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Abstract
In this paper, the definition of probability, conditional probability and likelihood function are generalized to the intuitionistic
fuzzy observations. We focus on different estimation approaches of two-parameter Weibull (TW) distribution based on
the intuitionistic fuzzy lifetime data including, maximum likelihood (ML) and Bayesian estimation methodology. The ML
estimation of the parameters and reliability function of TW distribution is provided using the Newton–Raphson (NR) and
Expectation–Maximization (EM)algorithms.TheBayesian estimates are providedviaTierney andKadane’s approximation. In
the Bayesian estimation approach, for the shape and scale parameters, the Gamma and inverse-Gamma priors are considered,
respectively. Finally, a simulated data set is analyzed for illustrative purposes to show the applicability of the proposed
estimation methods. The Monte Carlo simulations are performed to find the more efficient estimator in the intuitionistic fuzzy
environment. The performances of the ML and Bayesian estimates of the parameters and reliability function are compared
based on the mean biased (MB) and mean squared errors (MSE) criteria.

Keywords Intuitionistic fuzzy lifetime data · Weibull distribution · EM Algorithm · NR Algorithm · Bayesian estimation

Introduction

In classical researches, the available data are considered
as crisp values/numbers. However, in real-world situations,
some data are associated with an underlying imprecision due
to inexactitude in the measuring process (human errors or
machine errors), vagueness of the involved concepts or a
certain degree of ignorance about the real values. Hence, the
fuzzy set theory naturally provides an appropriate tool in
modeling the imprecise data called fuzzy number (FN), and
it is more efficient than considering only a single value or
category. Garg [16] considered several linear and non-linear
forms of fuzzy numbers with four different membership
functions. Based on the findings, Cauchy FNs provide the
preferential fit for the system data than triangular, normal and
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Gamma models based on the minimum level of the uncer-
tainties in the form of the support spread at any confidence
level.

In some cases, the number of failures or the lifetimes of
items cannot be measured precisely, so they will be regarded
as fuzzy random variables. The fuzzy random variablemakes
the combination of randomness and fuzziness more per-
suasive since the uncertainty and imprecision are modeled
respectively by probability theory and fuzzy set theory. The
pioneer researches in the field of the fuzzy random variable
were executed by Kwakernaak [20] and Puri and Ralescu
[29], afterward several types of investigation were motivated
by the concept of fuzzy random variables and notions in
classical probability are extended to the fuzzy environment.
Among different researchers, we cite Liu et al. [21] (bivariate
random fuzzy exponential distribution), Pak et al. [25] (fuzzy
Weibull) and Shafiq et al. [30] (fuzzy lognormal).

The Bayesian estimation approach is of the main appeal-
ing in different sciences. Sindhu et al. [33] discussed the
Bayesian estimation of a mixture Gumbel models and their
industrial application for process monitoring in a new for-
mat of control chart. They evaluated the proposed chart by
both data sets of failure times of windshields of aircraft and
failure times of the air conditioning system of an airplane.
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The Bayesian inference of the mixture of two components of
half-normal distribution based on both informative and non-
informative priors are proposed by Sindhu et al. [34]. The
posterior risks of the Bayesian estimators are compared to
explore the effect of prior belief and loss functions. Recently,
Sindhu et al. [31] concentrated on the Bayesian estimation of
the shape parameter of the mixture of Topp-Leone with the
non-informative priors under the censored data. They eval-
uated the survival times for 30 light bulbs in months and
Bayesian estimates of the parameters under different loss
functions.

Several estimation approaches are extended in fuzzy sets
included the ML (NR and EM algorithms), uniformly min-
imum variance unbiased (UMVU) and Bayesian estimation
methods. Denoeux [9] showed that the EM algorithm can
be adapted to the fuzzy data called fuzzy EM (FEM). The
proposed FEM method is utilized for the normal mean and
variance estimation from a fuzzy sample, multiple regression
analysis with crisp inputs and fuzzy outputs, and univariate
finite normal mixture estimation from fuzzy data. Akbari and
Khanjari Sadegh [1] generalized the two types of UMVUand
Bayesian estimators to the fuzzy random variables based on
Yao-Wu singed distance and L2-metric. As a special case,
they concentrated on the fuzzy random sample and trian-
gular membership function. Parchami [28] reported the ML
estimates of the parameters of exponential distribution based
on fuzzy observations through the EM Algorithm.

In lifetime analysis, the reliability function plays a princi-
pal role, which indicates how many parts are still in use after
a certain running time and have not yet failed. Since the fuzzy
set theory was introduced by Zadeh [37], several investiga-
tors expanded the fuzzy set theory to reliability analysis [24].
The fuzzy reliability analysis of different distributions are
considered in previous literature, such as exponential [36],
Rayleigh [26,27], Lomax [2] and Fréchet [22].

Fuentes-Huerta et al. [14] proposed a fuzzy maximum
entropy approach to determine the maximum entropy reli-
ability function considering the uncertainty and the main-
tenance staff knowledge. The combination of objective
functions is simultaneously optimized in the Multi-objective
optimization method. Garg [17] determined the interactive
bi-objective reliability-cost of a series–parallel system under
the fuzzy environment. They consider the fuzzy membership
functions to handle the dissident character of different objec-
tives. Niwas and Garg [23] focused on the reliability analysis
of an industrial system under the failure-freewarranty policy,
with the negative exponential failure rate.

Based on Zadeh’s fuzzy set, several fuzzy set exten-
sions for various objectives have been presented [4,10,11].
Among these extensions, the concept of intuitionistic fuzzy
sets (IFS)s, introduced by Atanassov [3], has attracted more
attention in practical problems, which makes descriptions of
the objective world more realistic, practical and accurate. In

the fuzzy set, themembership and non-membership grades of
an object are complementary. But during deciding the degree
of membership of an object, there is a degree of hesitation
between the membership and non-membership. This feature
is considered in IFS by defining a maximum value of one
for the sum of the membership and non-membership val-
ues of an object. Based on the IFS, the intuitionistic fuzzy
numbers (IFN)s as a generalization of FNs was proposed
by Burillo et al. [5], applying in real-life problems. Thus, it
is necessary to generalize the classical estimation methods
from crisp numbers to IFNs. Garg [15] provided a new defi-
nition of membership function under IFS and focused on the
fuzzy system reliability analysis to construct themembership
and non-membership functions with different types of intu-
itionistic fuzzy failure rates (IFFR). The proposed approach
is used in the fuzzy reliability analysis of series, parallel, and
series–parallel systems using different types of IFFRs.

One of the classic distributions to fit lifetime data is the
Weibull distribution, which demonstrates some prominent
properties. Several modifications of the Weibull distribution
are considered by the authors. The TW distribution with the
shape and scale parameters has been extensively used in reli-
ability and survival analysis, particularly in crisp data issues
[13]. Theprobability density function (pdf), cumulative prob-
ability and reliability functions of the TW distribution are
defined respectively as

fθ (x) = γ

β

( x

β

)γ−1
e
−

(
x
β

)γ

I[0,∞)(x), x ∈ R,

Fθ (x) = 1 − e
−

(
x
β

)γ

I[0,∞)(x),

Rθ (x) = 1 − Fθ (x) = e
−

(
x
β

)γ

I[0,∞)(x),

where θ = (γ, β) ∈ R
+ × R

+ is the vector of the unknown
shape and scale parameters.

