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Abstract
Ant Colony Optimization easily falls into premature stagnation when solving large-scale Travelling Salesmen Problems.
To address this problem, a multi-colony ant optimization with dynamic collaborative mechanism and cooperative game is
proposed. Firstly, Ant Colony System and Max–Min Ant System form heterogeneous colonies. Secondly, to diversify the
solutions of the algorithm, the Shapley value in the cooperative game is applied to share the information by distributing
the pheromone payoff of the sub-colonies. In addition, the dynamic collaborative mechanism that contains two methods is
designed to enhance the co-evolution of the heterogeneous populations. One, called public path recommendation strategy,
is proposed to improve the astringency of Max–Min Ant System. The other is the pheromone fusion mechanism to regulate
the pheromone distribution of Ant Colony System when the algorithm falls into stagnation, which can help the algorithm
jump out of the local extremum effectively. Finally, the results demonstrate that the proposed methodology can improve
the accuracy of solution effectively in solving large-scale TSP instances and has strong competitiveness with other swarm
intelligent algorithms.

Keywords Ant colony algorithm · Cooperative game · Shapley value · Dynamic collaborative mechanism · TSP

Introduction

Traveling salesman problem (TSP) is a classical combina-
torial optimization problem that can be described by the
weight-directed graph G = (υ, �, d) where υ = (1, 2,
3..., n) denotes the set of the nodes or cities, � = {(i , j)|(i ,
j) ∈ υ × υ} represents the set of the edges, and d : � �→ N

is the weight function about each edge (i, j). The goal of
the problem is to seek the shortest route visiting every city
or node exactly once. The well-known methods to solve
TSP include genetic algorithm [1], whale optimization algo-
rithm [2], grey wolf optimization algorithm [3], ant colony
optimization [4], etc. Due to the advantage of the positive
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feedback mechanism and distributed computing, ant colony
optimization shows excellent performance in solving TSP.

Ant System algorithm (AS), originally proposed by Italian
scholar M.Dorigo in the 1990s, is the classical meta heuris-
tic algorithm which imitated ants foraging in nature [5]. The
main idea is that ants can communicate with each other effec-
tively by depositing pheromone on the paths between food
source and nest. After the AS algorithm proposed, Dorigo
[6] also put forward the Ant Colony System algorithm (ACS)
to overcome its premature stagnation problem. There are two
main improvements called global updating rule and local
updating rule in ACS. According to the global updating rule,
only the optimal ant can be allowed to deposit pheromone in
each iterationwhile other antswoulddiminish the pheromone
trail on the tour that they visited in terms of the local updating
rule. However, this mechanism can accelerate the conver-
gence of the algorithm effectively at the cost of falling into
the local extremum easily yet. In addition, Stützle et al. [7]
introduced the Max–Min Ant System algorithm (MMAS) to
diversify the solution of the ACO. With the upper and lower
restriction in the pheromone matrix, MMAS can avoid algo-
rithm premature stagnation to some certain extent but will be
hardly converged when the solutions distribute dispersedly.
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To improve the performance of the traditional ACO fur-
ther, many researchers have improved the algorithm in
various aspects. Sangeetha et al. [8] improved ACO with
a pheromone enhancement mechanism. It strengthened the
attraction of the better path so that reduced useless search.
Whereas excessively narrowing the search space would
decrease the diversity of the algorithm. Ye et al. [9] used
the negative feedback pheromone strategy to expand the
search space, which achieved exploration of the ant colony
in more unknown areas and avoided the premature stagna-
tion of the algorithm.Comparing the best-so-far pathwith the
iteration-best path, Ning et al. [10] dynamically increased the
pheromone concentration on the different edges to enhance
the diversity of the algorithm. Although these improvements
that explored more searching space could diversify the solu-
tions, the convergence speed of the ant colony would be apt
to slow down. To accelerate the speed rate of the algorithm,
Guan et al. [11] incorporated an automatic updating mecha-
nism into the ant colony algorithm for constraint satisfaction
problem (CSP). The main idea of the improvement is to opti-
mize the suboptimal solutions rather than all solutions so
that the convergence speed of the algorithm is improved. Liu
et al. [12] adaptively updated the pheromone with iteration-
best solution, that is called the dynamic weighted pheromone
update mechanism, to accelerate the convergence rate of the
algorithm. While the algorithm would easily fall into pre-
mature stagnation due to the too-fast convergence speed.
In addition, the rational assignment of the parameter for
ACO is also a baffling dilemma. To address this conundrum,
Mahi et al. [13] incorporated the particle swarm optimiza-
tion algorithm to optimize the parameters of the ACO, which
improved the robustness of the algorithm. Olivas et al. [14]
introduced the fuzzy control system to assign the appropri-
ate parameters for the ACO algorithm so that a high-quality
solution of the algorithm is achieved. Tuani et al. [15] pro-
posed a novel adaptive parameter adjustment mechanism to
improve the adaptability of the algorithm. According to these
methods [2, 12, 13], the adaptability of the algorithm has
been improved to some extent, but the problems that these
algorithms solved are relatively simple and it is difficult to
deal with more complex problems. Besides, the ant colony
algorithm has achieved promising results in other optimiza-
tion problems, which embraces scheduling problem [16, 17],
robot path planning problem [18], geotechnical problems
[19], network routing problem [20], and image segmenta-
tion [21], etc.

