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Abstract
As a new form of public transportation, shared bikes have greatly facilitated people’s travel in recent years. However, in the
actual operation process, the uneven distribution of bicycles at each shared bicycle station has limited the travel experience. In
this paper, we propose a deep spatio-temporal residual network model based on Region-reConStruction algorithm to predict
the usage of shared bikes in the bike-sharing system. We first propose an Region-reConStruction algorithm (RCS) to partition
the shared bicycle sites within a city into separate areas based on their geographic location information as well as bikes’
migration trends between stations. We then combine the RCS algorithm with a deep spatio-temporal residual network to
model the key factors affecting the usage of shared bicycles. RCS makes good use of the migration trend of shared bikes
during user usage, thus greatly improving the accuracy of prediction. Experiments performed on New York’s bike-sharing
system show that our model’s prediction accuracy is significantly better than that of previous models.

Keywords Spatio-temporal data mining · Urban computing · Gaussian mixture model cluster · Citywide bike usage
prediction · Deep learning

Introduction

With growing air pollution and road congestion problems,
many cities around the world are exploring greener and more
convenient ways of getting around. One of the solutions that
has beenproposed and implemented during the past fewyears
is the bicycle-sharing system (BSS) [1]. As a new mode of
public transportation in the context of the “Internet+” and
the sharing economy, the emergence of bicycle sharing has
solved the “last mile” problem for residents and has greatly
improved the utilization of public transportation [2]. It has
also effectively alleviated traffic congestion on urban roads
[3].

The BSS can be implemented in two main ways: a
free-floating system and a station-based system [4]. In the
free-floating system, bicycles are scattered in various areas
of the city, and users can pick up and return the bicycles at
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any specified area. In comparison, the station-based system
allows for better control of shared bicycles. First, the station
maintains strict control over the use of shared bicycles, so the
shared bicycles there are safer. Second, when electric bicy-
cles are deployed in the station-based system, the station can
act as a charging point for bicycle batteries. For this reason,
station-based BSSs have always dominated the market [5].

The station-based BSS, however, does also have some
shortcomings that seriously affect the user experience at
times. One of these shortcomings is the unbalanced distribu-
tion of shared bicycles at each station [6].As shown inFig. 1a,
some stations have large numbers of users returning bikes,
which causes all of the bikes’ stakes to be used. These stations
thus cannot provide free stakes for subsequent users to use
for performing return operations. As shown in Fig. 1b, some
stations have very low numbers of shared bikes because large
numbers of users are borrowing the bikes, so they cannot pro-
vide enough shared bikes for subsequent users. This problem
of the unbalanced distribution of shared bikes mainly stems
from the travel patterns of users [7], who generally leave their
homes in the morning and go to work. This is when bikes
located in residential areas are overused; conversely, bikes
located at people’s workplaces pile up in the morning, thus
creating an oversupply. The exact opposite is true in the after-
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(a) Overcrowding of shared bicycles (b) Abnormal scarcity of shared bicycles

Fig. 1 Unbalanced distribution of shared bicycles

noon. Both scenarios lead to an imbalance in the distribution
of bikes at different stations at different times of the day in the
city. In many BSSs, the problem of the uneven distribution
of bikes is solved using trucks to manually transfer shared
bikes between stations in a constant stream. This solution
has two main drawbacks, though: (1) trucking is expensive
and raises environmental concerns; (2) it is an afterthought,
as the transfer of bicycles is always done after the problem
occurs. This affects the proper functioning of the BSS. This
solution is clearly not a long-term solution.

For this reason, researchers hope to solve this problem
with the help of the effective prediction of the future usage
of BSSs. Lin et al. [8] presented a bicycle-sharing strategy
design problem that included a bicycle garage storage sys-
tem and amodel based on an inventory center. They took into
consideration the number and locations of BSS stations, as
well as the creation of bicycle lanes. Li et al. [9] proposed
a level forecast model for predicting the number of future
shared bicycles rented or returned. The model focuses more
on macroscopic traffic flow in the BSS. This is an extremely
important reference for research methods in system analy-
sis and travel forecasting. The prediction model proposed
in their literature first clusters bicycle stations using unified
geographic grid clustering (GC) and the K-means clustering
method in a two-layer process. Then, it uses amulti-similarity
reference model to predict the number of rented and returned
bicycles. However, the prediction accuracy still has much
room for improvement due to the limitations of the multi-
similarity reference model [10]. Jia et al. [11] combined
affinity propagation (AP) clustering with a multi-similarity
reference model (MSI) based on the work of Li to predict the
number of borrowed and returned bicycles at a future time.
The clustering results they obtained are more stable com-

pared with previous studies because the number of clusters
does not need to be specified at the time of clustering [12].
But in the actual use process the prediction of the model is
limited by the time and space complexity of themodel, which
takes a lot of time. Yang et al. [13] use random forest (RF)
to build a spatiotemporal dynamic network to evaluate and
predict station and city bike demand. It should be noted that,
random forests are not able to make predictions beyond the
range of the training set data in the shared bicycle usage pre-
diction task, which may lead to overfitting when modeling
data with some specific noise. Also for shared bicycle predic-
tion tasks with small data or low-dimensional data (data with
few features), RF is ineffective. Therefore, the effectiveness
of the spatio-temporal dynamic network created using RF
has some limitations in the prediction task of shared bicycle
usage.

In recent years, with the rapid development of deep learn-
ing, artificial neural networks have also been applied to
shared bicycle usage prediction. Liu et al. [14] proposes a
weight correlation network (WCN) to model the relationship
among bike stations and dynamically group neighbouring
stations with similar bike usage patterns into clusters, fol-
lowed by artificial neural network (ANN) and Monte Carlo
(MC) simulation to predict the over-demand probability of
each cluster, looking at station-and cluster-level dimensions.
However, because artificial neural networks do not take into
account the time dependence in themodel structure, it cannot
fully capture the features of time series data [15,16].To over-
come ANN’s shortcomings, Pan et al. [17] train a deep long
short termmemory (LSTM)model with two layers to predict
bike renting and returning bymaking use of the gating mech-
anism of LSTM and the ability to process sequence data of
recurrent neural network(RNN). Their prediction accuracy
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has improved considerably, but because of traditional RNNs
rely too much on predefined time lags to learn time series
processing, it is difficult to find the optimal window size
when modeling time series data. Models constructed based
on RNNs alone do not capture temporal correlation well.