Consequently, the likelihood function of TW distribution
based on the samples (X1, . . . , Xn) is obtained as below

L(θ |x1, . . . , xn) =
n∏

i=1

fθ (xi )

=
(

γ

β

)n

×
n∏

i=1

(
xi
β

)γ−1

× e
−∑n

i=1

(
xi
β

)γ

.

The parameters of the Weibull distribution as well as the
failure probability, based on crisp values, can be calculated
using some proposed methods. Husniah et al. [19] proposed
a multi-period lease contract for remanufactured products
using Weibull distribution. Dahbi et al. [8] considered the
analysis of wind power using the Weibull density function.
Recently, Sindhu and Atangana [32] considered the reliabil-
ity analysis of the exponentiated inverseWeibull distribution
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with the application of a surface-mounted electrolytic capaci-
tor lifespanunder an accelerated life testing,which influences
average time to failure.

Despite several investigations on the estimation of the
parameters of the Weibull distribution using fuzzy data, but
the ML and Bayesian estimators of the Weibull parameters
have not been discussed based on the IFNs data. The life-
time data might be imprecise and are represented in the form
of IFNs, hence it is necessary to generalize crips estimation
methods to IFNs. Due to the exigency of the estimationmeth-
ods in IFN environments, we extend the classical ML (via
NR and EM algorithms) and Bayesian estimation methods
of crisp values of both parameters and reliability function of
the TW distribution to the case of the IFNs. The estimation
procedures are compared via the simulation study based on
the MB and MSE factors.

Basic definition of the FN and IFS

In this section, we review some concepts of FN, fuzzy set the-
ory and IFS, with two special classes of IFS, included the tri-
angular intuitionistic fuzzy numbers (TIFNs) and trapezoidal
intuitionistic fuzzy numbers (TrIFNs).We also develop some
statistical semantics to the IFS, such as intuitionistic fuzzy
probability, intuitionistic fuzzy conditional density, intuition-
istic fuzzy likelihood and intuitionistic fuzzy conditional
expectation.

Consider an experiment characterized by a probability
space (Rn,A,P), where A is a σ -field of the Borel sets in
R
n and P is probability measure over Rn . The probability of

any A ∈ A is defined as

P(A) =
∫

A
dP. (1)

Zadeh [37] extended the probability (1) to the fuzzy envi-
ronment. In order to model imprecise data, a generalization
of crisp numbers is necessary. The FN is a fuzzy subset (x̃),
which is characterized by the membership function μx̃ , and
satisfies the following constraints [39]

(i) μx̃ : R → [0, 1] is Borel-measurable;
(ii) ∃ x0 ∈ R, such that μx̃ (x0) = 1.
(iii) The α-cuts are defined as x̃α = {t ∈ R | μx̃ (t) ≥ α} in a

closed interval, for 0 < α ≤ 1.

Based on the definition of FN, a crisp number can be treated
as a special case of the FN. Indeed, for a crisp real observation
m ∈ R, its corresponding membership function is μm(t) =
1, for t = m and μm(t) = 0, for t �= m.

Regarding the concept of fuzzy sets, the notion of proba-
bility was extended to fuzzy events as follows [38].

Definition 1 (Zadeh [38]). Let (Rn,A,P) be a probability
space and consider the fuzzy observation x̃ , which is charac-
terized as the observed FN value of a random experiment on
the proposed probability space. So, the probability of occur-
ring x̃ is defined as

P (̃x) =
∫

R

μx̃ (t)dP.

Definition 2 (Atanassov [3]). LetX be a non-empty universal
set. An IFS A in X is defined as an element of the form
A = {〈x, μA(x), νA(x)〉 | x ∈ X}, where the functions
μA : X → [0, 1] and νA : X → [0, 1] denote the degree
of membership and non-membership of x in A, respectively,
and 0 ≤ μA(x) + νA(x) ≤ 1 for each x ∈ X.

In this paper, we assume X = R, and the class of all IFSs
is denoted as IF(R).

Definition 3 (Burillo et al. [5]). The IFN A in R is defined
as A = {〈x, μA(x), νA(x)〉|x ∈ R} where the membership
function μA : X → [0, 1] and the non-membership function
νA : X → [0, 1] are defined as

μ Ã(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f l(x), if x ∈ [a, b],
wA, if x ∈ (b, c],
f r (x), if x ∈ (c, d],
0, otherwise,

ν Ã(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gl(x), if x ∈ [a1, b],
uA, if x ∈ (b, c],
gr (x), if x ∈ (c, d1],
1, otherwise,

where a1 ≤ a ≤ b ≤ c ≤ d ≤ d1 and 0 ≤ μA(x)+νA(x) ≤
1, for each x ∈ R. The left and right basic functions f l(·),
f r (·), gl(·) and gr (·) are continues monotone membership
and non-membership functions respectively, where f l(·),
gr (·) are increasing and gl(·), f r (·) are decreasing functions.

Two common TIFNs and TrIFNs classes of IFSs have
received great attention in applications. The TIFN has the
following membership and non-membership functions

μ Ã(x) =

⎧⎪⎨
⎪⎩

x−a
b−awA, if x ∈ [a, b],
c−x
c−bwA, if x ∈ (b, c],
0, otherwise,

ν Ã(x) =

⎧⎪⎪⎨
⎪⎪⎩

b−x+uA(x−d)
b−d , if x ∈ [d, b],

x−b+uA( f −x)
f−b , if x ∈ (b, f ],

1, otherwise,

123



4884 Complex & Intelligent Systems (2022) 8:4881–4896

where the values wA and uA represent maximum member-
ship degree andminimum non-membership degree, such that
wA ∈ [0, 1] and uA ∈ [0, 1], where 0 ≤ uA + wA ≤ 1.

Figure1 shows the membership and non-membership
functions of a TIFN for the case a = d, c = f .

Intuitionistic fuzzy probability

In the following, we define some renovated notions of prob-
ability to the IFSs, which will be employed in the estimation
discussion based on intuitionistic fuzzy observations.

Definition 4 Consider the probability space (Rn,A,P), the
probability of an intuitionistic fuzzy observation x̃ in R

n ,
which is the observed value of a random experiment as IFS
is defined by

P(̃x) =
∫

R
n

1 − νx̃ (x) + μx̃ (x)

2
dP. (2)

Consider the continuous random variable X with the pdf
fθ (x), parameterized with θ . We introduce the conditional
density of X given the intuitionistic fuzzy observation x̃ ,
called intuitionistic fuzzy conditional density, as follows

fθ (x |̃x) =
1−νx̃ (x)+μx̃ (x)

2 fθ (x)∫
R

1−νx̃ (x)+μx̃ (x)
2 fθ (x)dx

, ∀x ∈ R,

which satisfies the probability axioms,

(i) fθ (x |̃x) ≥ 0,
(ii)

∫
R
fθ (x |̃x)dx = 1.

Subsequently, the likelihood function of θ given IFS x̃ is
defined as below

L(θ |̃x) = P(̃x | θ)

=
∫

R

1 − ν̃x(x) + μx̃(x)

2
f (x|θ)dx. (3)

Consider the independent identically distributed (i .i .d) ran-
dom vector with the realization x̃ = (̃x1, . . . , x̃n), and
the joint membership μx̃(·) and the corresponding non-
membership functions ν̃x(·) are satisfied in the following
relation

1 − ν̃x(x) + μx̃(x)
2

=
n∏

i=1

1 − νx̃i (x) + μx̃i (x)

2
.

