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Abstract
For the past few years, image fusion technology hasmade great progress, especially in infrared and visible light image infusion.
However, the fusion methods, based on traditional or deep learning technology, have some disadvantages such as unobvious
structure or texture detail loss. In this regard, a novel generative adversarial network named MSAt-GAN is proposed in this
paper. It is based on multi-scale feature transfer and deep attention mechanism feature fusion, and used for infrared and
visible image fusion. First, this paper employs three different receptive fields to extract the multi-scale and multi-level deep
features of multi-modality images in three channels rather than artificially setting a single receptive field. In this way, the
important features of the source image can be better obtained from different receptive fields and angles, and the extracted
feature representation is also more flexible and diverse. Second, a multi-scale deep attention fusion mechanism is designed in
this essay. It describes the important representation of multi-level receptive field extraction features through both spatial and
channel attention and merges them according to the level of attention. Doing so can lay more emphasis on the attention feature
map and extract significant features of multi-modality images, which eliminates noise to some extent. Third, the concatenate
operation of the multi-level deep features in the encoder and the deep features in the decoder are cascaded to enhance the
feature transmissionwhilemaking better use of the previous features. Finally, this paper adopts a dual-discriminator generative
adversarial network on the network structure, which can force the generated image to retain the intensity of the infrared image
and the texture detail information of the visible image at the same time. Substantial qualitative and quantitative experimental
analysis of infrared and visible image pairs on three public datasets show that compared with state-of-the-art fusion methods,
the proposed MSAt-GAN network has comparable outstanding fusion performance in subjective perception and objective
quantitative measurement.
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Introduction

Multi-modality image fusion is an important branch in the
field of computer vision processing. Its purpose is to use
appropriate image feature extraction methods and fusion
strategies to fuse a series of source images obtained from
different sensors and generate an image with salient features
and complementary information [1]. Image fusion provides
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rich information and highly reliable images for computer
high-level vision tasks, and its advanced fusion algorithms
are widely applied in many fields, such as visual tracking
[2], video surveillance [3], target detection [4], person re-
recognition [5], face recognition [6], semantic segmentation
[7], and other fields [8, 9].

The fusion of infrared and visible images has its unique
advantages. Infrared and visible images capture the same
scene information through different sensors. Because of their
different imaging methods, they can reflect multiple charac-
teristics of the same scene in a comprehensive way. Infrared
image sensors are sensitive to thermal radiation targets and
can sense heat sources. It can also capture thermal targets
under severe weather and extreme conditions with poor light.
The heat source target is more prominent in the infrared
image, but its spatial resolution is low, and there are prob-
lems with blurred details and textures. The visible image
sensor captures light information through reflected light, and
its image texture details are rich and the spatial resolution
is high, which is suitable for human visual perception. How-
ever, in poor light or harsh environments, visible images often
have poor visual quality. From the above analysis, it can be
concluded that the visible image has rich texture details and
the infrared image has a prominent target. Therefore, the
fusion of infrared and visible images can fully harness and
integrate complementary information to generate an image
that not only conforms to human visual perception but also
facilitates specific applications [10].

The focus of infrared and visible image fusion is to extract
the typical features of the source image and design appropri-
ate fusion rules. In recent years, infrared and visible image
fusion methods have witnessed rapid development. Related
scholars have made an overview and summary of the fusion
algorithm [1, 11, 12]. Image fusion algorithms are roughly
divided into two categories: traditional methods and deep
learning-based methods. Based on different theories, tradi-
tional methods are divided into multi-scale transformation
(MST) method [13–16], sparse representation (SR) method
[17, 18], saliency representation method [19, 20], subspace
method [21] and other methods [22, 23]. The above meth-
ods have good fusion effects. However, for these methods
to obtain satisfactory fusion performance, it is necessary to
design feature extraction algorithms and fusion strategies in
an artificial manner. Moreover, the diversified feature extrac-
tion methods and complicated fusion rules make the fusion
model increasingly complicated, limiting the practicability
and real-time capability.

Deep learning has been widely used and developed in
the field of computer vision and image processing with
its excellent feature representation capability, especially in
the fusion of infrared and visible images. According to the
type of network structure, deep fusion methods are divided
into: Convolutional Neural Network (CNN)-based methods

[24–26] and Generative Adversarial Network (GAN)-based
methods [27–30]. Literature [24] designed a Siamese Con-
volutional Neural Network (Siamese CNN), using image
pyramids and local similarity strategies to integrate pixel
activity information and adaptively adjust the fusion model.
Literature [25] decomposes the source image into basic
blocks and detail blocks and then combines the features
extracted by the deep networkwith the basic part of the fusion
to reconstruct the fused image. Literature [26] proposed a
new network structure (DenseFuse) based on the dense block
[31] and self-encoder to fuse infrared and visible images. In
the training phase, the fusion layer is discarded to degenerate
it into a self-encoder network; in the testing phase, the fusion
strategy is used to fuse the depth features and reconstruct the
image through the decoder.

Presetting Ground-Truth in the neural network will
achieve better performance, so the CNN-based deep learning
method is more suitable for supervised learning. However,
in the field of image fusion, Ground-Truth is often difficult
to obtain, especially there is no unified fusion standard for
infrared and visible images, and the Ground-Truth does not
exist. We should regard the image fusion task as an unsu-
pervised learning problem. In addition, GAN has its unique
advantages in solving unsupervised deep learning problems.
In recent years, GAN research has shown a blowout type
growth. Many GAN-based algorithms are also employed in
image fusion. Literature [27] applied GAN to image fusion
tasks for the first time and proposed an end-to-end fusion
framework based on GAN (FusionGAN). The FusionGAN
includes a generator and a discriminator. The generator is
responsible for generating images that can preserve infrared
light image intensity information and visible light image
gradient information, and the discriminator is used to dis-
tinguish fusion image and visible image. Since there is one
discriminator in the framework, the generated image con-
tains only the gradient information of the visible image, thus
inevitably ignoring the gradient information of the infrared
image. To solve this problem, Literature [28] proposed a
dual-discriminator conditional generation adversarial net-
work (DDcGAN). In DDcGAN, the infrared discriminator
forces the generated image to retain the infrared intensity,
and the visible discriminator forces the generated image to
have more visible texture information. In spite of that, the
images generated by these two GANs cause texture detail
loss and lack of integrity of neighboring pixels.

Tofix the above problems, inspired by the deepmulti-scale
feature integration and attentionmechanism [32–34],we pro-
pose a new generative adversarial network architecture based
onmulti-scale feature transfer and deep attentionmechanism
feature fusion, and name it MSAt-GAN. First, inspired the
Inception V3: Using different sizes of convolution kernels to
extract different sizes of receptive fields—the various kernel
combination means different level feature fusion; the deeper
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the network, the more abstract the extracted features, and the
larger the receptive field involved in each feature. To bet-
ter obtain the important features of the source image from
different receptive fields and angles, we choose three classic
convolution kernels of 3× 3, 5× 5, and 7× 7 as our three fea-
ture channels. The feature encoder adopts dense connection
(DenseNet) during feature transfer, which makes full use of
multi-scale features and strengthens the mapping relation-
ship between features of different scales without changing
the size of the source image. Second, to integrate the multi-
level deep features of different receptive fields, we introduce
a multi-scale deep attention mechanism in the encoder net-
work to focus attention on the important features extracted
from the multi-level receptive fields in both space and chan-
nel dimensions, and integrate them according to the level of
attention. In addition, in the decoder network, the multi-level
deep features fused in the encoder network are concatenated
to compensate for the loss of previous features. Finally, we
establish a generative adversarial network architecture with a
generator and dual discriminators and an adversarial game is
established in the generator and dual-discriminators to force
the generated image to retain meaningful information from
visible and infrared images.

To verify the efficiency of theMSAt-GAN fusionmethod,
we compare and analyze three typical deep learning-based
fusion methods on a set of examples of infrared and visible
images. The experimental results are shown in Fig. 1. It can
be seen from Fig. 1 that compared with the other three classic
deep learning algorithms, the image fused by our method has
the prominent target, clear texture details, high contrast, and
the best visual perception. Especially in the woods on the
upper side and the ripples of the lake in themiddle, the outline
is clear and the details are rich while the images fused by the
other three algorithms have the defects of blurry contours
and loss of texture details.

