
Complex & Intelligent Systems (2023) 9:515–535
https://doi.org/10.1007/s40747-022-00804-8

ORIG INAL ART ICLE

Some t-conorm-based distance measures and knowledgemeasures
for Pythagorean fuzzy sets with their application in decision-making

Abdul Haseeb Ganie1

Received: 23 September 2021 / Accepted: 6 June 2022 / Published online: 21 July 2022
© The Author(s) 2022

Abstract
The Pythagorean fuzzy sets are more robust than fuzzy sets and intuitionistic fuzzy sets in dealing with the problems involving
uncertainty. To compare two Pythagorean fuzzy sets, distance measures play a crucial role. In this paper, we have proposed
some novel distance measures for Pythagorean fuzzy sets using t-conorms. We have also discussed their various desirable
properties. With the help of suggested distance measures, we have introduced some new knowledge measures for Pythagorean
fuzzy sets. Through numerical comparison and linguistic hedges, we have established the effectiveness of the suggested
distance measures and knowledge measures, respectively, over the existing measures in the Pythagorean fuzzy setting. At
last, we have demonstrated the application of the suggested measures in pattern analysis and multi-attribute decision-making.

Keywords Pythagorean fuzzy set · t-conorm · Similarity measure · Entropy measure · Knowledge measure · Multi-attribute
decision-making

Introduction

Zadeh [1] introduced the concept of fuzzy sets (FSs) for han-
dling deterministic uncertainty. Each element in a fuzzy set
(FS) possesses a grade of membership (μ) lying between
0 and 1. However, in an FS, the grade of non-membership
(ϑ) is by default taken as 1 − μ. So to assign an indepen-
dent non-membership grade to an element, a novel extension
of FSs known as intuitionistic fuzzy set (IFS) was given by
Atanassov [2]. In an IFS, the sum of membership grades is
less or equal to one i.e., μ+ϑ ≤ 1. Though there are numer-
ous applications of intuitionistic fuzzy sets (IFSs) but their
scope is limited due to the restriction on sum of member-
ship grades. The IFSs fail to handle those uncertain problems
where μ + ϑ > 1. So, the concept of Pythagorean fuzzy set
(PFS) was proposed by Yager [3] as an extension of intu-
itionistic fuzzy sets [2] (IFSs) and fuzzy sets [1] (FSs) for
solving the problems involving uncertainty more precisely.
Each element of a PFS has a membership grade (μ) and a
non-membership grade (ϑ)with their square sum atmost one(
μ2 + ϑ2 ≤ 1

)
. The FSs and IFSs form a part of the space
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of PFSs and therefore the space of PFSs is wider than the
space of FSs and IFSs.So, PFSs are more powerful than FSs
and IFSs in handling uncertain problems. The technique for
order of preference by similarity to ideal solution (TOPSIS)
in the Pythagorean fuzzy (PF) setting and the concept of the
Pythagorean fuzzy number were suggested by Zhang and
Xu [4]. Various PF aggregation functions with their utility
in decision-making were given by Yager [5]. Wei and Lu
[6] introduced some power aggregation functions for PFSs.
Using Einstein operations, Garg [7] proposed some new
aggregation functions in the PF environment. Wei [8] sug-
gested some PF interaction aggregation functions with their
utility in multi-attribute decision-making (MADM). Many
studies [9–12] concerning the PF aggregation functions with
their various applications are available in the literature. The
TODIM (an acronym in Portuguese for Interactive and Mul-
ticriteria Decision Making) method for PFSs was introduced
byRen et al. [13]. Peng et al. [14] proposed some information
measures for PFSs. A novel PF distance measure was pro-
posed byPeng andDai [15]. SomePFmeasures of correlation
with their utilitywere proposed bySingh andGanie [16].Var-
ious researchers [17–24] have studied PFSs and applied them
in distinct uncertain situations. The current study is related
to the development of some novel PF distance measures and
knowledge measures.

The main contributions of this paper are as:
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• We suggest a new method of constructing the PF distance
measures from t-conorms and introduce four new PF dis-
tance measures.

• We discuss various desirable properties of the suggested
PF distance measures.

• We propose four weighted PF distance measures.
• Wesuggest a generalmethodof constructing thePFknowl-
edge measures from the proposed PF distance measures
and propose four new knowledgemeasures based on PFSs.

• We compare the suggested PF measures of distance and
knowledge with the available PF measures of compatibil-
ity.

• We demonstrate the applicability of the suggested mea-
sures in pattern recognition and MADM.

Related work

Distance measures are very powerful in comparing two
objects based on their inequality content. For FSs and IFSs
there are a lot of studies [25–42] concerning distance mea-
sures along with their various applications. Karmakar et al.
[43] suggested a Minkowski distance measure for Type-2
IFSs (T2IFSs) using the Hausdorff metric. Some recent stud-
ies related toType 2FSs andT2IFSs are given in [44–46]. The
application of some PF measures of distance and similarity
in MADMwas shown by Zeng et al. [47]. Hussain and Yang
[48] proposed some Hausdorff metric-based PF measures of
distance and similaritywith their applicability in PFTOPSIS.
Some generalized measures of distance and their continu-
ous versions for PFSs were given by Li and Lu [49]. They
also proposed set-theoretic-based, matching function-based,
and complement-based PF similarity measures. Based on the
membership grades, Ejegwa [19] proposed some distance
and similarity measures for PFSs. Some cosine function-
based PF similarity measures were suggested by Wei and
Wei [50]. Twelve PFmeasures of distance and similaritywith
their applicability were given by Peng et al. [14]. For PFSs
Zhang [51] introduced a measure of similarity and its util-
ity in decision-making. Some novel measures of similarity
and distance for PFSs based on L p norm and level of uncer-
tainty were given by Peng [52]. By combining the Euclidean
distance measure and cosine similarity measures, Mohd and
Abdullah [53] developed some novel PF similaritymeasures.
Zhang et al. [54] proposed some exponential PF similarity
measures and demonstrated their application inMADM, pat-
tern analysis, andmedical diagnosis. SomePFDice similarity
measures with application in decision-making were given by
Wang et al. [55]. Verma and Merigo [56] developed some
trigonometric function-based PF measures of similarity. The
application of some multiparametric PF measures of simi-
larity in classification problems was demonstrated by Peng

and Garg [57]. Some novel PF similarity measures based
on exponential function with their application in classifica-
tion problems were given by Nguyen et al. [58]. Some recent
studies related to PFdistancemeasures alongwith their appli-
cations are given in [59–64].

The entropyof anFS is the ambiguous content present in it.
Entropy measure is very essential for computing the weight
of attributes in a MADM problem involving fuzzy data. The
concept of fuzzy entropy was suggested by De Luca and Ter-
mini [65]. Some axiomatic requirements for a measure to be
a fuzzy entropy measure were given by Ebanks [66]. Some
more studies concerning fuzzy entropy measures and their
utility are given in [67–72]. For IFSs Szmidt and Kacprzyk
[73] suggested an entropymeasure. Xue et al.[74] introduced
the axiomatic definition of PF entropy measure and used the
PF entropy measure in decision-making. Some probabilistic
and non-probabilistic PF entropy measures were given by
Yang and Hussain [75]. With the help of a new PF entropy
measure, Thao and Smarandache [76] introduced the COR-
PAS MADM method in the PF environment.

Knowledge of an FS is the amount of precision present in
it. Knowledge measure (KM) plays a great role in determin-
ing the weight of attributes in a MADM problem involving
fuzzy data. Singh et al. [77] introduced the axiomatic def-
inition of a fuzzy knowledge measure (FKM) and used it
in decision-making. They also proposed a fuzzy accuracy
measure and utilized it in image processing. Later on, Singh
et al. [78] also introduced a one-parametric generalization
of the FKM and discussed its various applications. A two-
parametric fuzzy knowledge measure and accuracy measure
with their applicability in decision-making and classification
problemswere given bySingh andGanie [79]. For IFSs, there
are various studies [80–86] regarding the knowledge mea-
sures (KMs) with their practical applications. Lin et al. [87]
proposed a knowledge measure (KM) for picture fuzzy sets
with its utility in decision-making. Some PF KMs with their
various applications were introduced by Singh et al. [88].
For hesitant fuzzy sets, Singh and Ganie [89] introduced a
generalized KM.

The following are the primary motivating aspects for this
research:

• There is no study concerning the generation of the PF dis-
tance measures and knowledge measures from t-conorms.

• Axiomatic conditions are not met by several existing PF
distance metrics.

• When computing the distance between distinct PFSs, the
majority of the existing PF distance metrics produce unac-
ceptable results.

• From the perspective of linguistic hedging, all of the
known PF entropy/knowledge measurements are insuffi-
cient.
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So, keeping the above facts in mind, we suggest some new
distance measures and knowledge measures based on PFSs.

The rest of the paper is organized as: Sect. 3 is preliminary.
Somenovel t-conorm-basedPFdistancemeasures alongwith
desirable properties are given in Sect. 4. Section 5 is devoted
to the introduction of some distance-based PF knowledge
measures. The comparison of the suggested PF distance
measures and knowledge measures with the available PF
measures of compatibility is shown in Sect. 6. Section 7
demonstrates the applicability of the suggested measures in
pattern analysis and MADM. At last, the conclusion and
future study are given in Sect. 8.

Preliminaries

LetW � {m1, m2, . . . , ml} be the universe of discourse and
PFS(W ) be the set of all PFSs of W .

Definition 1 [3] A PFS M1 in W is given by

M1 � {(
m j , μM1

(
m j
)
, ϑM1

(
m j
))|m j ∈ W

}

With μM1

(
m j
)
and ϑM1

(
m j
)
representing the mem-

bership and non-membership grades of the element m j

in M1 such that 0 ≤ μM1

(
m j
)
, ϑM1

(
m j
) ≤ 1 and

0 ≤ μ2
M1

(
m j
)
+ ϑ2

M1

(
m j
) ≤ 1. Also, πM1

(
m j
) �

√
1 − μ2

M1

(
m j
)− ϑ2

M1

(
m j
)
is the hesitancy grade of the ele-

ment m j in M1.

Definition 2 [3] For two PFSs M1 and M2 inW , some oper-
ations are given as:

M1 ∪ M2 �

⎧
⎪⎨

⎪⎩

(
m j , max

(
μM1

(
m j
)
, μM2

(
m j
))
,

min
(
ϑM1

(
m j
)
, ϑM2

(
m j
))

)

|m j ∈ W

⎫
⎪⎬

⎪⎭
.