However, although these methods in the single popula-
tion above have achieved some progress, the improvements
of the single population often strengthen one characteris-
tic as well as weaken another. For example, it will explore
more search areas at the expend of increasing search time
[9, 10] or will diminish the solution accuracy to accelerate
the convergence [11, 12]. In order to balance the functions of

the convergence speed and diversity of the algorithm further,
the multi-colony algorithm gradually attracts many scholars’
attention. Gambardella et al. [22] studied themulti ant colony
algorithm for the first time. They used two ACS colonies
to solve vehicle scheduling problems with time windows.
Chu et al. [23] tested the performance of seven interaction
strategies to control the communication of the homoge-
nous colonies. Twomey et al. [24] analyzed the homogenous
multi-ant colony with different communication policies and
proposedmigrant integration strategy for the interaction. The
cooperation on homogenous populations usually only ampli-
fies the single feature in terms of their same characteristics
whereas the heterogeneous populations can take full advan-
tage of each other. Dong et al. [25] combined the ant colony
algorithm with the genetic algorithm in a novel way to solve
the TSPs successfully. Zhang et al. [26] applied two hetero-
geneous ant colonies to diversify the solution of the algorithm
by exchanging the pheromone information. To solve the
Vehicle Routing Problem well, Wang et al. [27] incorporated
local search into the multi ant algorithm and exchanged the
global optimal solution of each colony, which improved the
solution accuracy.

On the basis of these above references [22–27], the multi-
ACO has more competitive than the single colony algorithm
in balancing the convergence rate and diversity of the popu-
lation, while the efficiency of this algorithm also needs to be
improved due to the insufficient interaction mechanism. To
overcome these shortcomings, some cross-discipline meth-
ods are applied to improve the performance of the multi
colony algorithm. Yang et al. [28] incorporated the game the-
ory to solve the decision conflicts of each sub-colony, which
can promote the efficiency of the multi-colony algorithm. Li
et al. [29] used the recommendation algorithm to adapt the
communication among populations more accurately.

Compared with a single colony algorithm, the multi-
ACO algorithm can achieve better results in small or middle
scale TSP instances due to the coordination among multi-
ple colonies. Whereas the communication mechanism, the
key of the multi-colony algorithm, is relatively simple, caus-
ing that the satisfied results can be hardly achieved when
solving large-scale TSP instances. To address this issue, the
multi-colony ant optimization with dynamic collaborative
mechanism and cooperative game is proposed to strengthen
the interactive mechanism and take full advantage of the
heterogenous populations. The main contributions and inno-
vations of this research are as follows.