The main contributions of this paper are summarized as
follows:

1. In the generator-encoder network, we introduce a multi-
scale deep feature extractionmodulewithmultiple recep-
tive fields. Three classic convolution kernels of 3× 3, 5×
5, and 7 × 7 are used as convolution kernels for the three
feature channels. Introducing5×5 and7×7 convolution
kernels will increase computing time while expanding
the receptive field. Therefore, a small convolution kernel
is used instead of a large one. In this way, while main-
taining the same receptive field, the parameters of the
model are greatly reduced. Introducing a feature extrac-
tor with multiple receptive fields can better extract the
features of the source image from all directions, not only
from the depth and width, but also from the angle similar
to the human visual system to comprehensively extract
the deep features of the image, which greatly enhances

the diversity and flexibility of the extracted features, and
also provides a basis for the subsequent feature fusion
module.

2. In the generator-encoder network, we propose a multi-
scale deep attention fusion mechanism. It can calculate
the important representations of attention in both spa-
tial dimension and channel dimension of the multi-scale
deep features obtained fromdifferent receptivefields, and
fuse them according to the level of attention. This can
better extract and fuse important features. The proposed
multi-scale deep attentionmechanism breaks through the
limitations of the artificial design fusion strategy and
significantly improves the fusion performance, and sup-
presses noise andundesirable artifacts to varyingdegrees.

3. In the generator-encoder network, we adopt dense con-
nection (DenseNet) in all layers, which takes full advan-
tage of multi-scale features and strengthens the mapping
relationship between features of different scales. In addi-
tion, the multi-level deep features fused in the encoder
and the deep features in the decoder are cascaded so that
the feature transfer can be reinforced and the previous
features can be better used.

4. In the network structure, we put forward an end-to-end
dual-discrimination WGAN-LP generative adversarial
network. The infrared discriminator distinguishes the
generated image from the infrared source image, forcing
the generated image to preserve more target background
information from the infrared light source image. The
visible discriminator distinguishes the generated image
from the visible light source image, forcing the generated
image to have more texture information of the visible
light image. Therefore, the image generated by the gen-
erator retains more meaningful information from the two
source images. It is well known that GAN lacks training
instability and triggers mode collapse, so we use a new
gradient penalty term (WGAN-LP) to strengthen the Lip-
schitz constraint to improve the training performance and
stability of the MSAt-GAN model.

5. Existing infrared and visible training datasets are mostly
generated by cropping the TNO standard database, or
directly using the MS-COCO dataset. Yet, the TNO
dataset itself does not contain many image pairs and the
resolution is not high, and the generated sample image
by cropping from the dataset is with a limited number,
and lack of richness; the MS-COCO dataset is a high-
resolution focus image, but it does not contain infrared
light information. UsingMS-COCO as a training set will
lead to inaccurate infrared feature extraction. Therefore,
we introduce a new RGB-NIR Scene Data Set and here-
after call it Nirscene. It contains lots of infrared and
visible image pairs and rich scenes information, and its
cropping images can greatly improve the richness of our
training samples.
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Fig. 1 Schematic illustration of MSAt-GAN. The first row shows the two source images and the fused results of DenseFuse [26], the second row
presents the fused results of FusionGAN [27], DDcGAN [28] and proposed method MSAt-GAN

6. Extensive experiments and ablation studies have been
conducted on two different public datasets, showing
the necessity of a multi-scale deep feature extractor
with multi-receptive fields and a multi-scale deep atten-
tion fusion mechanism. Experimental results prove that
MSAt-GAN has excellent performance to other state-of-
the-art methods in qualitative and quantitative compari-
son.

The structure of the paper is designed as follows. The
related studies are shown in the next section, andmore details
of MSAt-GAN are presented in the third section. The exper-
imental results and evaluation are given in the fourth section,
and the conclusions are shown in the last section.

Related research

This section first introduces a typical dual-discriminator
conditional generation adversarial network (DDcGAN) for
infrared and visible image fusion, and then discusses
the improved Wasserstein Generative Adversarial Network
(WGAN-LP) for improving the stability of GAN training.
Finally, discussion of the attention mechanism in deep learn-
ing is conducted.

DDcGAN [28]

DDcGAN establishes an adversarial game between a genera-
tor and two discriminators. The generator generates a fusion
image according to specific loss functions to deceive the two
discriminators. The two discriminators are used to distin-
guish the structural difference between the fusion image and
the two source images. The loss function of DDcGAN is as
follows:

Generator loss

�G = �advG + λ�con, (1)

ladvG =E[log(1−Dv(G(v, i)))]+E[log(1−Di (G(v, i)))],
(2)

�con = E[‖G(v, i) − i‖2F + η‖G(v, i) − v‖T V ], (3)

where �advG and �con represent adversarial loss and content
loss, respectively; ‖ · ‖F is the Frobenius norm, ‖ · ‖T V is
the TV norm, v and i represent the visible source image and
the infrared source image, respectively, and λ and η represent
balance coefficient. The information of thermal radiation and
texture details are mainly characterized by the information
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of pixel intensity and gradient changes, so Frobenius norm is
adopted to constrain the fusion image and infrared image. TV
norm can effectively solve the problem of non-deterministic
polynomials. In the regularization term, TV norm is intro-
duced to constrain the gradient of the fused image and visible
image.

Discriminator loss

�Dv = E[− log Dv(v)] + E[− log(1 − Dv(G(v, i)))], (4)

�Di = E[− log Di (v)] + E[− log(1 − Di (G(v, i)))], (5)

where �Dv and �Di represent the loss functions of the visible
discriminator and infrared discriminator, respectively.

WGAN-LP [35, 36]

On the basis of WGAN, WGAN-GP removes the weight
trimming, and solves the problem of difficulty in training and
slow convergence of theWGANmodel. To make Critic meet
the 1-Lipschitz constraint, a gradient penalty term is used
in Critic’s loss. WGAN-LP is an improvement of WGAN-
GP, which strengthens the 1-Lipschitz constraint by squaring
the penalty for large deviations, thus making the 1-Lipschitz
constraint more reasonable. WGAN-LP is more stable than
WGAN-GPmodel training. The loss functions ofWGAN-LP
is shown as follows:

min
G

max
D

LW (D, G) = Ex∼pr [D(x)] + Ez∼pz[D(G(z))]
+μEx̃ [(‖∇x̃ D(x̃)‖2 − 1)],

(6)

min
G

max
D

LW (D, G) = Ex∼pr [D(x)] + Ez∼pz[D(G(z))]
+μEx̃ [(max{0, ‖∇D(x̃)‖2 − 1})2],

(7)

where Eq. (6) represents the loss of WGAN-GP, and Eq. (7)
is the loss of WGAN-LP after improvement; the first two
items are the Wasserstein distance estimation between the
real image and the generated image, the last is the gradient
penalty item,μ is the balance coefficient, and x̃ is the sample
of the real image and the generated image.

Deep attentionmechanism

Derived from the human visual attention mechanism, atten-
tion mechanism is much more a simulation of the attention
behavior of humans in reading and listening and speaking
by machines, which can be regarded as a bionic mechanism.
It can focus on the important features of the object accord-
ing to the importance of the object. In the past 2 years, the

attention model has been widely applied in various types
of deep learning tasks such as machine translation and text
translation, image recognition and speech recognition in nat-
ural language processing [37–39], which is the most worthy
of attention and in-depth research in deep learning. Due to
its good algorithm performance, the model has also been
widely applied and developed in computer vision, especially
in image fusion tasks. Literature [40] deploys the deep atten-
tion mechanism for hyperspectral and multispectral image
fusion, and its designed spatial attention network is used
to extract tiny details and enhance the spatial structure of
the image. Literature [41] designs a multi-resolution classi-
fication dual-branch attention fusion network (DBAF-Net)
for remote sensing image fusion. The spatial resolution of
panchromatic images (PAN) is higher than that of multispec-
tral images (MS). In addition, based on different image types,
the author sets up two attentionmodels: spatial attention (SA)
module and channel attention (CA) module. Through the
dual-branch attention mechanism, unimportant information
such as the image background is suppressed and the original
feature information of the extracted image data is further
enhanced. Literature [32] fuses multi-scale deep features,
proposes a spatial/channel attention model fusion strategy
and introduces it into infrared and visible image fusion. The
spatial attention module is mainly based on the L1 operator;
the channel attention module introduces and compares three
kinds of global pooling operators: the average operator, the
maximum operator and the nuclear norm operator. Experi-
ments indicate that using the average pooling operator in the
channel module has the best performance.