Therefore, the intuitionistic fuzzy likelihood function (3) is
written as follows

L(θ |̃x) =
∫

R
n

1 − ν̃x(x) + μx̃(x)
2

f (x|θ)dx

=
n∏

i=1

∫

R

1 − νx̃i (xi ) + μx̃i (xi )

2
f (xi |θ)dxi .

Indeed, we assume that X = (X1, . . . , Xn) be a random
variable of size n taken from a population with pdf fθ (x),
and x̃ = (̃x1, . . . , x̃n) is the observed value of the sample.
So, x̃i is the intuitionistic fuzzy observed value of Xi with the
membership function μx̃i (x) and non-membership function
νx̃i (x) for i = 1, . . . , n. The intuitionistic fuzzy likelihood
function is the product of the probability function based on
the IFS x̃ as follows

L(θ | x̃) = L(θ | x̃1, . . . , x̃n) =
n∏

i=1

Pθ (Xi ∈ x̃i )

=
n∏

i=1

∫

R

1 − νx̃i (x) + μx̃i (x)

2
fθ (x)dx .

Corollary 1 The conditional probability of an IFS x̃c to the
probability of an IFS x̃ is provided as

Pθ (X ∈ x̃ c|X ∈ x̃)

= Pθ (X ∈ (̃xc ∩ x̃))

Pθ (X ∈ x̃)

=
∫

R

1−νx̃c∩x̃ (x)+μx̃c∩x̃ (x)
2 fθ (x |X ∈ x̃)∫

R

1−νx̃ (x)+μx̃ (x)
2 fθ (x)dx

dx

=
∫

R

1−νx̃c (x)+μx̃c (x)
2 × 1−νx̃ (x)+μx̃ (x)

2 fθ (x |X ∈ x̃)∫
R

1−νx̃ (x)+μx̃ (x)
2 fθ (x)dx

dx,

where the membership and non-membership functions of the
subscription of two IFSs x̃∩ x̃ c hold in the following equation

1 − νx̃ c∩x̃ (x) + μx̃ c∩x̃ (x)
2

= 1 − νx̃ c (x) + μx̃ c (x)

2
× 1 − νx̃ (x) + μx̃ (x)

2
.

Corollary 2 Based on the conditional pdf, the expectation of
the random variable X given the intuitionistic fuzzy obser-
vation x̃ is defined as below

Eθ (X |X ∈ x̃) =
∫

R

x fθ (x |x ∈ x̃)dx

=
∫

R

x
1−νx̃ (x)+μx̃ (x)

2 f (x)∫
R

1−νx̃ (x)+μx̃ (x)
2 f (x)dx

dx .
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The estimation based on intuitionistic fuzzy
observations

Based on n intuitionistic fuzzy observations x̃1, . . . , x̃n ,
parameters of a distribution can be estimated intuitively by
different estimation methods.

Here, we provide the parameters and reliability function
estimation of the TW distribution by the ML and Bayesian
estimation methods.

Let Xi , i = 1, . . . , n, be the random variable distributed
as (2), with the vector of parameters θ , and x̃1, . . . , x̃n be
observed imprecisely from the TW distribution. The intu-
itionistic fuzzy likelihood function is provided as

L(θ |̃x) =
n∏

i=1

∫

R

1 − νx̃i (x) + μx̃i (x)

2
× fθ (x)dx

=
n∏

i=1

∫

R

1 − νx̃i (x) + μx̃i (x)

2

×γ

β

(
x

β

)γ−1

e
−

(
x
β

)γ

dx .

Thus, the intuitionistic fuzzy log-likelihood function is rep-
resented as

l(θ |̃x) = log(L(θ |̃x)) =
n∑

i=1

log(L(θ |̃xi ))

=
n∑

i=1

log

(∫

R

1 − νx̃i (x) + μx̃i (x)

2

×γ

β

(
x

β

)γ−1

e
−

(
x
β

)γ

dx

)
.

Therefore, the ML estimation of the vector θ is obtained
based on the root of the following score functions

∂

∂θ
l(θ |̃x) = 0. (4)

Or equivalently,

(
∂
∂γ

l(θ |̃x)
∂
∂β
l(θ |̃x)

)
=

(
0
0

)
,

where

∂

∂γ
l(θ |̃x) =

n∑
i=1

1

L(θ |̃xi )
[∫

R

1 − νx̃i (x) + μx̃i (x)

2
× ∂

∂γ
fθ (x)dx

]
,

∂

∂β
l(θ |̃x) =

n∑
i=1

1

L(θ |̃xi )
[∫

R

1 − νx̃i (x) + μx̃i (x)

2
× ∂

∂β
fθ (x)dx

]
.

The first derivatives of the TW distribution, with respect to
each parameter, are computed as below

∂

∂γ
fθ (x) = 1

β

( x

β

)γ−1
e−( x

β
)γ

[
1 + γ log

(
x

β

) (
1 − ( x

β

)γ
)]

,

∂

∂β
fθ (x) = γ 2xγ−1

βγ+1 e
−

(
x
β

)γ (( x
β

)γ − 1
)
.

As can be seen, the ML estimates of the TW distribution
cannot be obtained analytically, so some numerical meth-
ods are required to find the roots of (4). If θ̂ = (γ̂ , β̂) be
the numerical solutions of (4), so they should satisfy in the
regular conditions as below

∣∣∣ ∂2

∂θ2
l(θ |̃x)

∣∣∣
θ=θ̂

=
∣∣∣∣∣∣

∂2

∂γ 2 l(θ |̃x) ∂2

∂γ ∂β
l(θ |̃x)

∂2

∂γ ∂β
l(θ |̃x) ∂2

∂β2 l(θ |̃x)

∣∣∣∣∣∣
θ=θ̂

< 0,

where

∂2

∂γ 2 l(θ |̃x) =
n∑

i=1

∂

∂γ

(
1

L(θ |̃xi )
)

[∫

R

1 − νx̃i (x) + μx̃i (x)

2
× ∂

∂γ
fθ (x)dx

]

+
n∑

i=1

1

L(θ |̃xi )
[∫

R

1 − νx̃i (x) + μx̃i (x)

2
× ∂2

∂γ 2 fθ (x)dx

]
,

∂2

∂β2 l(θ |̃x) =
n∑

i=1

∂

∂β

(
1

L(θ |̃xi )
)

[∫

R

1 − νx̃i (x) + μx̃i (x)

2
× ∂

∂β
fθ (x)dx

]

+
n∑

i=1

1

L(θ |̃xi )
[∫

R

1 − νx̃i (x) + μx̃i (x)

2
× ∂2

∂β2 fθ (x)dx

]
,

∂2

∂γ ∂β
l(θ | x̃) =

n∑
i=1

∂

∂γ

(
1

L(θ |̃xi )
)

[∫

R

1 − νx̃i (x) + μx̃i (x)

2
× ∂

∂β
fθ (x)dx

]
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+
n∑

i=1

1

L(θ |̃xi )
[∫

R

1 − νx̃i (x)+μx̃i (x)

2
× ∂2

∂γ ∂β
fθ (x)dx

]
.

We consider both NR and EM algorithms to compute theML
estimates of the vector θ .