Based on the above study, in our work we present a deep
spatio-temporal residual networkmodel basedon theRegion-
reConStruction algorithm (RCS) algorithm, called RST-Net,
for predicting the usage of the urban BSS at a future time.
We first propose an RCS algorithm to zone the shared bike
sites in the city. The algorithm first clusters the sites into
various regions based on their geographic location infor-
mation via the Gaussian mixed-model clustering algorithm.
Then, it calculates the “site→region” migration trend matrix
of every site. Afterward, the Gaussian mixed-model cluster-
ing algorithm is used again to obtain more accurate regional
classification results by combining each site’s geographic
location information with its “site→region” migration trend
matrix.Unlike the previous clusteringof the sites’ geographic
location information, the introduction of the “site→region”
migration trend matrix can effectively capture the migration
trends among each shared-bicycle site, which significantly
improves the clustering accuracy. Following the RCS of
shared-bicycle sites, we calculate the number of borrowed
and returning bikes in each region based on the clustering
results, and we obtain the inter-regional shared-bicycle bor-
rowing and returning matrix. Based on this, we use the deep
spatio-temporal residual network [18] to make a batch pre-
diction of the number of shared bikes borrowed and returned
in each region of the city in a future period. In addition, we
design the residual network to model the traffic flow charac-
teristics according to the short-term temporal impact and the
long-term temporal impact. Then, we dynamically aggregate
the two residual networks. Finally, we combine the effects
of external factors, such as meteorology, to obtain the final
prediction results.

Our contribution is in three main areas:

(1) The RCS algorithm is used to reconfigure the shared-
bicycle sites. The RCS algorithm can effectively capture
the bike migration trend among shared bike sites, and
the sites are more representative after the regional recon-
struction, which is more conducive to the prediction for
bike borrowing and returning.

(2) Combining the RCS algorithm with the deep spatio-
temporal residual network. While capturing the shared-
bike migration trend, we identify four factors that influ-
ence the use of shared bicycles: the short-term temporal
impact, the long-term temporal impact, the external factor
impact (EFI) and the regional association impact (RAI).
Then,we overlay deep spatio-temporal residual networks
on top of RCS to capture these factors.

(3) Experimental results in the New York BSS show that
our model performs well, and the prediction accuracy is
greatly improved compared with the previous model.

Overview

In this section, we first define the terminologies used in this
paper. Then, we describe the key characteristics of the BSS.
Finally, we provide an overview of our proposed prediction
model.

Problem definition

Definition 1 Trip. A trip Tr = (So, Sd, τo, τd) is a usage
record of shared bike, the starting station is denoted as So,
consist of latitude So.lat and longitude So.lon; the destination
station is denoted as Sd, consist of latitude Sd.lat and longitude
Sd.lon too; τo and τd are the time when the bike is borrowed
at So and returned at Sd respectively.

Definition 2 Region.Locationhasmanydifferent definitions
depending on the granularity and semantic meaning. In this
paper, according to the clustering results in “Evaluation”, we
divide the shared bike stations into m regions, each region
representing a group of shared bike sites with similar migra-
tion trends.

Definition 3 “site→region” migration trend matrix. “site
→region”migration trendmatrix is the bikemigrationmatrix
from each shared bike site to each region based on the clus-
tering results, a “site→region” migration trend matrix in t is
represented by a matrix MTt,k×m , which means the number
of shared bicycles from station Si to region R j in time t .

Definition 4 Meteorology. The meteorology Mt = (wt , pt ,
vt ) is a vector corresponding to period t , wherewt , pt and vt
stand for the weather condition, temperature and wind speed
in t respectively.

Key features

Short-term time effects, long-term time effects, the regional
association impact and some external factors usually influ-
ence the use of shared bicycles as a mainstream mode of
public transportation. These factors are visually depicted in
Fig. 2.

(1) Short-term impact (STI): The use of shared bikes at
a certain moment is usually influenced by the use of shared
bikes at a time close to that moment [19]. For example, the
number of bikes returned at 8:00 a.m. to 9:00 a.m. is closely
related to the number of bikes borrowed at 7:00 a.m. to 8:00
a.m. Similarly, the number of bikes borrowed at a site at this
time is also closely related to the number of bikes returned
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Fig. 2 Factors affecting the use of shared bicycles

at the previous time, as the number of bikes returned at a
site directly determines whether the site has enough bikes
for users to use at a following time period.

(2) Long-term impact (LTI): Shared bicycle usage at the
same moment in a fixed period is usually similar as shown
in Fig. 2a. Wednesday’s shared bike usage is very similar to
that of Tuesday and Thursday of this week andWednesday of
last week. These users generally have the same bicycle-using
habits, such as commuting to work by bicycle, running to the
park by bicycle, etc.

(3) External factors impact (EFI): First, as shown in
Fig. 2b, the use of shared bicycles is highly susceptible to
weather conditions [20]: in some bad weather conditions—
such as too high or too lowof a temperature, highwind speeds

and rain—the number of shared bicycles used has a clear ten-
dency to decline. Second, the usage of shared bicycles during
holidays and double holidays is also significantly different
from that in normal times, etc.

(4) Regional association impact (RAI): Many regions
are interrelated in terms of shared-bike usage, which is
mainly reflected in two aspects: geographic interconnection
and regional function links. On the one hand, as shown in
Fig. 2c, the number of bikes borrowed from a site at 6:00
a.m. has a direct impact on the number of bikes returned to
the site after 6:00 a.m. Due to the close geographical con-
nection, the flow of shared bicycles in adjacent areas will
affect each other directly. On the other hand, a city can be
divided into many areas according to their functions, such
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as work areas, living areas, and entertainment areas [21,22].
Many areas are directly related to one another in terms of
transportation [23,24], such as work areas and living areas:
during the work day, many workers go from their living areas
to their work areas in the morning, and they return to the liv-
ing areas to rest in the afternoon. Therefore, the number of
borrowed bikes in the living areas in themorningwill directly
affect the number of returned bikes in the work areas. Mean-
while, the opposite is true in the afternoon: the number of
borrowed bicycles in the work areas will directly affect the
number of returned bicycles in the living areas.