First, to improve the solution accuracy of the algorithm
in solving large-scale TSP instances, the cooperative game
based on the Shepley value is introduced. It redistributes the
pheromone payoff to each participant with respect of their
contribution after each iteration so that more useful infor-
mation can be explored during the searching process and a
diversification of the solution can be achieved.
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Second, the dynamic collaborative mechanism is applied
to improve the interactive mechanism of the heterogenous
populations and the mechanism contains two methods. One
is called the public path recommendation strategy forMMAS
population, which recommends the public paths of ACS pop-
ulations to MMAS population and improves the astringency
of the population. The other is the pheromone fusion mech-
anism based on information entropy. The aim of this method
is to help ACS population jump out of the local extremum
by regulating the pheromone distribution when the algorithm
falls into stagnation.

Finally, the remainder of this paper are as follows.
Section “Related work” reports briefly the basic ACS,
MMAS algorithm, information entropy and Shapley value.
Section “Proposed algorithm” describes the DCM-ACO
algorithm, including dynamic collaborative mechanism and
cooperative game model. Section “Experiment analysis”
gives the analysis about the performance of the pro-
posed strategies and compares DCM-ACO with the tra-
ditional ant colony algorithm and other intelligent algo-
rithms. Section “Conclusion” summarizes and prospects this
research.

Related work

Ant Colony system

Ant Colony system (ACS) algorithm mainly contains two-
state transition rules. One rule, that the ants construct their
paths, is called roulettemode if the randomnumber q is higher
than the constant parameter q0, where q and q0 are between
[0,1]. The state transition formula is as follows.

Pk
i j =

⎧
⎨

⎩

τα
i j ·ηβ

i j
∑

l∈allowed τα
il ·ηβ

il

if j ∈ allowedk

0 else
(1)

where the τi j represents the pheromone value from city i
to city j (vertex (i, j)); ηi j = 1/di j denotes the heuristic
information on the vertex (i, j) which dij is the cost of the
vertex (i, j); allowed stores a set of cities that the ant k is
not visit; α and β are two weight parameters determining the
influence of pheromone value and heuristic information. In

addition, S = argmax
(
τi j · η

β
i j

)
is another transition formula

that the ants positioned city i move to city j when q < q0.
After finishing a transition from city i to city j, each ant

applies a local pheromone update rule to decrease the attrac-
tion of the edge (i, j). The formula is as follows:

τi j ← (1 − ξ) · τi j + ξ · τ0 (2)

where 0 < ξ < 1 is a pheromone evaporation rate; τ0 =
1/(n · ln) is the initial pheromone level, where n is the city
number and ln is the tour length created by the nearest neigh-
bour heuristic algorithm.

When all ants complete path construction, the global
pheromone updating rule is triggered to add pheromone on
the global best tour. The formula is written as:

τi j ← (1 − ρ) · τi j + ρ · 
τ bsi j (3)


τ bsi j = 1/Lgb (4)

where 0 < ρ < 1 is pheromone evaporation rate;
τ bsi j is the
value of increasing pheromone and Lgb is the length of the
best tour.

Max-Min Ant system

To improve the diversity of the traditional ant colony algo-
rithm, Stützle proposed the Max–Min Ant System (MMAS)
[7]. The pheromone of MMAS is updated by an alternating
iteration-best tour with best-so-far tour in the early run time,
which the updating rule is defined as same as formula (3).
Besides, the pheromone matrix of the ant colony is limited to
the specified range [τmin,τmax]. If τi j < τmin, then τi j = τmin;
if τi j > τmax, then τi j = τmax. And it also reinitializes the
pheromone matrix to avoid the stagnation. The maximum
and minimum values of pheromones are set as follows:

τmax = (1/ρ) · (
1/Lgb

)
(5)

τmin = τmax/(2n) (6)

where n is the city number; Lgb is the length of the global-best
tour.