NR Algorithm based on intuitionistic fuzzy
observations

The NR Algorithm is a direct approach for estimating the
relevant parameters in a likelihood function, which finds the
root of score functions through an iterative procedure. Con-
sider the initial values θ0 = (γ 0, β0), then at the (h + 1)th

step of the iteration, the updated parameters are obtained as

θ̂
h+1 = θ̂

h −
[

∂2

∂θ2
l(θ |̃x)

∣∣∣̂
θ
h

]−1
∂

∂θ
l(θ |̃x)

∣∣∣̂
θ
h .

The iteration process continues until the convergency is
reached, in the other word, for specified ε > 0, the process is
repeated until ‖θh+1−θh‖2 < ε, where ‖·‖2 is the Euclidian
norm. The initial values of the parameters are selected based
on the ordinaryML estimates of the parameters of TW distri-
bution. It is worth mention the NR algorithm is executed by
the “nlm” command in statistical software “R”, which uses
the NR algorithm as default. The ML estimate of θ via NR
algorithm is denoted by θ̂N R = (γ̂N R, β̂N R).

EM algorithm based on intuitionistic fuzzy
observations

The EM algorithm is a prevalent estimation strategy to com-
pute the ML estimates iteratively, which is used in a variety
of incomplete-data contents. Some superiorities of the EM
algorithm than NR are facility in run, computational stability
with appropriate convergence rate and potential asymptotic
behavior of estimates. The EMalgorithm is a feasible estima-
tion method in fuzzy data, since the observed intuitionistic
fuzzy data x̃ can be regarded as an incomplete specification
of a complete data vector x̃.

In the following, the EM algorithm is investigated to
determine the ML estimates of θ = (γ, β), containing the
following iterative process.

1. Consider the initial values of θ , as θ0 = (γ 0, β0), and
set h = 0.

2. In the (h + 1)th iteration, the following expectations are
computed

E1i = Eθ

(
log

(
X

β

)
|X ∈ x̃i

)

=
∫

R

log

(
x

β

)
fθ (x |x ∈ x̃i )dx

=
∫

R

log

(
x

β

)

×
1−νx̃i (x)+μx̃i (x)

2 fθ (x)∫
R

1−νx̃i (x)+μx̃i (x)
2 fθ (x)dx

|θ=θh dx,

E2i=Eθ

((
X

β

)γ

log

(
X

β

)
|X ∈ x̃i

)
(5)

=
∫

R

(
x

β

)γ

log

(
x

β

)
fθ (x |x ∈ x̃i )dx

=
∫

R

(
x

β

)γ

log

(
x

β

)

×
1−νx̃i (x)+μx̃i (x)

2 fθ (x)∫
R

1−νx̃i (x)+μx̃i (x)
2 fθ (x)dx

|θ=θh dx,

E3i = Eθ

(
Xγ

βγ+1 |X ∈ x̃i

)
(6)

=
∫

R

xγ

βγ+1 fθ (x |x ∈ x̃i )dx

=
∫

R

xγ

βγ+1

×
1−νx̃i (x)+μx̃i (x)

2 fθ (x)∫
R

1−νx̃i (x)+μx̃i (x)
2 fθ (x)dx

|θ=θh dx . (7)

3. Based on the expectations (5)–(6), the values θ̂
h+1 =

(γ̂ h+1, β̂h+1) are achieved, respectively as follows

γ̂ h+1 ← n

−∑n
i=1 E1i + ∑n

i=1 E2i
,

β̂h+1 ← n∑n
i=1 E3i

.

4. The process is iterated until it reaches convergence, the
same as the NR algorithm. If the convergency is reached,

then the current θ̂
h+1 = (γ̂ h+1, β̂h+1) are the ML esti-

mates of θ = (γ, β) via EM algorithm, otherwise set
h = h + 1 and go to step 2.

TheMLestimate of θ via EMalgorithm is refereed as θ̂ EM =
(γ̂EM , β̂EM ).

Corollary 3 TheML estimation of the intuitionistic fuzzy reli-
ability of TW distribution, defined as Rθ (x) = exp(−( x

β
)γ ),

is concluded by the invariant properties of the ML estimates.
Therefore, the ML estimates (by NR and EM algorithm) of
Rθ (x) is represented as follows

R̂θ,NR(x) = exp

⎛
⎝−

(
x

β̂N R

)γ̂N R

⎞
⎠ ,
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R̂θ,EM(x) = exp

⎛
⎝−

(
x

β̂EM

)γ̂EM

⎞
⎠ .

Bayesian estimation based on intuitionistic fuzzy
observations

In recent decades, the Bayesian inference has received a great
deal of attention which is a potential alternative to the clas-
sical statistic perspectives. In this section, we consider the
independent Gamma and inverse-Gamma priors for shape
and scale parameters, respectively. Hence, the joint prior of
the θ is represented as

π(θ) = π(γ, β) = π1(γ ) × π2(β)

= 
(a1, b1) × I
(a2, b2),

where a1, a2, b1, b2 are hyperparameters. The posterior like-
lihood function of θ given intuitionistic fuzzy observations
X̃ = x̃ is indicated as

Lpost(θ |̃x) ∝ π(θ) × L(θ |̃x)

=
n∏

i=1

π1(γ )π2(β)

∫

R

1 − νx̃i (x) + μx̃i (x)

2
× fθ (x)dx

∝ γ n(a1−1)e−nb1γ βn(a2−1)e−nb2β

n∏
i=1

∫

R

1 − νx̃i (x) + μx̃i (x)

2
× γ

β

(
x

β

)γ−1

e
−

(
x
β

)γ

dx .

Thus, the intuitionistic fuzzy log-posterior likelihood func-
tion is written as

lpost(θ |̃x) ∝ n(a1 − 1) log(γ ) − nb1γ + n(a2 − 1) logβ

−nb2β +
n∑

i=1

log
∫

R

1 − νx̃i (x) + μx̃i (x)

2

×γ

β

(
x

β

)γ−1

e
−

(
x
β

)γ

dx .

Finally, under the squared error loss function, the Bayesian
estimate of any function of θ , say g(θ), is

Epost(g(θ)|X̃ = x̃) =
∫
� g(θ)Lpost(θ |̃x)dθ∫

� Lpost(θ |̃x)dθ

=
∫
� g(θ)π(θ)L(θ |̃x)dθ∫

� π(θ)L(θ |̃x)dθ

=
∫
� g(θ)eQ(θ)dθ∫

� eQ(θ)dθ
, (8)

where Q(θ) = log
(
π(θ)L(θ |̃x)

)
. The posterior expectation

(8) cannot be obtained analytically, hence we apply Tierney

andKadane’s approximation to derive theBayesian estimates
of parameters [35].

Consider the notation H(θ) = Q(θ)
n and H∗(θ) =

log(g(θ)) + H(θ), the Bayesian estimates of g(θ) are repre-
sented as

ĝ(θ)Bayes =
(det�∗

det�

) 1
2
exp

(
nH∗(θ∗

) − nH(θ)
)
,

where θ and θ
∗
maximize H(θ) and H∗(θ), respectively,

� and �∗ are the negatives of the inverse Hessians of
H(θ) and H∗(θ) at maximum points of the correspond-
ing functions. Therefore, det� = (H11H22 − H2

12)
−1 and

det�∗ = (H∗
11H

∗
22 − H∗2

12 )−1, where Hi j , H∗
i j , i, j = 1, 2

denote the derivatives of H(θ) and H∗(θ), with respect to γ

andβ. By set g(θ) = γ and g(θ) = β, theBayesian estimates
of each parameter are obtained, directly. Due to the tedious
calculation of derivative functions, they are eliminated from
the paper.