M1 ∩ M2 �

⎧
⎪⎨

⎪⎩

(
m j , min

(
μM1

(
m j
)
, μM2

(
m j
))
,

max
(
ϑM1

(
m j
)
, ϑM2

(
m j
))

)

|m j ∈ W

⎫
⎪⎬

⎪⎭
.

M1 ⊆ M2 iff μM1

(
m j
) ≤ μM2

(
m j
)
and ϑM1

(
m j
) ≥

ϑM2

(
m j
)∀m j ∈ W .

(M1)
c �

{(
m j , ϑM1

(
m j
)
, μM1

(
m j
))

|m j ∈ W

}

.

Definition 4 [90] A function g : [0, 1] × [0, 1] → [0, 1] is
called a t-norm if ∀x , y, z, t ∈ [0, 1]

g(x , y) � g(y, x);
g(x , y) ≤ g(z, t), whenever x ≤ z and y ≤ t ;
g(x , 1) � x ;
g(x , g(y, z)) � g(g(x , y), z).

Definition 5 [90] A function g : [0, 1] × [0, 1] → [0, 1] is
called a t-conorm if ∀x , y, z, t ∈ [0, 1]

g(x , y) � g(y, x);
g(x , y) ≤ g(z, t), whenever x ≤ z and y ≤ t ;
g(x , 0) � x ;
g(x , g(y, z)) � g(g(x , y), z).

Definition 6 [14] A function S : PFS(W ) × PFS(W ) →
[0, 1] is called a PF similarity measure if ∀M1, M2 andM3 ∈
PFS(W ), we have:

(S1) 0 ≤ S(M1, M2) ≤ 1;
(S2) S(M1, M2) � S(M2, M1);
(S3) S(M1, M2) � 1 iff M1 � M2;
(S4) S

(
M1, (M1)

c) � 0 iff M1 is a crisp set;
(S5) If M1 ⊆ M2 ⊆ M3, then S(M1, M2) ≥ S(M1, M3)

and S(M2, M3) ≥ S(M1, M3).

Definition 7 [14] A function D : PFS(W ) × PFS(W ) →
[0, 1] is called a PF distance measure if ∀M1, M2 and M3 ∈
PFS(W ), we have:

(D1) 0 ≤ D(M1, M2) ≤ 1;
(D2) D(M1, M2) � D(M2, M1);
(D3) D(M1, M2) � 0 iff M1 � M2;
(D4) D

(
M1, (M1)

c) � 1 iff M1 is a crisp set;
(D5) IfM1 ⊆ M2 ⊆ M3, thenD(M1, M2) ≤ D(M1, M3)

and D(M2, M3) ≤ D(M1, M3).

Definition 8 [14] A function E : PFS(W ) → [0, 1] is
called a PF entropy measure if ∀M1 and M2 ∈ PFS(W ), we
have:

(E1) 0 ≤ E(M1) ≤ 1;
(E2) E(M1) � 0 iff M1 is a crisp set;
(E3) E(M1) � 1 iff μM1

(
m j
) � ϑM1

(
m j
)∀m j ∈ W ;

(E4) E(M1) � E
(
(M1)

c);
(E5) E(M1) ≤ E(M2) if μM1

(
m j
) ≤ μM2

(
m j
) ≤

ϑM2

(
m j
) ≤ ϑM1

(
m j
)

or μM1

(
m j
) ≥ μM2

(
m j
) ≥

ϑM2

(
m j
) ≥ ϑM1

(
m j
)∀m j ∈ W .

Definition 9 [88] A function K : PFS(W ) → [0, 1] is
called a PF knowledge measure if ∀M1 and M2 ∈ PFS(W ),
we have:

(K1) 0 ≤ K (M1) ≤ 1;
(K2) K (M1) � 1 iff M1 is a crisp set;
(K3) K (M1) � 0 iff μM1

(
m j
) � ϑM1

(
m j
)∀m j ∈ W ;

(K4) K (M1) � K
(
(M1)

c);
(K5) K (M1) ≥ K (M2) if μM1

(
m j
) ≤ μM2

(
m j
) ≤

ϑM2

(
m j
) ≤ ϑM1

(
m j
)

or μM1

(
m j
) ≥ μM2

(
m j
) ≥

ϑM2

(
m j
) ≥ ϑM1

(
m j
)∀m j ∈ W .

In the next section, we introduce some novel t-conorm-
based distancemeasures for PFSs alongwith their properties.
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Newmeasures of distance for PFSs

Here, we propose some PF measures of distance based on
t-conorms.

Definition 10 Let M1, M2 ∈ PFS(W ), then we define a
function.

DG : PFS(W ) × PFS(W ) → R

given by

DG(M1, M2) � 1

l

l∑

j�1

g

⎛

⎝

∣∣∣μ2
M1

(
m j
)− μ2

M2

(
m j
)∣∣∣,

∣∣∣ϑ2
M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

⎞

⎠, (1)

where g is a t-conorm.

Theorem 1 The function DG given in Eq. (1) is a valid PF
distance measure.

Proof To prove that DG is a PF distance measure, we show
that it satisfies the properties given in Definition 7.

(D1) Clearly 0 ≤ DG(M1, M2) ≤ 1.
(D2) DG(M1, M2) � DG(M2, M1) is obvious.
(D3) DG(M1, M2) � 0

⇐⇒ g

⎛

⎝

∣
∣∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣∣,∣∣∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

⎞

⎠ � 0∀ j ,

⇐⇒
∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣
∣ � 0 and

∣
∣∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣ � 0∀ j ,

⇐⇒ μ2
M1

(
m j
) � μ2

M2

(
m j
)
and ϑ2

M1

(
m j
) �

ϑ2
M2

(
m j
)∀ j ,

⇐⇒ M1 � M2.

(D4) DG
(
M1, Mc

1

) � 1

⇐⇒ g

⎛

⎝

∣∣∣μ2
M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣,∣∣∣ϑ2

M1

(
m j
)− μ2

M1

(
m j
)∣∣∣

⎞

⎠ � 1∀ j ,

⇐⇒
∣
∣∣μ2

M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣ � 1 and

∣∣∣ϑ2
M1

(
m j
)− μ2

M1

(
m j
)∣∣∣ � 1∀ j ,

⇐⇒
∣∣∣μ2

M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣ � 1∀ j ,

⇐⇒ μ2
M1

(
m j
) � 1 and ϑ2

M1

(
m j
) � 0

orμ2
M1

(
m j
) � 0 and ϑ2

M1

(
m j
) � 1∀ j ,

⇐⇒ μM1

(
m j
) � 1 and ϑM1

(
m j
) � 0

orμM1

(
m j
) � 0 and ϑM1

(
m j
) � 1∀ j ,

⇐⇒ M1 is a crisp set.
(D5) Let M1 ⊆ M2 ⊆ M3, then μ2

M1

(
m j
) ≤ μ2

M2

(
m j
) ≤

μ2
M3

(
m j
)
and ϑ2

M1

(
m j
) ≥ ϑ2

M2

(
m j
) ≥ ϑ2

M3

(
m j
)∀ j . There-

fore, we get

∣∣∣μ2
M1

(
m j
)− μ2

M2

(
m j
)∣∣∣ ≤

∣∣∣μ2
M1

(
m j
)− μ2

M3

(
m j
)∣∣∣,

∣
∣∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣ ≤

∣
∣∣ϑ2

M1

(
m j
)− ϑ2

M3

(
m j
)∣∣∣

and

∣
∣∣μ2

M2

(
m j
)− μ2

M3

(
m j
)∣∣∣ ≤

∣
∣∣μ2

M1

(
m j
)− μ2

M3

(
m j
)∣∣∣,

∣∣
∣ϑ2

M2

(
m j
)− ϑ2

M3

(
m j
)∣∣
∣ ≤

∣∣
∣ϑ2

M1

(
m j
)− ϑ2

M3

(
m j
)∣∣
∣.

So,

g

⎛

⎝

∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣
∣,∣∣∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

⎞

⎠

≤ g

⎛

⎝

∣∣∣μ2
M1

(
m j
)− μ2

M3

(
m j
)∣∣∣,

∣∣∣ϑ2
M1

(
m j
)− ϑ2

M3

(
m j
)∣∣∣

⎞

⎠

and

g

⎛

⎝

∣∣∣μ2
M2

(
m j
)− μ2

M3

(
m j
)∣∣∣,∣∣

∣ϑ2
M2

(
m j
)− ϑ2

M3

(
m j
)∣∣
∣

⎞

⎠

≤ g

⎛

⎝

∣
∣∣μ2

M1

(
m j
)− μ2

M3

(
m j
)∣∣∣,∣∣∣ϑ2

M1

(
m j
)− ϑ2

M3

(
m j
)∣∣∣

⎞

⎠.

Thus, DG(M1, M2) ≤ DG(M1, M3) and
DG(M2, M3) ≤ DG(M1, M3).

Hence, DG is a valid PF measure of distance.

Theorem 2 The PFmeasure of distance DG given in Eq. (1)
has the following properties:

1. DG
(
Mc

1 , M
c
2

) � DG(M1, M2)∀M1, M2 ∈ PFS(W ),
2. DG

(
M1, Mc

2

) � DG
(
Mc

1 , M2
)∀M1, M2 ∈ PFS(W ),

3. DG
(
M1, Mc

1

) � 0 if and only if μM1

(
m j
) � ϑM1

(
m j
)
,

∀ j ,
4. DG(M1 ∩ M2, M2) ≤ DG(M1, M2) for every M1,

M2 ∈ PFS(W ),
5. DG(M1 ∪ M2, M2) ≤ DG(M1, M2) for every M1,

M2 ∈ PFS(W ).
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Proof 1. DG
(
Mc

1 , M
c
2

)

� 1

l

l∑

j�1

g

⎛

⎝

∣∣∣ϑ2
M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣,∣

∣∣μ2
M1

(
m j
)− μ2

M2

(
m j
)∣∣∣

⎞

⎠

� 1

l

l∑

j�1

g

⎛

⎝

∣∣∣μ2
M1

(
m j
)− μ2

M2

(
m j
)∣∣∣,∣

∣∣ϑ2
M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

⎞

⎠

� DG(M1, M2).

2. DG
(
M1, Mc

2

)

� 1

l

l∑

j�1

g

⎛

⎝

∣
∣∣μ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣,∣∣∣ϑ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣∣

⎞

⎠

� 1

l

l∑

j�1

g

⎛

⎝

∣
∣∣ϑ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣∣,∣∣∣μ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

⎞

⎠

� DG
(
Mc

1 , M2
)
.