MSAt-GAN algorithm

In this section, we introduce in detail the proposed generative
adversarial fusion network (MSAt-GAN) based on multi-
scale feature transfer and deep attention mechanism feature
fusion. First, we make a comprehensive statement for the
fusion problem and illustrate the architecture of MSAt-GAN
in this part. Then, the network architecture of the generator
(encoder-feature generator-decoder) and the dual discrimina-
tor, and the deep attention fusion mechanism are introduced
in detail. Finally, the loss functions of MSAt-GAN network
are under discussion.

Network architecture

The proposed MSAt-GAN fusion architecture is shown in
Fig. 2. The network architecture mainly includes three com-
ponents: a generator (Generator) and two discriminators
(Discriminator—Dir, Discriminator—Dvis); the generator is
composed of an encoder (Encoder), a feature generator (Fea-
ture Generator) and a decoder (Decoder). The main purpose
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Fig. 2 Framework of the proposed MSAt-GAN

of the generator is to generate a fusion image with important
information of two source images through network learn-
ing based on the inputted infrared and visible light source
image pairs. Being two different modalities, the infrared and
visible images show different representations of the same
scene information and complement each other, so we con-
catenate the infrared and visible light image pairs and feed
them to the encoder for encoding before feature extraction.
The advantage of it is that the concatenated images have
the properties of both infrared and visible light at the same
time from the very beginning. Even if there is no discrimina-
tor to constrain the generator, the image generated will still
have partial infrared intensity information and visible light
gradient information, and this has been proved in Literature
[27]. In the encoder, we introduce a multi-scale deep feature
extraction module with multiple receptive fields. Three clas-
sic convolution kernels of 3, 5 and 7 are used in the feature
channel to extract the multi-receptive field and multi-scale
deep features of the source image.Through the feature extrac-
tion of multiple receptive field channels, the obtained source
image information can be characterized in a more compre-
hensive manner. After that, the deep features extracted by the
three receptive field feature extractors are concatenated and
fed to the feature generator to further extract the multi-scale
deep features of the source image. Finally, the output of the
feature generator is used as the input of the decoder, and the
fused image is generated through the decoder.

We design a multi-scale deep attention mechanism in the
encoder network of the generator. For the multi-scale deep
features obtained by the three different receptive field chan-
nels, the attention value of these features is calculated in the
spatial dimension and the channel dimension, and the atten-
tion is focused on the important feature maps of each scale,
and the redundancy information is eliminated. In the decod-
ing process, the attention maps calculated by the encoder
in different receptive fields are fused together according to
the level of attention. In this way, the previous-level features
extracted by the encoder can be fully utilized, and informa-
tion loss is avoided while the feature transfer is enhanced.
Therefore, the images generated by the MSAt-GAN fusion
method can better capture the foreground information of the
infrared image target and the detailed information of the vis-
ible light image scene.

What is more, we establish an adversarial game between a
generator and two discriminators. The infrared discriminator
(Dir) is designed to distinguish the generated image from the
infrared source image, and constrains the image generated
by the generator to preserve as much of the pixel intensity
information in the infrared image as possible; the visible dis-
criminator is used to distinguish the generated image from
the visible source image, and constrains the generated image
retains as much of the texture detail in the visible image as
possible. In addition, we believe that when the two discrim-
inators could not tell the generated image from the source

123



Complex & Intelligent Systems (2022) 8:4753–4781 4759

image, the generated image meets the fusion demand. Sim-
ilar to most of the GAN fusion methods, the MSAt-GAN
can be represented by generative and adversarial functions,
as shown in Eq. (8). The aim of the generator is to meet min-
imize Eq. (9), and the goal of the discriminator is to meet
maximize Eq. (9):

LW (Dir , Dvis, G) = Ex∼pir[Dir (x)] + Eg∼pg[−Dir (G(g))]
+ Ex∼pvis[Dvis(x)]
+ Eg∼pg[−Dvis(G(g))]
+ μ1Er̃ [(max{0, ‖∇Dir (r̃)‖2−1})2
+ μ2Eṽ[(max{0, ‖∇Dvis(ṽ)‖2 − 1})2],

(8)

min
G

max
Dir

max
Dvis

{LW (Dir , Dvis, G)}, (9)

where Dir and Dvis represent the infrared discriminator and
visible discriminator, respectively; g is the fused image, pg is
the distribution of the generated image, pir and pvis represent
the real distribution of infrared and visible image, respec-
tively, r̃ is the sample of generated image and infrared image,
ṽ is the sample of generated image and visible light image,μ1

and μ2 denote the penalty quantity. Through the adversarial
game between the generator (G) and the two discriminators
(Dir and Dvis), the Wasserstein distance between pg and the
real distributions (pir and pvis) of the two source images
will decrease at the same time, which means that the gener-
ated image is more similar to the source image.

Generator architecture

The generator consists of an encoder, a feature generator
and a decoder, as shown in Fig. 3. In the test phase, only
a pair of infrared and visible images needs to be input into
the generator, and a complementary image that retains the
infrared and visible light information as much as possible
will be automatically generated.

Encoder architecture

A key of image fusion is to design a reasonable encoder
to extract important information of the source image so as
to represent the source image as much as possible. In this
regard, the pros and cons of the encoded feature extractor
exert a huge impact on the subsequent image fusion effect.
In the encoding process, the existing deep learning methods
tend to extract themulti-scale features of the source image by
increasing the number of channels or the depth of the network
as much as possible. Although it can expand the receptive
field and extract deep features, the increase of the network
model also means a sudden increase of parameters, which
may probably lead to gradient information disappearance or

explosion. Therefore, it can be concluded that the larger or
deeper networkmodel does not necessarily bringwith a better
performance, and this conclusion has been proved in ResNet
[42]. To comprehensively extract the features of the source
image and increase the receptive field of feature extraction,
we design 3× 3, 5× 5 and 7× 7multi-receptive field feature
extractors in the encoder as Fig. 3 shows, considering that the
3, 5, and 7 convolution kernels are the most commonly used
and classic in existing deep learning. The increase of the
receptive field will improve the accuracy of feature extrac-
tion but at the same time it will increase the computing time.
Given the above situation, and taking an inspiration from the
Inception V3, we replace the 5 × 5 convolution kernel with
two 3 × 3 convolution kernels, and replace the 7 × 7 con-
volution kernel with three 3 × 3 convolution kernels. Such
replacement can reduce parameters while keeping the recep-
tive field unchanged. In the alternative convolution block, we
add the PRelu loss function to increase the nonlinearity of
the convolution. Our three receptive field feature extraction
channels all consist of three convolutional blocks, and each
of them contains three layers: a convolutional layer, a Batch
Normalization (BN) layer and a PRelu layer. The channel
dimensions of the three layers are all set to 32, and the step
length is 1, and the padding operation is used in the convolu-
tion process to keep the feature resolution consistent before
and after the convolution and avoid information loss. In the
encoder, we adopt the DenseNet [31] connection to establish
short direct connections in a feedforward manner between
each layer and among all layers so that our multi-receptive
field deep feature extraction can provide more accurate and
complementary information.

Feature generator architecture

The feature generator aims to further extract the deep fea-
tures of the three concatenated receptive fields to improve the
accuracy of the extracted features, which includes: a convo-
lutional layer, a BN layer and a PRelu layer. The convolution
kernel is set to 3 × 3, the channel dimension is 288, and the
stride is 1.

Encoder architecture

The input of the decoder is equivalent to the output of the
feature generator, and its purpose is to generate an image
with rich information based on the multi-scale deep feature
fusion of the extracted source image. The decoder contains
5 convolutional blocks. The first block contains a convolu-
tion layer and a PRelu layer. The second to fourth blocks are,
respectively, composed of a convolutional layer, a BN layer,
and a PRelu layer. The fifth block consists of a convolution
layer and aTanh activation function. The kernels of the first to
fifth convolution blocks are 32, 32, 32, 16, and 1, in turn, and
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Fig. 3 Architecture of Generator. k denotes the kernel size, n denotes the number of filters, and s represents the stride

all of them are set to 3 × 3, with a step length of 1. We make
skip connections between the first to third convolutional lay-
ers and the multi-scale deep attention map of the multiple
receptive fields in the encoder. By connecting with the front
layer, it can make compensation for the information loss of
the feature map after multi-layer convolution and make full
use of the important information that distinguishes between
infrared and visible light extracted by the front layer. The
decoder connection fully integrates the information of dif-
ferent receptive fields and ensures the structural consistency
of the deep features.