Information entropy

Information Entropy was the firstly proposed by the Amer-
ican scholar Shannon, which greatly promoted the progress
of the information theory [30]. For now, information entropy
has been applied in many fields and has achieved good
results [31–33]. And it shows the effectiveness of informa-
tion entropy as a measure of the discrete system. the formula
is as follows:

E(P) = −
∑

x∈X
P(x) log p(x) (7)

whereX is the solution of the problem,P (x) is the probability
of x, and

∑
x∈X P(x) = 1.
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Shapley value

Shapley value, a way of profit distribution, was originally
proposed by scholar Lloyd Shapley in 1953 [34]. The main
idea of this method is that the income of each member in the
union is proportional to their own contribution. And it has
promoted the further development of the cooperative game
theory, which the formula is given as follows.

ϕi (v) =
∑

s⊂K

w(s)[v(s) − v(s − i)] (8)

w(s) = (s − 1)!(k − s)!
k! (9)

where the K denotes the union, v represents the payoff func-
tion of each sub-union, w(s) is the weight function of each
union and ϕ i (v) is the payoff function of the i-th player in
the union.

Proposed algorithm

In this research, we focus on improving the interactive mech-
anism and solving the large-scale TSP instances well. The
proposed algorithm including cooperative game anddynamic
collaborativemechanism is designed. First, in the cooperative
game model, a novel pheromone accumulation is designed
among ACS sub-colonies. By applying Shapley value, the
ant colonies updated the pheromonewith respect to their con-
tribution, which more useful knowledge about the problem
can be explored during the searching process. Secondly, the
dynamic collaborative mechanism, including two methods,
is used to improve the interactive mechanism of heteroge-
neous colonies. By using the public path recommendation
strategy, the solution that belongs to the ACS colonies would
be strengthened in theMMAS, which can accelerate the con-
vergence speed of the MMAS. While the pheromone matrix
of the ACS can be reset when the searching falls into stag-
nation due to the pheromone fusion mechanism. These two
methods can take full advantage of heterogeneous colonies.
And the interactive model is shown in Fig. 1.

Besides, this part is organized as follows. Section “The
cooperative game strategy” is dedicated to applying the
Shapley value to the multi-ACO algorithm based on the
cooperative game theory. Section“ Dynamic collaborative
mechanism” provides the dynamic collaborative mechanism
in detail that includes pheromone fusion mechanism and the
public path recommendation strategy. Section “Algorithm
description” is the algorithm description.

ACS

ACS

MMAS

pehromone fusion mechanism

cooperation 
game

public path recommendation 

Fig. 1 Dynamic interactive game model

Cooperative game strategy

The cooperative game strategy among ACS populations is
mainly to ensure the accuracy of the algorithm. In con-
trast to other intelligent algorithms, the advantage of the ant
colony algorithm is mainly depending on the positive feed-
back mechanism which performs the solution optimization
through accumulating useful information after each itera-
tion. Corresponding to this mechanism in ACO, the global
pheromone update rule, as shown in Eqs. (3), (4), plays a
key role in ACS. However, too fast convergence speed that
created by this mechanism would easily bring premature
stagnation of the algorithm. Therefore, a reasonable regula-
tion of pheromone accumulation is the key to the ant colony
algorithm.

In this research, the Shapley value based on the coopera-
tive game is introduced to regulate the pheromone accumula-
tion after each iteration. Specifically, before performing the
global update rule, we collect the pheromones of each sub-
population so that obtain the total pheromone income b, as
shown in the following formula (10). And then the Shap-
ley formula is introduced to allocate those total income to
each member with respect of their contribution, which is
shown in Fig. 2. The aim of this improvement is to regu-
late the pheromone accumulation of each subpopulation so
thatmakes the pheromone allocationmore reasonable, which
achieves a diversification of research. The specific distribu-
tion formulas are constructed as follows.

b =
k∑

i=1


τ iACS (10)

Contributioni = soli · H(pi ) (11)

and soli= lengthmin
lengthi

, H(pi ) = E(pi )
E(pmax)

. where lengthmin and
E(pmax) are the minimum length and the maximum value of
information entropy respectively among k colonies of ACS,
and soli denotes the tour length ratio, H(pi ) represents the
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Fig. 2 Cooperative game strategy

diversity ratio of each subpopulation. It can be concluded
that the contribution of the colony is the value between [0,1],
which the closer the value is to 1, the larger the contribution
of the population. And the pheromones are redistributed as
follows.