Framework of our predictionmodel

We propose a deep spatio-temporal residual network model
based on the RCS algorithm, called RST-Net, to predict the
number of rented bikes and returned bikes in a following
period. As illustrated in the Fig. 3, the entire predictionmodel
consists of three parts:

(1) RCS model for shared bicycles: The distribution of
shared-bike sites within the city is very disorganized, and the
shared-bike usage data of many sites is very sparse, so it is
not necessary to predict each site in the city individually. In
this paper, we propose an RCS algorithm for the region clas-
sification of shared bike sites in a city. The algorithm first
clusters all sites into different regions based on their geo-
graphic location information via the Gaussian mixed-model
clustering algorithm. It then calculates the “site→region”
migration trend matrix of each site. Finally, it combines
the geographic location information and the “site→region”
migration trend matrix for clustering to obtain more accurate
regional classification results. Unlike the previous clustering
of the geographic location information of the bicycle sites,
the introduction of the “site→region”migration trendmatrix
can capture the bicycle migration trends among the shared
bicycle sites, which can significantly improve the clustering
accuracy.

(2) Deep spatio-temporal residual networks based on
RCS: After RCS, we use the deep spatio-temporal resid-
ual network (ST-ResNet) to make a batch prediction of the
number of bikes borrowed and returned in each region of
the city at a coming time. Based on the STI and the LTI,
we design a residual convolution unit to model the traffic
flow characteristics. Then, we dynamically aggregate the two
residual networks and combine them with meteorological
factors to obtain the final prediction results. The details are
described in “Deep spatio-temporal residual networks based
on Region-reConStruction algorithm”.

Here is the structure of the remainder of this paper:
“Preparation work” describes the methods we need to use,
“Proposed algorithm” provides a detailed description of the
algorithm proposed, the experimental part is in “Evaluation”
and “Conclusion” provides the conclusion of the thesis.

Preparation work

Gaussianmixture model

The Gaussian mixture model (GMM) uses the Gaussian
probability density function (normal distribution curve) to
accurately quantify things and to decompose a thing into a
number of Gaussian probability density functions (normal
distribution curve) based on the formation of the model [25].
Each GMM is composed of K Gaussian distributions, each
Gaussian is called a “component” and these components are
added together linearly to form the probability density func-
tion of the GMM as shown in Eq. (1):

p(x) =
k∑

k=1

p(k)p(x |k) =
k∑

k=1

πk N (μk, �k) (1)

where K components of GMM correspond to K clusters, πk

is the impact factor of each Gaussian distribution (compo-
nent) on data points, μk is the mean value of each class, �k

is the covariance matrix.
Now there are N data points and assume that they obey

a certain distribution (denoted as p(x) ), now to determine
the values of the set of parameters πk , μk , �k inside. The
probability distribution it determines generates these given
data points with maximum probability, and this probability
is actually shown in Eq. (2):

p(x) =
N∏

i=1

p(xi ) (2)

This product is called the likelihood function. The prob-
ability of a single point is usually very small. If many very
small numbers are multiplied together, this can easily cause
a floating point overflow in the computer. This leads to tak-
ing the logarithm of p(x) and converting the product to a
summation as shown in Eq. (3):

p(x) =
N∑

i=1

log p(xi ) =
N∑

i=1

log

{
K∑

k=1

πk N (xi |μk, �k)

}
(3)

This yields the log-likelihood function,which is thenmax-
imized by finding a set of values for the parameters of πk ,μk

and �k such that the likelihood function takes its maximum
value.

Because the logarithmic function has a summation inside,
the maximum value cannot be found directly by solving the
equation directly. To solve this issue, researchers try to ran-
domly select points in the GMM. This process is divided
into two steps: the E step and the M step (i.e., the EM algo-
rithm [26]). The EM algorithm is a maximum likelihood
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Fig. 3 The framework of RST-Net

estimation method for solving the parameters of a proba-
bility model from incomplete data or data sets with missing
data (the presence of hidden variables). The E step uses the
existing estimates of the hidden variables to calculate their
maximum likelihood estimates; meanwhile, the M step max-
imizes the maximum likelihood values found in the E step
to calculate the values of the parameters, and it iterates until
convergence.

EM algorithm flow:

(1) Estimate the probability of the data that each component
is generating (not the probability that each component
will be selected): For each datum xi , the probability that
it is generated via the k-th component is:

γ (i, k) = πk N (xi |μk, �k)∑K
j=1 π j N (xi |μ j , � j )

(4)

where N (xi |μk, �k) is the posterior probability:

N (xi |μ,�)

= 1

(2π)D/2

1

|�|1/2 exp

{
−1

2
(x − μ)T�−1(x − μ)

}

(5)

(2) The values of the parameters of μ and � can be obtained
via maximum likelihood estimation by taking the deriva-
tive and making the parameters equal to 0:

μk = 1

Nk

N∑

i=1

γ (i, k)xi (6)

�k = 1

Nk

N∑

i=1

γ (i, k)(xi − μk)(xi − μk)
T (7)

where Nk = ∑N
i=1 γ (i, k), and πk can be estimated as

Nk/N ,
(3) Repeat the first two steps of the iteration until the value

of the likelihood function converges.

Gaussianmixture model cluster

The GMM cluster is the “inverse process” of generating data
samples based on the GMM: the number of clusters (K ), the
parameters (μ) (i.e., mean vector), the covariance matrix (�)
and the weights (π ) of eachmixed component are derived via
a parameter estimation method, and each multivariate Gaus-
sian distribution component corresponds to a cluster after
clustering [27]. When the parameter estimation process is
completed, for each sample point, the posterior probability of
belonging to each cluster is calculated according to Bayes’s
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Fig. 4 Residual deep convolutional neural network

theorem, and the sample is classified with the cluster with
the largest posterior probability. Compared with clustering
methods such as K-means, which directly provides a cluster
division of sample points, the GMM, which gives the prob-
ability that a sample point belongs to each cluster, is called
soft clustering [28].