All activation functions in the generator are PRelu [43]
as it can adaptively learn and modify the parameters of the
linear unit and improve the accuracy.

Deep attention fusionmechanism

The multi-attention mechanism can capture the salient areas
in the visual scene information and is widely applied in com-
puter vision tasks. Infrared and visible light images are of
multi-modality, which are different representations of the
same scene information. Therefore, we employ the mecha-
nism to find the appropriate features of these two modalities,

and put our attention on the focused modal region, that is, on
the distinguishable parts of the same feature. For the feature
map of the convolutional network, the channel dimension
and the spatial dimension both contain rich attention infor-
mation. By fusing the attention information from the above
two dimensions, we can extract a more comprehensive and
reliable feature information of the source image. Based on
previous studies, we propose a multi-scale deep attention
mechanism that focuses attention on the important features
extracted by the multi-level receptive field feature in the
two dimensions of spatial and channel and merge extracted
features according to the level of attention. The whole mech-
anism module is shown in Fig. 4.

Fusion of channel attention

First, we input the feature maps of the three receptive field
feature channels: f1(H × W × C), f2(H × W × C) and
f3(H × W ×C). Next, we employ the global average pool-
ing on the three feature maps in the H and W dimensions,
respectively, to obtain three 1×1×C feature maps, and then
make a two-layer full connection to the three feature maps,
and add the activation function Relu. Sigmoid activation is
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Fig. 4 Architecture of deep attention mechanism fusion

then performed on the generated feature maps to get a chan-
nel attention weight map. Finally, the three f weight maps
and the three feature maps are multiplied and added to gen-
erate the final channel attention fusion feature, as shown in
the following equation:

f cout =
3∑

i=1

σ(D2(D1(avgp( f
c
i ))))× f ci , (10)

where f c1 , f
c
2 and f c3 , respectively, correspond to the channel

features of the receptive field of the convolution kernel of 3, 5,
and 7, D1 and D2 are two-layer full connections, respectively,
avgp is the global average pooling, and σ is the Sigmoid
activation function.

Fusion of spatial attention

First, we input the feature maps of the three receptive field
feature channels: f1(H × W × C), f2(H × W × C) and
f3(H × W ×C). Next, we employ the global average pool-
ing on the three feature maps in the channel dimension to
obtain three H×W×1 featuremaps, and thenmake concate-
nated connection and convolution among the three maps. Set

the two-layer convolution kernel to 3 × 3, and use the Relu
activation function. Then, the convolved feature map is acti-
vated by Sigmoid to generate a spatial attention weight map.
Finally, we multiply the spatial attention weight map and the
channel attention fusion feature ( f cout) to obtain the final deep
attention feature map Attcout, as shown in following equation:

Attcout = σ(Conv2(Conv1(C(avgp( f ci ))))) × f cout, (11)

where f ci represents the channel feature of the receptive field
of 3, 5 and 7 convolution kernel, Conv1 and Conv2, respec-
tively, represent the two-layer fully convolutions, avgp is the
average pooling, σ is the Sigmoid activation function and C
is concatenated operation.

Dual-discriminator architecture

The goal of the discriminator is to form an adversarial game
with the generator to guide the generated image distribution
as close to the actual distribution as possible. Since this article
focus on image fusion of infrared and visible light images, the
two forms with different modalities, we design two discrim-
inators: infrared light discriminator (Dir ) and visible light
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Fig. 5 Architecture of
Discriminators. k, n, and s denote
the kernel size, the number of
filters, and stride, respectively

discriminator (Dvis) to distinguish the fused image from the
source image of the two modalities. During the training pro-
cess, the generator, infrared discriminator and visible light
discriminator should maintain balance. Otherwise, the high
efficiency of any one network will bring about the ineffi-
ciency of the other two networks, which would consequently
lead to a worse performance of image fusion. The balance of
our network training is maintained by designing a reasonable
network structure and loss functions. The purpose of the dis-
criminators is to distinguish whether the generated image is
real or fake, which is a binary classification problem that is
relatively simple for neural networks, so the structure of the
discriminators is simpler than that of the generator. The two
independent discriminators are designed as the same struc-
ture, as shown in Fig. 5.

There are four layers in the discriminators: the first
three layers have three convolutional blocks, and each block
contains a convolutional layer and a LeakRelu activation
function; the fourth layer contains a fully connected layer
and a Tanh activation function. The size of the convolution
kernel is set to 3, and the stride is 2. The channel dimensions
of the first three layers are 32, 64, and 128, respectively.

The loss function of generator

The loss function is another method used to maintain a
balance between the generator and the discriminators. The
generator must not only form an adversarial game with the
discriminators, but also keep the data distribution of the gen-
erated image consistent with the source image. Therefore,
its loss function should restrict the similarity between the
fused image and the source image in terms of structure and
content, so as to deceive the discriminators. The total loss of
MSAt-GAN includes two parts: discrimination loss and con-
tent loss. The definition is shown in the following equation:

L tlos = Ladv
G + μLcontlos, (12)

where μ is the balance coefficient to control the two losses.

The adversarial loss of the generator includes two parts:
the adversarial loss of the infrared discriminator and the
adversarial loss of the visible light discriminator. The def-
inition is shown in the following equation:

Ladv
G = Eg∼pg[−Dir (g)] + Eg∼pg[−Dvis(g)], (13)

where g and pg denote the generated image and the data
distribution of generated image.

Content loss: the texture detail information of visible light
and the thermal target of infrared light can be, respectively,
represented by gradient change information and pixel inten-
sity information [28], so we also employ the Frobenius 2
norm constraint to generate the image to make it has simi-
lar pixel intensity information to the infrared source image.
Introducing the Frobenius 2 norm to constrain the gradient
information similarity between the generated image and the
visible light image. The definition of content loss is shown
in the following equation:

Lcontlos = E[‖g − ir‖2F ] + λE[‖∇g − ∇vis‖2F ], (14)

where F denotes the Frobenius norm, ∇g and ∇vis repre-
sent the gradient of the generated image and the visible light
image, respectively, λ is the balance coefficient.

The loss function of dual discriminator

There are two losses in our discriminators: the discrimination
loss of visible light and the discrimination loss of infrared
light. The use of an independent dual-discriminator struc-
ture can make the fused image comprehensively preserve the
important information of the two source images at the same
time. For the stability of GAN training, we introduce the
WGA-LP gradient penalty term in the discriminators. The
loss function is shown in the following equations:

LDir = Eir∼pir [Dir (ir)] + Eg∼pg[−Dir (G(g))]
+ μ1Er̃ [(max{0, ‖∇Dir (r̃)‖2 − 1})2, (15)
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LDvis = Evis∼pvis[Dvis(vis)] + Eg∼pg[−Dvis(G(g))]
+ μ2Eṽ[(max{0, ‖∇Dvis(ṽ)‖2 − 1})2], (16)

where r̃ and ṽ, respectively, represent the sample of generated
image and the infrared and visible light image, and μ1 and
μ2 are the gradient penalty coefficient.

Experimental results

In this section, we prove the effectiveness of theMSAt-GAN
fusion method through experiments, and make a qualitative
comparison on the two public infrared and visible datasets
of TNO,1 INO2 and Nirscene.3 For a more comprehensive
analysis, we use eight quantitative indicators to evaluate
the fusion results. Moreover, we carry out ablation research
experiments to validate the proposedmulti-scale deep feature
extractionmodulewithmulti-receptive fields andmulti-scale
deep attention fusion mechanism.

