Shi
X, Yang J, Li K (2020) Helad: a novel network anomaly detection
model based on heterogeneous ensemble learning. Comput Netw
169:107049

19. Mawilab dataset. http://www.fukuda-lab.org/mawilab/index.html.
Accessed 6 April 2022

20. Cic-ids2017 dataset. https://www.unb.ca/cic/datasets/ids-2017.
html. Accessed 6 April 2022

21. Mirsky Y, Doitshman T, Elovici Y, Shabtai A (2018) Kitsune: An
ensemble of autoencoders for online network intrusion detection.
In: 25th Annual Network and Distributed System Security Sympo-
sium, NDSS 2018, San Diego, California, USA, February 18–21,
2018

22. Tama BA, Comuzzi M, Rhee K-H (2019) Tse-ids: A two-stage
classifier ensemble for intelligent anomaly-based intrusion detec-
tion system. IEEE Access 7:94 497–94 507

23. Mirza AH (2018) Computer network intrusion detection using
various classifiers and ensemble learning. In: 26th Signal Process-
ing and Communications Applications Conference (SIU). IEEE
2018:1–4

24. One-hot encoding. https://en.wikipedia.org/wiki/One-hot.
Accessed 30 April 2022

25. Pearson correlation coefficient. https://en.wikipedia.org/wiki/
Pearson_product-moment_correlation_coefficient. Accessed 4
February 2022

26. Geurts P, Ernst D,Wehenkel L (2006) Extremely randomized trees.
Mach Learn 63(1):3–42

27. Pytorch machine learning framework. https://pytorch.org.
Accessed 7 May 2022

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://www.fukuda-lab.org/mawilab/index.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://en.wikipedia.org/wiki/One-hot
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://pytorch.org

	Multi-layer stacking ensemble learners for low footprint network intrusion detection
	Abstract
	Introduction
	Related work
	Stacking ensemble learning
	Training and test datasets
	Feature selection
	Data transformation

	Experimental results
	Hyperparameter tuning
	Performance metrics
	Bagging performance
	Boosting performance
	Stacking performance
	Performance acceptance criteria
	Deep neural networks

	Conclusion
	References

