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Abstract
Cancer survival prediction is one of the three major tasks of cancer prognosis. To improve the accuracy of cancer survival
prediction, in this paper, we propose a priori knowledge- and stability-based feature selection (PKSFS) method and develop
a novel two-stage heterogeneous stacked ensemble learning model (BQAXR) to predict the survival status of cancer patients.
Specifically, PKSFSfirst obtains the optimal feature subsets from the high-dimensional cancer datasets to guide the subsequent
model construction. Then, BQAXR seeks to generate five high-quality heterogeneous learners, amongwhich the shortcomings
of the learners are overcome by using improved methods, and integrate them in two stages through the stacked generalization
strategy based on optimal feature subsets. To verify the merits of PKSFS and BQAXR, this paper collected the real survival
datasets of gastric cancer and skin cancer from the Surveillance, Epidemiology, and End Results (SEER) database of the
National Cancer Institute, and conducted extensive numerical experiments from different perspectives based on these two
datasets. The accuracy and AUC of the proposed method are 0.8209 and 0.8203 in the gastric cancer dataset, and 0.8336
and 0.8214 in the skin cancer dataset. The results show that PKSFS has marked advantages over popular feature selection
methods in processing high-dimensional datasets. By taking full advantage of heterogeneous high-quality learners, BQAXR
is not only superior to mainstream machine learning methods, but also outperforms improved machine learning methods,
which indicates can effectively improve the accuracy of cancer survival prediction and provide a reference for doctors to make
medical decisions.

Keywords Stacked generalization strategy ·Cancer survival prediction · Feature selection ·Heterogeneous ensemble learning
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Introduction

Cancer is a disease with high morbidity and mortality.
According to GLOBOCAN 2019 released by the Interna-
tional Agency for Research on Cancer (IARC), there were
18.1 million new cancer cases worldwide in 2018, including
9.6 million cancer deaths [1]. One of the three main tasks of
medical prognosis, and survival prediction concerns apply-
ing efficient algorithms and techniques to predict the survival
status of cancer patients according to the historical dataset
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of patients with the same type of cancer. Accurate survival
prediction can effectively assist doctors in formulating treat-
ment plans and decisions, thereby improving the prognosis
effect and reducing decision regret [2].

Traditionally, hospitals use statistical methods to describe
and analyze the dataset since the amount of data is small and
the data are not too complicated. However, in the big data
era, the number and complexity of data grow exponentially.
It is difficult for statistical methods to accurately analyze and
effectively mine massive amounts of internal data [3]. With
the rapid development of machine learning and data mining,
researchers have applied various machine learning methods,
such as random forest (RF), support vector machine (SVM),
decision tree (DT), neural network (NN), etc., to the medical
field, which have been shown to be capable of efficiently
improving the accuracy of prediction.
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In recent years, researchers have favored ensemble learn-
ing methods because their performance and generalization
capability are superior tomainstreammachine learningmeth-
ods inmany fields [4–7]. However, few studies have explored
the cancer survival prediction problem employing stacked
ensemble methods, which limits the further improvement
in the accuracy of survival prediction. To develop a can-
cer survival prediction method with better performance, we
proposed an a priori knowledge- and stability-based feature
selection (PKSFS) method and developed a novel two-stage
heterogeneous stacked ensemble learning model, denoted by
BQAXR, and we summarize our contributions as follows:

• For high-dimensional cancer datasets, making good use
of the features based on prior knowledge and keeping the
stability of BQAXR, PKSFS is proposed to reduce the
computational complexity of BQAXR and improve the
accuracy of cancer survival prediction. As demonstrated
in our numerical studies, compared with the widely used
feature selectionmethods, PKSFScan better guide the sub-
sequent model construction.

• We develop a two-stage heterogeneous stacked ensemble
learning model, namely BQAXR, to predict the sur-
vival status of gastric cancer and skin cancer patients.
In BQAXR, we attempt to improve the deficiencies of
the learners and integrate them in two stages through
the stacked generalization strategy to further improve
the accuracy of cancer survival prediction. Specifically,
BQAXRimproves the shortcomings of four heterogeneous
base learners, and employs a stacked generalization strat-
egy to integrate through advancedmeta learner,multi-layer
perception based on the rectified Adam optimizer RAdam.
To the best of our knowledge, this is the first ensemble
learning model for gastric cancer and skin cancer survival
prediction, and the experimental results demonstrate the
superiority of BQAXR compared with popular machine
learning methods.

• Most studies on cancer survival prediction focus on breast
cancer [8], colorectal cancer [9], etc. Gastric cancer, as
one of the top three cancer diseases in death cases, is
ignored. Furthermore, some rare types of cancer, such as
skin cancer, are also ignored. Thus, from the perspective
of common and uncommon cancer diseases, real cancer
datasets including gastric cancer and skin cancer are col-
lected to support this study, and the superiority of the
proposed method for cancer survival prediction would be
verified on the two different cancer datasets.

The remainder of this paper is as follows: the next
section briefly reviews the related literature. In the following
section we introduce the research datasets and the PKSFS
method, followed by presenting BQAXR in detail. The next

section presents and discusses the results of numerical stud-
ies conducted to compare BQAXR against somemainstream
and improved machine learning methods. In the following
section, we discuss the results of this study, and some works
related to cancer prediction. Finally, in the last section, we
conclude this paper and suggest topics for future research.

Literature review

Survival predictionmethods

In the early years, many researchers compared the Cox pro-
portional hazard model with machine learning and deep
learning methods for survival prediction problems. Matsuo
et al. [10] used the Cox model and the deep learning neural
network to predict the survival of cervical cancer patients,
and showed that the performance of the neural network is
superior to the Cox proportional hazard model. Zhu et al.
[11] used an artificial neural network (ANN) and the Cox
regression risk model to analyze the prognostic factors of
gastric cancer patients, and found that ANN is a more pow-
erful tool in determining the important factors of prognosis.
Consistent with Zhu et al. [11], Walczak and Velanovich [2]
also found that ANN is superior to the Cox model.

Since then, more and more researchers have applied
machine learning and deep learningmethods to carry out sur-
vival predictions for cancer patients. Tapak et al. [12] applied
six machine learning methods (NB, RF, AdaBoost, SVM,
least squares-SVM, andAdabag) to predict the survival status
of 550 breast cancer patients, and found that SVM is superior
to the other machine learning methods. Delen [13] applied
three machine learning techniques (DT, NN, and SVM) and
one statistic method (LR) to predict the survival probability
of prostate cancer, and showed that SVM performs the best
and LR performs the worst. Shukla et al. [14] proposed a
breast cancer survival prediction model, which uses the self-
organizing map (SOM) and density-based spatial clustering
of applications with noise (DBSCAN) to generate patient
clusters, and then trains multi-layer perception (MLP) using
the generated clusters. Zolbanin et al. [15] employed LR,
DT, RF, and ANN to predict the overall survival of breast,
genital, prostate, and urethral cancer patients, and showed
that RF performs the best. Unlike the above studies, we aim
to develop survival predictions for cancer patients based on
heterogeneous ensemble learningmethods and achieve better
performance.
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Heterogeneous ensemble learningmethods

Ensemble learning can be broadly divided into two cate-
gories, namely homogeneous ensemble learning and hetero-
geneous ensemble learning [16]. In recent years, many stud-
ies have employed homogenous ensemble learning methods
to achieve better performance in cancer survival prediction
[8, 9]. However, previous studies have shown that the diver-
sity among the base learners in the heterogeneous ensemble
learning methods is higher than the base learners in the
homogeneous ensemble learningmethods, which has greater
potential to achieve higher accuracy [17]. Moreover, the
heterogeneous ensemble learning method can reduce the
deviation of each base learner due to its inherent assumption
of the heterogeneous forms, so the unseen samples get bet-
ter generalization [17]. As a result, heterogeneous ensemble
learning has beenwidely studied in various fields. Thongkam
et al. [18] devised a heterogeneous ensemble learningmethod
combining Adaboost and RF to predict the survival status of
breast cancer patients, and showed that the method outper-
formsAdaboost, RF, and other combined classifiers. Cho and
Won [19] combined four different base classifiers using the
majority voting strategy and verified the validity of themodel
using three benchmark cancer datasets. Although the above
studies apply the heterogeneous ensemble learning method
to predict the survival status of breast cancer patients, they
only combine different weak classifiers through relatively
simple ensemble mechanisms, resulting in the performance
of the developed model not being so good. Consequently,
many researchers have tried a variant of the ensemble learn-
ing method, known as the stacked ensemble in the literature,
with a view to achieving better performance and higher accu-
racy.