Datasets and training details

Datasets

In fact, most of the existing infrared and visible light image
training datasets are obtained by cropping the public TNO
dataset to get enhanced training data. TNO image fusion
dataset contains multi-band night images of military-related
scenes. The type of infrared and visible light image informa-
tion contained in the dataset is limited, and so is the number
of images contained in each type. Using this dataset would
consequently reduce the robustness of the model. There is
also another dataset of MS-COCO, which contains 82,783
training sets and 1000 validation sets. However, the data
itself is amulti-focus visible light image and does not contain
infrared image information. Using thisMS-COCO as a train-
ing dataset, infrared informationwill inevitably be lost during
the training process. In this case, we adopt a new Nirscene
dataset as our enhanced dataset, which contains 9 types of
477 image pairs captured by RGB and NIR. The scene cat-
egories in the dataset include: countryside, fields, forests,
indoor scenes, mountains, old buildings, streets, cities and
rivers. We crop these 477 infrared and visible light image
pairs to enhance the training dataset. It is worth noting that
the cropped image cannot be too small, as small infrared
image blocks will usually cause invalid information; and the
cropped image should not be too big, for it will bring a sharp

1 https://figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/
1008029
2 https://www.ino.ca/en/technologies/video-analytics-dataset/
3 https://ivrlwww.epfl.ch/supplementary_material/cvpr11/index.html

increase of computational resources. Based on the current
hardware configuration of our computer, these image pairs
are cropped into 64,580 infrared and visible light image pairs
for the sake of an enhanced training dataset.

Training details

Through substantial training experiments on MSAt-GAN,
the model parameters are set as follows: μ=0.7, λ=1.3 and
μ1=μ2=1. The exponential decay learning rate is used in
network learning, the initial learning rate is set to 2 × 10–4,
the decay coefficient is set to 0.9 and the BatchSize is set
to 24. Based on WGAN training techniques, our generator
employs RMSProp optimizer, and both discriminators use
SGD optimizer. To maintain the training balance between
the generator and the discriminators, the discriminators usu-
ally have to train more than the generator. Here, we set the
discriminators to train twice and then the generator to update
once. In addition, we conduct training experiments onNvidia
RTX-3090GPU-24 gmemory, which adopts the TensorFlow
framework. For the comparison algorithm running on the
CPU, simulation software is the MTALB 2021a.

For the convenience of readers, all notation variables of
the loss function of the MSAt-GAN model are presented in
Table 1.

Image evaluation index and comparison algorithm

Generally, there are subjective and objective evaluation types
of image fusion quality. The former is easily affected by
human factors such as personal emotions and subjective
vision, and the fusion effects of various algorithms have cer-
tain similarities and are hard to distinguish, while the latter
can evaluate the pros and cons of the fused image in virtue
of quantitative objective indicators. Therefore, we select
eight objective indicators from five categories of perfor-
mance index to make a quantitative compare of MSAt-GAN
and other fusion methods, namely the information entropy
(EN) of information theory, the multi-scale structural sim-
ilarity index measurement (MS-SSIM) based on structural
information [44], spatial frequency (SF) and standard devia-
tion (SD) of image features, visual reality fidelity (VIF) and
Qabf of human vision perception [45], the correlation coef-
ficient (CC) and sum of difference correlation (SCD) based
on source image and fused image [46].

EN measures the richness of information contained in the
image: the higher the value, the richer the information and the
better the quality of the fused image.MS-SSIM considers the
similarity of two images in brightness, contrast, and structural
information: the higher the value, the more similar the two
images. SF reflects the change rate of image gray level, and
the larger the spatial frequency, the clearer the image. SD
reflects the dispersion of image pixel gray value relative to the
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Table 1 Loss function variable notation table

Variables Term Variables Term Variables Term

Dir Infrared discriminator Dvis Visible discriminator g Generated image

pg Distribution of generated image pir Distribution of infrared image pvis Distribution of visible image

r̃ Sample of generated image and
infrared image

ṽ Sample of generated image and
visible image

μ1 Infrared discriminator penalty
quantity

μ2 Visible discriminator penalty
quantity

G Generator L tlos Generator loss

Ladv
G Generator adversarial loss Lcontlos generator content loss μ Generator balance coefficient

F Frobenius norm ir Infrared image vis Visible image

∇g Gradient of generated image ∇vis gradient of visible image λ Content loss balance factor

mean value. The larger the SD value, the higher the contrast
and the higher the fusion quality of the image. VIF shows the
fidelity of the source image and the fusion image based on
human vision: the higher value equals to the better the human
visual performance. Qabf, being a pixel-level image fusion
quality evaluation index, uses local metrics to estimate the
performance degree of inputted salient information in the
fused images. It reflects the quality of visual information
obtained from fused images. The higher the Qabf value, the
higher the subjective visual quality of the fused image. CC
signifies the degree of linear correlation between the source
image and the fused image and SCD surveys the amount of
information transferred from the input image to the fused
image. In short, the larger the above eight indexes’ value, the
better the fusion effect.

To verify the efficiency of the proposed MSAt-GAN,
we select seven classic or state-of-the-art methods on three
public infrared light datasets and make a comparison and
analysis, including four traditional methods: transfer and
total variationminimization fusionmethod (GTF) [47], cross
bilateral filter fusion method (CBF) [48], guided filtering
based fusion method (GFF) [49], and multiresolution singu-
lar value decomposition (MSVD) [50]. In addition, in view of
that our method is based on GAN and the encoder–decoder,
we choose three similar deep learning methods: DenseFuse
[26], FusionGAN [27] and DDcGAN [28].

Experimental analysis on TNO dataset

Weselect 25 infrared andvisible light imagepairs on theTNO
dataset as experimental data, and compare and analyze the
MSAt-GAN fusion method with 7 classic and state-of-the-
art fusion algorithms to verify the efficiency of our proposed
algorithm. All image pairs on the TNO dataset are well-
matched, and the resolution of the two source images is the
same.

Qualitative comparison: Six typical source images and
fusion results on the TNO dataset are shown in Figs. 6 and 7.

It can be seen from the Figs. 6 and 7 that our proposedmethod
and theother seven fusion algorithms can achievegood fusion
performance. However, compared with other methods, our
method has three typical advantages. First, our fusion result
has a higher contrast, which can better preserve the thermal
target in the infrared source image. The prominent thermal
targets in the fusion image can be more conducive to target
detection and recognition, which are marked with a red box
in Figs. 6 and 7. Second, our fused image has rich texture
details, which can better retain the texture background infor-
mation in the visible light source image. Rich texture detail
information can better reflect contour information such as
backgrounds, which are marked with green boxes in Figs. 6
and 7. Third, our fused images are clearer and conform to
human vision, and thus have good visibility as there is no
artifacts and noise.

In contrast, the other seven methods all have different
defects. The CBF and GFF fused images have a lot of noise
and artifacts, such as the sky in the first image in Fig. 6 and
the trees in the second image. The images fused by GTF and
MSVD are overall blurry and lack texture detail information,
such as the woods in the second image and the ripple details
in the third image in Fig. 7. Although the three methods
of deep learning have better fusion quality than traditional
methods, the images fused by DenseFuse, FusionGAN and
DDcGAN all have some texture detail information loss, such
as the background information of the door in the first image
in Fig. 6, and the ripple in the third image in Fig. 7. It can
be seen that the fused image of our method has prominent
target background, rich texture detail information, and thus
have a better overall subjective vision. This is because the
multi-scale features of the multiple receptive fields can bet-
ter extract a variety of features of the source image, which
will produce a richer the texture detail information in the
fusion image, and the fusion of the proposedmulti-scale deep
attention mechanism will make the fused image focus on the
distinguishable parts of the source image, and highlight the
prospect of the target.
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Fig. 6 Qualitative comparison of
our MSAt-GAN with 7
state-of-the-art methods on 3
typical infrared and visible image
pairs on TNO dataset. From top
to bottom: infrared image, visible
image, fusion results of CBF
[48], GFF [49], GTF [47],
MSVD [50], DenseFuse [26],
FusionGAN [27], DDcGAN [28]
and our MSAt-GAN
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Fig. 6 continued

Quantitative comparison: to further prove the effective-
ness of the MSAt-GAN method, we use eight objective
evaluation indicators to make a quantitative comparison
between our method with seven state-of-the-art methods, as
shown in Fig. 8. As can be seen from the figures, our fusion
algorithm achieves the maximum value on EN, MS-SSIM,
VIF and SCD indicators, and achieves the second largest
value on SF, CC, SD and Qabf indicators. The difference
between SF, CC SD and Qabf is 0.37, 0.83, 9.61 and 0.81
percentage points, respectively, from the maximum value,
which is very small. Through analysis, we also see that the
CBF algorithm has a large index value on SF, because the
fusion image contains a lot of noise, and SF is the index
that reflects the gray change rate of the image. In terms of
subjective perception, this can be reflected in Figs. 6 and 7.
The analysis of these eight indexes shows that our fusion
algorithm can retain the foreground target information of the
infrared source image and the rich edge and texture informa-
tion of the visible light image to the maximum. Our fused
image has the highest similarity with the two source images,
according to the indicators of CC and MS-SSIM. It can also
be seen through VIFF and Qabf that the image fused by our
algorithm has the best visual effect. The subjective effect
reflected by the objective index measurement of the fusion
image is also verified in Figs. 6 and 7. In conclusion, through
comprehensive analysis, it shows that the fusion quality of
MSAt-GAN is better than any other algorithms.