Deep spatio-temporal residual networks

The deep spatio-temporal residual network (ST-ResNet) is
a neural network model with an end-to-end structure that
designs neural networks based on the unique characteristics
of spatial-temporal data. Zhang et al. proposed this in 2016
[18]. The ST-ResNet first grids the entire city region [29] and
then uses a convolution-based residual network to mine the
intra-city local area and its surrounding area. It has excellent
performance in traffic flow prediction.

The ST-ResNet consists of four main components: the
closeness component, periodicity component, trend compo-
nent and external component. These are used to model four
characteristics of traffic data, such as the temporal proxim-
ity, periodicity, trend and external factors affecting the traffic
flow.

Specifically, the deep spatio-temporal residual network
first converts the number of crowd inflows and outflows [30]
for the entire city into an image-like two-channel matrix
based on a given time interval. Then, the time axis is divided
into three segments representing recent time, recent history
anddistant history, respectively. The two-channel flowmatrix
in each time interval segment is fed into the first three com-
ponents, which are used to model each of the three temporal
attributes mentioned above: the proximity, periodicity and
trend. The first three components are composed of a net-
work structure of a convolutional neural network connecting
a sequence of residual units as shown in Fig. 4, with the spe-
cific description given by Eq. (8):

X (l+1)
c = X (l)

c + F(Xl
c; θ lc), l = 1, . . . , L (8)

The learnable parameters in the l-th residual unit is
denoted by θ , and F(•) is the residual function. A convo-
lutional layer is superimposed at the top of the L-th residual
unit; thus, each component is composed of a number of con-
volutional layers and residual units. Theoutputs of these three
components are Xl+2

c , Xl+2
p and Xl+2

q . respectively. This
network structure captures the spatial dependence between
nearby and faraway regions.

In the external component, the ST-ResNet manually
extracts some features from external data, such as weather
conditions and events, and feeds them into a two-layer fully
connected neural network. The output of the external com-
ponent is represented by XExt. Furthermore, the ST-ResNet
fuses the outputs of the first three components—Xl+2

c , Xl+2
p

and Xl+2
q —by means of parameter matrix-based fusion as

shown in Eq. (9):

XRes = Wc ◦ X (L+2)
c + Wp ◦ X (L+2)

p + Wq ◦ X (L+2)
q (9)

where ◦ is the Hadamard product (i.e., element-wise mul-
tiplication), and where Wc, Wp and Wq are the parameters
used to adjust the degree of influence by proximity, period
and trend, respectively. They assign different weights to the
results of different components in different regions; XRes is
then fused directly with the output of external component
XExt. The predicted value, X̂t , for the t-th time interval is
defined as:

X̂t = tanh(XRes + XExt) (10)

where tanh is the hyperbolic tangent, ensuring that the output
value is between − 1 and 1.

Proposed algorithm

Region reconstructionmodel for shared bicycles

The main reasons for our regional reconstruction of urban
shared-bike sites are as follows:

(1) The distribution of shared-bicycle sites within the city is
very disorganized [31], and the shared-bicycle data of a
single site is not very regular, which makes it difficult to
make modeling predictions.

(2) Due to the remote locations of some shared-bike sites and
the relatively low bicycle usage there, the bike-sharing
usage data of many sites are very sparse. In addition,
due to some force majeure, the data collected via the
sensors at some of the sitesmay be null at somemoments,
resulting in a lack of corresponding data [32];

(3) Many shared-bicycle stations are interconnected [33].
When one site is full of bicycles, if a user needs to return
a bicycle, he or she must go to a nearby site to return
the bicycle; similarly, when one site is in high demand
and no bikes are available to borrow, the user must go to
a nearby site. In addition, once an accident occurs that
affects bike use at one station, this usually affects many
shared bike stations in the immediate area.
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Therefore, predicting shared-bicycle usage at individual
sites in the city is not necessary. We consider using the RCS
algorithm to reconstruct the shared-bicycle sites in the city in
some regions. The algorithm first clusters all sites into differ-
ent regions based on their geographic location information
via the GMM clustering algorithm. Then, it calculates the
bike migration matrix from each site to each region based
on the clustering results, which is called the “site→region”
migration trend matrix. Finally, it combines the sites’ own
geographic location information and the obtained migration
trend matrix to obtain a more accurate region classification.
Unlike the previous clustering of the geographic location
information of shared-bicycle sites, the introduction of the
“site→region” migration trend matrix is good for capturing
the bike migration trends among shared-bicycle sites.

Step 1: Initial reconstruction (in the first level) Apply
GMM clustering on shared bike stations based on their
geographical locations. Consequently, all stations are
divided into some classes, each class is labeled as one
region.
Step 2: Iterated reconstruction (in the second level)

Step 2.1: Based on the reconstruction results at Step
1, compute the “site→region”migration trendmatrix
of each station.
Step 2.2: Re-perform GMM clustering on shared
bike stations based on their geographical locations
and migration trend matrices. The new reconstruc-
tion results are obtained.
Step 2.3: Repeat Step 2.1 and Step 2.2 until the recon-
struction results are no longer changed, or the number
of iterations gets the maximal limit.

Figure5 visually portrays the RCS procedure. In the first
step of the algorithm, the RCS algorithm clusters the indi-
vidual sites by their geographic location information only:

⎡

⎢⎢⎢⎣

S1.lat S1.lon
S2.lat S2.lon
...

...

Sn .lat Sn .lon

⎤

⎥⎥⎥⎦

n×2

where n is the number of stations, Sx .lat and Sx .lon represent
the latitude and longitude information of each shared bike
station respectively. {R0

k }mk=1 are the generated regions, m is
the number of regions. In the second step of the algorithm, a
value

∥∥MTt
x

∥∥
F is added to the latitude and longitude infor-

mation of the site, which is represents the migration trend of

Algorithm 1: Region-reConStruction algorithm

1 Input:
2 Stations {Si }ni=1, trip history {Tri }Hi=1, iterations number T ,
Number of regions k, t = 0.

3 Output:
4 Regions {Rk}mk=1
5 Step 1: Initial reconstruction
6 {R0

k }mk=1 = GMM ({Si }ni=1); /* Perform GMM on bike stations
based on geographic position features */

7 Step 2: Iterated reconstruction
8 while t ≤ T do
9 t + +;

10 Calculate/update {MT t
i }ni=1 based on {Rt−1

k }mk=1; /*{MT t
i }ni=1 is the migration tend matrices of stations under the

t-th iteration */
11 {Rt

k}mk=1 = GMM
({Si }ni=1, ‖MT t

i ‖F
)
; /* Use geographical

locations and migration trends to re-reconstruction, ‖MT t
i ‖F

is the Frobenius norm of Rt
i */

12 if
(
{Rt

k}mk=1 == {Rt−1
k }mk=1

)
then

13 return;
14 end
15 end

station Sx in the t-th iterated.