3. DG
(
M1, Mc

1

) � 0

⇐⇒ 1

l

l∑

j�1

g

⎛

⎝

∣∣∣μ2
M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣,

∣∣∣ϑ2
M1

(
m j
)− μ2

M1

(
m j
)∣∣∣

⎞

⎠ � 0,

⇐⇒ g

⎛

⎝

∣∣∣μ2
M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣,

∣∣∣ϑ2
M1

(
m j
)− μ2

M1

(
m j
)∣∣∣

⎞

⎠ � 0, ∀ j ,

⇐⇒
∣∣∣μ2

M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣ � 0

and
∣∣∣ϑ2

M1

(
m j
)− μ2

M1

(
m j
)∣∣∣ � 0 ∀ j ,

⇐⇒
∣∣
∣μ2

M1

(
m j
)− ϑ2

M1

(
m j
)∣∣
∣ � 0, ∀ j ,

⇐⇒ μ2
M1

(
m j
) � ϑ2

M1

(
m j
)
, ∀ j ,

⇐⇒ μM1

(
m j
) � ϑM1

(
m j
)
, ∀ j .

4. DG(M1 ∩ M2, M2) �

1

l

l∑

j�1

g

⎛

⎜⎜⎜⎜
⎝

∣∣
∣∣∣
min

(
μ2
M1

(
m j
)
,

μ2
M2

(
m j
)

)

− μ2
M2

(
m j
)
∣∣
∣∣∣
,

∣∣∣
∣∣
max

(
ϑ2
M1

(
m j
)
,

ϑ2
M2

(
m j
)

)

− ϑ2
M2

(
m j
)
∣∣∣
∣∣

⎞

⎟⎟⎟⎟
⎠

We have the following cases:
(a) When μM1

(
m j
) ≥ μM2

(
m j
)
and ϑM1

(
m j
) ≥

ϑM2

(
m j
)∀ j , then

DG(M1 ∩ M2, M2)

� 1

l

l∑

j�1

g

⎛

⎝

∣∣
∣μ2

M2

(
m j
)− μ2

M2

(
m j
)∣∣
∣,∣∣∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

⎞

⎠,

� 1

l

l∑

j�1

g
(
0,
∣∣
∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣
∣
)
,

≤ 1

l

l∑

j�1

g

⎛

⎝

∣∣∣μ2
M1

(
m j
)− μ2

M2

(
m j
)∣∣∣,∣∣

∣ϑ2
M1

(
m j
)− ϑ2

M2

(
m j
)∣∣
∣

⎞

⎠,

� DG(M1, M2).

(b) When μM1

(
m j
) ≥ μM2

(
m j
)
and ϑM1

(
m j
) ≤

ϑM2

(
m j
)∀ j , then

DG(M1 ∩ M2, M2)

� 1

l

l∑

j�1

g

⎛

⎝

∣∣∣μ2
M2

(
m j
)− μ2

M2

(
m j
)∣∣∣,∣∣

∣ϑ2
M2

(
m j
)− ϑ2

M2

(
m j
)∣∣
∣

⎞

⎠,

� 1

l

l∑

j�1

g(0, 0) � 0 ≤ SG(M1, M2).

(c) When μM1

(
m j
) ≤ μM2

(
m j
)
and ϑM1

(
m j
) ≥

ϑM2

(
m j
)∀ j , then

DG(M1 ∩ M2, M2)

� 1

l

l∑

j�1

g

⎛

⎝

∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣
∣,∣∣∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

⎞

⎠,

� DG(M1, M2).

(d) When μM1

(
m j
) ≤ μM2

(
m j
)
and ϑM1

(
m j
) ≤

ϑM2

(
m j
)∀ j , then

DG(M1 ∩ M2, M2)

� 1

l

l∑

j�1

g

⎛

⎝

∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣
∣,∣∣∣ϑ2

M2

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

⎞

⎠,

� 1

l

l∑

j�1

g
(∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣
∣, 0
)
,
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≤ 1

l

l∑

j�1

g

⎛

⎝

∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣
∣,∣∣∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

⎞

⎠,

� DG(M1, M2).

5. DG(M1 ∪ M2, M2)

� 1
l

l∑

j�1
g

⎛

⎜⎜⎜
⎜
⎝

∣
∣∣∣∣
max

(
μ2
M1

(
m j
)
,

μ2
M2

(
m j
)

)

− μ2
M2

(
m j
)
∣
∣∣∣∣
,

∣
∣∣∣∣
min

(
ϑ2
M1

(
m j
)
,

ϑ2
M2

(
m j
)

)

− ϑ2
M2

(
m j
)
∣
∣∣∣∣

⎞

⎟⎟⎟
⎟
⎠

.

We have the following cases:
(a) When μM1

(
m j
) ≥ μM2

(
m j
)
and ϑM1

(
m j
) ≥

ϑM2

(
m j
)∀ j , then

DG(M1 ∪ M2, M2)

� 1

l

l∑

j�1

g

⎛

⎝

∣∣∣μ2
M1

(
m j
)− μ2

M2

(
m j
)∣∣∣,∣∣

∣ϑ2
M2

(
m j
)− ϑ2

M2

(
m j
)∣∣
∣

⎞

⎠,

� 1

l

l∑

j�1

g
(∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣
∣, 0
)
,

≤ 1

l

l∑

j�1

g

⎛

⎝

∣∣∣μ2
M1

(
m j
)− μ2

M2

(
m j
)∣∣∣ ,

∣∣∣ϑ2
M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

⎞

⎠ ,

� DG (M1, M2) .

(b) When μM1

(
m j
) ≥ μM2

(
m j
)
and ϑM1

(
m j
) ≤

ϑM2

(
m j
)∀ j , then

DG (M1 ∪ M2, M2)

� 1

l

l∑

j�1

g

⎛

⎝

∣∣∣μ2
M1

(
m j
)− μ2

M2

(
m j
)∣∣∣ ,∣

∣∣ϑ2
M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

⎞

⎠ ,

� DG (M1, M2) .

(c) When μM1

(
m j
) ≤ μM2

(
m j
)
and ϑM1

(
m j
) ≥

ϑM2

(
m j
)∀ j , then

DG (M1 ∪ M2, M2)

� 1

l

l∑

j�1

g

⎛

⎝

∣∣∣μ2
M2

(
m j
)− μ2

M2

(
m j
)∣∣∣ ,∣

∣∣ϑ2
M2

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

⎞

⎠ ,

� 1

l

l∑

j�1

g (0, 0) � 0 ≤ SG (M1, M2) .

(d) When μM1

(
m j
) ≤ μM2

(
m j
)
and ϑM1

(
m j
) ≤

ϑM2

(
m j
)∀ j , then

DG (M1 ∪ M2, M2)

� 1

l

l∑

j�1

g

⎛

⎝

∣∣∣μ2
M2

(
m j
)− μ2

M2

(
m j
)∣∣∣ ,∣∣

∣ϑ2
M1

(
m j
)− ϑ2

M2

(
m j
)∣∣
∣

⎞

⎠ ,

� 1

l

l∑

j�1

g
(
0,
∣∣
∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣
∣
)
,

≤ 1

l

l∑

j�1

g

⎛

⎝

∣∣∣μ2
M1

(
m j
)− μ2

M2

(
m j
)∣∣∣ ,

∣∣∣ϑ2
M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

⎞

⎠ ,

� DG (M1, M2) .

Example 1 Some examples of PF distance measures are
given in Table 1.

In most decision-making problems, the weights w j of the
elements m j , j � 1, 2, . . . , l are taken into consideration,
so we introduce the weighted PF distance measures.

Definition 11 Let M1, M2 ∈ PFS(W ), then we define a
function

DW
G : PFS (W ) × PFS (W ) → R

given by

DW
G (M1, M2) � 1

l

l∑

j�1

w j g

⎛

⎝

∣∣∣μ2
M1

(
m j
)− μ2

M2

(
m j
)∣∣∣∣

∣∣ϑ2
M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

⎞

⎠,

(2)

where g is a t-conorm.

Theorem 3 The function DW
G given in Eq. (2) is a valid PF

distance measure.

Proof Similar to Theorem 1.

Example 2 Some examples of weighted PF distance mea-
sures are given in Table 2.

Next, we propose some novel PF measures of knowledge
based on the proposed PF distance measures.
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Table 1 Examples of some
t-conorm-based PF distance
measures

t-conorms Corresponding PF distance measures

g(m1, m2) � m1+m2−2m1m2
1−m1m2 DG1(M1, M2) �

1
l

∑l
j�1

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣
∣ +
∣∣
∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣
∣

−2
∣
∣∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣∣
∣
∣∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

1−
∣∣∣μ2

M1
(m j )−μ2

M2
(m j )

∣∣∣
∣∣∣ϑ2

M1
(m j )−ϑ2

M2
(m j )

∣∣∣

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

g(m1, m2) � m1 + m2 − m1m2 DG2(M1, M2) �
1
l

∑l
j�1

⎡

⎣

∣
∣∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣∣ +

∣
∣∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

−
∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣
∣
∣∣
∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣
∣

⎤

⎦

g(m1, m2) � min(1, m1 + m2) DG3(M1, M2) �
1
l

∑l
j�1 min

(
1,
∣
∣∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣∣ +

∣
∣∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣
)

g(m1, m2) � m1+m2
1∓m2

DG4(M1, M2) � 1
l

∑l
j�1

[ ∣∣∣μ2
M1

(m j )−μ2
M2

(m j )
∣∣∣+
∣∣∣ϑ2

M1
(m j )−ϑ2

M2
(m j )

∣∣∣

1+
∣∣∣μ2

M1
(m j )−μ2

M2
(m j )

∣∣∣
∣∣∣ϑ2

M1
(m j )−ϑ2

M2
(m j )

∣∣∣

]

Table 2 Weighted distance
measures for PFSs t-conorms Corresponding weighted PF distance measures

g(m1, m2) � m1+m2−2m1m2
1−m1m2 DW

G1(M1, M2) �

1
l

∑l
j�1 w j

⎡

⎢
⎢⎢
⎢
⎢⎢
⎣

∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣
∣ +
∣∣
∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣
∣

−2
∣
∣∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣∣
∣
∣∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

1−
∣∣∣μ2

M1
(m j )−μ2

M2
(m j )

∣∣∣
∣∣∣ϑ2

M1
(m j )−ϑ2

M2
(m j )

∣∣∣

⎤

⎥
⎥⎥
⎥
⎥⎥
⎦

g(m1, m2) �
m1 + m2 − m1m2

DW
G2(M1, M2) �

1
l

∑l
j�1 w j

⎡

⎣

∣
∣∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣∣ +

∣
∣∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣

−
∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣
∣
∣∣
∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣
∣

⎤

⎦

g(m1, m2) �
min(1, m1 + m2)

DW
G3(M1, M2) �
1
l

∑l
j�1 w jmin

(
1,
∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣
∣ +
∣∣
∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣
∣
)

g(m1, m2) � m1+m2
1∓m2

DW
G4(M1, M2) � 1

l

∑l
j�1 w j

[ ∣∣∣μ2
M1

(m j )−μ2
M2

(m j )
∣∣∣+
∣∣∣ϑ2

M1
(m j )−ϑ2

M2
(m j )

∣∣∣

1+
∣∣∣μ2

M1
(m j )−μ2

M2
(m j )

∣∣∣
∣∣∣ϑ2

M1
(m j )−ϑ2

M2
(m j )

∣∣∣

]

PF distance-based knowledgemeasures

The entropy measures are used to compute the amount of
ambiguity present in a PFS, whereas the knowledge mea-
sures acting as the soft duals of entropy measures are used to
calculate the amount of precision in a PFS. Here, we intro-
duce a method of constructing PF knowledge measures from
the PF distance measures.