πi = Contributioni
∑k

i=1 Contributioni
(12)


τ newi = πi · b (13)

where 
τ newi is the new pheromone revenue of the i-th ACS
population.

Fromequal (11), it can be concluded that in the initial stage
of the algorithm, each population is in an exploration state
causing that the difference of diversity among sub-colonies
is not obvious, thus the contribution of the population is pro-
portional to the quality of its solution. While in the late stage
that is called the exploitation stage, the difference of the solu-
tion quality has not competitiveness at this stage, so that the
contribution of the population is mainly depending on the
diversity, corresponding to the information entropy in this
research. Besides, the role of the pheromone redistribution
strategy, as shown in equal (12), is to regulate the pheromone
accumulation of each sub-colony with respect to their con-
tribution in different stages. The aim is to reward the elite
population and punish the poor performance population and
thus to diversify the solution of the algorithm effectively.

Dynamic collaborative mechanism

In this part, we apply a dynamic collaborative mechanism
to take full advantages of the heterogenous population. And
the mechanism contains two methods: one is the pheromone
fusion mechanism which fuses the pheromone of ACS popu-
lation and MMAS population based on information entropy
to help the algorithm get rid of local minima, and the other is
public path recommendation strategy that recommends the
public paths from ACS population to MMAS population to
improve the convergence rate of the MMAS population.

Pheromone fusion mechanism

Diversity description On the basic of part 2.3, the infor-
mation entropy is worthy of measuring the diversity of the
algorithm.And the diversity of the population based on infor-
mation entropy can be described as follows:

Pi (t) = n/m (14)

E(Pt) = −
m∑

i=1

Pi (t) log pi (t) (15)

where Pi (t) is the proportion that the i-th tour trail selected by
n ants whenM ants generate m paths in this iteration, E(Pt)
is the information entropy of the population in t-th iteration
which demonstrates that if the tour difference of the popu-
lation is higher, the information entropy of the population
will be larger, and vice versa. In another word, the higher
information entropy, the better diversity of the population.
Therefore, by detecting the information entropy of each sub-
population, the state of the algorithm can be described more
accurately, thus the adaptability of interaction is improved.

Pheromone fusion strategy This strategy proposed in this
part is main for ACS colonies. Due to the pheromone update
mechanism of MMAS, the pheromone distribution in the
population has been limited in a certain range,which prevents
the population from falling into local optimum effectively.
While ACSwill easily fall into premature stagnation in terms
of the global updating rule although it can speed up the
convergence of the algorithm. Under these circumstances,
the pheromone fusion strategy is proposed to regulate the
pheromone distribution in ACS and diversify the solution
of the population, which helps ACS get rid of the local
extremum. When the entropy of the ACS colony is lower
than the threshold (E(pi ) < E∗(P), where the E∗(P) is the
threshold parameter), that means the diversity of the popula-
tion has been decreased, then the pheromone fusion strategy
is triggered. And the formula is as follows.

phiACS ← (1 − ωi ) · phiACS + ωi · phMMAS (16)
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where Phi is the pheromone matrix of population i, Phj is the
pheromone matrix of population j;Wj is the pheromone con-
tribution of population j to population i, which the formula
can be written as follows.

ωi = E(p)iACS
E(P)iACS + E(P)MMAS

(17)

where E(Pi) is the information entropy of the population i.