⎡

⎢⎢⎢⎣

S1.lat S1.lon ‖MTt
1‖F

S2.lat S2.lon ‖MTt
2‖F

...
...

...

Sn .lat Sn .lon ‖MTt
n‖F

⎤

⎥⎥⎥⎦

n×3

It must be noted that in Step 2.2 of Algorithm 1, we have a
problem (i.e., how to add migration trend information to the
clusteringprocess).Our solution is to transform themigration
trend matrix into a trend array feature, which is described
below:

We introduce the Frobenius norm [34] in the data pro-
cessing step. Assume that MT is the migration trend matrix
for a station. MTi j represents the migration information
(expressed in terms of the number of returned bikes) from
the current station to the j-th region during the i-th hour.
The Frobenius norm of MT ∈ �l×m is defined as:

‖MT‖F =

√√√√√
l∑

i=1

⎛

⎝
m∑

j=1

∣∣Ai j
∣∣
2
⎞

⎠ (11)

where m is the number of regions, and l is the time interval
set in the calculation of the migration trend (here, l is set to
one hour) [35]. Take one day as an example: the training data
period is 24 h, and the number of rows in matrix MT is 24.∥∥MT1

1

∥∥
F and

∥∥MTt
1

∥∥
F represent the Frobenius norm of the

migration trend matrix of station Sx used in the first and t-th
GMM clustering with geographical locations and migration
trend information. Figure5 provides an example of a station’s
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Fig. 5 Region-reConStruction diagram

migration trends. As shown in Fig. 5, the city has 10 stations,
and all of the stations are reconstructed into five regions.
For station S1 in region R1, the number of shared bicycles
at this site that are returned to the four other regions during
time period t1 is denoted as MT1(20, 17, 9, 32). Similarly,
the number of shared bicycles at this site that are returned
to the four other regions during time period t2 is denoted as
MT2(23, 12, 46, 16). The time period during the tl hour is
denoted as MTl(6, 19, 21, 7). Therefore, the migration trend
matrix of station S1 can be denoted as a matrix, which repre-
sents the historical migration trends of station S1 during the
past l hours:

MT1 =

⎡

⎢⎢⎢⎣

20 17 9 32
23 12 46 16
...

...
...

...

6 19 21 7

⎤

⎥⎥⎥⎦

l×4

Following the regional reconfiguration of shared-bicycle
stations, we calculate the number of shared bicycles that

are borrowed and returned in each region based on the
reconstruction results to get the inter-regional shared-bicycle
borrowing and returning matrix.

Deep spatio-temporal residual networks based on
Region-reConStruction algorithm

After reconstructing the shared-bicycle stations in the city
and obtaining the inter-regional bicycle borrowing and
returning matrix, we fuse it with the deep spatio-temporal
residual network to predict the number of bicycles borrowed
and returned at a future time.

A description of the key characteristics that influence
the use of shared bicycles has been given in “Key fea-
tures”. In this section, we use a deep spatio-temporal residual
network based on the RCS algorithm to model three fac-
tors that influence bike-sharing usage—short-term temporal
influence, long-term temporal influence and the influence of
external factors—in the following steps:
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Step 1: Calculate the inter-regional shared-bicycle bor-
rowing and returning matrix. Based on the results of the
RCS algorithm, the bicycle borrowing and returning matrix
between regions is calculated with a time interval of one
hour. The bicycle borrowing and returning matrix is simi-
lar to a picture with different pixel values. The number of
bicycles borrowed and returned among different regions in
a hour is composed of a two-dimensional array represent-
ing the number of bicycles that users have borrowed and the
number of bicycles that users have returned in each region,
respectively. All of the time intervals of the bicycle bor-
rowing and returning matrix are stacked together to form
a four-dimensional bicycle renting and returning matrix.
Specifically, for four-dimensional array A, A[0] represents
all regions, A[1] represents the number of rented bikes in
each region, A[2] represents the number of returned bikes
in each region and A[3] represents the time series. A visual
depiction is given in Fig. 6.

Step 2: Extraction of time segments. As shown in Fig. 7,
according to the given predicted time slots, the renting
and returning data corresponding to the two time slots are
extracted on top of the regional renting and returning matrix:
short-term time slice XSti and long-term time slice XLti. The
details of the extraction are shown below:

XSti = [Xt−lsti , Xt−(lsti−1), . . . , Xt−1] (12)

XLti = [Xt−llti∗7∗24, Xt−(llti−1)∗7∗24,
Xt−(llti−2)∗7∗24, . . . , Xt−7∗24] (13)

In Eqs. (12) and (13), lsti denotes the length of the short-
term time slice, and llti denotes the length of the long-term
time slice. We use these two formulas to extract the short-
term time series and long-term time series of thematrix of the
number of bikes borrowed and returned. Using Eq. (13) as an
example, we assume that the time of the historical data set is
100weeks. Through this formula, we can use aweek as a unit
of measure to extract the matrix of the number of borrowed
and returned bikes from the initial time to the current time.

Step 3: Constructing convolutional neural networks. As
mentioned above, in the bicycle-sharing system, complex
interactions take place between many stations in terms of
geographic location, which is also the case in theBSS follow-
ing region reconfiguration. In an inter-regional shared-bike
renting and returning matrix, many related regions are in dif-
ferent locations: some are close to one another, and some
are far away from one another. In this paper, we hope to
capture the spatial dependencies among all of the regions
in the grid via convolutional neural networks. Due to the
local connectivity of the convolutional operation, a node in
the higher-level feature map depends on multiple adjacent
nodes in the lower-level feature map, and the adjacent fea-

ture nodes in the lower-level feature map are obtained by
convolving multiple adjacent nodes in the lower-level fea-
ture map as shown in Fig. 8.