Definition 12 LetM1 ∈ PFS(W ), thenwe define a function

KG : PFS (W ) → [0, 1]

given by

KG(M1) � 1 − DG
(
M1, M

c
1

)
(3)

where DG is a PF distance measure.

Theorem 4 The function KG defined in Eq. (3) is a valid PF
knowledge measure.

Proof To show that the function KG is a PF measure of
knowledge, we show it has the properties of a PF measure of
knowledge given in Definition 9.

(K1) Clearly 0 ≤ KG(M1) ≤ 1 as 0 ≤ DG
(
M1, Mc

1

)
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Table 3 Some suggested PF
knowledge measures Proposed PF distance measures Corresponding PF knowledge measures

DG1

KG1(M1) � 1
l

∑l
j�1

2

(∣∣∣μ2
M1

(m j )−ϑ2
M1

(m j )
∣∣∣−
∣∣∣μ2

M1
(m j )−ϑ2

M1
(m j )

∣∣∣
2
)

1−
∣∣∣μ2

M1
(m j )−ϑ2

M1
(m j )

∣∣∣
2

DG2 KG2(M1) �
1
l

∑l
j�1 2

(∣
∣∣μ2

M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣−

∣
∣∣μ2

M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣
2
)

DG3 KG3(M1) � 1
l

∑l
j�1 min

(
1, 2

∣∣
∣μ2

M1

(
m j
)− ϑ2

M1

(
m j
)∣∣
∣
)

DG4
KG4(M1) � 1

l

∑l
j�1

2
∣∣∣μ2

M1
(m j )−ϑ2

M1
(m j )

∣∣∣

1+
∣∣
∣μ2

M1
(m j )−ϑ2

M1
(m j )

∣∣
∣
2

≤ 1.
(K2) KG(M1) � 1 ⇐⇒ DG

(
M1, Mc

1

) � 0 ⇐⇒ M1

is a crisp set.
(K3)

KG (M1) � 0 ⇐⇒ DG
(
M1, M

c
1

) � 1 ⇐⇒ μM1

(
m j
)

� ϑM1

(
m j
)
, ∀ j .

(K4) KG
(
Mc

1

) � KG(M1) is obvious.
(K5) Let M1 be less fuzzy than M2 i.e., μM1

(
m j
) ≤

μM2

(
m j
) ≤ ϑM2

(
m j
) ≤ ϑM1

(
m j
)

or μM1

(
m j
) ≥

μM2

(
m j
) ≥ ϑM2

(
m j
) ≥ ϑM1

(
m j
)
.

When μM1

(
m j
) ≤ μM2

(
m j
) ≤ ϑM2

(
m j
) ≤ ϑM1

(
m j
)
,

then we get
∣
∣∣μ2

M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣ ≥

∣
∣∣μ2

M2

(
m j
)− ϑ2

M2

(
m j
)∣∣∣ .

So, DG
(
M1, Mc

1

)

� 1

l

l∑

j�1

g

⎛

⎝

∣
∣∣μ2

M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣,∣∣∣ϑ2

M1

(
m j
)− μ2

M1

(
m j
)∣∣∣

⎞

⎠,

≥ 1

l

l∑

j�1

g

⎛

⎝

∣∣∣μ2
M2

(
m j
)− ϑ2

M2

(
m j
)∣∣∣,∣∣∣ϑ2

M2

(
m j
)− μ2

M2

(
m j
)∣∣∣

⎞

⎠,

� DG
(
M2, M

c
2

)
.

Thus, KG(M1) ≥ KG(M2).
Similarly, when μM1

(
m j
) ≥ μM2

(
m j
) ≥ ϑM2

(
m j
) ≥

ϑM1

(
m j
)
, we get KG(M1) ≥ KG(M2). Hence the function

KG given in Eq. (3) is a valid PF knowledge measure.
With the help of Eq. (3) and based on the suggested PF

measures of distance, some PF measures of knowledge are
given in Table 3 below:

Now, we compare the suggested PF measures of distance
and knowledge with some available PF measures of infor-
mation.

Comparative analysis

In this section, we show that our suggested PF measures of
distance and knowledge give better results than most of the
available PF measures of information.

Comparison of the proposed PF distancemeasures
with various available PFmeasures
of similarity/distance

To contrast the performance of the suggested PFmeasures of
distance, we first list the PF measures of similarity/distance
available in the literature as shown in Table 4.

Nowwecompare the suggestedmeasureswith the existing
ones through some numerical examples related to the com-
putation of the distance/similarity between different PFSs.

Example 3 Consider three different cases of PFSs with each
case consisting of two different PFSs as shown below.

Case I:

{
M1 � {(m1, 0.5, 0.5)}
M2 � {(m1, 0.0, 0.0)}

Case II:

{
M1 � {(m1, 0.4, 0.3)}
M2 � {(m1, 0.5, 0.3)}

Case III:

{
M1 � {(m1, 0.4, 0.3)}
M2 � {(m1, 0.5, 0.2)}

The computed distance/similarity values for these three
cases using the available measures of distance/similarity
along with the suggested ones are shown in Table 5.

From Table 5, we have

1. The PF distance measures DPYY1, DPYY4, DPYY5,
DPYY6, DPYY9, andDPYY10 gives the same distance for
the two distinct cases (Case II and Case III).

2. The PF distancemeasure DPYY2 gives “0” as the distance
between the two different PFSs (Case I) and thus fails to
satisfy the axiom (D3) of the PF distance measure given
in Definition 7.
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Table 4 Existing PF distance/similarity measures due to Peng et al. [14]

Distance/similarity measure Expression

DPYY1(M1, M2) 1
2l

∑l
j�1

(∣∣∣μ2
M1

(
m j
)− μ2

M2

(
m j
)∣∣∣ +

∣
∣∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣ +

∣
∣∣π2

M1

(
m j
)− π2

M2

(
m j
)∣∣∣
)

DPYY2(M1, M2) 1
2l

∑l
j�1

(∣∣∣μ2
M1

(
m j
)− μ2

M2

(
m j
)−

(
ϑ2
M1

(
m j
)− ϑ2

M2

(
m j
))∣∣∣
)

DPYY3(M1, M2)
1
4l

⎧
⎨

⎩

∑l
j�1

∣
∣∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣∣ +

∣
∣∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣∣ +

∣
∣∣π2

M1

(
m j
)− π2

M2

(
m j
)∣∣∣

+
∑l

j�1

∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)−

(
ϑ2
M1

(
m j
)− ϑ2

M2

(
m j
))∣∣
∣

⎫
⎬

⎭

DPYY4(M1, M2) 1
l

∑l
j�1 max

(∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣
∣,
∣∣
∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣
∣
)

DPYY5(M1, M2)
2
l

∑l
j�1

max
(∣∣∣μ2

M1
(m j )−μ2

M2
(m j )

∣∣∣,
∣∣∣ϑ2

M1
(m j )−ϑ2

M2
(m j )

∣∣∣
)

1+max
(∣∣∣μ2

M1
(m j )−μ2

M2
(m j )

∣∣∣,
∣∣∣ϑ2

M1
(m j )−ϑ2

M2
(m j )

∣∣∣
)

DPYY6(M1, M2) 2
∑l

j�1 max
(∣∣∣μ2

M1
(m j )−μ2

M2
(m j )

∣∣∣,
∣∣∣ϑ2

M1
(m j )−ϑ2

M2
(m j )

∣∣∣
)

∑l
j�1 1+max

(∣∣∣μ2
M1

(m j )−μ2
M2

(m j )
∣∣∣,
∣∣∣ϑ2

M1
(m j )−ϑ2

M2
(m j )

∣∣∣
)

DPYY7(M1, M2) 1 − x

∑l
j�1 min

(
μ2
M1

(m j ),μ2
M2

(m j )
)

∑l
j�1 max

(
μ2
M1

(m j ),μ2
M2

(m j )
) − y

∑l
j�1 min

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
)

∑l
j�1 max

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
) , x + y � 1, x , y ∈ [0, 1]

DPYY8(M1, M2) 1 − x
l

∑l
j�1 min

(
μ2
M1

(m j ),μ2
M2

(m j )
)

∑l
j�1 max

(
μ2
M1

(m j ),μ2
M2

(m j )
) − y

l

∑l
j�1 min

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
)

∑l
j�1 max

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
) , x + y � 1, x , y ∈ [0, 1]

DPYY9(M1, M2)
1 − 1

l

∑l
j�1

min
(
μ2
M1

(m j ),μ2
M2

(m j )
)
+min

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
)

max
(
μ2
M1

(m j ),μ2
M2

(m j )
)
+max

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
)

DPYY10(M1, M2)
1 −∑l

j�1

min
(
μ2
M1

(m j ),μ2
M2

(m j )
)
+min

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
)

max
(
μ2
M1

(m j ),μ2
M2

(m j )
)
+max

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
)

DPYY11(M1, M2)
1 − 1

l

∑l
j�1

min
(
μ2
M1

(m j ),μ2
M2

(m j )
)
+
(
1−min

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
))

max
(
μ2
M1

(m j ),μ2
M2

(m j )
)
+
(
1−max

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
))