Public path recommendation strategy

The strategy in this section is mainly for MMAS popu-
lation. Although the MMAS population usually has good
diversity due to the pheromone restriction, the slow conver-
gence speed is a significant disadvantage of the colony. To
address this issue, we propose a public path recommenda-
tion strategy, as shown in Fig. 3, to recommend the excellent
paths from ACS population to MMAS population, which
improves the astringency of the population. Generally speak-
ing, it can be considered that the path selected by multiple
populations together is a part of the optimal global path or
there is an optimal path near this path. Therefore, we recom-
mend the common paths among ACS populations to MMAS
population and reward the pheromone on themwhen the con-
vergence speed of MMAS population is lower. Thus, it will
avoid the useless search of population, save the cost of the
solution and accelerate the convergence speed of the algo-
rithm. And the formulas are constructed as follows.

cont= iteropt
itert

(18)

where cont represents the convergence rate of the popula-
tion at the t-th iteration, iteropt is the number of iterations
corresponding to the current optimal solution of the popula-
tion, and itert denotes the number of the t-th iteration. From
the formula, its range is [0,1] and the closer its value is to
1, the faster convergence speed of the population. And the
public path recommendation strategy is triggered when the
convergence rate of the MMAS is lower than threshold (cont
< con*), which can be written as follows.

τpublic = 1

n
· e−iter (19)

τ
public
i j ← τ

public
i j + τpublic (20)

where τpublic is the added pheromone of the common route
between ACS populations, n is the city number, iter is the
number of the iteration. and in formular (14), τ publici j denotes
the pheromone on the paths that belongs to the common part
of ACS populations.

2 1 3 4 5

1 2 3 4 5

6 1 3 4 5

6

6

2

ACSi:

ACSj:

ACSk:

Fig. 3 Public path

From the formula (13) and (14), we can see that the
pheromones are rewarded decreasing with the run of iter-
ation, which accelerates the convergence speed of MMAS
population in the early state and improve the diversity in the
late stage of the algorithm.

Algorithm description

The proposed algorithm in this research mainly contains two
ACS populations and one MMAS population and each sub-
population construct the path in parallel. Firstly, initializing
the parameters among ACS and MMAS colonies in the ini-
tial stage of the algorithm. Then, the dynamic collaborative
mechanism is triggered to judge the state of each colony. If
the information entropy of ACS population is lower than
the threshold, the pheromone fusion mechanism is intro-
duced to regulate their pheromone distribution and help the
algorithm jump out of the local optimum. Otherwise, the
cooperative game strategy is applied to re-update the global
pheromone among the ACS populations by the Sharpley
value, which enhances the diversity of the algorithm. Mean-
while, the public path recommendation strategy is utilized
when the convergence rate of MMAS population is too low.
And it recommends the public paths amongACS populations
to MMAS population to accelerate its convergence. And the
algorithm flowchart is shown in Fig. 4 in detail.
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Fig.4 The flow chart of DCM-ACO algorithm

Experiment analysis

In this part, we implement the simulation experiment to
verify the performance of the proposed algorithm. The exper-
imental platform is the MATLAB R2019b in Windows 10
environment, the CPU, with 16 GB RAM memory capacity,
is Intel(R) Core (TM) i7-10700F, and the experiments are
applied to execute based on different scale TSP instances,
each instance runs for 20 times independently. In addition,
the rest of this part is as follows. Section “Parameters set-
ting” selects the appropriate parameters forACS,MMASand
DCM-ACO. Section “Strategy analysis” is given the analysis
about the strategy we have proposed. Section “Compari-
son with traditional ACO algorithm” compares the proposed
algorithmwith the conventionalACOalgorithms. Section 4.4
is the experimental comparison between DCM-ACO and
other swarm intelligence algorithms. Section “Statistical test
analysis” is the statistical test analysis of the experimental
results.

Parameters setting

The first part of this section is the traditional parameters set-
ting. And we apply the orthogonal tests that contain four

levels and five factors to set the appropriate value for those
parameters. Besides, the kroB100 instance is adopted to carry
out for each colony in the orthogonal test. Each combination
of the parameters experiment is tested 20 times independently
to ensure the reliability of the experiment. Tables 1, 2, 3 are
the experimental results of ACS and Tables 4, 5, 6 denote the
results of MMAS.