Experimental analysis on INO dataset

To make further verification of the robustness and scalabil-
ity of the proposed MSAt-GAN method, we select a set of
“ParkingSnow” infrared andvisible light video signals on the
INO video dataset, and crop them to generate 2941 frames of
infrared and visible light image sequences with a resolution
of 448× 324. In the generated sequences, 20 image pairs are
selected as the test dataset, and qualitative and quantitative
comparisons are made with 7 state-of-the-art image fusion
algorithms. The comparative result is shown in Fig. 9 and
Tables 2 and 3.

Figure 9 shows the fusion results of MSAt-GAN and 7
state-of-the-art fusion algorithms at frames 1051, 751 and
851 of the “Parking Snow” dataset. From the figures, we can
see that the visible light image contains rich texture detail
information, while the infrared image represents the fore-
ground thermal target information. These eight algorithms
can all achieve good fusion performance, but our MSAt-
GAN has the best fusion quality as its infrared thermal target
is prominent and detailed texture information is rich, which
can be seen in the 10th row. For example, carmarks on snowy
roads are much clearer than that of other algorithms. The last
row in Fig. 10 shows the target benchmark of the source
image, which mainly reflects the thermal target information.
Through comparison, it is found that our algorithm can high-
light human thermal target information, and key points can
be found in the benchmark map. The other seven algorithms
have infrared target information loss, and the texture detail
information are also relatively fuzzy. For example, there is
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Fig. 7 Qualitative comparison of
our MSAt-GAN with 7
state-of-the-art methods on 3
typical infrared and visible image
pairs on TNO dataset. From top
to bottom: infrared image, visible
image, fusion results of CBF
[48], GFF [49], GTF [47],
MSVD [50], DenseFuse [26],
FusionGAN [27], DDcGAN [28]
and our MSAt-GAN

infrared target information loss and noise in CBF and GFF
images. GTF, MSVD and FusionGAN have relatively low
contrast. The image detail information of DenseFuse and
DDcGAN are blur.

Table 2 is the evaluation of 20 pairs of infrared and visi-
ble image sequences selected on the “Parking Snow” dataset,
according to MSAt-GAN and 7 state-of-the-art fusion algo-
rithms. The index value is the mean value of 20 image pairs.

Table 3 shows the standard deviations of the eight objective
statistical indicators of eight respective algorithms corre-
sponding to Table 2, which reflects the dispersion degree
of each algorithm statistical indicator data. For the sake of
analysis, the optimal values of the indicators are highlighted
in red font, the second in green, and the third in blue in both
Tables 1 and 2. For the sake of analysis, the optimal val-
ues of the indicators are highlighted in red font, the second
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Fig. 7 continued

in green, and the third in blue in both Table 2 and Table 3.
From Table 2, we can see that MSAt-GAN fusion algorithm
ranks first in SF, CC, SCD and Qabf, second in MS-SSIM,
and third in EN, VIF and SD. Specifically, our algorithm is
only 0.43 percentage points less than MS-SSIM in GFF. The
first-place algorithms are 0.0703, 0.0672 and 0.2341, respec-
tively, higher than ours in EN, VIF and Qabf. In effect, the
gap between our algorithm and that of the first place is not
big. It can be seen from Table 3 that the standard deviations
are very small, in terms of these eight algorithms on the eight
respective metrics, indicating that the metrics of eight algo-
rithms are relatively accurate with relatively small errors.
Particularly, in terms of standard deviation, the MSAt-GAN
algorithm proposed in this paper ranks first on SCD andMS-
SSIM, second on CC, third on EN, SF and Qabf, and fourth
onVIF and SDwhich is only 0.46 and 8.52 percentage points
less than the first, respectively. It can also be seen that, com-
pared with other advanced algorithms, our eight objective
statistical indicators are more accurate and the model has
better stability. From the overall objective evaluation index,
it shows that the image fused by our proposed algorithm has
high contrast, the highest similarity with the source image

and good human visual perception effects. In general, MSAt-
GANalso can achieve good fusion performance in INOvideo
fusion.

Experimental analysis on Nirscene dataset

To further verify the advantages of our proposedMSAt-GAN
method in the fusion of infrared and visible light images,
30 infrared and visible light image pairs on the “Nirscene”
dataset are selected as test data. Then we compare and ana-
lyze the images among MSAt-GAN and seven advanced
fusion algorithms to verify the robustness and efficiency of
our proposed algorithm. The 30 selected infrared and visible
image pairs are all registered and have the same resolutions
of the 2 source images. The subjective effect comparison and
objective experimental verification are shown in Figs. 10 and
11.

Figure 10 shows the subjective effect of fused images of
MSAt-GAN and seven other fusion algorithms on three typ-
ical infrared and visible light image pairs in the “Nirscene”
dataset, of which part of the infrared targets and visible light
texture of the source images are highlighted in red and green
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Fig. 8 Quantitative comparison
between our MSAt-GAN and 7
state-of-the-art methods on 25
typical infrared and visible image
pairs on the TNO dataset. Means
of metrics for different methods
are shown in the legends. The red
font is the maximum value, and
the green font is the second
largest value
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Fig. 9 Qualitative comparison of
our MSAt-GAN with 7
state-of-the-art methods on 3
typical infrared and visible image
pairs on the INO dataset. The
first row shows the infrared
source image at frames 1051,
751 and 851, the second rows
shows the visible light source
images at frames 1051, 751 and
851, the third to ninth row shows
the results of CBF, GFF, GTF,
MSVD, DenseFuse, FusionGAN,
DDcGAN, the tenth row shows
the results of the proposed
method, and the last row is the
ground truth of the moving target

frames, respectively. It can be seen from the Fig. 10 that these
eight fusion algorithms can effectively fused infrared and vis-
ible image pairs. Yet, the fused images of CBF, GFF, GTF,
MSVD, FusionGAN and DDcGAN algorithms is not good
enough, for there are some defects of artifacts, noise or other
unknown errors. For example, CBF, GFF, and GTF algo-
rithms, there are a lot of noise and artifacts in the trees in the
second fusion image and the sky in the third fusion image,
which seriously affects the subjective visual effect; on the

upper part of the third fused image ofMSVDalgorithm, there
are many unknown vertical striped images. For deep learning
and GAN-based algorithms—FusionGAN and DDcGAN,
the effect of fused images is not ideal, neither. To be spe-
cific, the texture details of the grass are lost and the target of
the vehicle is not prominent in the first fused image. Over-
all, DenseFuse and MSAt-GAN algorithms excel at fusion
performance. Compared with the DenseFuse algorithm, the
overall contrast of MSAt-GAN fusion image is higher, the
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Fig. 9 continued

Table 2 The mean of the
objective evaluation index of 8
advanced algorithms on the
"ParkingSnow" image sequence
pairs on the INO dataset

EN MS-SSIM SF VIF CC SCD SD Qabf

CBF 7.5812 0.7498 0.0852 0.4481 0.3487 1.6441 11.1668 0.5268

GFF 7.6019 0.8765 0.0770 0.6728 0.3480 1.6394 11.3146 0.5434

GTF 6.7166 0.5871 0.0597 0.3336 0.2013 1.1497 8.4455 0.4202

MSVD 6.6075 0.7814 0.0604 0.4658 0.3518 1.7540 10.7577 0.3647

Densefuse 7.2329 0.8721 0.0655 0.6567 0.2394 1.5584 10.9658 0.5914

FusionGAN 6.1160 0.4230 0.0348 0.3557 0.2756 1.4939 7.3390 0.1679

DDcGAN 7.4969 0.7967 0.0753 0.3900 0.3141 1.6338 10.6447 0.4396

Ours 7.5316 0.8731 0.0872 0.6056 0.3732 1.7628 11.0805 0.5956

The maximum values in the first three digits are highlighted in bolditalic, italic, and bold fonts
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Table 3 The standard deviation
of the objective evaluation index
of 8 advanced algorithms on the
"ParkingSnow" image sequence
pairs on the INO dataset