One convolution can only capture the spatial dependen-
cies in adjacent regions, whereas multi-layer convolution
can capture spatial dependencies over longer distances [36].
Thus, a multi-layer convolutional neural network needs to
be designed to capture the spatial dependencies among all
routes in the grid. First of all, the convolutional neural net-
work is constructed separately to capture the dependencies
of the data in different time dimensions based on the time
segments of the borrowing and returning matrix extracted in
the first step for two time periods. Themultilayer convolution
in this network structure is able to capture the interdependen-
cies of all regions in the spatial dimension after the spatial
reconstruction has been performed.

Denote transient correlation sequence by (XSti)
(0) =

XSti ∈ R
lsti×N×N , the conversion formula is as follows:

(XSti)
(1) = f (W (1)

sti ∗ (XSti)
(0) + bsti

(1)) (14)

where ∗ denotes convolution. For ensuring that the output
after the convolution operation matches the size of the input
tensor, it is necessary to fill in the zero values around the
input tensor. W (1)

sti and b(1)
sti are the learning parameters for

the first layer of convolution, and f (•) denotes the activation
function. Here, ReLU [37] is used as the activation function
(i.e., f (x) = max(x, 0)).

Step 4: Incorporating residual networks. As an easier-to-
optimize neural network, the residual network can improve
accuracy by increasing the depth of the network [38]. Its
internal residual block uses jump connections to alleviate the
gradient disappearance problem associated with increasing
depth in deep neural networks, so in this paper’s model, we
use a residual learning strategy to capture spatial dependen-
cies at longer distances. In our proposed model, L residual
units are added consecutively following convolution opera-
tion Conv1, and formally, a residual unit can be defined as:

(XSti)
(l+1) = (XSti)

(l)

+F((XSti)
(l); (θSti)

(l), l = 1, 2, . . . , L (15)

where (XSti)
(l) and (XSti)

(l+1) denote the input and output
of the l-th residual unit, respectively; F(•) denotes residual
mapping; (θSti)

(l) denotes the learning parameter of the l-th
residual unit.

After the first residual unit, convolution operation Conv2
is designed to be added, and the output of the short-term time-
influenced part (XSti)

(l+2) is obtained following the entire
residual network calculation. The long-term time impact
component uses the same network construction as the short-
term time impact component, and the corresponding output
is (XLti)

(l+2).
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Fig. 6 Four-dimensional array
of rented and returned bikes

Fig. 7 Extracting time segments
to form training data

Fig. 8 Capturing spatial
dependencies through
convolutional networks

Step 5: Adding external factor components. Combined
with the practical application context of the BSS, the main
external factors considered in this paper are the weekday
attribute of the correspondingdate and theweather state of the
corresponding moment. We model the influence of external
factors on the BSS through a fully connected network [39].
The relevant experimental data are first obtained from the
outside, and then, the corresponding features are extracted
manually. For the weekday attribute, we use the time fea-
ture vector. The time feature of each moment consists of
eight dimensions; the first seven dimensions are in one-hot
form, and the last dimension indicates whether the day is a

weekday. Taking Fig. 8 as an example, the meaning of the
time feature is that the time slice corresponds to the date of
Thursday and is a weekday. For weather conditions, we use
themeteorol feature vector to represent. Themeteorol feature
of each moment consists of 19 dimensions. The first 17 are
also in one-hot form, indicating one of the weather types, and
the last two dimensions indicatewind speed and temperature,
respectively. Finally, the two vectors are merged into a vector
of 27 dimensions, represented as a meta-feature. The predic-
tion moment is assumed to be t , and the external factors are
represented by feature vector Xext.
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Fig. 9 Encoding external factor

Here, a two-layer, fully connected neural network is
designed as an external factor network in this paper. The
first layer can be regarded as an embedding layer, whose
main role is to consider these external features together and
to map them from high to low dimensions. In general, the
number of neurons in this layer should not be too high, and
suitable parameters should be selected according to the actual
situation in the experiment. The role of the second layer is
to map the low-dimensional features obtained from the first
layer to the high-dimensional tensor, whose size needs to
be consistent for the subsequent fusion. The output obtained
after these two layers of the fully connected neural network
is defined as XExt.

Step 6: Fuse the output of the residual network com-
ponent with the external factor component. Based on the
results obtained from the above components, this paper uses
a parameter matrix fusionmechanism [18] to simultaneously
fuse the outputs of each of the three components: the short-
term time impact component, the long-term time impact
component, and the external factor component. Through the
construction of a coefficient matrix, different weights are
assigned to the output results of each component and are
fused to obtain a fused output result XRes. The fusion equa-
tion is as follows:

XRes = WSti ◦ (XSti)
(l+2) + WLti ◦ (XLti)

(l+2) (16)

where ◦ denotes the Hadamard product; (XSti)
(l+2) and

(XLti)
(l+2) denote the output results of the short-term time

impact component and the long-term time impact com-
ponent, respectively; and WSti and WLti are the learning
parameters denoting the importance of each of the two com-
ponents to the prediction. Finally, the output results obtained
from the calculation of Eq. (16) and the output results XExt

obtained from the external factor part are aggregated and
mapped from [−1, 1] using the tanh function to obtain the
final prediction results. The specific calculation formula is as
follows:

XNet = tanh(XRes + XExt) (17)

Our model trains the model by minimizing the mean
square error between the predicted value matrix XNet and

the true value matrix X̂Net via the following equation:

L(θ) =
∥∥∥XNet − X̂Net

∥∥∥
2

2
(18)

where θ denotes all learning parameters in the model.

Evaluation

Evaluation settings

Experiment environment

The experiments is performed by a 64-bit Ubuntu 18.04 com-
puter with an Intel 3.40 GHz and an NVIDIA GTX 2080Ti
GPU.We conduct RST-Net with Python 3.6, Keras 2.1.4 and
Tensorflow 1.3.1.