According to the sum of experimental results at each level
Hi and the average of each level hi, the parametersα,β,ρ and
q0 obtain more excellent results at Level 1, Level 3, Level
1, Level 3, and Level 3 respectively in the orthogonal test of
ACS, which are shown the bold numbers in Table 3.While in
the orthogonal test of MMAS, the experimental results of the
factorsα,β andρ at Level 1, Level 4 andLevel 1 respectively,
corresponding to the bold numbers in Table 6, are superior
to them at other Levels. Therefore, the optimal parameter
of ACS algorithm is:α = 1, β = 4, ρ = 0.1, ξ = 0.3,
q0 = 0.8, the optimal parameter of MMAS algorithm is:
α = 1, β = 5, ρ = 0.1

The second part of this parameter experiment is the newly
proposed parameter setting which concludes the information
entropy threshold (E(p)*) and convergence rate threshold
(con*). In this paper, we select the suitable value of the
newly proposed parameter through the experiment of the dif-
ferent values. Besides, the kroB100 and kroA200 instances
are selected to carry out the experiment, which the results
are shown in Figs. 5 and 6. From the experimental results,
the minimum fitness function is obtained under the case that
E(p)* = 4 and con* = 0.8.

From the above experimental results, the final setting
results of the algorithmparameters are shown in the following
Table 7, which the ρ denotes the global pheromone evapo-
ration rate, ζ is the local pheromone evaporation rate andM
represents the number of ants.

Strategy analysis

In the first phase of the experiment, we analyse the effective-
ness of three strategies proposed above including cooperative
game mechanism, pheromone fusion mechanism and pub-
lic path recommendation strategy. LOST-1 is the algorithm
that has a pheromone fusion mechanism and public path rec-
ommendation strategy but does not use a cooperative game
mechanism. LOST-2 is the algorithm that retains cooperative
game mechanism and public path recommendation strategy
but does not use pheromone fusion mechanism. LOST-3 rep-
resents the algorithm that has a cooperative gamemechanism
and pheromone fusion mechanism but does not use a public
path recommendation strategy. In the experiment, kroB100
and lin318TSP instances are selected and analysedwith three
aspects including optimal solution error rate, worst solution
and average solution. And each instance runs 20 times, 2000
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Table 1 Experimental factors
and levels of ACS α β ρ ζ q0