Wolpert [20] first proposed “stacked generalization”,
which is a variant of the ensemble learning method that
integrates heterogeneous learners through multi-stage. Since
then, many researchers in many different fields have paid
great attention to the stacked ensemble learningmethod.Xiao
et al. [21] proposed a two-stage stacked ensemble learning
model based on deep learning to predict tumor properties by
RNA-seq gene in lung adenocarcinoma, gastric cancer, and
breast invasive cancer patients. The base learners used in the
first stage included the k-nearest neighbors (KNN), SVM,
DT, RF, and gradient boosting tree. The second stage used
a five-layer neural network as meta learner. Chungsoo et al.
[6] proposed a two-stage stacked ensemble learningmodel to
predict the cause of death according to the patient’s last med-
ical checkup, where the first stage included two base learners
[lasso logistic regression (LLR) and gradient boosting (GB)]
and one meta learner (XGBoost) is used in the second stage.
Zhai and Chen [4] proposed a two-stage stacked ensemble
learning model to predict the daily average PM 2.5 concen-
tration in Beijing, China. The four base learners used in the

first stage were Lasso, Adaboost, XGBoost, and MLP, while
the second stage applied SVM for ensemble construction.
Anifowose et al. [22] and Ali et al. [5] constructed stacked
ensemble learning models using different types of SVMs as
the learners to solve the respective studied problems.

From the above studies, we see that the stacked ensemble
learning model shows good performance in various fields.
Despite this, the above studies do not consider how the over-
all performance of the stacked ensemble learning model can
be improved by improving the performance of the selected
learners. Specifically, it can be observed that SVM and
NN are commonly selected as learners to carry out stacked
integration, but the above studies do not consider how to
determine the hyperparameters of SVM and the appropriate
optimizer of NN.

Specifically, SVM is a pattern recognition method based
on the principle of structural risk minimization, and its per-
formance is closely related to its kernel parameters and
penalty factors. Therefore, how to select appropriate hyper-
parameters is the key to improving the accuracy of the
SVMclassifier. Existing studies have used evolutionary algo-
rithms, such as the genetic algorithm and particle swarm
optimization, to search for the optimal hyperparameters of
SVM [23, 24], which can improve the performance of SVM.
On the other hand, NN is an algorithm inspired by the bio-
logical nervous system based on the multi-layer network
structure and its performance is closely related to its opti-
mizer. Many excellent optimizers of NN have proposed that
in recent years, such as Adam, RAdam [25], LookAhead,
nesterov accelerated gradient (NAG) and stochastic gradi-
ent descent (SGD). Inspired by the above studies, we try to
apply the quantum particle swarm optimization algorithm to
optimize the hyperparameters of SVM, and explore differ-
ent optimizers (Adam, RAdam, SGD, NAD, LookAhead) to
obtain high-quality learners, thus enhancing the performance
of the stacked ensemble model.

Table 1 summarizes the differences between most of the
current research and our research in terms of issues, ensemble
methods, number and quality of learners, and performance
of the proposed methods. To the best of our knowledge, lit-
tle previous work has considered a heterogeneous stacked
ensemble learning model for predicting the survival status
of cancer patients. Meanwhile, few studies have tackled the
drawbacks of learners in ensemble construction, which hin-
der the ensemblemodel’s performance, and our study bridges
these gaps.

Materials andmethods

Survival prediction is an important branch of cancer progno-
sis, which predicts the vital characteristics of cancer patients
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Table 1 Literature overview: studies of ensemble methods

Study Problem Ensemble method Stacked
ensemble

Improved
learner

Learner
number

Ensemble
member

Performance

Heterogeneous Homogeneous

Wang et al.
[9]

Cancer
prognosis

√ × × 21 DT → RF, RSB,
GB, ADB,
RT

Wang et al.
[8]

Breast cancer
diagnosis

√ × × 12 SVM → SVM, NB,
NN, WVBE

Ali et al. [5] Disease
diagnosis

√ √ × 2 L1-SVM,
L2-SVM

→ Adaboost,
RF, ET

Thongkam
et al. [18]

Breast cancer
diagnosis

√ × × 2 RT, ADB → SVM, RT,
ADB

Cho and
Won [19]

Cancer classi-
fication

√ × × 4 MLP,
KNN,
SVM,
SASOM

→ MLP,
KNN, SVM,
SASOM

Chungsoo
et al. [6]

The case of
death

√ √ × 3 LLR, GB,
XGBoost

→ LLR, GB

Xiao et al.
[21]

Cancer
diagnosis

√ √ × 6 KNN,
SVM,
DT, RF,
GBDT,
DNN

→ KNN,
SVM, DT,
RF, GBDT,
MV

Adem et al.
[26]

Cancer
diagnosis

√ √ × 6 KNN,
SVM,
DT,
FFNN,
RoF, SC

→ KNN,
SVM, DT,
FFNN, RoF,
SC

Bashir et al.
[27]

Cancer
prognosis

√ × × 5 NB, DTG,
DTI,
SVM,
MBL

→ NB, DTG,
DTI, SVM,
MBL

Velusamy
and
Ramasamy
[28]

Disease
diagnosis

√ × × 3 KNN, RF,
SVM

→ RF, KNN,
SVM;

This study Cancer
prognosis

√ √ √
5 BKNN,

QSVM,
AMLP,
XGB,
RMLP

→ DT, LR,
SVM, NB,
KNN,
BKNN, RF,
ADB, XGB,
LGB,
QSVM,
GSVM

“ → ” signifies that the proposed method is better than these models
RF random forest, RSB random subspace, GB gradient boosting, ADB Adaboost, RT regression tree, SVM support vector machine, L1-SVM L1
regularized SVM, L2-SVM L2 regularized SVM, ET extra tree, NB naïve Bayes, NN neural network, MLP multi-layer perception, DT decision
tree, KNN k-nearest neighbors,WVBE weighted vote-based ensemble, SASOM structure adaptive self-organizing map,MV majority voting, FFNN
feed forward neural network, RoF rotation forest, SC Softmax classification, BSVM bagging SVM, GBDT gradient boosting decision tree, GPC
Gaussian process classifier, BGPC bagging Gaussian process classifier, LS Losso, XGBXGBoost, LGB LightGBM,QSVM quantum particle swarm
optimization-based SVM,GSVM genetic algorithm-based SVM,DTG decision tree using the Gini index,DTI decision tree using information gain,
MBL memory-based learner
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within a certain period after diagnosis. Many studies set the
survival threshold at five years [8, 9], i.e., if a patient is still
living in five years (60months), the case is “alive”; otherwise,
it is “dead”. In this study, we propose PKSFS and BQAXR to
predict the survival status (alive or dead) of different cancer
patients, which aims to better understand how patients’ can-
cer is likely to worsen after treatment in the future. First, we
apply for andobtainmultiple real cancer datasets, and prepro-
cess them. Subsequently, PKSFS is used to obtain the optimal
feature subset from high-dimensional cancer datasets, and
BQAXR is trained and tested on the cancer datasets with the
optimal feature subsets. Finally, the testing results are used
to evaluate the performance of BQAXR in terms of machine
learning and statistical indicators. The above contents are
described in detail as follows.

Data preparation

The quality of data drastically affects the performance of
the machine learning models. Therefore, data preparation is
an important stage in machine learning, which commonly
occupies 80% of the time in the whole machine learning
analysis. In this subsection, we introduce the data used in
this study and the data pre-processing process.

Data acquisition

In this study, we obtain the real gastric cancer dataset and
skin cancer dataset from the Surveillance, Epidemiology
and End Results (SEER) program of the National Cancer
Institute (http://www.seer.cancer.gov). SEER collects cancer
incidence data from population-based cancer registries that
cover 26% of African Americans, 38% of Hispanic Ameri-
cans, 44% of American Indians and Alaskan Natives, 50%
of Asians, and 67% of Hawaiian/Pacific Islanders [15]. At
present, the SEER database has been widely used in var-
ious analytical research projects [2, 8, 9, 15]. We select
the data files from 1973 to 2016 stored in the cancer inci-
dence database, in which the gastric cancer dataset consists
of 112,139 records and 146 variables, and the skin can-
cer dataset consists of 23,624 records and 123 variables.
These variables can be divided into seven categories, namely
record identification, patient socio-demographics, descrip-
tion of neoplasm, follow-up information, recoded variables,
therapy, and case source, which contain detailed information
about gastric cancer and skin cancer cases. Since the number
of variables in the SEER cancer dataset is as large as 123,
we provide main variable names and descriptions in Table
12 in appendix, and more information can be found on the
website.