DPYY12(M1, M2)
1 − 1

l

∑l
j�1

min
(
μ2
M1

(m j ),μ2
M2

(m j )
)
+
(
1+min

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
))

max
(
μ2
M1

(m j ),μ2
M2

(m j )
)
+
(
1+max

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
))

SPYY1(M1, M2) 1 − 1
2l

∑l
j�1

(∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣
∣ +
∣∣
∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣
∣ +
∣∣
∣π2

M1

(
m j
)− π2

M2

(
m j
)∣∣
∣
)

SPYY2(M1, M2) 1 − 1
2l

∑l
j�1

(∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)−

(
ϑ2
M1

(
m j
)− ϑ2

M2

(
m j
))∣∣
∣
)

SPYY3(M1, M2)

1 − 1
4l

⎧
⎨

⎩

∑l
j�1

(∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣
∣ +
∣∣
∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣
∣ +
∣∣
∣π2

M1

(
m j
)− π2

M2

(
m j
)∣∣
∣
)

+
∑l

j�1

∣
∣∣μ2

M1

(
m j
)− μ2

M2

(
m j
)−

(
ϑ2
M1

(
m j
)− ϑ2

M2

(
m j
))∣∣∣

⎫
⎬

⎭

SPYY4(M1, M2) 1 − 1
l

∑l
j�1 max

(∣∣
∣μ2

M1

(
m j
)− μ2

M2

(
m j
)∣∣
∣,
∣
∣
∣ϑ2

M1

(
m j
)− ϑ2

M2

(
m j
)∣∣
∣
)

SPYY5(M1, M2)
1
l

∑l
j�1

1−max
(∣∣∣μ2

M1
(m j )−μ2

M2
(m j )

∣∣∣,
∣∣∣ϑ2

M1
(m j )−ϑ2

M2
(m j )

∣∣∣
)

1+max
(∣∣
∣μ2

M1
(m j )−μ2

M2
(m j )

∣∣
∣,
∣∣
∣ϑ2

M1
(m j )−ϑ2

M2
(m j )

∣∣
∣
)

SPYY6(M1, M2)
∑l

j�1 1−max
(∣∣∣μ2

M1
(m j )−μ2

M2
(m j )

∣∣∣,
∣∣∣ϑ2

M1
(m j )−ϑ2

M2
(m j )

∣∣∣
)

∑l
j�1 1+max

(∣∣∣μ2
M1

(m j )−μ2
M2

(m j )
∣∣∣,
∣∣∣ϑ2

M1
(m j )−ϑ2

M2
(m j )

∣∣∣
)

SPYY7(M1, M2) x

∑l
j�1 min

(
μ2
M1

(m j ),μ2
M2

(m j )
)

∑l
j�1 max

(
μ2
M1

(m j ),μ2
M2

(m j )
) + y

∑l
j�1 min

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
)

∑l
j�1 max

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
) , x + y � 1, x , y ∈ [0, 1]

SPYY8(M1, M2)
x
l

∑l
j�1 min

(
μ2
M1

(m j ),μ2
M2

(m j )
)

∑l
j�1 max

(
μ2
M1

(m j ),μ2
M2

(m j )
) − y

l

∑l
j�1 min

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
)

∑l
j�1 max

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
) ,x + y � 1, x , y ∈ [0, 1]
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Table 4 (continued)

Distance/similarity measure Expression

SPYY9(M1, M2)
1
l

∑l
j�1

min
(
μ2
M1

(m j ),μ2
M2

(m j )
)
+min

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
)

max
(
μ2
M1

(m j ),μ2
M2

(m j )
)
+max

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
)

SPYY10(M1, M2)
∑l

j�1 min
(
μ2
M1

(m j ),μ2
M2

(m j )
)
+min

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
)

∑l
j�1 max

(
μ2
M1

(m j ),μ2
M2

(m j )
)
+max

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
)

SPYY11(M1, M2)
1
l

∑l
j�1

min
(
μ2
M1

(m j ),μ2
M2

(m j )
)
+
(
1−min

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
))

max
(
μ2
M1

(m j ),μ2
M2

(m j )
)
+
(
1−max

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
))

SPYY12(M1, M2)
∑l

j�1 min
(
μ2
M1

(m j ),μ2
M2

(m j )
)
+
(
1+min

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
))

∑l
j�1 max

(
μ2
M1

(m j ),μ2
M2

(m j )
)
+
(
1+max

(
ϑ2
M1

(m j ),ϑ2
M2

(m j )
))

Table 5 Computed values of various PF distance/similarity measures
regarding Example 3

Case I Case II Case III

DPYY1 0.50000 0.0900 0.0900

DPYY2 0 0.0450 0.0700

DPYY3 0.2500 0.1350 0.1850

DPYY4 0.2500 0.0900 0.0900

DPYY5 0.4000 0.1651 0.1651

DPYY6 0.4000 0.1651 0.1651

DPYY7 1.0000 0.1080 0.4969

DPYY8 1.0000 0.1080 0.4969

DPYY9 1.0000 0.3600 0.3600

DPYY10 1.0000 0.3600 0.3600

DPYY11 0.4000 0.0776 0.1157

DPYY12 0.4000 0.0776 0.1157

SPYY1 0.5000 0.9100 0.9100

SPYY2 1.0000 0.9550 0.9300

SPYY3 0.7500 0.8650 0.8150

SPYY4 0.7500 0.9100 0.9100

SPYY5 0.6000 0.8349 0.8349

SPYY6 0.6000 0.8349 0.8349

SPYY7 0 − 0.5080 − 0.1191

SPYY8 0 − 0.5080 − 0.1191

SPYY9 0 0.6400 0.6400

SPYY10 0 0.6400 0.6400

SPYY11 0.6000 0.9224 0.8843

SPYY12 0.6000 0.9224 0.8843

DG1(Proposed) 0.4000 0.0900 0.1316

DG2(Proposed) 0.4375 0.0900 0.1355

DG3(Proposed) 0.5000 0.0900 0.1400

DG4(Proposed) 0.4706 0.0900 0.1394

Bold values indicate unreasonable results. x � 0.2 and y � 0.8 in
DPYY7, DPYY8, SPYY7, and SPYY8

3. The PF distance measures DPYY7, DPYY8, DPYY9, and
DPYY10 gives “1” as the distance between the two dif-
ferent PFSs (Case I) although they are not a complement
of each other.

4. The PF similarity measures SPYY1, SPYY4,
SPYY5, SPYY6, SPYY9, andSPYY10 give the same
degree of similarity for the two distinct cases (Case II
and Case III).

5. ThePF similaritymeasure SPYY2 gives “1” as a similarity
degree for the two different PFSs (Case I) and thus fails
to satisfy the axiom (S3) of the PF measure of similarity
given in Definition 6.

6. The PF similarity measures SPYY7, SPYY8, SPYY9, and
SPYY10 gives “0” as the similarity degree for the two dif-
ferent PFSs (Case I) although they are not a complement
of each other.

7. The similarity degree of the different PFSs (Case II and
III) by the similarity measures SPYY7 and SPYY8 comes
out to be negative, which is unreasonable.

8. The proposed PF distance measures DGj , 1 ≤ j ≤ 4
outperforms the majority of the available PF measures of
distance/similarity.

Example 4 Consider six different cases of PFSs with each
case consisting of two different PFSs as shown below.

Case I:

{
M1 � {(m1, 0.4, 0.2)}
M2 � {(m1, 0.5, 0.2)}

Case II:

{
M1 � {(m1, 0.4, 0.2)}
M2 � {(m1, 0.5, 0.1)}

Case III:

{
M1 � {(m1, 0.5, 0.5)}
M2 � {(m1, 0, 0)}

Case IV:

{
M1 � {(m1, 1, 0)}
M2 � {(m1, 0, 0)}

Case V:

{
M1 � {(m1, 0.3, 0.4)}
M2 � {(m1, 0.4, 0.3)}

123



Complex & Intelligent Systems (2023) 9:515–535 525

Table 6 Computed values of
various PF distance/similarity
measures regarding Example 4

Case I Case II Case III Case IV Case V Case VI

DPYY1 0.0900 0.0900 0.5000 1 0.0700 0.8200

DPYY2 0.0450 0.0600 0 0.5000 0.0700 0.4000

DPYY3 0.1350 0.1650 0.2500 1.5000 0.1750 1.2100

DPYY4 0.0900 0.0900 0.2500 1 0.0700 0.8100

DPYY5 0.1651 0.1651 0.4000 1 0.1308 0.8950

DPYY6 0.1651 0.1651 0.4000 1 0.1308 0.8950

DPYY7 0.1080 0.6330 1 NaN 0.4375 1

DPYY8 0.1080 0.6330 1 NaN 0.4375 1

DPYY9 0.3600 0.3600 1 1 0.4375 1

DPYY10 0.3600 0.3600 1 1 0.4375 1

DPYY11 0.0744 0.0968 0.4000 0.5000 0.1308 0.8119

DPYY12 0.0744 0.0968 0.4000 0.5000 0.1308 0.8119

SPYY1 0.9100 0.9100 0.5000 0 0.9300 0.1800

SPYY2 0.9550 0.9400 1 0.5000 0.9300 0.6000

SPYY3 0.8650 0.8350 0.7500 − 0.5000 0.8250 − 0.2100

SPYY4 0.9100 0.9100 0.7500 0 0.9300 0.1900

SPYY5 0.8349 0.8349 0.6000 0 0.8692 0.1050

SPYY6 0.8349 0.8349 0.6000 0 0.8692 0.1050

SPYY7 − 0.5080 0.0170 0 NaN − 0.2250 0

SPYY8 − 0.5080 0.0170 0 NaN − 0.2250 0

SPYY9 0.6400 0.6400 0 0 0.5625 0

SPYY10 0.6400 0.6400 0 0 0.5625 0

SPYY11 0.9256 0.9032 0.6000 0.5000 0.8692 0.1881

SPYY12 0.9256 0.9032 0.6000 0.5000 0.8692 0.1881

DG1(Proposed) 0.0900 0.1149 0.4000 1 0.1308 0.8104

DG2(Proposed) 0.0900 0.1173 0.4375 1 0.1351 0.8119

DG3(Proposed) 0.0900 0.1200 0.5000 1 0.1400 0.1700

DG4(Proposed) 0.0900 0.1197 0.4706 1 0.1393 0.8134

Bold values indicate unreasonable results. NaN means cannot be calculated. x � 0.2 and y � 0.8 in DPYY7,
DPYY8, SPYY7, and SPYY8

Case VI:

{
M1 � {(m1, 0.1, 0.9)}
M2 � {(m1, 0, 0)}

The computed distance/similarity values for these six
cases using the available measures of distance/similarity
along with the suggested ones are shown in Table 6.