The maximization of the functions H(θ) and H∗(θ) are
computed numerically by the “nlm” command and the Hes-
sians matrices are obtained by the “hessian” command at the
package “numDeriv” in software “R”. So,� and�∗ are eas-
ily computed by the negative of inverse of related Hessians.

Corollary 4 The Bayesian estimate of the intuitionistic fuzzy
reliability of TW distribution is obtained by taking g(θ) =
Rθ (·) in theBayesian estimationmethod.ByapplyingTierney
and Kadane’s approximation, the Bayesian estimation of the
reliability function is computed with the updated notation

H∗(θ) = −
(
x
β

)γ + H(θ) and the corresponding Hessian

matrix.

Numerical examples

In this section, some numerical examples of the ML and
Bayesian estimates are reported for comparison purposes.

Intuitionistic fuzzy data generation

In this section, the proposed estimation methods are applied
on a simulated of IFSs, to compare the performances of
estimation approaches. The random samples are generated
by employing the intuitionistic fuzzy representation method.
There are several families of fuzzy representations in the lit-
erature [6,7,18], we extend the family of interesting fuzzy
representation proposed in [18] to IFS. Each representation
transforms crisp data (real-valued random variable) into IFSs
(associated intuitionistic fuzzy random variable (IFRV)) by
mapping γ̃ : R → IF(R) whose membership and non-
membership functions are given by
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μx̃i (t) = γ̃xi (t)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wi

(
t−ai
xi−ai

)hL (xi )
if t ∈ [ai , xi ],

wi

(
bi−t
bi−xi

)hR(xi )
if t ∈ [xi , bi ],

0 if t /∈ [ai , bi ],
νx̃i (t) = γ̃ ′

xi (t)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
xi−t
xi−ai

)hL (xi )+ui
(

t−ai
xi−ai

)hL (xi )
if t ∈[ai , xi ],

(
t−xi
bi−xi

)hR(xi )+ui
(

bi−t
bi−xi

)hR(xi )
if t ∈[xi , bi ],

1 if t /∈ [ai , bi ],
(9)

such that

(i) x1, . . . , xn is an i .i .d crisp random sample from distri-
bution fθ (·);

(ii) ai and bi are selected randomly, such that ai ≤ xi ≤ bi ,
for each i = 1, . . . , n;

(iii) wi ∈ [0, 1] and ui ∈ [0, 1] are selected randomly such
that 0 ≤ wi + ui ≤ 1, for each i = 1, . . . , n;

(iv) hL(·) : R → [0, 1] and hR(·) : R → [0, 1].

Remark 1 The generated IFS covers TIFN as a special case,
when set hL(·) = hR(·) = 1 in (9).

In all generated data sets used in this paper, the gener-
ated IFSs are considered as TIFNs. Consider the probability
space (�,A, P), and let X : � → R be a random vari-
able associated with (�,A, P). The IF(R)-valued IFRV
γ̃X : � → IF(R) will be called the γ -IFRV representa-
tion of the random variable X .

Optimal solutions

In this section, we generate the dataset (x1, . . . , xn) form the
TW distribution with parameters θ = (γ, β) = (5, 10), with
sample size n = 30. The data set is reported in Table 1, which
is derived by the mechanism given in Sect. 4.1. Then, by γ̃

intuitionistic fuzzy representation in (9), the crisp values of
(x1, . . . , xn) are transformed to the IFNs. Now by employ-
ing the NR and EM algorithms, the estimated values of the
parameter θ = (γ, β) = (5, 10) are obtained as

θ̂ EM = (γ̂ , β̂) = (5.38, 10.61),

θ̂N R = (γ̂ , β̂) = (5.32, 9.47).

In this paper, the initial values of the parameters γ and β in
the NR and EM algorithms are chosen as the ML estimates
of 1000 samples from crisp TW distribution, which will be
modified in each iteration of algorithms.

A contour plot is a graphical tool to represent a 3-
dimensional surface by depicting constant z slices, called
contours, on a 2-dimensional format. The location of point
θ̂N R on the contour plot depicts the location of the values
that minimized the proposed function.

The contour plot of the likelihood function of the intuition-
istic fuzzy data is depicted in Fig. 2, which shows the location
of the solution in NR algorithm. In Fig. 2, the parameters γ

and β are respectively represented in the x-axis and y-axis,
where the z-axis is the values of the intuitionistic fuzzy log-
likelihood function. Theminimumvalues of the intuitionistic
fuzzy log-likelihood function are represented by red dash-
line based on the NR algorithm.

We further calculate the Bayesian estimates of the
unknownparameters, by usingTierney andKadane’s approx-
imation method. In order to obtain the values of hyperparam-
eters (a1, a2, b1, b2) of informative priors, we first generate
1000 samples from the complete TW distribution and corre-
sponding to each sample, we derive the maximum likelihood
estimates of the parameters and then compare the mean and
variance of these samples with the mean and variance of the
considered priors [12]. Then, we consider informative priors
of γ ∼ 
(a1, b1) and β ∼ I
(a2, b2) for the parameters.
The Bayesian estimates of θ = (γ, β) = (5, 10) based on
the proposed approximation method is

θ̂ Bayes = (γ̂ , β̂) = (4.79, 9.63).

Simulation study

In the following, a simulation study is provided to compare
the performance of the proposed estimation methods based
on 1000 iteration samples. Some numerical properties of the
estimated parameters will be applied to investigate the per-
formance of the estimation methods, such as MB and MSE.

The MB and MSE criteria for the estimated parameters
over the simulated iteration loop are defined as follows

MB(γ̂ ) = 1

M

M∑
m=1

(γ̂ (m) − γ ),

MB(β̂) = 1

M

M∑
m=1

(β̂(m) − β),

MSE(γ̂ ) = 1

M

M∑
m=1

(γ̂ (m) − γ )2,

MSE(β̂) = 1

M

M∑
m=1

(β̂(m) − β)2.
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Comparison results

Table 2 consists of the MB and MSE values of the ML and
Bayesian estimates over the simulated intuitionistic fuzzy
observations. The positive values of MB show the overes-
timation, and negative values denote the underestimation of
each estimationmethod.Basedon thefindings, the estimation
methods in the intuitionistic fuzzy environment are conver-
gent to the actual values of the parameters, and by increasing
the sample size, the MSE values are gradually decreased.
Moreover, the Bayesian estimation approach are more con-
venient than NR and EM, regarding the minimum values of
MB and MSE.

Table 3 reports the estimated results for the reliability
function by EM, NR and Bayesian estimation methods for
different values of x = 5, 8, 10.

An estimation method is recommended based on the MB
andMSE in the comparison outcomes. The results of Table 3
confirmed the convergence of the estimation methods. Also,
the Bayesian estimation of the reliability function has pre-
ponderance than the classical MLmethod with respect to the
MB and MSE values.