Data pre-processing

Not all the variables and samples can be used for model
training since there are problems such as missing values and
imbalances between categories, etc. in the original data. To
solve the above problems, we adopt some strategies to deal
with the original data, which are as follows: (i) variables
with attribute missing values greater than 50% are removed
from the original datasets, based onwhich the variables (such
as “LYMPH”, “RXSSRLNS”, “METS”, “L2005” etc.) are
removed; (ii) variables with only one attribute value and
directly related to the patient’s survival status are removed
from the original datasets, based onwhich the variables (such
as “SCHEMA”, “EXTENSION”, “SM”, etc.) are removed;
(iii) samples without determined diagnostic dates and end of
follow-up dates are removed from the original datasets; (iv)
samples that cancer is not the cause of death and repeated
samples are also excluded from the original datasets; (v) the
two cancer datasets are imbalanced data which will be pro-
cessed as balanced datasets using undersample based on the
condensed nearest neighbor method [29]; (vi) Wang et al.
[9] noted that the variable “ID” contains additional informa-
tion about the patient, while the collinearity indeed exists
between “ID” and other variables, thus the variable “ID” is
removed. Finally, 26 (resp., 30) variables and 1165 (resp.,
2328) samples are obtained as the experimental data in the
gastric (resp., skin) cancer dataset. For target, we denote by
“VS” the label for this experiment, which represents the sur-
vival status of each cancer patient, including alive (denoted
by 0) and dead (denoted by 1).

Due to the types of many variables (such as “gender”,
“rank” etc.) are all nominal variables in the original datasets,
thus one-hot coding is employed to deal with these variables
and develop a high-dimensional sparse matrix, where there
are 125 (reps., 114) features in the gastric (reps., skin) cancer
dataset. Moreover, the types and ranges of the attribute val-
ues of some features are different. If the differences are too
large in the original dataset, the training model will give high
weights to the attributes with high values, which will make
the model generate false perceptions and time-consuming.
Therefore, the data need to be dimensionless before training,
i.e., converting the attribute values of all the features in the
original data into uniform specifications, which can speed up
the convergence of the algorithm and make the performance
of the model more stable. After that, we apply the z-score
standardization method for the two datasets. Finally, follow-
ing Ahmadi et al. [30], we choose 70% of the pre-processed
data as the training dataset and the remaining data as the
testing dataset.

123

http://www.seer.cancer.gov


4624 Complex & Intelligent Systems (2022) 8:4619–4639

Table 2 Feature scores using PKSFS in the gastric cancer dataset

N Feature name Score N Feature name Score

1 EOD_E 1 13 Race_C 0.32

2 YoB 0.78 14 Seer_rKentucky—2000 + 0.31

3 Race_Korean (1988 +) 0.74 15 SEERH_Distant 0.26

4 AAD 0.68 16 Race_White 0.23

5 SEERH_Localized 0.65 17 SN_2nd 0.2

6 RnCDS_Surgery performed 0.59 18 RnCDS_Not recommended 0.2

7 EOD_N 0.54 19 SS2000_Distant 0.2

8 MSAD_Married 0.52 20 Seer_registry_Greater Georgia—2000+ 0.1

9 EOD_S 0.47 21 Race_Filipino 0.07

10 SS2000_Localized 0.42 22 FMPI_Yes 0.07

11 NHIA_South or CAeB 0.41 23 Seer_registry_Los Angeles—1992+ 0.06

12 NHIA_NSHL 0.34 24 FMPI_No 0.04

Priori knowledge- and stability-based feature
selection

A classification model can benefit from feature selection
in the following two ways. First, by transforming the
original feature subset from a high-dimensional space to
low-dimensional space, the computational complexity of
the classification model construction process is significantly
reduced. Second, removing the invalid or redundant features
in the original feature set reduces their adverse effects on
the classification model construction process, such as over-
fitting and low classification accuracy [31, 32]. Therefore,
the goal of feature selection is to transform the dimensional
space and remove the redundant features from the original
feature set, which will not only make the classification bet-
ter, but also improve the efficiency of training and testing.
High-dimensional input variables may cause the model to
be extremely unstable during training, and multi-collinearity
during model fitting [33]. Given a data set with m features,
2m − 1 feature subsets can be generated. If we select the
best feature subset among all the 2m − 1 feature subsets, it
will take considerable time and manpower when m is large.
Therefore, an effective and stable feature selection method
should be applied to determine the optimal feature subset and
facilitate the construction of subsequentmodels. In this study,
we propose PKSFS, i.e., the priori knowledge- and stability-
based feature selection method, which takes full advantage
of priori knowledge and stability, to determine the best fea-
ture subset, where prior knowledge about the feature subsets
with the information gain is greater than 0 can be obtained
to guide stability selection, and the stability of the method,
which effectively measures how different training subsets
affect feature preferences, can be assessed in the form of
weight scores.

Specifically, PKSFS first obtains the information gain of
each feature, and leaves the features with the information
gain greater than 0 from the feature sets, and generates a
new feature subset. The bootstrap and LR L1-based regular-
ized method are then applied to the new feature subsets in
the following way: (i) randomly select a feature subset from
the new feature set, (ii) randomly perform bootstrap in the
training samples to obtain the training sub-dataset, and (iii)
estimate the performance of each feature subset in the train-
ing sub-dataset using the LR L1-based regularized method,
which scales the penalty of a random feature subset of coef-
ficients in the evaluation process. This process is repeated a
certain number of times, and the repeatedly selected features
are retained. In brief, themore frequently a feature is selected,
the more important it is, and the higher the probability it is
retained, and the final retained feature is stable and less sensi-
tive to regularization decisions. In this way, PKSFS not only
can select a high-quality feature subset to guide the construc-
tion of BQAXR, but also has high efficiency, since the first
step of PKSFS filters some features with low information
gain and greatly improves the efficiency of the second step.
Tables 2, 3 show the scores of each retained feature obtained
from PKSFS in gastric cancer and skin cancer dataset respec-
tively, where for some pre-processed nominal variables, their
names are written as “variable name_attribute name”.

A two-stage heterogeneous stacked ensemble
learningmethod

For ensemble construction, diversity and consistency
between the base learners are the two key factors, indicat-
ing that the base learners should be “good and different”.
However, for the homogeneous ensemble learning method,
the base learner generally is composed of multiple identical
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Table 3 Feature scores using PKSFS in the skin cancer dataset

N Feature name Score N Feature name Score

1 YoB 0.9 12 SEX_Female 0.2

2 GRADE_PD; GIII 0.75 13 YoD 0.19

3 FMPI_Yes 0.51 14 MSaD_Widowed 0.12

4 FMPI_No 0.51 15 PSL_C44.6-Skin of upper limb 0.1

5 GRADE_ IV 0.47 16 GRADE_Well differentiated; Grade I 0.09

6 AAD 0.45 17 SN_One primary only 0.07

7 SN_2nd of 2 or more primaries 0.27 18 MoD_January 0.07

8 MSaD_Married (including common law) 0.24 19 EXTENT 0.07

9 SEERH_Distant 0.23 20 RN 0.06

10 GRADE_ II 0.23 21 NHIA _Non-Spanish-Hispanic-Latino 0.04

11 SEX_Male 0.21 22 PSL_C44.4-Skin of scalp and neck 0.04
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Fig. 1 The framework of BQAXR

algorithms, which will weaken the diversity of the ensemble
learning method. In other words, the same structure of the
base learners makes it difficult for them to overcome their
weaknesses and drawbacks. For the heterogeneous ensem-
ble learningmethod, although heterogeneous learners greatly
improve the diversity of the model, the weaknesses and
shortcomings of the base learners have not been improved,
which will hamper the effectiveness of the ensemble models.
Therefore, we develop the two-stage heterogeneous stacked
ensemble learning method BQAXR, which integrates het-
erogeneous base learners in two-stage through the stacked
generalization strategy. In BQAXR, base learners consist
of four different algorithms, which can further improve the
diversity between base learners, and the shortcomings of four
heterogeneous base learners are improved, thus achieving an
improvement in cancer survival prediction accuracy. Figure 1
shows the overall framework of BQAXR, which mainly con-
sists of four heterogeneous base learners in the first stage,

i.e., the bagging algorithm based on the k-nearest neighbors
algorithm (BKNN), support vector machine based on the
quantum particle swarm optimization algorithm (QSVM),
multi-layer perception based on the adaptive moment esti-
mation optimizer Adam (AMLP), extreme gradient boosting
(XGBoost), and one meta learner in the second stage, i.e.,
multi-layer perception based on the rectifiedAdamoptimizer
RAdam (RMLP).