From Table 6, we have the following:

1. The PF distance measures DPYY1, DPYY4,

DPYY5, DPYY6, DPYY9, and DPYY10 give the same dis-
tance for two distinct cases (Case I and Case II).

2. The PF distancemeasure DPYY2 gives “0” as the distance
between the two unequal PFSs (Case III).

3. The PF distance measures DPYY7, DPYY8,

DPYY9, and DPYY10 gives “1” as the distance between
two PFSs M1 and M2 (Case III and Case VI) when neither
M1 is a crisp set nor M1 � M2. So, they fail to satisfy the
axiom (D4) of Definition 7.

4. The PF distance measure DPYY3 indicates that the dis-
tance between the PFSs (Case IV and Case VI) is greater
than “1” and therefore does not follow the axiom (D1) of
definition 7.

5. ThePFdistancemeasures DPYY7 and DPYY8 fail to com-
pute the distance between the two PFSs (Case IV).

6. The PF similarity measures SPYY1, SPYY4,

SPYY5, SPYY6, SPYY9 and SPYY10 give the same similar-
ity for two distinct cases (Case I and Case II).
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7. The PF similarity measure SPYY2 gives “1” as the sim-
ilarity between the two unequal PFSs (Case III).

8. The similarity between the different PFSs comes out to
be negative (Case I, Case IV, Case V, and Case V) by
the PF similarity measures SPYY3, SPYY7, and SPYY8.
So, these similarity measures fail to satisfy the axiom
(S1) of Definition 6.

9. The PF similarity measures SPYY7 and SPYY8 fails to
compute the similarity between the PFSs (Case IV).

10. The PF similarity measures SPYY7, SPYY8,

SPYY9, and SPYY10 gives “0” as the similarity between
the PFSs M1 and M2 (Case III and Case VI), when neither
M2 � M1

c nor M1 is a crisp set.

11. The suggested PF distance measures DGj , 1 ≤ j ≤
4 computes the distance of all the PFSs without any
counterintuitive results.

Thus, from Examples 3 and 4, we conclude that the sug-
gested distance measures are more robust and effective than
most of the available distance/similarity measures in PF the-
ory.

Next, we compare the suggested PF knowledge measures
with the available PF measures of entropy/knowledge.

Comparison of the suggested PFmeasures
of knowledge with the available PFmeasures
of entropy/knowledge

To contrast the performance of the newly introduced PFmea-
sures of knowledge, we first list the PF entropy/knowledge
measures available in the literature.

Entropy measures due to Peng et al. [14]

EPYY1(M1) � 1

l

l∑

j�1

π2
M1

(
m j
)
+ 1 −

∣
∣∣μ2

M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣

π2
M1

(
m j
)
+ 1 +

∣
∣∣μ2

M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣
;

EPYY2(M1) � 1

l

l∑

j�1

(
1 −

∣∣∣μ2
M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣
)

l∑

j�1

(
1 +

∣∣∣μ2
M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣
) ;

EPYY3(M1) � 1 − 1

l

l∑

j�1

∣∣∣μ2
M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣;

EPYY4(M1) � 1

l

l∑

j�1

min
(
μ2
M1

(
m j
)
, ϑ2

M1

(
m j
))

max
(
μ2
M1

(
m j
)
, ϑ2

M1

(
m j
)) ;

EPYY5 (M1)

� 1
(√

2 − 1
)
l

l∑

j�1

⎛

⎝ sin
1+μ2

M1
(m j)−ϑ2

M1
(m j)

4 π

+sin
1−μ2

M1
(m j)+ϑ2

M1
(m j)

4 π − 1

⎞

⎠ ;

EPYY6 (M1)

� 1
(√

2 − 1
)
l

l∑

j�1

⎛

⎝ cos
1+μ2

M1
(m j)−ϑ2

M1
(m j)

4 π

+cos
1−μ2

M1
(m j)+ϑ2

M1
(m j)

4 π − 1

⎞

⎠ ;

EPYY7(M1) � 1

l

l∑

j�1

cot

⎛

⎝π

4
+

∣
∣∣μ2

M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣

4
(
1 + π2

M1

(
m j
)) π

⎞

⎠

EPYY8(M1) � 1

l

l∑

j�1

tan

⎛

⎝π

4
−
∣∣∣μ2

M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣

4
(
1 + π2

M1

(
m j
)) π

⎞

⎠

Entropy measure due to Xue et al. [74]

EXXZT (M1) � 1

l

t∑

j�1

⎡

⎣
1 −

(
μ2
M1

(
m j
)− ϑ2

M1

(
m j
))

×
∣∣∣μ2

M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣

⎤

⎦.

Entropy measure due to Thao and Smarandache [76]

ET S(M1) � 1

l

t∑

j�1

⎡

⎣
1 −

∣∣∣μ2
M1

(
m j
)− 1

3

∣∣∣

−
∣∣
∣ϑ2

M1

(
m j
)− 1

3

∣∣
∣

⎤

⎦.

Entropy measure due to Yang and Hussain [75]

EY H (M1) � 1 −
√√√√1

l

t∑

j�1

(
μ2
M1

(
m j
)− ϑ2

M1

(
m j
))2

.

Knowledge measures due to Singh et al. [88]

KSSG1(M1) �
√√√
√1

l

t∑

j�1

(
μ2
M1

(
m j
)− ϑ2

M1

(
m j
))2

;

KSSG2(M1) � 1

l

l∑

j�1

∣∣∣μ2
M1

(
m j
)− ϑ2

M1

(
m j
)∣∣∣;

KSSG3(M1) � 1

l

l∑

j�1

2μ2
M1

(
m j
)
ϑ2
M1

(
m j
)

μ4
M1

(
m j
)
+ ϑ4

M1

(
m j
) .

Now, using linguistic hedges, we show the effectiveness
of the suggested PF measures of knowledge.
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Definition 13 [75] For any M1 ∈ PFS(W ), its modifier
(M1)

λ, λ > 0 is defined as

(M1)
λ �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎝

m j ,
(
μM1

(
m j
))λ,

(
1 −

(
1 − ϑ2

M1

(
m j
))λ
) 1

2

⎞

⎟
⎠

|m j ∈ W

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Then, we have the following PFSs:
M1: LARGE; (M1)

2: very LARGE; (M1)
3: quite very

LARGE; (M1)
4: very very LARGE; (M1)

1
2 : more or less

LARGE.
Since a PF entropy measure,E computes the ambiguous

content in a PFS, it has to satisfy the following requirement:

(4)

E
(
(M1)

1
2

)
> E (M1) > E

(
(M1)

2
)

> E
(
(M1)

3
)

> E
(
(M1)

4
)

.

Also, a PF knowledge measure K acts as a soft dual of a
PF entropy measure and calculates the amount of precision
in a PFS, so it has to satisfy the following requirement:

(5)

K
(
(M1)

1
2

)
< K (M1) < K

(
(M1)

2
)

< K
(
(M1)

3
)

< K
(
(M1)

4
)

.

We now consider an example related to the ambiguous
computation of the above-mentioned PFSs.

Example 5 Let M1 ∈ PFS(W ) be given as:

M1 �

⎧
⎪⎨

⎪⎩

(m1, 0.35, 0.47), (m2, 0.45, 0.72),
(m3, 0.21, 0.60), (m4, 0.80, 35),

(m5, 0.48, 0.56)

⎫
⎪⎬

⎪⎭
.

With the help of Definition 13, we construct the following
PFSs:

(M1)
1
2 �

⎧
⎪⎨

⎪⎩

(m1, 0.5916, 0.3425), (m2, 0.6708, 0.5532),
(m3, 0.4583, 0.4472), (m4, 0.8944, 0.2515),

(m5, 0.6928, 0.4141)

⎫
⎪⎬

⎪⎭
.

(M1)
2 �

⎧
⎪⎨

⎪⎩

(m1, 0.1225, 0.6269), (m2, 0.2025, 0.8764),
(m3, 0.0441, 0.7684), (m4, 0.6400, 0.4796),

(m5, 0.2304, 0.7272)

⎫
⎪⎬

⎪⎭
.

(M1)
3 �

⎧
⎪⎨

⎪⎩

(m1, 0.0429, 0.7260), (m2, 0.0911, 0.9425),
(m3, 0.0093, 0.8590), (m4, 0.5120, 0.5695),

(m5, 0.1106, 0.8226)

⎫
⎪⎬

⎪⎭
.

(M1)
4 �

⎧
⎪⎨

⎪⎩

(m1, 0.0150, 0.7947), (m2, 0.0410, 0.9727),
(m3, 0.0019, 0.9123), (m4, 0.4096, 0.6380),

(m5, 0.0531, 0.8821)

⎫
⎪⎬

⎪⎭
.

The ambiguous content of these PFSs using the suggested
PF knowledge measures and the existing ones is shown in
Table 7.