Conclusion remarks

In this paper, the probability notions are extended to the IFS
and based on the TW lifetime distribution, the parameters, as
well as the reliability function, are estimated.We focus on the
generalization of the fuzzy, [25], to the intuitionistic fuzzy
environment, which can be considered as a special case of
IFN. Based on the IFS, the classical ML (NR and EM algo-
rithms) and Bayesian estimation approaches are discussed.
The Bayesian estimation is obtained through Tierney and
Kadane’s approximation, under the informative priors and
square error loss function. Based on the simulation findings
for different combinations of parameters and sample size,
all estimates are convergent to their actual values, and by
increasing the sample size, the imprecise is increased due
to decreasing MSE values. Moreover, in the intuitionistic
fuzzy environment, the Bayesian estimation of the param-
eters and reliability function have prominent features that
provide less of MSE and MB measures. The NR and EM
algorithms exhibited almost analogous features with negli-
gible less MSE values for NR than EM algorithm.
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Appendix

The “R” codes of the Figs. 1 and 2 and Tables 1, 2 and 3.
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Fig. 1 The membership and non-membership functions of a TIFN
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Fig. 2 Contour plot of the NR algorithm with θ̂ N R = (γ̂ , β̂) =
(5.32, 9.47)
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Table 1 The generated data set
of the IFNs from TW
distribution with γ = 5, β = 10

i xi ai bi wi ui i xi ai bi wi ui

1 9.05 8.27 9.59 0.41 0.37 16 7.37 6.37 8.16 0.71 0.16

2 9.23 8.33 10.18 0.75 0.11 17 8.68 7.86 9.17 0.21 0.63

3 7.89 7.72 8.89 0.27 0.25 18 6.52 6.05 6.94 0.45 0.26

4 11.02 10.57 11.21 0.22 0.41 19 10.59 9.76 10.86 0.76 0.17

5 12.11 11.62 12.35 0.56 0.26 20 4.66 4.17 5.49 0.32 0.58

6 11.17 10.97 11.42 0.57 0.22 21 8.26 7.85 8.78 0.72 0.15

7 11.26 10.53 11.49 0.89 0.09 22 7.19 7.07 8.13 0.76 0.19

8 9.16 8.76 9.39 0.58 0.23 23 9.82 9.62 10.06 0.11 0.36

9 5.53 4.84 5.83 0.89 0.01 24 10.49 10.25 10.84 0.43 0.35

10 10.04 9.26 10.53 0.53 0.28 25 8.85 8.78 9.62 0.27 0.36

11 9.77 8.94 10.15 0.55 0.11 26 8.06 7.82 8.33 0.14 0.38

12 12.43 11.56 12.75 0.66 0.29 27 13.17 13.11 14.01 0.76 0.18

13 4.33 3.76 4.67 0.19 0.56 28 11.23 10.48 11.35 0.35 0.55

14 8.98 8.57 9.93 0.29 0.13 29 8.41 7.48 9.24 0.22 0.25

15 8.81 8.81 9.58 0.64 0.17 30 11.04 10.75 11.51 0.49 0.24

Table 2 The EM, NR and
Bayesian estimation results of
parameters of the TW
distribution with IFS, for β = 10

θ̂ EM θ̂N R θ̂ Bayes

n γ γ̂ β̂ γ̂ β̂ γ̂ β̂

30 5 MB 0.250571 −0.375951 0.239509 0.357386 0.125619 −0.270869

MSE 0.085921 0.155681 0.082621 0.152844 0.040217 0.112228

3 MB 0.190804 0.387343 −0.184249 −0.381022 0.090168 −0.269266

MSE 0.056611 0.161179 0.055807 0.159309 0.020402 0.126119

1 MB 0.085488 −0.377001 −0.080781 −0.370883 0.059295 0.299224

MSE 0.032862 0.157143 0.031068 0.155037 0.016482 0.129193

100 5 MB −0.199234 −0.264227 0.191651 0.250883 0.103693 −0.207788

MSE 0.076237 0.115318 0.073619 0.114607 0.036456 0.078096

3 MB 0.167076 0.242501 −0.159775 −0.249313 −0.064562 −0.212748

MSE 0.034563 0.112904 0.032576 0.106949 0.010994 0.072164

1 MB 0.066503 −0.241231 0.061035 0.272823 0.042864 0.218059

MSE 0.017488 0.105907 0.016001 0.103037 0.007639 0.071369

300 5 MB 0.133186 −0.195404 −0.130923 0.194962 0.045803 0.098339

MSE 0.053983 0.083558 0.051242 0.053246 0.010652 0.028807

3 MB −0.122005 −0.190183 −0.107036 0.184133 −0.027623 0.105144

MSE 0.019464 0.082607 0.019212 0.081367 0.008502 0.021476

1 MB −0.045466 −0.209248 0.044708 0.199205 0.014009 −0.091563

MSE 0.007202 0.085896 0.006933 0.084019 0.003778 0.028106

500 5 MB 0.064388 −0.093035 −0.068022 0.087451 −0.017557 0.045536

MSE 0.008359 0.046322 0.008225 0.043528 0.004053 0.006155

3 MB −0.024966 −0.083753 −0.023901 0.083604 −0.009526 0.043917

MSE 0.005551 0.017923 0.005494 0.016559 0.003035 0.006971

1 MB −0.010241 −0.085445 0.099002 0.082347 −0.005805 −0.044849

MSE 0.001164 0.027307 0.001141 0.026009 0.000745 0.006275
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Table 3 The EM, NR and
Bayesian estimation results of
intuitionistic fuzzy reliability
function of TW distribution for
β = 10 and x = 5, 8, 10

n γ x Rθ (x) EM NR Bayes

30 5 5 0.969233 MB 0.017566 −0.016144 −0.003291

MSE 0.006212 0.005828 0.001701

3 8 0.599295 MB −0.019116 −0.018444 0.005898

MSE 0.006533 0.006274 0.001944

1 10 0.449329 MB −0.015489 −0.015002 0.002541

MSE 0.002741 0.002533 0.000873

100 5 5 0.969233 MB 0.012764 −0.012609 0.002102

MSE 0.003011 0.002926 0.000744

3 8 0.5992958 MB 0.014232 −0.013226 0.004253

MSE 0.003253 0.003151 0.000876

1 10 0.449329 MB −0.006368 0.006214 0.000936

MSE 0.001882 0.001878 0.000293

300 5 5 0.969233 MB −0.008525 0.008304 −0.000783

MSE 0.001376 0.001259 0.000218

3 8 0.599295 MB −0.008563 −0.008322 −0.003915

MSE 0.001421 0.001386 0.000268

1 10 0.449329 MB 0.003117 −0.003353 0.000479

MSE 0.000937 0.000931 0.000101

500 5 5 0.969233 MB −0.002516 0.002413 0.000213

MSE 0.000731 0.000723 0.000076

3 8 0.599295 MB −0.002648 0.002576 0.001906

MSE 0.000892 0.000814 0.000085

1 10 0.449329 MB −0.001148 −0.001028 −0.000137

MSE 0.000395 0.000387 0.000027

##Figure 1 ###

library(GoFKernel)

a=.1;b=.5;c=1

w<-runif(1)
u<-runif(1,0,1-w)

op <- par(mar = c(4,4,4,2)- 0.1)

ff1<-function(t){
if(t<a)return(0)
if(t>=a&t<=b) return(w*(t-a)/(b-a))
if(t>b&t<=c) return(w*(c-t)/(c-b))
if(t>c)return(0)}