Specifically, in the first stage, we randomly split the pre-
processed training dataset into five subsets D1, D2, D3, D4,
andD5, where Di � (Xi , Yi ), i � 1,…,5, and Xi is the ith
training subset with the best features obtained by PKSFS
and Yi is the label set corresponding to the ith training sub-
set.We denote by Z � (X test, Ytest) the pre-processed testing
dataset. After that, the base learners BKNN, QSVM, AMLP,
and XGBoost, denoted as j th base learner ( j � 1, 2, 3, 4),
respectively, will, in turn, perform fivefold cross-validation,
i.e., each base learner will be trained and predicted five
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times. As a consequence, a total of 20 (nfold × 4) opera-
tions are conducted in the first stage, where nfold denotes
the number of folds. Let Hj (Xi ) be the prediction result
of the j th base learner after the i th-fold cross-validation,
where the i th-fold cross-validation means that the train-
ing subset Di is used as the testing set, and the remaining
subsets are used as the training set, and Hj (Xi ) ∈ [0, 1].
After all the base learners have completed the fivefold cross-
validation, Ni � (H1(Xi ), H2(Xi ), H3(Xi ), H4(Xi )) is
used to denote all predictions of all base learners in the
i th-fold cross-validation, that is the predictions of all base
learners on Di . At the same time, after each base learner
performing the i th-fold cross-validation, the trained base
learner will make predictions in the pre-processed test-
ing dataset, and the prediction result of the trained j th
base learner is denoted by Pi j (X test)i � 1, 2, 3, 4, 5 j �
1, 2, 3, 4, where Pi j (X test) ∈ [0, 1]. Therefore, the sub-
set of the prediction results for the j th base learner in
each fold is recorded as [P1 j (X test), P2 j (X test), P3 j (X test),
P4 j (X test), P5 j (X test)], and the average of the five pre-
diction results A j is used as the final prediction result

(A j (X test) � 1/5
[
P1 j (X test) + P2 j (X test) + P3 j (X test) +

P4 j (X test) + P5 j (X test)
]
).

Upon completion of the first stage, we obtain a new train-
ing set Dnewtrain � (Xnewtrain, Ynewtrain), where Xnewtrain �
{N1, N2, N3, N4, N5}, Ynewtrian � {Y1, Y2, Y3, Y4, Y5};
a new testing set Dnewtest � (Xnewtest, Ynewtest), where
Xnewtest � {A1(X test), A2(X test), A3(X test), A4(X test)},
Ynewtest is Ytest. In the second stage. We train RMLP on the
new training set, apply the trained meta learner to predict the
survival status of cancer patients on the new testing set, and
finally output the prediction results. The theory of the four
base learners of the first stage and the meta learner of the
second stage are elaborated in detail as follows.

Base learners pool in the first stage

k-nearest neighbors algorithm based on bagging algorithm
(BKNN): k-nearest neighbors algorithm (KNN) has been
shown to be one of the popular choices in stacked ensemble
learning [21]. In the stacked ensemble model, the differ-
ences in the performance of the used learners should not
be too large, otherwise, the stacked generalization strategy
for heterogeneous learners will perform poorly. Through our
numerical studies in the two cancer datasets, we find that
the performance of the KNN is worse than that of the other
three base learners QSVM, AMLP, and XGBoost in the first
stage,whichwill decrease the effect of stacked ensemble con-
struction to some extent. Therefore, we propose an improved
k-nearest neighbors algorithm (BKNN) as one of the base
learners in the first stage, which can significantly improve

the performance of KNN and narrow the performance gap
with the other three base learners. In BKNN, we combine
the bagging algorithm, which is an ensemble algorithm com-
posed of multiple independently weak classifiers [34], with
the k-nearest neighbors. The basic idea of BKNN is to ran-
domly extract sample subsets (bootstrap) from the original
sample set as training sample sets. After that, each KNN
is trained independently using the different training sample
sets, where the Euclidean distance is used to measure the
distances between the samples. The results of all KNNs are
summarized using weighted voting.

Support vector machine based on quantum particle swarm
optimization (QSVM): SVM is one of the most widely used
learners in the stacked ensemble model [4, 5, 21, 22]. The
classification performance of SVM is mainly determined by
two key factors. One is the selection of the kernel function
and the other is the determination of the hyperparameters.
To solve these two problems, we propose the improved sup-
port vector machine QSVM to find the best SVM as a base
learner for stacked ensemble construction, since the excel-
lent performance of the base learner can effectively improve
the stacked effect.

To search for the hyperparameters C and γ , we use
the quantum particle swarm optimization algorithm (QPSO)
developed by Sun et al. [35], which is quantum-behaving
inspired by particle swarm optimization trajectory analysis
and quantum mechanics. It effectively solves the deficiency
of particle swarm optimization (PSO) that global conver-
gence is not guaranteed due to the redundant parameters in
PSO. In PSO, the state of the particle is determined by the
parameters’ positions and velocities, while the state of the
particle is determined by the wave function W(v, t) in QPSO,
where W(v, t) denotes the energy and momentum of particle
v at time t . Thus, QPSO can effectively reduce the num-
ber of parameters to reduce the sensitivity of the algorithm
for parameters. The probability density function

∣∣W(v, t)
∣∣2 is

applied to obtain the probability distribution function of the
particle’s position, the form of which depends on the poten-
tial field where the particles are located, and particles move
according to the following iterative equation:

(1)

vi , j (t + 1) � pi , j + β × ∣∣mbest j (t) − vi , j (t)
∣∣

× ln

(
1

ui j (t)

)
, if z ≥ 0.5

(2)

vi , j (t + 1) � pi , j − β × ∣∣mbest j (t) − vi , j (t)
∣∣

× ln

(
1

ui j (t)

)
, if z < 0.5

mbest j (t) � 1/M
M∑
i�1

pbesti , j (t), (3)
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Fig. 2 A flowchart of QSVM

pi , j (t) � δi , j (t) × pbesti , j (t) +
(
1 − δi , j (t)

) × gbest j (t),
(4)

where mbest is the average optimal location, which repre-
sents the mean of all the optimal locations (pbest) of each
particle among the population, and gbest denotes the global
optimal location andM is the size of the population.The coef-
ficients z, u, and δ are randomly generated numbers using the
uniform probability distribution in the range [0,1], respec-
tively. The parameter β is called the contraction–expansion
coefficient, which can be used to control the convergence
rate of the algorithm and it is the only parameter in QPSO.
Figure 2 presents the framework of QSVM. The values of
the parameters of QSVM are set as follows: the number of
particles � 20, number of iterations � 100, β=0.7, and the
ranges ofC and γ are both [1, 100] and [1,1000] respectively.

Multi-layer perception based on adaptive moment estima-
tion optimizer (AMLP):MLP based on the adaptive moment
estimation optimizer (AMLP) is MLP combined with the
adaptive moment estimation method Adam, which can cal-
culate the adaptive learning rate of each parameter. In the
structure ofMLP, the leftmost layer is the input layer, and the
number of neurons input is equal to the number of features.
The rightmost layer is the output layer, which is responsible
for generating thepredictionvalues.Themiddle layer is a hid-
den layer consisting of hidden neurons. The neurons between
the layers pass through a non-linear activation function. The
common activation functions include Sigmoid, ReLu, Tanh,
etc., among which ReLu learns much faster in MLP than the
other activation functions [21], hence, we use ReLu as the
activation function in AMLP. Since cancer survival predic-
tion is a binary-class prediction problem, the loss function of
AMLP is the binary cross entropy. Thus, the goal of AMLP
is to use the Adam optimizer to update the parametersW and
b in the MLP to minimize the binary cross entropy.

Adam is an integrated algorithm based on momentum
and root mean square prop (RMSprop), which consists
of the variable v(vtdW , vtdb) given in momentum, and the
weighted moving average variable S (StdW , Stdb), given in
the RMSprop. First, AMLP initializes all the variables vodW ,
vodb, S

o
dW , andSodW to be zero. During the t th iteration, all

the variables are updated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vtdW � β1v
t−1
dW + (1 − β1)dW

vtdb � β1v
t−1
db + (1 − β1)db

StdW � β2v
t−1
dW + (1 − β2)(dW )2

Stdb � β2v
t−1
db + (1 − β2)(db)2,

(5)

where β1 and β2 are two hyperparameters, being the first
moment and second moment, respectively, both of which
are within [0,1], and (dW , db) and ((dW )2, (db)2) denote
the differential and the exponentially weighted average of
squares, respectively. Following Kingma and Ba [36], we set
β1 � 0.9 and β2 � 0.999.