From Table 7, we have the following:

EPYY1

(
(M1)

1
2

)
< EPYY1 (M1) > EPYY1

(
(M1)

2)

> EPYY1
(
(M1)

3) > EPYY1
(
(M1)

4) ;

EPYY2

(
(M1)

1
2

)
< EPYY2 (M1) > EPYY2

(
(M1)

2)

> EPYY2
(
(M1)

3) > EPYY2
(
(M1)

4) ;

EPYY3

(
(M1)

1
2

)
< EPYY3 (M1) > EPYY3

(
(M1)

2)

> EPYY3
(
(M1)

3) > EPYY3
(
(M1)

4) ;

EPYY4

(
(M1)

1
2

)
> EPYY4 (M1) > EPYY4

(
(M1)

2)

< EPYY4
(
(M1)

3) < EPYY4
(
(M1)

4) ;

EPYY5

(
(M1)

1
2

)
< EPYY5 (M1) > EPYY5

(
(M1)

2)

> EPYY5
(
(M1)

3) > EPYY5
(
(M1)

4) ;

EPYY6

(
(M1)

1
2

)
< EPYY6 (M1) > EPYY6

(
(M1)

2)

> EPYY6
(
(M1)

3) > EPYY6
(
(M1)

4) ;

EPYY7

(
(M1)

1
2

)
< EPYY7 (M1) > EPYY7

(
(M1)

2)

> EPYY7
(
(M1)

3) > EPYY7
(
(M1)

4) ;

EPYY8

(
(M1)

1
2

)
< EPYY8 (M1) > EPYY8

(
(M1)

2)

> EPYY8
(
(M1)

3) > EPYY8
(
(M1)

4) ;

EXXZT

(
(M1)

1
2

)
< EXXZT (M1) < EXXZT

(
(M1)

2)

< EXXZT
(
(M1)

3) < EXXZT
(
(M1)

4) ;

ET S

(
(M1)

1
2

)
< ET S (M1) > ET S

(
(M1)

2
)

> ET S

(
(M1)

3
)

> ET S

(
(M1)

4
)
;

EY H

(
(M1)

1
2

)
< EY H (M1) > EY H

(
(M1)

2
)

> EY H

(
(M1)

3
)

> EY H

(
(M1)

4
)
;

KSSG1

(
(M1)

1
2

)
> KSSG1 (M1) < KSSG1

(
(M1)

2
)

< KSSG1

(
(M1)

3
)

< KSSG1

(
(M1)

4
)
;

KSSG2

(
(M1)

1
2

)
> KSSG2(M1) < KSSG2

(
(M1)

2) < KSSG2
(
(M1)

3) < KSSG2
(
(M1)

4)

KSSG3

(
(M1)

1
2

)
> KSSG3(M1) < KSSG3

(
(M1)

2) < KSSG3
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Table 7 Values of the PF
measures of entropy/knowledge
regarding Example 5

(M1)
1
2 M1 (M1)

2 (M1)
3 (M1)

4

EPYY1 0.6715 0.6927 0.5066 0.4183 0.3050

EPYY2 0.5548 0.5796 0.3608 0.2707 0.1873

EPYY3 0.7136 0.7338 0.5302 0.4261 0.3155

EPYY4 0.4808 0.3988 0.1514 0.1679 0.0836

EPYY5 1.3220 1.3273 1.3088 1.2909 1.2769

EPYY6 12.2178 12.2388 12.1662 12.0964 12.0414

EPYY7 0.7171 0.7434 0.5753 0.4786 0.3640

EPYY8 0.7171 0.7434 0.5753 0.4786 0.3640

EXXZT 0.8574 0.9897 1.2424 1.4080 1.5283

ET S 0.6643 0.6810 0.5302 0.4225 0.3155

EY H 0.6224 0.6889 0.4948 0.3613 0.2732

KSSG1 0.3776 0.3111 0.5052 0.6387 0.7268

KSSG2 0.2864 0.2662 0.4698 0.5739 0.6845

KSSG3 0.3355 0.3818 0.7516 0.7920 0.8568

KG1 (Proposed) 0.3938 0.3950 0.6162 0.6779 0.7827

KG2 (Proposed) 0.4302 0.4356 0.6843 0.7399 0.8407

KG3 (Proposed) 0.4781 0.5254 0.8133 0.8249 0.8957

KG4(Proposed) 0.4524 0.4651 0.7222 0.7633 0.8611

(
(M1)

3) < KSSG3
(
(M1)

4);

KG1

(
(M1)

1
2

)
< KG1 (M1) < KG1

(
(M1)

2
)

< KG1

(
(M1)

3
)

< KG1

(
(M1)

4
)
;

KG2

(
(M1)

1
2

)
< KG2 (M1) < KG2

(
(M1)

2
)

< KG2

(
(M1)

3
)

< KG2

(
(M1)

4
)
;

KG3

(
(M1)

1
2

)
< KG3 (M1) < KG3

(
(M1)

2
)

< KG3

(
(M1)

3
)

< KG3

(
(M1)

4
)
;

KG4

(
(M1)

1
2

)
< KG4 (M1) < KG4

(
(M1)

2
)

< KG4

(
(M1)

3
)

< KG4

(
(M1)

4
)

.

Thus, it follows that all the available PF measures of
entropy EPL j , 1 ≤ j ≤ 8, EXXZT , ET S , EY H , and the
PF knowledge measures KSSGj , j � 1, 2, 3 do not satisfy
the requirements given in Eqs. (4) and (5) respectively. How-
ever, all our suggested PF knowledge measures KGj , j � 1,
2, 3, 4, follow the desired requirement given in Eq. (5). This
shows that from a linguistic hedge perspective, the suggested
measures of knowledge are more robust than the available
ones.

Now, we demonstrate the utility of the proposed PF dis-
tance and knowledge measures in pattern identification and
decision-making.

Application of the proposedmeasures

In this section, we show how the suggested metrics can be
used in pattern analysis and MCDM.

Pattern analysis

We demonstrate how the suggested PF distance metrics can
be employed to solve pattern classification problems. An
unfamiliar pattern is classed into one of the known patterns
using compatibility measurements such as similarity mea-
sures, distance measures, correlation measures, and so on in
pattern analysis.We also compare our findings to the existing
compatibility measures.

Now, we solve some problems related to pattern analysis
in the examples given below.

Example 6 (Nanometer material classification) The current
nanometer materials collection M � {M1, M2, M3}
which stands for nanometer-ceramics, nanometer-
film, and nanometer-fiber respectively. The following
collection of parameters primarily describes the
form features of the three-nanometer materials:
W � {m1(odour), m2(layer), m3(color)}.
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The following are the standard model data for the form
properties of the three-nanometer materials:

M1 � {(m1, 0.7, 0.2), (m2, 0.1, 0.8), (m3, 0.4, 0.4)},

M2 � {(m1, 0.5, 0.5), (m2, 0.7, 0.3), (m3, 0, 0.8)},

M3 � {(m1, 0.1, 0.1), (m2, 0.5, 0.1), (m3, 0.1, 0.9)}.

There is a nanometer material N that needs to be recog-
nized in the following way:

N � {(m1, 0.4, 0.4), (m2, 0.6, 0.2), (m3, 0, 0.8)}.

Weneed to find out the nanometer material that N belongs
to. The similarity/distance between N and Mj , j � 1, 2,
3 by various PF similarity/distance measures are shown in
Table 8.

From Table 8, we see that the unknown nanometer is
assigned to the pattern M2 as shown by most of the PF
distance/similarity measures. We also observe that the PF
distance/similarity measures DPYY8, DPYY9, SPYY8, and
SPYY9 fail to recognize the unknown nanometer N .

Example 7 (Bacterial detection) M � {M1, M2, M3} rep-
resents Salmonella, Shigella, and Escherichia coli, respec-
tively, in the existing bacterial collection. The following set
of numbers best describes the shape features of the three gut
bacteria:

W �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m1(large belly small morphology),
m2(doublemicromorphology),
m3(singlemicromorphology),

m4(round head shape)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

The following are the typical model data for the shape
features of the three gut bacteria:

M1 �
{

(m1, 0.5, 0.4), (m2, 0.4, 0.5),
(m3, 0.3, 0.3), (m4, 0.2, 0.2)

}

,

M2 �
{

(m1, 0.5, 0.5), (m2, 0.1, 0.1),
(m3, 0.5, 0.5), (m4, 0.1, 0.1)

}

,

M3 �
{

(m1, 0.3, 0.3), (m2, 0.4, 0.4),
(m3, 0.4, 0.4), (m4, 0.4, 0.4)

}

.

The following is the description of an unknown microbe
N found in the laboratory:

N �
{

(m1, 0.4, 0.4), (m2, 0.5, 0.5),
(m3, 0.2, 0.2), (m4, 0.3, 0.3)

}

.

Our aim is to find the bacteria to which N belongs. The
similarity/distance between N and Mj , j � 1, 2, 3 by vari-
ous PF similarity/distance measures are shown in Table 9.

From Table 9, we observe that the unknown microbe N is
assigned toM1 as shownbymost of thePFdistance/similarity
measures. We also observe that the PF distance/similarity
measures DPYY2 and SPYY2 fail to recognize the unknown
microbe N .

Thus from Examples 6 and 7, it is clear that results due to
the suggested PF distance measures are consistent with the
existing ones and therefore are applicable in classification
problems.

Multi-criteria decision-making

Here, we show that the suggested PF measures of knowl-
edge and distance are useful for solving MCDM problems
involving uncertainty and ambiguity. The main hurdle in an
MCDM problem is the computation of criteria weights and
we use the suggested knowledge measures for this purpose.
For determining the best alternative, we take the help of the
suggested distance measures. First, we give the algorithm
for solving an MCDM problem having n alternatives Mj ,
j � 1, 2, . . . , n and k criteria Nk , k � 1, 2, . . . , m with
wk , k � 1, 2, . . . , m as criteria weights where 0 ≤ wk ≤ 1

and
m∑

k�1
wk � 1.

Algorithm Step 1: Formulate the decision matrix D �[(
μ jk , ϑ jk

)]
n×m expressing the information of the available

alternatives with respect to the criteria.

Step 2: Formulate the normalized decision matrix E �[(
μ

′
jk , ϑ

′
jk

)]

n×m
where,

(
μ

′
jk , ϑ

′
jk

)
�
{(

μ jk , ϑ jk
)
, i f Nk is a bene f i t cri teria(

ϑ jk , μ jk
)
, i f Nk is a cost cri teria

.

Step 3: Compute the criteria weights wk , k � 1, 2, . . . ,
m as:

wk � 1 − K (Nk)

m −
m∑

k�1
K (Nk)

, k � 1, 2, . . . , m.

Here, K is a PF entropy measure.
Step 4: Determine the PF ideal solution M∗ �{(
μ∗
1, ϑ∗

1

)
,
(
μ∗
2, ϑ∗

2

)
, . . . ,

(
μ∗
m , ϑ∗

m

)}
whereμ∗

k � max
j

μ jk

and ϑ∗
k � min

j
ϑ jk , k � 1, 2, . . . , m.

Step 5: Compute the distance of each alternative Mj ,
j � 1, 2, . . . , n from the PF ideal solution M∗ using the
suggested weighted PF distance measures.