functions<-Vectorize(ff1)

curve(functions,0.01,1.2,xlim=c(0.01,1.1),
ylim=c(0,1.2),xlab="x",xaxt=’n’,
ylab="functions",frame.plot=FALSE,
axes =FALSE,lwd=2)
axis(side=1, pos=0,at=c(0.1,.5,1),
labels=letters[1:3],lwd.ticks=1)
axis(side = 2, pos=0,label=FALSE,
lwd.ticks=0)
axis(side=2, pos=0,at=c(0,u,w,1),
labels =c("",expression(’u’[A]),

expression(’w’[A]),1),lwd.ticks=1)

segments(0,w,b,w,col="gray",lty="dashed"
,lwd=2)

ff2<-function(t){
if(t<a)return(1)
if(t>=a&t<=b) return((b-t+u*(t-a))/(b-a))
if(t>b&t<=c) return((t-b+u*(c-t))/(c-b))
if(t>c)return(1)}

functions<-Vectorize(ff2)
curve(functions,0.01,1.2,xlim=c(0.01,1.1),
col=2,add=T,lwd=2)
legend(0.15,1.15,

legend=c("Membership function",
"Non-membership function"),
lty=c(1,1),col=c(1,2),bty=’n’)

segments(0,u,0.5,u,col="gray",
lty="dashed",lwd=2)
segments(-0.005,0,0.1,0,lwd=2)

############################

## Figure 2 ##

rm(list=ls(all=TRUE))
library(ggplot2)

gamma<-5;beta<-10;M<-50;n<-30;a<-c()
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b<-c();w<-c();u<-c();H<-c()

y<-rweibull(n,gamma,beta)
L<-matrix(ncol=M,nrow=M)
y<-rweibull(n, shape=gamma, scale=beta)

for(i in 1:n){
a[i]=runif(1,y[i]-1,y[i])
b[i]=runif(1,y[i],y[i]+1)
w[i]<-runif(1)
u[i]<-runif(1,0,1-w[i])
H[i]<-(1+w[i]-u[i])/2}

A <- seq(2,10, len = M);
B <- seq(5,15, len = M)

for(m in 1:M){for(k in 1:M){
gamma<-A[m]
beta<-B[k]
f<-function(t){
f<-dweibull(t,shape=gamma,
scale=beta)}

mu<-function(t,i){
if(t>=a[i] & t<=y[i])
return(H[i]*(t-a[i])/(y[i]-a[i]))
if(t>y[i] & t<=b[i])
return(H[i]*(b[i]-t)/(b[i]-y[i]))
else
return(0)}
mu<-Vectorize(mu)

h1<-function(t,i) {
h1<-mu(t,i)*f(t)}

I<-function(z){
i<-z[1]
I<-log(integrate(h1,a[i],b[i],i)$value)}

ss<-0
for(j in 1:n){
c<-c(beta,gamma,j)
ss<-ss+I(c)}
L[m,k]<-ss}}

df <- data.frame(A,B,L)

gamma<-A;beta<-B
ggplot(df, aes(x = A, y = B)) +

geom_density_2d(col="blue2")
+theme(axis.title=element_text(size=18,
face="bold"), plot.background =
element_rect(fill = "white"),

axis.text=element_text(size=18),
panel.background = element_rect(fill =
"white"), axis.line.x = element_line(
color = "grey2"),axis.line.y =
element_line(color = "grey2"))+

labs(x=expression(paste(gamma)))+
labs(y=expression(paste(beta)))+
geom_segment(data=df,
mapping=aes(x=5.32, y=4,

xend=5.32, yend=9.47), size=1,
col="red",lty="dashed")
+geom_segment(data=df,
mapping=aes(x=2, y=9.47,

xend=5.31, yend=9.47), size=1,
col="red",lty="dashed")+
geom_text(aes(x=5.32, label=paste(5.32),
y=3.5),col="red",cex=7)+geom_text(
aes(y=10, label=paste(9.47), x=2.1),
col="red",cex=7)

###########################

## Table 1 ##

n=30
gamma=5;beta<-10
x<-rweibull(n, shape=gamma, scale =beta)
a<-c();b<-c();w<-c();u<-c()

for(i in 1:n){
a[i]<-runif(1,x[i]-3,x[i])
b[i]<-runif(1,x[i],x[i]+3)}

h<-1
while(h<n){
w[h]<-runif(1);u[h]<-runif(1)
if(w[h]+u[h]<=1){h<-h+1}
else {h<-h}}

#######################

##Table 2 and 3 ##

##EM Algorithm##

rm(list=ls(all=TRUE))

n=30;gamma<-5;beta<-10
y<-c();a<-c();b<-c();w<-c()
u<-c();H<-c()

y<-rweibull(n,gamma,beta)

bethat<-c();gamhat<-c()
bett<-c();gamm<-c()
bett[1]<-beta-1.5
gamm[1]<-gamma-0.5
eps1<-c();eps2<-c()
eps1<-c();eps2<-c()
eps1[1]<-1;eps2[1]<-1

for(it in 1:1000){
hh<-1
while(eps1[hh]>0.3| eps2[hh]>0.3){

for(i in 1:n){
a[i]=runif(1,y[i]-1,y[i])
b[i]=runif(1,y[i],y[i]+1)
w[i]<-runif(1)
u[i]<-runif(1,0,1-w[i])
H[i]<-(1+w[i]-u[i])/2}

f<-function(t,beta,gamma){
f<-dweibull(t,shape=gamma,
scale=beta)}
f1<-function(t,beta,gamma){
f1<-log(t/beta)}
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f2<-function(t,beta,gamma){
f2<-((t/beta)ˆgamma)*log(t/beta)}
f3<-function(t,beta,gamma){
f3<-(tˆgamma)/(betaˆ(gamma+1))}

mu<-function(t,i){
if(t>=a[i] & t<=y[i])
return(H[i]*(t-a[i])/(y[i]-a[i]))
if(t>y[i] & t<=b[i])
return(H[i]*(b[i]-t)/(b[i]-y[i]))
else
return(0)}

h1<-function(t,i,beta,gamma){
mu(t,i)*f(t,beta,gamma)}

I1<-function(beta,gamma,i){
I1<-integrate(h1,max(0,a[i]),b[i],
i,beta,gamma)$value}

e1<-function(t,i,beta,gamma){
f1(t,beta,gamma)*h1(t,i,beta,
gamma)/I1(beta,gamma,i)}

E1<-function(beta,gamma,i){
E1<-integrate(e1,max(0,a[i]),
b[i],i,beta,gamma)$value}

e2<-function(t,i,beta,gamma){
f2(t,beta,gamma)*h1(t,i,beta,
gamma)/I1(beta,gamma,i)}

E2<-function(beta,gamma,i){
E2<-integrate(e2,max(0,a[i]),
b[i],i,beta,gamma)$value}

e3<-function(t,i,beta,gamma){
f3(t,beta,gamma)*h1(t,i,beta,
gamma)/I1(beta,gamma,i)}

E3<-function(beta,gamma,i){
E3<-integrate(e3,max(0,a[i]),b[i],i,
beta,gamma)$value}

ss1<-0;ss2<-0;ss3<-0
for(j in 1:n){
ss1<-suppressWarnings(ss1+E1(beta,gamma,j))
ss2<-suppressWarnings(ss2+E2(beta,gamma,j))
ss3<-suppressWarnings(ss3+E3(beta,gamma,j))}