After updating the hyperparameters β1 and β2 using
momentum and RMSprop, respectively, AMLP calculates
the bias corrections for all the variables as follows:

⎧⎪⎪⎨
⎪⎪⎩

v
t , corrected
dW � vtdW

1−β t
1

v
t , corrected
db � vtdb

1−β t
1
,

(6)

123



4628 Complex & Intelligent Systems (2022) 8:4619–4639

⎧⎪⎪⎨
⎪⎪⎩

St , correcteddW � vtdW
1−β t

2

St , correcteddb � vtdb
1−β t

2
,

(7)

Finally, AMLP uses the bias-corrected variables to update
the parameters W and b according to the following rule in
the t th iteration:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Wt � Wt−1 − α
v
t , corrected
dW√

St , correcteddW +ε
,

bt � bt−1 − α
v
t , corrected
db√

St , correcteddb +ε
,

(8)

where α represents the learning rate that ranges from 0 to 1,
and ε is a value that prevents the denominator from being 0.
Following Kingma and Ba [36], we set ε � 10−8.

Based on preliminary computational tests, we construct
a three-layer perception model, where the input layer and
hidden layer include 24 and 8 neurons for the gastric cancer
dataset, and include 22 and 16 neurons for the skin cancer
dataset, respectively, and theoutput layer contains oneneuron
for both datasets. We set the initial value of the learning rate
at 0.0001 and the number of iterations at 1000.

Extreme gradient boost classifier (XGBoost): Developed by
Chen and Guestrin [37], XGBoost has been extensively
applied in stacked ensemble learning as a base learner [4,
34]. XGBoost belongs to the tree ensemble model, which
is a machine learning system based on the improved gra-
dient boosting decision tree (GBDT) [38]. The basic idea
of XGBoost is to develop a new decision tree in a gradi-
ent direction of the residuals to minimize the loss function.
XGBoost supports both row sampling and column sampling,
introduces a second-order Taylor expansion for the loss func-
tion, and uses second-order partial derivatives in training,
which makes XGBoost converge faster.

The loss function of XGBoost consists of two parts,
namely the training loss and the sum of the complexity of
each tree, is as follows:

Obj(θ) �
n∑

i�1

L(yi , ŷi ) +
H∑

h�1

�(yh), (9)

where yi denotes the actual value of the i th sample, ŷi is
the predicted value of the i th sample, �(yh) represents the
regularization term generated by each tree h, and H is the
number of trees.

XGBoost contains a large number of parameters. In
this study we apply the Bayesian optimization algorithm
to determine the values of the four key hyperparameters,
i.e., n_estimators, max_depth, learning_rate, and gamma, of
XGBoost in the two cancer datasets, where the search ranges

for each of the four hyperparameters are [1,500], [1,15], [0,1]
and [0,1].

Meta learner in the second stage

MLP based on the rectified Adam optimizer (RMLP) is an
improved MLP developed in the second stage, which uses
the new training and testing sets generated in the first stage
for training and predicting. The developed RMLP combines
the ideas of RAdam and MLP. RAdam is a new Adam vari-
ant proposed by Liu et al. [25] in 2019, which draws on the
advantages of both Adam and SGD. It introduces a term that
corrects the variance of the adaptive learning rate and dynam-
ically turns the adaptive learning rate on or off according to
the dispersion of the variance. Therefore, RMLP does not
require adjusting the hyperparametric learning rate. Table 4
presents the pseudo-code that describes howRAdam updates
the parameters in MLP. Based on preliminary computational
tests, we construct a five-layer perception model for two can-
cer datasets,where the input layer includes 4 neurons, the first
hidden layer includes 64 neurons, the second hidden layer is
the dropout layer, and the third hidden layer includes 12 neu-
rons.

Evaluation indicator

In this study, we use six machine learning classification
indicators and three statistical indicators to assess the per-
formance of the machine learning model BQAXR and
comparison methods, including accuracy, recall, precision,
F1-score, AUC, p-value, Cohen’s kappa, andMatthews’ cor-
relation coefficient.

Among the six machine learning classification indicators,
accuracy, recall, precision, F1-score, and AUC are closely
related to the following four states: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN).
These indicators can be calculated according to the four
states, and the specific formulas are as follows:

Accuracy � TP + TN

TP + TN + FP + FN
, (10)

Recall � TP

TP + FN
, (11)

Precision � TP

TP + FP
, (12)

Fβ − measure �
(
1 + β2

) Precision × Recall

β2 × Precision + Recall
, (13)
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(14)

AUC � 1 − 1

m+m−
∑

x+∈M+

∑
x−∈M−

((
f
(
x+

)

< f
(
x−)

+
1

2

(
f
(
x+

) � f
(
x−) ))

.

For Fβ − measure, following Mahajan et al. [39], we set
the parameter β � 1 and denote it as the F1-score. For AUC,
m+ and m− are positive and negative examples, and M+ and
M− represent a collection of positive and negative examples,
respectively.

The evaluation of a model by only machine learning indi-
cators cannot fully reflect the scientificness and objectivity
of the model. Therefore, in this study, we use three statistical
indicators to assess the superiority of the model in statis-
tics. The specific description of each statistical indicator is
as follows:

(1) p-value: p-value is a measure of hypothesis testing
results in statistics, which is obtained through con-
ducting the paired t test on the performance of the
algorithms. Specifically, there are statistical differences
if the p value is less than 0.05 and vice versa.

(2) Cohen’s kappa: A commonly used agreement measure,
Cohen’s kappa denotes the degree of agreement between
the actual result and predicted results on the classifica-
tion problem, which is calculated as follows [31]:

k � (p0 − pe)

(1 − pe)
, (15)

where p0 is the actual ratio and pe is the theoretical
ratio.

(3) Matthews’ correlation coefficient (MCC): MCC is a
measure of the quality of the binary-class model in
machine learning, which is essentially a correlation
coefficient value between -1 and + 1. MCC is calculated

Table 4 The pseudo-code for
parameter updating in RMLP The pseudo-code for parameter updating in RMLP 

Input: Hyperparameters β  and β , and step size 

Output: Parameters  and 

Initialize the exponentially moving 1st moment and 2nd moment  

Compute the maximum length of the approximated simple moving average 

while do 
Update the exponential moving 1st moment and 2nd moment according to Eq. (5) 

Compute bias-corrected moving average according to Eq. (6) 

    Compute the length of the approximated simple moving average 

If , then
    Compute the bias-corrected second moment estimation according to Eq. (7) 

    Compute the variance rectification 

    Update the parameters 

   Update the parameters 

else 

    Update the parameters 

    Update the parameters 

end while 
Return  and 
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as follows [40]:

MCC � TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

(16)

To avoid over-fitting of the model and better evaluate the
generalization ability of the model, all the machine learning
algorithms considered in the numerical studies apply five-
fold cross-validation with the same settings, and the number
of iterations is set at 20 to avoid contingency. The evalu-
ation indicators introduced are used to evaluate the model
performance. All the training and testing experiments are
performed in the Python software and Python third-party
libraries (Numpy, Pandas, etc.). The experimental device is
an Intel CoreTM i7 processor @ 1.80 GHZ running under
the Windows 10 16G operating system.

Numerical results

In this section, we present a series of analyses on numerical
studies from different perspectives to assess the quality and
performance of PKSFS and BQAXR, including by compar-
ison of the different feature selection methods, comparison
of the different ensemble mechanisms and stacked strategies,
and comparison between BQAXR and advanced classifica-
tion methods.

Comparison of different feature selectionmethods

Feature selection methods have a direct impact on the con-
struction of a model. To verify that PKSFS can better
guide the BQAXR’s construction, we compare and analyze
different feature selection methods including three tradi-
tional feature selection methods (filtering, wrapper, and
embedded), without feature selection and the hybrid feature
selection method proposed by Han et al. [41], respectively.
Specifically, we select the information gain feature selection
method (IG) from the filtering; the feature selection based on
genetic algorithm (GA) from wrapper, and the feature selec-
tion method based on random forest (RF) from embedded.
The hybrid feature selection method (HFS) proposed by Han
et al. [41] is a feature selectionmethod that combines filtering
and embedded. In this paper, all the above feature selection
methods are applied to construct the BQAXR model and
carry out the comparative experimental analysis. The exper-
imental results are listed in Table 5.

FromTable 4, the differences in the performance of differ-
ent feature selection methods in the two cancer datasets are
discernible. The following analysis is made based on their
performance in machine learning indicators. First, PKSFS

has the best performance in all indicators, followed by the
WFS, and the GA has the worst performance. However, it
should be noted that the performance of WFS is like that of
PKSFS, but the number of features for WFS is 125 (resp.,
114) while the number of feature selection for PKSFS is 24
(resp., 22) in the gastric (resp., skin) cancer dataset, which
indicates that PKSFS can reduce the complexity of the con-
structed model while guaranteeing the accuracy, thus better
reduce the computational cost. The performance of HFS and
GA is even worse than that of the WFS, which reveals that
they are difficult to select the important features effectively
from the high-dimensional datasets, resulting in the loss of
toomuch important feature information. Specifically, PKSFS
is 0.70% (resp., 1.35%), 2.09% (resp., 2.99%), and 0.30%
(resp., 0.41%) higher in terms of accuracy, recall, andAUC in
the gastric (resp., skin) cancer dataset, respectively, than the
WFS. Through the above analysis, we conclude that PKSFS
is a useful method to eliminate redundant features as well as
select important features from high-dimensional datasets.