EN MS-SSIM SF VIF CC SCD SD Qabf

CBF 0.0141 0.0118 0.0010 0.0101 0.0111 0.0113 0.0929 0.0048

GFF 0.0307 0.0076 0.0008 0.0113 0.0110 0.0106 0.1195 0.0050

GTF 0.0203 0.0102 0.0006 0.0076 0.0098 0.0160 0.0745 0.0070

MSVD 0.0722 0.0067 0.0067 0.0104 0.0088 0.0206 0.2029 0.0701

DenseFuse 0.0472 0.0078 0.0012 0.0131 0.0057 0.0190 0.2655 0.0066

FusionGAN 0.0632 0.0076 0.0004 0.0051 0.0062 0.0243 0.1746 0.0031

DDcGAN 0.0234 0.0065 0.0004 0.0079 0.0040 0.0277 0.1747 0.0029

Ours 0.0234 0.0064 0.0008 0.0097 0.0057 0.0099 0.1597 0.0032

The maximum values in the first three digits are highlighted in bolditalic, italic, and bold fonts

foreground target is more prominent, the background details
aremore abundant, and the visual effect is the best. For exam-
ple, the MSAt-GAN algorithm has richer details in the grass
on the left side of the first fused image, and the outline of
the vehicle is clearer. Especially after careful observation,
the first image fused by the DenseFuse algorithm has low
contrast and overall blur. On the whole, the MSAt-GAN
algorithm proposed in this paper produces a better subjec-
tive effect on the Nirscene dataset.

Figure 11 manifests the objective evaluation of MSAt-
GAN and other 7 state-of-the-art fused algorithms on 30
infrared and visible image pairs selected on the “Nirscene”
dataset, which is measured by 8 objective indicators. In addi-
tion, Fig. 11 shows the mean value of indicators for the
abovementioned 30 image pairs, in which the maximum,
the second and the third largest value of the indicators are
highlighted in red, green, and blue fonts, respectively. From
Fig. 11, we can see that the MSAt-GAN fusion algorithm
ranks first in MS-SSIM, SF, and CC, second in EN, SCD and
SD, and third in VIF and Qabf indicators. Specifically, there
is only 0.2009, 0.0188 and 0.6291 less than the first in EN,
SCD and SD, respectively, and 0.0467 and 0.0055 less than
the first in VIF and Qabf, respectively. Through calculations,
although the MSAt-GAN does not always rank first in the
evaluation of each indicator, the gap between our algorithm
and the first one is very small. The results of these eight
objective indicators values are consistent with the subjective
performance in Fig. 10. For example, in VIF and Qabf, the
values of our algorithm are high, which is proved in Fig. 10
that the three typical fused images of MSAt-GAN excels in
subjective effect. As SD reflects image contrast, the three
images fused by MSAt-GAN in Fig. 10 show a higher con-
trast.

Through comprehensive analysis, it can be concluded
that the images fused by the MSAt-GAN have good visual
effects and the best overall fusion quality. The other seven
state-of-the-art algorithms performed slightly worse on the
“Nirscene” dataset, and the generalization ability of the
model on this infrared and visible light datasetwas not strong.

Comparative analysis of time consumption

The TNO and Nirscene dataset consists of images of dif-
ferent resolutions, while INO video dataset captures the
same size of images. To make an objective evaluation of
the algorithm time complexity, we test 25 infrared and vis-
ible light image pairs of TNO, 20 infrared and visible light
image sequences of INO and 30 infrared and visible light
image pairs of Nirscene. The traditional CBF, GFF, GTF,
and MSVD algorithms are tested on the CPU, and the deep
learning algorithms of DenseFuse, FusionGAN, DDcGAN
and our proposed MSAt-GAN are tested on the GPU for
time performance. The results are shown in Table 4. The
maximum values of algorithm running time on CPU or GPU
aremarkedwith bold font and italics font for the convenience
of further analysis.

It can be seen from Table 4 that among the deep learn-
ing methods, our MSAt-GAN takes the longest time on the
INO dataset, and needs a shorter time than the DenseFuse
but a longer time than FusionGAN and DDcGAN on the
TNO dataset. The reasons are as follows. To begin with, our
algorithm model is more complicated than that of Fusion-
GAN and DDcGAN, both in terms of the width and depth
of the network. Next, we introduce a multi-scale deep fea-
ture extractionmodule withmultiple receptive fields to better
extract deep features. With more receptive fields, it will nec-
essarily increase the model width and depth of the deep
neural network as well as model parameters. Finally, the
deep multi-scale attention fusion module will also increase
the running time of the algorithm. In addition, the reason
for DenseFuse algorithm’s high runtime complexity is that it
adds a artificial fusion strategy to the fusion process, which
increases its complexity. Among the traditional algorithms
running on the CPU, CBF has the longest running time on
the two datasets. This is because it adopts a series of complex
decomposition and fusion strategies. In general, the operat-
ing efficiency of the algorithm is greatly improved due to
the powerful matrix computing capabilities of the GPU. Set
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Fig. 10 Qualitative comparison
of our MSAt-GAN with 7
state-of-the-art methods on 3
typical infrared and visible image
pairs on the Nirscene dataset.
From top to bottom: infrared
image, visible image, fusion
results of CBF [48], GFF [49],
GTF [47], MSVD [50],
DenseFuse [26], FusionGAN
[27], DDcGAN [28] and our
MSAt-GAN
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Fig. 11 Quantitative comparison
between our MSAt-GAN and 7
state-of-the-art methods on 30
typical infrared and visible image
pairs on the Nirscene dataset.
Means of metrics for different
methods are shown in the
legends. The red font is the
maximum value, green font is the
second largest value, and blue
font is the third largest value
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Table 4 Run time of different methods (Mean/Std-On the left is the
mean value of the running time of the algorithm, and on the right is the
standard deviation of the running time of the algorithm)

TNO dataset INO
dataset

Nirscene dataset

CBF 14.5583/
10.8104

6.4326/
0.2280

18.5028/2.9578

GFF 0.5040/0.8712 0.2358/
1.0543

0.7186/0.1206

GTF 6.9854/ 6.8636 3.1623/
0.1623

8.6335/1.9861

MSVD 0.5645/ 0.4038 0.2561/
0.0088

0.6208/0.4002

DenseFuse 2.4333/ 1.6542 1.2711/
1.0720

0.9569/1.0485

FusionGAN 0.8608/ 1.1193 0.1668/
0.5186

1.0820/1.0695

DDcGAN 1.6407/ 1.4966 0.8844/
1.301

1.9242/1.6306

Ours 2.3349/ 1.1397 1.9919/
1.1747

2.4191/1.9475

hardware environment of GPU and CPU aside, the operat-
ing efficiency of MSAt-GAN algorithm is at an intermediate
level among the eight fusion methods, and the processing
time of each image is between 1 and 2 s, that is, it can
basically meet the demands of real-time image fusion appli-
cations.

Model ablation study

Ablation study of deep attention mechanism

To prove the effectiveness of the multi-scale deep attention
mechanism, we display several multi-level deep attention
feature maps in the network, and verify our proposed
mechanism through qualitative and quantitative experi-
ments.

As infrared and visible light images are the images cap-
tured by two different modal sensors, they show different
representations of feature information of the same scene.
We introduce a deep attention mechanism in the feature
extractor of the encoder that can focus the extracted features
on key information, such as the target foreground infor-
mation in the infrared image and the detailed background
information in the visible light image. By introducing the
attention mechanism into the model, it is easier to find the
difference between the infrared light image and the visi-
ble light image, and eliminate the noise. Figure 12 shows
the multi-scale attention feature maps of multi-receptive
fields.