123



530 Complex & Intelligent Systems (2023) 9:515–535

Table 8 Computed values of
distance/similarity between the
unknown pattern and known
patterns regarding Example 6

(N , M1) (N , M2) (N , M3) Result

DPYY1 0.4700 0.1200 0.2067 M2

DPYY2 0.3400 0.0133 0.0400 M2

DPYY3 0.4050 0.0667 0.1233 M2

DPYY4 0.4700 0.0733 0.1433 M2

DPYY5 0.6316 0.1317 0.2499 M2

DPYY6 0.6395 0.1366 0.2507 M2

DPYY7 0.8330 0.1737 0.3791 M2

DPYY8 0.8264 NaN 0.6555 NaN

DPYY9 0.8819 NaN 0.7477 NaN

DPYY10 0.8327 0.2039 0.4026 M2

DPYY11 0.5567 0.0964 0.2837 M2

DPYY12 0.5411 0.1241 0.2160 M2

SPYY1 0.5300 0.8800 0.7933 M2

SPYY2 0.6600 0.9867 0.9600 M2

SPYY3 0.5950 0.9333 0.8767 M2

SPYY4 0.5300 0.9267 0.8567 M2

SPYY5 0.3684 0.8683 0.7501 M2

SPYY6 0.3197 0.0683 0.1254 M1

SPYY7 0.1670 0.8263 0.6209 M2

SPYY8 0.1736 NaN 0.3445 NaN

SPYY9 0.1181 NaN 0.2523 NaN

SPYY10 0.1673 0.7907 0.5974 M2

SPYY11 0.4433 0.9036 0.7163 M2

SPYY12 0.4589 0.8759 0.7840 M2

DG1(proposed) 0.5279 0.1111 0.1905 M2

DG2(proposed) 0.5712 0.1151 0.1975 M2

DG3(proposed) 0.6800 0.1200 0.2067 M2

DG4(proposed) 0.6041 0.1191 0.2042 M2

“NaN” indicates cannot be computed.x � 0.2 and y � 0.8 in DPYY7, DPYY8, SPYY7, and SPYY8

Step 6: Rank the alternatives as Mj > Mt if
D
(
Mj , M∗) < D(Mt , M∗), where D is a PF distance mea-

sure and 1 ≤ j , t ≤ n.
Now, we solve an MCDM problem in the example given

below.

Example 8 [91] Consider the problemof purchasing a house
out of the five houses Mj , j � 1, 2, 3, 4, 5 by considering
the following criteria:

N1 : ceiling height, N2 : design, N3 : location, N4 : pur-
chase price, N5 : ventilation.

The information about the five houses with respect to the
above-mentioned five criteria is expressed in the form of
PFSs as shown by the decision matrix D below:

D �

⎛

⎜
⎜
⎜⎜
⎜
⎝

〈0.7, 0.5〉 〈0.6, 0.8〉 〈0.4, 0.7〉 〈0.8, 0.3〉 〈0.6, 0.5〉
〈0.6, 0.6〉 〈0.7, 0.3〉 〈0.2, 0.7〉 〈0.4, 0.6〉 〈0.1, 0.7〉
〈0.29, 0.8〉 〈0.21, 0.9〉 〈0.6, 0.8〉 〈0.71, 0.3〉 〈0.1, 0.3〉
〈0.2, 0.9〉 〈0.2, 0.8〉 〈0.1, 0.6〉 〈0.5, 0.6〉 〈0.4, 0.7〉
〈0.3, 0.9〉 〈0.32, 0.9〉 〈0.4, 0.8〉 〈0.6, 0.6〉 〈0.3, 0.4〉

⎞

⎟
⎟
⎟⎟
⎟
⎠

As the criteria N4 is a cost attribute, so the normalized
decision matrix E with the help of Step 2 is given below:

E �
⎛

⎜⎜⎜⎜⎜
⎝

〈0.7, 0.5〉 〈0.6, 0.8〉 〈0.4, 0.7〉 〈0.3, 0.8〉 〈0.6, 0.5〉
〈0.6, 0.6〉 〈0.7, 0.3〉 〈0.2, 0.7〉 〈0.6, 0.4〉 〈0.1, 0.7〉
〈0.29, 0.8〉 〈0.21, 0.9〉 〈0.6, 0.8〉 〈0.3, 0.71〉 〈0.1, 0.3〉
〈0.2, 0.9〉 〈0.2, 0.8〉 〈0.1, 0.6〉 〈0.6, 0.5〉 〈0.4, 0.7〉
〈0.3, 0.9〉 〈0.32, 0.9〉 〈0.4, 0.8〉 〈0.6, 0.6〉 〈0.3, 0.4〉

⎞

⎟⎟⎟⎟⎟
⎠
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Table 9 Computed values of
distance/similarity between the
unknown pattern and known
patterns regarding Example 7

(N , M1) (N , M2) (N , M3) Result

DPYY1 0.0950 0.3100 0.1750 M1

DPYY2 0.0225 0 0 Unable to classify

DPYY3 0.0587 0.1550 0.0875 M1

DPYY4 0.0700 0.1550 0.0875 M1

DPYY5 0.1302 0.2619 0.1603 M1

DPYY6 0.1308 0.2684 0.1609 M1

DPYY7 0.2179 0.7381 0.4795 M1

DPYY8 0.3138 0.7622 0.4962 M1

DPYY9 0.4578 0.7622 0.4962 M1

DPYY10 0.2992 0.7381 0.4795 M1

DPYY11 0.0908 0.2619 0.1603 M1

DPYY12 0.0907 0.2684 0.1609 M1

SPYY1 0.9050 0.6900 0.8250 M1

SPYY2 0.9775 1 1 Unable to classify

SPYY3 0.9413 0.8450 0.9125 M1

SPYY4 0.9300 0.8450 0.9125 M1

SPYY5 0.8698 0.7381 0.8397 M1

SPYY6 0.0654 0.1342 0.0805 M2

SPYY7 0.7821 0.2619 0.5205 M1

SPYY8 0.6862 0.2378 0.5038 M1

SPYY9 0.5422 0.2378 0.5038 M1

SPYY10 0.7008 0.2619 0.5205 M1

SPYY11 0.9092 0.7381 0.8397 M1

SPYY12 0.9093 0.7316 0.8391 M1

DG1(proposed) 0.0926 0.2619 0.1603 M1

DG2(proposed) 0.0937 0.2809 0.1669 M1

DG3(proposed) 0.0950 0.3100 0.1750 M1

DG4(proposed) 0.0949 0.2984 0.1734 M1

Bold values indicate unreasonable results. x � 0.2 and y � 0.8 in DPYY7, DPYY8, SPYY7, and SPYY8

With the help of Step 3 and using the suggested entropy
measure KG1 given in Table 3, we obtain the criteria weights
as:

w1 � 0.1744, w2 � 0.1229, w3 � 0.1813, w4 �
0.2525, and w5 � 0.2688.

Next, using Step 4, the PF ideal solution M∗ is given as:

M∗ �
{

〈0.7, 0.5〉, 〈0.7, 0.3〉, 〈0.6, 0.6〉,
〈0.6, 0.4〉, 〈0.6, 0.3〉

}

.

The computed values of the distance of each alternative
Mj , j � 1, 2, 3, 4, 5 from the PF ideal solution M∗ using
the suggested weighted distance measures Dw

Gj , j � 1, 2,
3, 4 given in Table 2 are shown in Table 10.

The final ranking of alternatives with the help of Step 6 is
shown in Table 11.

From Table 11, we conclude that M2 is the most feasible
alternative as all the suggested PF distance measures and the
existing PF distance measures DPYY1 and DPYY4 indicate
the same. Further, some existing q-rung orthopair correla-
tion coefficients also indicate the same. This shows that the
suggested distance measures are consistent with the existing
distance measures.

Conclusion

With the use of t-conorms, this work offered a novel way
of building some distance and knowledge metrics for PFSs.
First, four new distance measures were presented using
t-conorms, and then four new knowledge measures were
developed using the proposed distance measures. In terms
of the distance/similarity degree between distinct PFSs, the
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Table 10 Computed values of the
distance of each alternative from
the PF ideal solution

(M1, M∗) (M2, M∗) (M3, M∗) (M4, M∗) (M5, M∗)

DG1 0.0617 0.0507 0.0916 0.0830 0.0826

DG2 0.0659 0.0555 0.0983 0.0901 0.0888

DG3 0.0752 0.0650 0.1123 0.1090 0.1039

DG4 0.0694 0.0593 0.1030 0.0950 0.0932

Table 11 Ranking of alternatives

Ranking

DG1(proposed) M2 > M1 > M5 > M4 > M3

DG2(proposed) M2 > M1 > M5 > M4 > M3

DG3(proposed) M2 > M1 > M5 > M4 > M3

DG4(proposed) M2 > M1 > M5 > M4 > M3

DPYY1 M2 > M1 > M4 > M5 > M3

DPYY4 M2 > M1 > M4 > M5 > M3

CSG1[91] M2 > M1 > M5 > M3 > M4

CSG2[91] M2 > M5 > M3 > M1 > M4

CSG3[91] M2 > M1 > M3 > M5 > M4

CSG4[91] M2 > M1 > M3 > M5 > M4

CD[92] M2 > M1 > M5 > M3 > M4

suggested distance measures are more successful than most
of the known PF distance/similarity measures. The majority
of the existing PF distance/similarity measures produce the
same distance/similarity between distinct PFSs, and some of
them fail to satisfy all of the axiomatic conditions. The sug-
gested PF distance metrics, on the other hand, are devoid of
these flaws. Furthermore, from the linguistic hedging per-
spective, the suggested measures of knowledge for PFSs
are more resilient than the known PF entropy/knowledge
measures. The proposed PF distance metrics have shown to
be effective in pattern recognition challenges. Finally, in a
multi-criteria decision-making situation, the recommended
knowledge measures are used to compute the weight of
attributes, and the distance measures are utilized to rank the
alternatives. The results of the recommended measures are
compatiblewith the availablemeasures in pattern recognition
and decision-making situations.

The advantages of this study are:

1. The suggested method of constructing the distance mea-
sures from t-conorms can be utilized for obtaining the
new distance measures for some recent generalizations
of fuzzy sets.

2. The distance-based knowledge measures can be used in
computing the ambiguity content of Pythagorean fuzzy
sets where the existing entropy measures lead to unrea-
sonable results.

3. The suggested distance measures can be applied to bidi-
rectional approximate reasoning.

Our future studies include:

• To demonstrate the applicability of the suggested distance
measures in clustering and medical diagnosis.

• Todemonstrate the applicability of the suggestedmeasures
in real decision-making problems.

• To introduce the t-conorm-based distance measures and
knowledge measures for picture fuzzy sets [93], spherical
fuzzy sets [94], T-spherical fuzzy sets [94], etc.

• To introduce the parametric generalizations of the sug-
gested measures along with their various applications.
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