Comparison of different ensemblemechanisms

Although ensemble learning methods are attractive because
of their good performance, the performance of different
ensemble mechanisms can vary greatly. Thus, it is necessary
to explore their performance operating in different ensemble
mechanisms. The proposed method BQAXR is constructed
under the stacked ensemble mechanism, and in this subsec-
tion, we first compare BQAXR with other four ensemble
mechanisms: (i) Soft voting ensemble mechanism (SV): SV
refers to totaling the predicted probabilities of the four base
learners in each class label for a particular sample, and out-
putting the class label with a high probability as the predicted
class label; (ii) Hard voting ensemble mechanism (HV): HV
refers to selecting the class label with the most prediction
results as the predicted label class from the class labels pre-
dicted by the four base learners for a particular sample, and
the predicted class label of the last base learner XGBoost
is chosen in case of a tie; (iii) Maximum ensemble mech-
anism (MaxE): MaxE refers to select the largest predicted
value from the four base learners to make the final decision.
(iv) Minimum ensemble mechanism (MinE): Like MaxE,
MinE refers to select the smallest predicted value from the
four base learners to make the final decision. We use the
above four ensemble mechanisms to integrate four heteroge-
neous base learners BKNN, QSVM, AMLP, and XGBoost,
and denote these four heterogeneous ensemble models as S,
H,A, I. Table 6 presents the experimental results of these four
heterogeneous ensemble models and BQAXR, where D_SP,
D_HP, D_AP, D_IP denote the differences between BQAXR
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Table 5 Experimental results on
comparing different feature
selection methods

Dataset Indicator WF IG GA RF HFS PKSFS

Gastric cancer Accuracy 0.8139 0.8142 0.7690 0.8090 0.7725 0.8209

Recall 0.7891 0.7919 0.7771 0.8143 0.7665 0.8100

Precision 0.8332 0.8217 0.7704 0.8204 0.7856 0.8352

AUC 0.8173 0.8133 0.7712 0.8112 0.7736 0.8203

Number of features 125 27 19 63 15 24

Skin cancer Accuracy 0.8201 0.8233 0.8017 0.7984 0.8111 0.8336

Recall 0.8611 0.8793 0.8336 0.8432 0.8474 0.8910

Precision 0.8460 0.8223 0.8105 0.8112 0.8300 0.8332

AUC 0.8173 0.8127 0.7977 0.8041 0.8053 0.8214

Number of features 114 27 17 57 16 22

The bold value is the best performance on this metric

Table 6 Experimental results on comparing different ensemble mechanisms

Dataset Indicator S H A I BQAXR D_SP D_HP D_AP D_IP

Gastric cancer Accuracy 0.8039 0.8063 0.7811 0.7910 0.8209 0.0170 0.0146 0.0398 0.0299

Recall 0.8110 0.7919 0.8672 0.7252 0.8100 − 0.0010 0.0181 − 0.0572 0.0848

Precision 0.8087 0.8325 0.7477 0.8466 0.8352 0.0265 0.0027 0.0875 − 0.0114

F1-score 0.8099 0.8117 0.8030 0.7812 0.8224 0.0125 0.0107 0.0194 0.0412

AUC 0.8040 0.8120 0.7754 0.7930 0.8203 0.0163 0.0083 0.0449 0.0273

Skin cancer Accuracy 0.8232 0.8124 0.8030 0.8214 0.8336 0.0104 0.0212 0.0306 0.0122

Recall 0.8664 0.8659 0.8910 0.8173 0.8910 0.0246 0.0251 0.0000 0.0737

Precision 0.8291 0.8217 0.7932 0.8733 0.8332 0.0041 0.0115 0.0400 − 0.0401

F1-score 0.8473 0.8432 0.8393 0.8444 0.8611 0.0138 0.0179 0.0219 0.0168

AUC 0.8152 0.8093 0.7874 0.8214 0.8214 0.0089 0.0148 0.0367 0.0028

The bold value is the best performance on this metric
S SV , H HV , A MaxE, I MinE, D_SP the differences between BQAXR and SV, D_HP the differences between BQAXR and HV, D_AP the
differences between BQAXR and MaxE, D_IP the differences between BQAXR and MinE

and S, H, A, I, respectively. In two cancer datasets, the over-
all performance of BQAXR in five indicators is better than
the other four heterogeneous ensemble models.

Comparison of different stacked strategies

In this study,we expect to further improve the performance of
the stacked ensemble model by obtaining high-quality learn-
ers, thus the shortcomings of the learners are improved in
BQAXR. Therefore, in addition to different integrated learn-
ing methods for comparative analysis, it is very necessary
to verify that improved learners can be more beneficial for
cancer survival prediction.

In this subsection, we compare and analyze the stacked
ensemble models built by the improved learners and the
stacked ensemble models built by the unimproved learners

respectively, where the unimproved version consists ofKNN,
SVM,MLP and XGBoost in the first stage, and the improved
version consists of BKNN, SVM, AMLP, and XGBoost.
In the second stage, SVM, RMLP and LR are selected as
meta learners to construct six stacked ensemble models with
different structures, respectively (see Table 7 for details),
where SVM and LR are chosen as the meta learner for
comparison because they are widely used in existing studies
related to stacked ensemble learning [26, 42]. Furthermore,
Fig. 3 shows the performance of BKNN, QSVM, AMLP and
XGBoost as base learners in the first stage and LR, SVM and
RMLP as meta learners in the second stage, respectively, in
terms of the five machine learning indicators.

The first stage consists of base learners, and the second
stage consists of one meta learner.

Based on the experimental results listed in Table 6 and
shown in Fig. 3, the following observations can be drawn:
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Table 7 Experimental results on comparing different stacked strategies

Dataset First stage Second stage Accuracy Recall Precision F1-score AUC

Gastric cancer KNN + SVM + MLP + XGB (unimproved) LR 0.7897 0.8000 0.7933 0.7967 0.7893

BKNN + QSVM + AMLP + XGB (improved) 0.8130 0.8080 0.8240 0.8160 0.8130

KNN + SVM + MLP + XGB (unimproved) SVM 0.7868 0.7889 0.7955 0.7922 0.7868

BKNN + QSVM + AMLP + XGB (improved) 0.8060 0.7940 0.8240 0.8090 0.8070

KNN + SVM + MLP + XGB (unimproved) RMLP 0.7954 0.7972 0.8039 0.8005 0.7954

BKNN + QSVM + AMLP + XGB (improved) 0.8209 0.8100 0.8352 0.8224 0.8203

Skin cancer KNN + SVM + MLP + XGB (unimproved) LR 0.7971 0.8812 0.7911 0.8337 0.7818

BKNN + QSVM + AMLP + XGB (improved) 0.8200 0.8810 0.8200 0.8490 0.8090

KNN + SVM + MLP + XGB (unimproved) SVM 0.8020 0.8713 0.8037 0.8361 0.7904

BKNN + QSVM + AMLP + XGB (improved) 0.8140 0.8710 0.8190 0.8440 0.8040

KNN + SVM + MLP + XGB (unimproved) RMLP 0.8070 0.8713 0.8008 0.8341 0.7870

BKNN + QSVM + AMLP + XGB (improved) 0.8336 0.8910 0.8332 0.8611 0.8214

The bold value is the best performance on this metric

i. In the two cancer datasets, no matter which meta learner
is selected in the second stage, the improved base learn-
ers in the first stage have better performance than the
unimproved base learners.

ii. In both cancer datasets, regardless of whether the
improved base learners are selected in the first stage,
when the RMLP is selected as the meta learner in the
second stage, the effect of the stacked ensemble model
has the best performance, followed bySVMandLRwith
the worst performance.

iii. In the gastric (resp., skin) cancer dataset, BQAXR is
2.55% (resp., 2.66%), 1.28% (resp., 1.97%) and 2.49%
(resp., 3.44%) higher in accuracy, recall and AUC,
respectively, than KSMXR (first stage: KNN + SVM
+MLP + XGBoost; second stage: RMLP), the best per-
forming of all comparison models.