E.1<-ss1;E.2<-ss2;E.3<-ss3

hh<-hh+1
gamm[hh]<-n/(E.2-E.1)
bett[hh]<-n/(E.3)

eps1[hh]<-abs(bett[hh]-bett[hh-1])
eps2[hh]<-abs(gamm[hh]-gamm[hh-1])}

gamhat[it]<-gamm[hh]
bethat[it]<-bett[hh]}

mean(gamhat);mean(bethat)
mean(gamhat)-gamma;mean(bethat)-beta

mean((gamhat-gamma)ˆ2)
mean((bethat-beta)ˆ2)

x<-5
R<-exp(-((x/beta)ˆgamma))
print(R)
RR<-exp(-((x/bethat)ˆgamhat))
print(mean(RR))
print(mean(RR-R))
print(mean((RR-R)ˆ2))

##NR Algorithm##

rm(list=ls(all=TRUE))
library(rootSolve)

n=100;gamma<-5;beta<-10;y<-c()
a<-c();b<-c();w<-c();u<-c();H<-c()

y<-rweibull(n,gamma,beta)
bethat<-c();gamhat<-c()

for(it in 1:1000){

for(i in 1:n){
a[i]=runif(1,y[i]-1,y[i])
b[i]=runif(1,y[i],y[i]+1)
w[i]<-runif(1)
u[i]<-runif(1,0,1-w[i])
H[i]<-(1+w[i]-u[i])/2}

f<-function(t,beta,gamma){
f<-dweibull(t,shape=gamma,scale=beta)}

mu<-function(t,i){
if(t>=a[i] & t<=y[i])
return(H[i]*(t-a[i])/(y[i]-a[i]))
if(t>y[i] & t<=b[i])
return(H[i]*(b[i]-t)/(b[i]-y[i]))
else
return(0)}

h1<-function(t,i,beta,gamma){
h1<-mu(t,i)*f(t,beta,gamma)}

I<-function(z){
beta<-z[1]
gamma<-z[2]
i<-z[3]
I<-log(integrate(h1,max(0,a[i]),
b[i],i,beta,gamma)$value)}

logl<-function(z){
beta<-z[1]
gamma<-z[2]
ss<-0
for(j in 1:n){
c<-c(beta,gamma,j)
ss<-ss+I(c)}
logl<--ss}

c<-c(beta,gamma)

out<-suppressWarnings(nlminb(c,logl))
bethat[it]<-out$par[1]
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gamhat[it]<-out$par[2]}

mean(gamhat);mean(bethat)
mean(gamhat)-gamma;mean(bethat)-beta
mean((gamhat-gamma)ˆ2)
mean((bethat-beta)ˆ2)

x<-5
R<-exp(-((x/beta)ˆgamma))
print(R)
RR<-exp(-((x/bethat)ˆgamhat))
print(mean(RR))
print(mean(RR-R))
print(mean((RR-R)ˆ2))

## Bayes estimation ###

rm(list=ls(all=TRUE))
library(numDeriv)

gamhat<-c();bethat<-c()
n=30;gamma<-5;beta<-10;y<-c()
a<-c();b<-c();w<-c();u<-c();H<-c()

bet.<-c();gam.<-c()
for(it in 1:1000){
d1<-rweibull(30,gamma,beta)
l.prim<-function(z){
beta<-z[1]
gamma<-z[2]
l.prim<--sum(log(dweibull(d1,gamma,
beta)))}
c<-c(beta,gamma)
out.<-suppressWarnings(nlm(l.prim,c))
bet.[it]<-out.$estimate[1];
gam.[it]<-out.$estimate[2]}

V1<-mean((gam.-gamma)ˆ2)
V2<-mean((bet.-beta)ˆ2)

b1<-mean(gam.)/(V1)
a1<-mean(gam.)*b1/2

a2<-(mean(bet.))ˆ2/(12*V2)
b2<-(mean(bet.))*(a2-1)/12

for(it in 1:1000){
y<-rweibull(n,gamma,beta)

for(i in 1:n){
a[i]=runif(1,y[i]-1,y[i])
b[i]=runif(1,y[i],y[i]+1)
w[i]<-runif(1)
u[i]<-runif(1,0,1-w[i])
H[i]<-(1+w[i]-u[i])/2}

f<-function(t,beta,gamma){
f<-dweibull(t,shape=gamma,scale=beta)}

mu<-function(t,i){
if(t>=a[i] & t<=y[i])
return(H[i]*(t-a[i])/(y[i]-a[i]))
if(t>y[i] & t<=b[i])
return(H[i]*(b[i]-t)/(b[i]-y[i]))
else

return(0)}

h1<-function(t,i,beta,gamma){
mu(t,i)*f(t,beta,gamma)}

I1<-function(beta,gamma,i){
I1<-integrate(h1,max(0,a[i]),
b[i],i,beta,gamma)$value}

I.1<-function(beta,gamma){
ss<-0
for(j in 1:n){
ss<-ss+log(I1(beta,gamma,j))}
I.1<-ss}

HH<-function(z){
beta<-z[1]
gamma<-z[2]
HH<--((1/n)*((n+a1-1)*log(gamma)-
b1*gamma-(n+a2+1)*log(beta)-
b1/beta+I.1(beta,gamma)))}

c<-c(beta,gamma)
out<-suppressWarnings(nlminb(c,HH))

c1<-c(out$par[1],out$par[2])

hess1<-suppressWarnings(hessian(
func=HH, x=c1))
sigma1<--solve(hess1)

Hstar1<-function(z){
beta<-z[1]
gamma<-z[2]
cstar<-c(beta,gamma)
Hstar1<-(-(1/n)*log(gamma)+(HH(cstar)))}

c<-c(beta,gamma)
out.star1<-suppressWarnings(nlminb(c,Hstar1))

c2<-c(out.star1$par[1],out.star1$par[2])

hess2<-suppressWarnings(hessian(
func=Hstar1, x=c2))
sigma2<--solve(hess2)

Hstar2<-function(z){
beta<-z[1]
gamma<-z[2]
cstar<-c(beta,gamma)
Hstar2<-(-(1/n)*log(beta)+(HH(cstar)))}

c<-c(beta,gamma)
out.star2<-suppressWarnings(nlminb(
c,Hstar2))

c3<-c(out.star2$par[1],out.star2$par[2])

hess3<-suppressWarnings(hessian(
func=Hstar2, x=c3))
sigma3<--solve(hess3)

gamhat[it]<-suppressWarnings(((det(sigma2)
)/(det(sigma1)))ˆ(1/2)*exp(-n*(
Hstar1(c2)-HH(c1))))
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bethat[it]<-suppressWarnings(((det(sigma3)
)/(det(sigma1)))ˆ(1/2)*exp(-n*
(Hstar2(c3)-HH(c1))))}

mean(gamhat);mean(bethat)
mean(gamhat)-gamma;mean(bethat)-beta
mean((gamhat-gamma)ˆ2)
mean((bethat-beta)ˆ2)

x<-5
R<-exp(-((x/beta)ˆgamma))
print(R)
RR<-exp(-((x/bethat)ˆgamhat))
print(mean(RR))
print(mean(RR-R))
print(mean((RR-R)ˆ2))
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