In Fig. 12, the first row from left to right is: infrared image,
visible image and fused image. Starting from the left, the
second row corresponds to: the first layer, the second layer
and the third layer of attention feature map of the 3 × 3
receptive field in the encoder network. Likewise, the third
row displays the first-layer, the second-layer, and the third-
layer attention feature map with the receptive field of 5 × 5
in the encoder network; the fourth row exhibits the first layer,
the second layer, and the third layer of attention feature map
of the 7× 7 receptive field in the encoder network. It can also
be seen from Fig. 12 that by introducing a feature attention
mechanism into the encoder network, the feature extractor
can better focus attention on the target area information of
infrared image and the detailed background information of
visible light image, such as the infrared targets information
of people and cars, and the detailed texture information of
trees.

To verify the fusion effect of the deep attention mech-
anism, we train the network by comparing whether the
attention mechanism is introduced into the encoder network.
We select three pairs of infrared and visible light images from
the TNO dataset, and make a comparison between MSAt-
GAN images with fusion model and that without fusion
model. The result is shown inFig. 13. Figure 13 shows that the
images fused by the deep attentionmechanismwe introduced
have prominent infrared thermal target information and rich
texture detail information. In Fig. 13, red and green boxes are
used to mark the infrared thermal targets and visible texture
features, respectively. It is because of the introduction of the
attention mechanism that the important features of infrared
images and visible images can be represented more accu-
rately. On the contrary, the fused image without the attention
mechanism has a poorer fusion effect. Figure 14 shows the
quantitative comparison results of a model without the atten-
tion mechanism (Without_Att), a deep multi-scale feature
extraction encoder model with multi-receptive field (convo-
lution kernel receptive field as 3× 3, 5× 5 and 7× 7) and our
MSAt-GAN fusion method. It can be seen from Fig. 14 that
our fusion method ranks first in the eight indexes of EN,MS-
SSIM, SF, VIF, CC, SCD, SD and Qabf, which shows that
our MSAt-GAN has achieved the best fusion performance
on these six objective indicators, and it proves the necessity
of introducing a deep attention mechanism into the encoder
network.

Ablation study of deepmulti-scale feature extraction
module with multiple receptive fields

To extract the important features of the source image more
comprehensively in the encoder network,we introduce a deep
multi-scale feature extraction module with multiple recep-
tive fields, and construct three feature extraction channels
with the receptive fields of the convolution kernel as 3 × 3,
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Fig. 12 Deep multi-scale feature
attention map with multiple
receptive fields

5 × 5 and 7 × 7. The feature extractor with multi-receptive
fields can employ the depth and width of the deep network
to expand the receptive field of the convolutional layer. The
shallow convolutional layer can only extract local informa-
tion of the feature, and the deeper the network, the richer the
global information extracted. This has been proved in Fig. 12.
We find that in the three feature extractors with convolution
kernels of 3 × 3, 5 × 5 and 7 × 7, as the network deepens,
the extracted global feature information becomes richer. For
example, in the feature extraction channel in Fig. 12, there are
many infrared target information extracted from the image in
the first layer, but relatively few visible light textures. This is
because the infrared target information in the source image
is more prominent, and have a relative rich local information
extracted from the lower layer.With the deepening of the sec-
ond and third layers of the network, the extracted images not
only retain the people and clouds in the infrared image, but
also represent the tree in the visible light. The feature extrac-
tion process is a process from coarse to fine, from local to
global. We can also see from Fig. 12 that in the three feature
extractors of 3 × 3, 5 × 5 and 7 × 7, the feature information
extracted by the same layer is not the same. This is because

the feature extractors with convolution kernels of 5 × 5 and
7 × 7, has enlarged the receptive field, compared with that
of 3 × 3 kernel on each layer. In addition, their extracted
global information has more features than the smaller con-
volution kernel. For themulti-receptive field deepmulti-scale
feature extraction module, the purpose of such combination
is to fully extract features on each convolutional layer of the
neural network, thus ensuring the diversity and flexibility of
feature extraction on each channel.

To verify the fusion effect of the deep multi-scale fea-
ture extraction module of multiple receptive fields, we set
the feature extractors with convolution kernels of 3 × 3, 5
× 5 and 7 × 7 as independent training models, and keep
the other modules of the network the same, and take them
as the three verification models. We select three pairs of
infrared and visible image pairs from the TNO dataset, and
compare MSAt-GAN with the convolution kernel of 3 ×
3, 5 × 5 and 7 × 7 fusion models in subjective percep-
tion. The results are shown in Fig. 13. It is found from
Fig. 13 that the image fused by our method, the retained
infrared thermal target information and the visible texture
background information are clear. In Fig. 13, the infrared
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Fig. 13 Qualitative comparisons
of ablation analysis on three
image pairs from the TNO data
set. The source images are shown
in the first two rows, followed by
the fused images of the model
without attention mechanism
(Without_Att), multi-scale deep
feature extraction module with
multiple receptive fields (3 × 3, 5
× 5, 7 × 7) and the fused images
of our method
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Fig. 14 Quantitative comparisons
of ablation analysis on three
image pairs from the TNO data
set. The source images are shown
in the first two rows, followed by
the fused images of the model
without attention mechanism
(Without_Att), multi-scale deep
feature extraction module with
multiple receptive fields (3 × 3, 5
× 5, 7 × 7) and the fused images
of our method
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thermal target information and the visible texture feature
are marked with a red box and a green box, respectively.
To be specific, the infrared target information such as the

outlines of cars and people in the first image, and street
lights in the second image; the texture background infor-
mation such as the railing of the house in the second image
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and the ripple in the third image. Figure 14 demonstrates
the quantitative comparison results of deep multi-scale fea-
ture extraction encoder models with multiple receptive fields
(convolution kernel receptive field as 3× 3, 5× 5 and 7× 7)
and our MSAt-GAN fusion methods, based on the 25 pairs
of infrared and visible image datasets selected on TNO. It
can be seen from Fig. 14 that our fusion method is on the
top in the eight indicators of EN, MS-SSIM, SF, VIF, CC
and SCD, which indicates that our MSAt-GAN achieves the
best fusion performance in the eight different indexes. From
subjective and objective perspective, it is obvious that the
introduction of deep multi-scale feature extraction modules
with multi-receptive fields can enhance infrared target infor-
mation and enrich texture information, which further proves
the necessity of introducing a deepmulti-scale feature extrac-
tion module with multiple receptive fields into the encoder
network.

Conclusions

In the paper, we propose a generative adversarial network-
based on multi-scale feature transmission and a deep atten-
tion mechanism for infrared and visible light image fusion.
The deep multi-scale feature extraction module of the multi-
receptivefieldwe introduce in the generator-encoder network
can effectively and comprehensively extract the global infor-
mation and deep features of the source image. In addition,
the deep attention mechanism introduced in the encoder
network can make the model put more emphasis on the
important features of the source image, such as the impor-
tant part of the difference distinguishable between infrared
image and visible image. What is more, we concatenate the
fused multi-scale attention features to the decoder network
of the generator, which can complete the feature trans-
fer effectively, avoid detail loss in the decoding process
and suppress the noise interference. The dense connec-
tion in all layers of the generator-encoder network can
help make full use of multi-scale features and strengthen
the mapping relationship between different scale features.
This paper also introduces a new gradient penalty term
to strengthen the Lipschitz constraint, which improves
the training performance and stability of the MSAt-GAN
model.

Through extensive qualitative and quantitative experi-
ments and ablation research analysis on three public infrared
and visible light image datasets, the advantages of MSAt-
GAN proposed in this paper in infrared and visible light
image fusion are proved. However, there are still limita-
tions of our proposed algorithm: (1) the hyperparameters of
the model loss function in most image fusion methods are
determined by the empirical value and experimental research
of other relevant literature, which may face the problem

of model tuning. In addition, this is the same problem of
this paper in terms of hyperparameters of the loss func-
tion of the MSAt-GAN model. (2) It should be noted that
MSAt-GAN model only verifies the efficiency of infrared
and visible light image fusion, but there is a certain corre-
lation between each image fusion task, so its generality is
insufficient.

Therefore, future studies should lay emphasis on finding a
reasonable design of a certain indicator function to adaptively
determine the proportional relationship between various
hyperparameters. In future research, we will extend the
MSAt-GANmodel to other fusion tasks, such asmulti-focus,
multi-exposure, and medical image fusion, by designing a
general loss function or adjusting only the hyperparameter
values in the existing loss function.
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