In the second stage, RMLP is proposed as a meta learner
to train and test the new dataset generated in the first stage.
Optimizer is one of the important factors affecting the quality
of multi-layer perception. To verify that the multi-layer per-
ceptron based onRAdamcanproduce a better stacking effect,
we choose BKNN, QSVM, AMLP and XGBoost as the base
learners in the first stage, and explore the performance gener-
ated byMLPwith five different optimizers as the meta learn-
ers in the second stage. The five optimizers include stochastic
gradient descent (SGD), Nesterov momentum gradient opti-
mizer (Nesterov accelerated gradient descent, NAG), Adam,
RAdam and Ranger (https://github.com/lessw2020/Ranger-
Deep-Learning-Optimizer). Figure 4 shows the changes (200
epochs) in the accuracy of the five different optimizers in the
two cancer datasets from left to right, respectively. In the
gastric cancer dataset (Fig. 4a), RAdam is better than Adam
and SGD, followed by NAG, and the worst is Ranger. In the

Fig. 3 Effects of different meta learners on the second stage
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Fig. 4 Effects of 200 epochs with different optimizers

skin cancer dataset (Fig. 4b), RAdam is significantly better
than the other optimizers after 75 epochs, and the accuracy
of NAG, SGD, Adam, and Ranger tends to be similar and
stable after 175 epochs.

Comparison between BQAXR and advanced
classificationmethods

In this subsection, we compare BQAXR with twelve
advanced classification methods, including the single clas-
sifiers (DT, LR, SVM, NB, and KNN), the ensemble clas-
sifiers (RF, Adaboost, XGBoost, and light gradient boosting
machine (LightGBM), and the improved classifiers (GSVM,
QSVM, and BKNN) in terms of the machine learning indi-
cators and statistical indicators (Cohen’s kappa and MCC).
After that, for two cancer datasets, we perform the paired t
test with the classifiers (KNN, BKNN, SVM, QSVM, MLP,
XGBoost, and BQAXR) in terms of accuracy, recall, preci-
sion, and AUC, respectively.

Table 8 summarizes the experimental results on the
machine learning indicators in the two cancer datasets. From
Table 8, it can be observed that BQAXR has the best perfor-
mance and strongest generalization ability, followed by the
improved classifiers, and the single classifiers perform the
worst among all classifiers. Specifically, in the gastric (resp.,
skin) cancer dataset, BQAXR is approximately 7% (resp.,
5%) on average higher than all the single classifiers. BQAXR
is 1.89% (resp., 2.42%), 0.79% (resp., 3.97%), 2.05% (resp.,
0.99%), 1.4% (resp., 2.4%), and 1.72% (resp., 2.03%) higher
than XGBoost (resp., Adaboost), in terms of accuracy, recall,
precision, F1-score, and AUC, respectively, which performs
the best among the ensemble classifiers. BQAXR is also
2.38% (resp., 1.64%) and 4.57% (resp., 3%) higher thanQSV
in terms of accuracy and recall on the two cancer datasets.

Through the above analysis, BQAXR has better performance
than the advanced machine learning methods.

To further verify the superiority of BQAXR, Cohen’s
kappa andMCCare calculated for BQAXRand the advanced
machine learning algorithms, includingXGBoost, Adaboost,
SVM, etc. As for Cohen’s kappa, six levels are typically
used to represent consistent performance, i.e., poor (k < 0),
slight (0 ≤ k < 0.2), fair (0.2 ≤ k < 0.4), moderate
(0.4 ≤ k < 0.6), substantial (0.6 ≤ k < 0.8), and almost
perfect (0.8 ≤ k < 1). The experimental results in the two
cancer datasets are shown in Table 9. From Table 9, we see
that Cohen’s kappa values of BQAXR are the highest in the
twocancer datasets, 0.620 and0.670, respectively.According
to the above description ofCohen’s kappa, BQAXR reaches a
substantial level. Moreover, BQAXR performs well in terms
of MCC in the two cancer datasets as shown in Table 9.

Table 10 displays the experimental results on the paired
t tests. From Table 10, we see that BQAXR has a p value
of less than 0.05 in terms of accuracy, recall, and AUC for
both cancer datasets, indicating that there are statistical dif-
ferences between BQAXR and any of the other compared
machine learning methods.

Discussion

The above experimental analyses from multiple perspec-
tives demonstrate that PKSFS andBQAXRyield satisfactory
results for cancer survival prediction. Specifically, in the two
cancer datasets, BQAXR under the feature subset obtained
by PKSFS reaches the best effect compared with the sin-
gle classifiers (DT, LR, NB, SVM, and KNN) and advanced
homogeneous ensemble classifiers (Adaboost, XGBoost,
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Table 8 Experimental results on
comparing different algorithms Dataset Type Model Accuracy Recall Precision F1-score AUC

Gastric
cancer

Single
classifier

DT 0.7123 0.5722 0.7132 0.6350 0.7281

LR 0.7706 0.7439 0.7968 0.7694 0.7703

SVM 0.7711 0.7393 0.7917 0.7646 0.7709

NB 0.7534 0.6780 0.8110 0.7386 0.7550

KNN 0.7551 0.7440 0.7952 0.7687 0.7556

Ensemble
classifier

RF 0.7827 0.7781 0.7954 0.7867 0.7830

Adaboost 0.7738 0.7494 0.7893 0.7688 0.7744

XGBoost 0.8020 0.8021 0.8147 0.8084 0.8031

LightGBM 0.7867 0.7640 0.7746 0.7693 0.7881

Improved
classifier

QSVM 0.7971 0.7643 0.8276 0.7947 0.7982

GSVM 0.7892 0.7705 0.8151 0.7922 0.7888

BKNN 0.7900 0.7941 0.8022 0.7981 0.7979

Proposed
classifier

BQAXR 0.8209 0.8100 0.8352 0.8224 0.8203

Skin
cancer

Single
classifier

DT 0.7905 0.8216 0.8184 0.8200 0.7911

LR 0.8053 0.8166 0.8406 0.8284 0.8040

SVM 0.8062 0.8463 0.8222 0.8341 0.7976

NB 0.8000 0.8660 0.8031 0.8334 0.7878

KNN 0.7804 0.7180 0.8257 0.7681 0.7910

Ensemble
classifier

RF 0.8160 0.8564 0.8124 0.8338 0.7984

Adaboost 0.8094 0.8513 0.8233 0.8371 0.8011

XGBoost 0.8026 0.8322 0.8282 0.8302 0.7983

LightGBM 0.8029 0.8456 0.8182 0.8317 0.7989

Improved
classifier

QSVM 0.8172 0.8610 0.8290 0.8447 0.8090

GSVM 0.7987 0.8431 0.8165 0.8296 0.7973

BKNN 0.8108 0.8661 0.8181 0.8414 0.8014

Proposed
classifier

BQAXR 0.8336 0.8910 0.8332 0.8611 0.8214

The bold value is the best performance on this metric

LightGBM, andRF), and is better than three improved classi-
fiers (GSVM, QSVM, and BKNN) and other heterogeneous
stacked ensemble models. For the gastric (resp., skin) cancer
dataset, the best accuracy, recall, precision, F1-score, and
AUC of BQAXR are 82.1% (resp., 83.4%), 81.0% (resp.,
89.1%), 83.5% (resp., 83.4%), 82.2% (resp., 86.1%), and
82.0% (resp., 82.1%), respectively.

At present, most of the studies related to cancer survival
prediction focus on breast cancer, prostate cancer, and cer-
vical cancer, etc., and gastric cancer and skin cancer are
ignored. Therefore, comparing the model proposed in this
paper with the previous studies is a huge challenge. To verify
the effectiveness of the proposed method, based on previ-
ous cancer survival prediction and disease diagnosis studies,
the performance of the proposed method is compared with
nine ensemble learning methods proposed in cancer survival

prediction and disease diagnosis. Specifically, three hetero-
geneous ensemble methods were proposed by Bashir et al.
[27], Velusamy and Ramasamy [28] and Thongkam et al.
[18]; three homogeneous ensemble methods were proposed
by Wang et al. [8], Zein et al. [43] and Gu et al. [44]; three
stacked ensemble methods proposed by Chungsoo et al. [6],
Ali et al. [5] and Xiao et al. [21].