Data sets

We have conducted an in-depth investigation of the dataset
before we determined the dataset. We found that the usage
data of station-based system from different shared-bike com-
panies in various countries around the world are basically
the same, mainly including the station IDs, borrowed and
returned times, and the usage time of users. Considering the
public nature of the dataset and the scale of the accessible
data, we chose the public dataset of the New York shared
bicycle system. In this section, we use shared-bike usage data
andmeteorological data fromApril 1 to September 30, 2014,
inNewYorkCity as the dataset for our experimental analysis.
The details of the dataset are shown in Table 1. The shared-
bicycle usage data consist of 5,359,995 records. Each piece
of data is composed of the following contents: riding time,
borrowing station identification (ID), returning station ID,
borrowing time and returning time. They are transferred into
a trip set as {(Si,o, Si,d, ti,o, ti,d)}5359995i=1 . All shared-bicycle
usage data from the New York BSS from July 2013 to now
can be downloaded from the official websit.1 The meteorol-
ogy data are composed of the following contents: theweather
conditions, temperature and wind speed at the correspond-
ing time. Like the shared-bicycle usage data, all of them are

1 http://www.citibikenyc.com/system-data.
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Table 1 Statistics of data sets

Data source New York City

Time span Apr 1, 2014–Sep 30, 2014

Bike data Station 344

Bike 6800+

Records 5,359,995

Meteorology
data

Weather
(h)

Snowy 2

Rainy 231

Foggy 303

Sunny 3856

Temperature (◦C) [0,33]

Wind speed (mph) [0,18]

transferred into a meteorology set {wi , pi , vi }4392i=1 . We use
the data fromApril 1 to September 20 to train the model, and
we use the data from September 21 to 30 to test the model.

Compared baselines andmetrics

Compared baselines

We use the following 11 baselines to compare with our
model:

• Historical average (HA) [40]: we predict the number of
bikes borrowed and returned in the future according to the
average value of the historical number of bikes borrowed
and returned in the set time period. For example, if we
want to predict the usage of shared bicycles from 12:00
to 12:30 on Friday, the data we use should be the average
of the bike-sharing usage data for the same time period
every Friday in the past.

• Autoregressive integrated moving average (ARIMA)
model [41]: the ARIMA model is a differential autore-
gressive moving average model that predicts the future
(assuming that the future will repeat the historical trend)
by finding the autocorrelation between historical data.

• Seasonal autoregressive integrated moving average
(SARIMA) model: an extension of the ARIMA model.

• Vector autoregression (VAR)model [42]: theVARmodel
estimates the dynamic relationship of all endogenous
variables by regressing the lagged values of endogenous
variables on all endogenous variables of the model in
each equation of the model through multiple equation
linkages. It is often considered to be an advanced spatio-
temporal model due to its ability to capture the pairwise
relationships between all flows.

• Spatio–temporal attentive neural network (ST-ANN)
[43]: a predictive model using artificial neural networks
to model temporal and spatial features.

• DeepST [24]: Based on the differences in the length of the
time series considered and the types of external factors,
the investigators have designed four variants: DeepST-C,
DeepST CP, DeepST-CPT and DeepST-CPTM.

• Recurrent neural network (RNN) [44]: a neural network
for modeling sequential data, which can be trained on
time series data of an arbitrary length and is widely used
to capture a temporal correlation.

• Long-short-term-memory network (LSTM) [45]: LSTM
is a special type of RNN, mainly created to solve the
gradient disappearance and gradient explosion problems
during the training of long sequences. Compared with a
normal RNN, LSTM can have better performance with
longer sequences.

• Gated-recurrent-unit (GRU) network [46]: the GRU is
also a type of recurrent neural network. Like LSTM, it
is also proposed to solve problems such as long-term
memory and the gradient in backpropagation. Compared
with LSTM, training with the GRU is easier, and this can
improve the training efficiency to a great extent.

• Deep spatio-temporal residual network (ST-ResNet) [18]:
a neural network that uses a residual neural network
framework to model the temporal proximity, periodicity
and trend characteristics of traffic flows; it then incor-
porates the effects of external factors to forecast traffic
flows at future times.

• STAR [47]: a single network is used to model a tempo-
ral correlation based on the ST-ResNet, thus reducing a
large number of parameters and increasing the model’s
iteration speed.

• ST-3DNet [48]: Based on the ST-ResNet, the correlation
of traffic data in spatial and temporal dimensions is cap-
tured by introducing three-dimensional convolution.

Evaluation metrics

We use the root mean square error (RMSE) and mean abso-
lute error (MAE) as evaluation criteria for assessing each
model’s performance:

RMSE =
√√√√1

z

z∑

i=1

(yi − ŷi )
2 (19)

MAE = 1

z

z∑

i=1

∣∣(yi − ŷi )
∣∣ (20)

where yi is the groundtruth, ŷi is the corresponding predicted
values, and z is the number of all groundtruth.
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Fig. 10 Comparisons among different methods

Table 2 Prediction results of RMSE and MAE

Method RMSE MAE

HA 21.58 5.84

ARIMA 10.07 6.02

SARIMA 10.56 6.37

VAR 9.92 5.53

ST-ANN 7.58 4.77

DeepST 7.43 4.38

RNN 9.01 4.96

LSTM 8.67 5.94

GRU 8.76 5.79

ST-ResNet 6.33 3.91

STAR 5.75 3.76

ST-3DNet 5.80 3.43

RST-Net (ours) 4.65 2.01

Experimental results and analyses

Comparison of results with other models

In this section, we conduct comparative experiments on each
model based on the shared-bike usage data from the New
York City BSS from April 1, 2014, to September 30, 2014.
The data fromApril 1 to September 20 are used as the training
dataset, and the data from September 21 to 30 are used as
the test dataset. Table 2 shows the RMSE and MAE of the
prediction results corresponding to eachmethod, and the best
results have been highlighted in bold. Figure10 graphically
shows the results of the comparison.