Table 11 shows the accuracy and AUC of the above nine
ensemble methods and the proposed method in the two can-
cer datasets. Specifically, the proposed method performed
best on the two cancer datasets, followed by the stacked
ensemble model proposed by Chungsoo et al. [6], and the
heterogeneous ensemble model proposed by Bashir et al.
[27] performed the worst. In the gastric (resp., skin) cancer
dataset, the proposed method is 2.25% (reps., 1.11%) and
2.14% (resp., 0.74%) higher in terms of accuracy and AUC
than the method proposed by Chungsoo et al. [6].
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Table 9 Experimental results of
MCC and kappa with different
algorithms

Classifier Gastric cancer Skin cancer

MCC Cohen’s kappa MCC Cohen’s kappa

DT 0.4795 0.4770 0.6074 0.6074

KNN 0.5560 0.4990 0.5789 0.5713

RF 0.5906 0.5906 0.5883 0.5880

LR 0.5589 0.5588 0.6168 0.6140

Adaboost 0.5847 0.5846 0.6029 0.6060

XGBoost 0.5908 0.5907 0.5818 0.5810

SVM 0.5851 0.5850 0.5929 0.5883

NB 0.5144 0.5071 0.5767 0.5638

BKNN 0.5873 0.5894 0.5996 0.6045

QSVM 0.5962 0.5943 0.6287 0.6268

GSVM 0.5884 0.5901 0.624 0.6213

LightGBM 0.6051 0.6050 0.6237 0.6233

BQAXR 0.6200 0.6220 0.6701 0.6721

The bold value is the best performance on this metric

Table 10 Experimental results of the paired t test on comparing different algorithms

Dataset Gastric cancer Skin cancer

BKNN SVM QSVM AMLP XGBoost BQAXR BKNN SVM QSVM AMLP XGBoost BQAXR

KNN Accuracy 0.034 0 0 0 0 0 0 0 0 0 0.013 0

Recall 0 0 0 0 0 0 0.023 0.010 0 0.144 0 0

Precision 0 0.021 0 0 0 0 0 0 0 0 0 0.004

AUC 0 0 0 0 0 0 0 0.006 0 0 0.441 0

BKNN Accuracy – 0.121 0 0.001 0.001 0 – 0 0 0 0 0

Recall – 0 0.016 0.001 0.001 0 – 0 0.001 0.017 0 0

Precision – 0.213 0.001 0 0 0 – 0.375 0.001 0 0.316 0.001

AUC – 0 0 0.001 0 0 – 0.131 0.028 0 0 0

SVM Accuracy – – 0.004 0.014 0 0 – – 0.010 0 0 0

Recall – – 0.012 0 0 0.003 – – 0.023 0.323 0 0.001

Precision – – 0 0 0 0 – – 0.011 0.023 0.4 0

AUC – – 0 0.422 0 0 – – 0 0 0.004 0

QSVM Accuracy – – – 0.012 0.032 0 – – – 0.002 0.017 0

Recall – – – 0 0.012 0 – – – 0 0.023 0

Precision – – – 0.004 0.033 0.01 – – – 0.038 0.032 0.001

AUC – – – 0.743 0.042 0.026 – – – 0.376 0.042 0.001

AMLP Accuracy – – – – 0.02 0 – – – – 0.007 0

Recall – – – – 0.001 0 – – – – 0 0

Precision – – – – 0.012 0.001 – – – – 0 0.034

AUC – – – – 0.042 0.03 – – – – 0.032 0.015

XGBoost Accuracy – – – – – 0.001 – – – – – 0

Recall – – – – – 0 – – – – – 0

Precision – – – – – 0 – – – – – 0

AUC – – – – – 0.002 – – – – – 0.007
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Table 11 Experimental results on comparing different ensemble learning models

Type References The structure of the proposed model Gastric cancer Skin cancer

Accuracy AUC Accuracy AUC

Heterogeneous ensemble [27] NB + DTG + DTI + SVM + MBL 0.7560 0.7514 0.7753 0.7832

[28] KNN + RF + SVM 0.7848 0.7819 0.7905 0.7804

[18] Adaboost + RF 0.7802 0.7803 0.7709 0.7603

Homogeneous ensemble [8] Ensemble SVM 0.7881 0.7879 0.8013 0.8000

[43] LightGBM 0.787 0.788 0.8032 0.7963

[44] XGBoost 0.8020 0.8031 0.8025 0.8002

Stacked ensemble [6] First: LLR + GB; Second: XGBoost 0.7984 0.7989 0.8225 0.8140

[5] Stacking SVM 0.7883 0.7869 0.8143 0.8018

[21] First stage: KNN + DT + RF + GBDT +
SVM; Second: MLP

0.7885 0.7901 0.7900 0.7971

This paper BQAXR 0.8209 0.8203 0.8336 0.8214

The bold value is the best performance on this metric

Conclusions

Due to the complexity and high incidence of cancer, sur-
vival prediction has been one of the three important tasks of
cancer prognosis. To address the problem of low accuracy
in cancer survival prediction, we first propose an a pri-
ori knowledge- and stability-based feature selection method
PKSFS to obtain the optimal feature subset from the high-
dimensional cancer dataset, which effectively reduces the
computational complexity and helps improve the accuracy
of survival prediction. Subsequently, the two-stage heteroge-
neous stacked ensemble learningmodel BQAXR is proposed
for cancer survival prediction,which integrates five heteroge-
neous high-quality learners in two stages through the stacked
generalization strategy, where the weaknesses and shortcom-
ings of the learners are overcome by some improvedmethods
in BQAXR. To verify the accuracy and reliability of the
model for cancer survival prediction, extensive experiments
are conducted on the real gastric cancer dataset and skin can-
cer dataset. The experimental results show that PKSFS is
beneficial to the construction of BQAXR, and the proposed
method can significantly improve the efficiency and accuracy
of cancer survival prediction compared with many state-of-
the-art machine learning methods. The output information of
BQAXR can be used as an important reference for practical
cancer prognosis, which can not only effectively assist doc-
tors in the development of treatment plans, but also improve
patient satisfaction, and reduce hospital operating costs and
patient treatment costs.

Future research may consider the following extensions
of our research. First, it is necessary to further validate the

validity and usefulness of our proposed method in more real
cancer datasets. Second, it is worth incorporating more valu-
able features into the model, such as the dietary habits of
patientswith gastric cancer and the sunshine times of patients
with skin cancer, to further improve accuracy in cancer sur-
vival prediction. Finally, it would be of interest to consider
more information into the cancer survival prediction model,
such as detailed DNA and RNA-seq information, which can
further improve the survival rates of cancer patients by sys-
tematically tracking their conditions.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix

See Table 12.
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Table 12 List of features and their descriptions in the initial dataset

Number Variable Description Number Variable Description

1 ID Patient ID 35 CSSSF9 CS site-specific factor 9

2 Seer_registry SEER registry 36 CSSSF10 CS site-specific factor 10

3 MSAD Marital status at diagnosis 37 CSSSF11 CS site-specific factor 11

4 Race Race/ethnicity 38 CSSSF12 CS site-specific factor 12

5 NHIA NHIA Derived Hisp Origin 39 CSSSF13 CS site-specific factor 13

6 Sex Sex 40 CSSSF15 CS site-specific factor 15

7 AAD Age at diagnosis 41 CSSSF16 CS site-specific factor 16

8 YoB Year of birth 42 CSSSF25 CS site-specific factor 25

9 SN Sequence number 43 AJCCT Derived AJCC T 7th ed

10 YoD Year of diagnosis 44 AJCCN Derived AJCC N 7th ed

11 MoD Month of diagnosis 45 AJCCM Derived AJCC M 7th ed

12 PSL Primary Site-labeled 46 SS1977 Derived SS1977

13 Laterality Laterality 47 AJCC Derived AJCC Stage Group 7th ed

14 HT_ICD Histologic Type ICD-O-3 48 SS2000 Derived SS2000

15 HC_ICD Behavior code ICD-O-3 49 RXSSPS RX Summ–Surg Prim Site

16 Grade Grade 50 RXSRLE RX Summ–Reg LN Examined

17 DC Diagnostic Confirmation 51 RXSSRLS RX Summ–Reg LN Sur

18 ToRS Type of reporting source 52 RXXOR RX Summ–Oth Reg/Dis

19 EOD_E EOD 10-extent 53 RnCDS Reason no cancer-directed surgery

20 EOD_N EOD 10-nodes 54 RN Record number

21 EOD_S EOD 10-size 55 L2005 Louisiana 2005

22 CSTS CS tumor size 56 SEERH SEER historic stage A

23 CSE CS extension 57 FMPI First malignant primary indicator

24 CSS CS Schema 58 PBIR Primary by international rules

25 CSLN CS lymph nodes 59 SS2000 Summary stage 2000

26 CSMAD CS mets at dx 60 SoRD Surgery of othreg/dis sites

27 CSSSF1 CS site-specific factor 1 61 TN_SITU Number of in situ/malignant tumors

28 CSSSF2 CS site-specific factor 2 62 TN_BB Number of in benign/borderline tumors

29 CSSSF3 CS site-specific factor 3 63 TM1 Tumor marker 1

30 CSSSF4 CS site-specific factor 4 64 TM2 Tumor marker 2

31 CSSSF5 CS site-specific factor 5 65 TM3 Tumor marker 3

32 CSSSF6 CS site-specific factor 6 66 SM Survival months

33 CSSSF7 CS site-specific factor 7 67 VS Vital status

34 CSSSF8 CS site-specific factor 8 – – –
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