The test results on theNewYorkbike-sharing dataset show
that the prediction results obtained using the RST-Net have
a 54% lower RMSE than ARIMA; a 56% better RMSE than
SARIMA; a 53, 39, 37, 48, 46, 47, 26, 19 and 19% better
RMSE than the VAR, ST-ANN, Deepst, RNN, LSTM, GRU,
ST-ResNet, STAR and ST-3DNet, respectively. In addition,

the RST-NET has reduced the MAE by 41–68%. We think
the usage of a spatio-temporal CNN makes the results of the
DeepSTmodel significantly better comparedwith other base-
lines. In addition, because only spatial information at short
distances and temporal information at the nearestmoment are
considered, the ST-ANNandVARare inferior to theDeepST,
although they have exploited the relationship between spatio-
temporal information and streams. In the temporalmodel, the
RNN does not perform as well as the GRU and LSTM do,
and we believe that the reason for this is that the RNN does
not capture long-term temporal information as well as the
GRU and LSTM do. The ST-ResNet uses spatio-temporal
residual networks to capture the temporal dependence and
spatial dependence of the BSS, and the obtained RMSE
is reduced compared with other models that consider only
temporal or spatial attributes by 27–34%. This proves that
capturing both spatial and temporal attributes is critical for
prediction. The results of the RMSE obtained via the STAR
are the best except for in the case of the RST-Net. The reason
for this is that the STAR incorporates somemethods of video
processing into the ST-ResNet, which improves the learning
ability of the convolutional kernel in the channel dimension
and makes the fusion of data more efficient. Taking all of the
results together, theRMSE andMAEof the prediction results
obtained using the RST-Net are reduced by 19–56% and 41–
68%, respectively, compared with other models. This shows
that the factors we consider here play a very important role in
the prediction of shared-bike usage. This also demonstrates
the necessity of using the RCS algorithm for BSS prediction.
In addition, it shows that theRST-Net has goodgeneralization
performance compared with other shared-bicycle prediction
models.

Analysis of the number of regions and iterations

In this section, we explore the effect of the number of regions
determined for the RCS algorithm as well as the number of
iterations determined for the iterative reconstruction on the
final results. Figure11 graphically shows the results.

First, we consider the number of regionsm. To investigate
the effect of the number of regions on the performance of
the prediction model, we test the prediction results on the
New York City bike-sharing dataset with a different m. It
is important to note here that the number of regions should
not be too large or too small. On the contrary, if the number
of zones is too large, a high probability exists that few sites
will be clustered into a single zone, resulting in a situation
similar to that predicted for a single site, where the use of
bikes in these zones is likely to be irregular. The situation is
likely to be without any pattern. Combining the experience
from previous studies [7] and our experimental results, we
set the value of m in the range of [0.05∗X , 0.1∗X ], where X
represents the number of stations. This constrains the intra-
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Fig. 11 Comparisons among
different methods

Table 3 Different number of regions with different number of iterations

m n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

18 5.16 4.93 5.35 4.92 5.19 4.92 5.21 4.89 5.24 4.93 5.13 4.94

19 5.25 4.52 5.19 4.54 5.12 4.49 5.17 4.50 5.02 4.53 5.06 4.50

20 5.12 4.15 5.06 4.17 5.12 4.16 5.10 4.15 4.97 4.17 5.14 4.17

21 5.00 3.85 5.08 3.88 5.05 3.87 5.10 3.89 5.07 3.85 4.99 3.85

22 5.06 3.63 4.98 3.60 5.00 3.61 4.95 3.60 5.05 3.62 4.93 3.58

23 5.03 3.41 4.99 3.37 4.99 3.38 4.92 3.37 5.05 3.39 4.88 3.40

24 4.95 3.19 4.89 3.21 5.05 3.20 4.97 3.21 4.88 3.18 4.91 3.17

25 4.88 3.03 4.94 3.05 4.87 3.03 5.10 3.01 4.94 3.02 5.04 3.03

26 4.88 2.88 4.77 2.86 4.96 2.88 4.87 2.85 4.73 2.88 4.94 2.85

27 4.95 2.75 5.05 2.74 4.77 2.75 4.95 2.73 4.79 2.73 4.98 2.73

28 4.85 2.63 4.80 2.60 4.80 2.62 4.77 2.62 4.87 2.60 4.82 2.61

29 4.85 2.51 4.66 2.50 4.85 2.49 4.81 2.49 4.85 2.49 4.86 2.51

30 4.83 2.42 4.89 2.39 4.78 2.38 4.79 2.40 4.75 2.40 4.69 2.39

31 4.80 2.31 4.80 2.30 4.92 2.30 4.79 2.32 4.84 2.30 4.80 2.32

32 4.83 2.25 4.82 2.22 4.73 2.24 5.00 2.21 4.79 2.23 4.66 2.23

33 4.80 2.17 4.89 2.16 4.86 2.16 4.77 2.15 4.75 2.15 4.77 2.15

34 4.80 2.09 4.65 2.08 4.82 2.10 4.70 2.08 4.81 2.07 4.77 2.08

35 4.77 2.02 4.82 2.01 4.79 2.03 4.90 2.03 4.84 2.03 4.70 2.04

cluster distance, ensuring that each cluster is neither too large
nor too small. Table 3 shows the RMSEs and MAEs with
different numbers of regions and different iterations. The best
results have been highlighted in bold. It is clear from Table 3
that the result decreases as the number of regions increases.

Next is the number of iterations n. After determining
the number of regions, we perform five iterations on them,
respectively, to explore the effect of different iterations on
the final prediction results. It is not difficult to see that for
the same region, the prediction results obtained by clustering

after adding themigration trend information between shared-
bicycle sites are better than the prediction results are after
clustering based only on the geographical location informa-
tion of the shared-bicycle sites. This proves the rationality
of the introduction of information on the migration trends of
shared bicycles for RCS. In addition, we have found that the
accuracy of the prediction results is not linearly correlated
with the increase in the number of iterations. Generally, con-
sidering the time complexity of the algorithm, four or five
iterations are sufficient.
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Conclusion

In this paper, we propose a deep spatio-temporal residual
network model based on the RCS algorithm to predict the
bike-sharing usage of the BSS in future time. First, we use
the RCS algorithm to classify the bike-sharing sites in the
city. Unlike the previous regional classification based on the
geographic locations of bike-sharing sites, the RCS intro-
duces a “site→region” migration trend matrix to capture the
bike migration trends among bike-sharing sites. This sig-
nificantly improves the quality of the regional classification
results. Based on this, this paper uses a deep spatio-temporal
residual network to model the key factors affecting the usage
of shared bicycles. Experiments on the New York BSS show
that the results obtained using our model are significantly
better compared with previous models, and the prediction
accuracy has been greatly improved.
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