Level 1 1 2 0.1 0.1 0.6

Level 2 2 3 0.2 0.2 0.7

Level 3 3 4 0.3 0.3 0.8

Level 4 4 5 0.4 0.4 0.9

Table 2 Orthogonal test scheme
and test results of ACS No α β ρ ζ q0 Result

1 1 2 0.1 0.1 0.6 22,598.7

2 1 3 0.2 0.2 0.7 22,422.6

3 1 4 0.3 0.3 0.8 22,363.5

4 1 5 0.4 0.4 0.9 22,353.7

5 2 2 0.2 0.3 0.9 22,433.9

6 2 3 0.1 0.4 0.8 22,450.8

7 2 4 0.4 0.1 0.7 22,446.4

8 2 5 0.3 0.2 0.6 22,462.0

9 3 2 0.3 0.4 0.7 23,023.6

10 3 3 0.4 0.3 0.6 22,568.6

11 3 4 0.1 0.2 0.9 22,430.9

12 3 5 0.2 0.1 0.8 22,625.7

13 4 2 0.4 0.2 0.8 22,654.4

14 4 3 0.3 0.1 0.9 24,702.8

15 4 4 0.2 0.4 0.6 22,503.3

16 4 5 0.1 0.3 0.7 22,384.5

Table 3 Analysis of test results
of ACS α β ρ ζ q0

H1 89,738.6 90,710.6 89,864.9 92,373.6 90,132.5

H2 89,793.1 92,144.8 89,985.7 89,969.8 90,277.1

H3 90,648.7 89,744.1 92,551.8 89,750.6 90,094.5

H4 92,244.9 89,825.9 90,023.0 90,331.4 91,921.3

h1 22,434.7 22,677.6 22,466.2 23,093.4 22,533.1

h2 22,448.3 23,036.2 22,496.4 22,492.5 22,569.3

h3 22,662.2 22,436.0 23,138.0 22,437.6 22,523.6

h4 23,061.2 22,456.5 22,505.7 22,582.8 22,980.3

Max 23,061.2 23,036.2 23,138.0 23,093.4 22,980.3

Min 22,434.7 22,436.0 22,466.2 22,437.6 22,523.6

Range 626.5 600.2 678.1 655.8 456.7

Scheme Level 1 Level 3 Level 1 Level 3 Level 3

Bold values indicate the best results between the comparison algorithms and the proposed algorithm
Note: Hi (i = 1, 2, 3, 4) represents the sum of experimental results at each level; hi (i = 1, 2, 3, 4) represents
the average of each level; Max and Min represent the maximum length and the minimum length respectively;
Range represents the difference between the maximum and the minimum; Scheme represents each factor
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Table 4 Experimental factors and levels of MMAS

α β ρ

Level 1 1 2 0.1

Level 2 2 3 0.2

Level 3 3 4 0.3

Level 4 4 5 0.4

Table 5 Orthogonal test scheme and test results of MMAS

No α β ρ Result

1 1 2 0.1 22,942.8

2 1 3 0.2 22,416.8

3 1 4 0.3 22,384.1

4 1 5 0.4 22,310.7

5 2 2 0.2 23,107.7

6 2 3 0.1 22,461.1

7 2 4 0.4 22,585.6

8 2 5 0.3 22,429.4

9 3 2 0.3 24,285.2

10 3 3 0.4 23,135.1

11 3 4 0.1 22,767.8

12 3 5 0.2 22,670.9

13 4 2 0.4 24,852.2

14 4 3 0.3 23,500.7

15 4 4 0.2 23,147.3

16 4 5 0.1 22,864.5

*Note: result represents the average value after 20 tests

iterations each time. The experimental results are shown in
Table 8 and Fig. 7.

From the experimental results, in kroA100 instance, all
the experimental groups gain the optimal solution, and in
lin318 instance the optimal solution of the DCM-ACO out-
performs other algorithms. Besides, the average solution and
worst solution of LOST-3 are superior to the LOST-1 and
LOST-2, which proves that the cooperative game strategy
and the pheromone fusion mechanism can enhance the sta-
bility of the algorithm and improve the solution quality. But
from Fig. 7, the convergence speed of LOST-3 is slower than
other comparison algorithms showing that the public path
recommendation strategy can accelerate the convergence of
the population. In a word, the three novel methods we pro-
posed above can improve the performance of the algorithm
in various aspects.

Comparison with traditional ACO algorithm

In this part, we select different TSP instances to verify
the performance of the proposed algorithm in this research

Table 6 Analysis of test results of MMAS

α β ρ

H1 90,054.3 95,187.8 91,036.1

H2 90,583.7 91,513.7 91,342.6

H3 92,858.9 90,884.7 92,599.3

H4 94,364.7 90,275.3 92,883.5

h1 22,513.6 23,797.0 22,759.0

h2 22,645.9 22,878.4 22,835.7

h3 23,214.7 22,721.2 23,149.8

h4 23,591.2 22,568.8 23,220.9

Max 23,591.2 23,797.0 23,220.9

Min 22,513.6 22,568.8 22,759.0

Range 1077.6 1228.2 461.9

Scheme Level 1 Level 4 Level 1

Bold values indicate the best results between the comparison algorithms
and the proposed algorithm
Note: Hi (i = 1, 2, 3, 4) represents the sum of experimental results
at each level; hi (i = 1, 2, 3, 4) represents the average of each level;
Max and Min represent the maximum length and the minimum length
respectively; Range represents the difference between the maximum
and the minimum; Scheme represents each factor.

compared with traditional ACOs and the analysis aspects
include the best solution, the worst solution, mean solution,
error rate and the standard deviation, which the error rate and
standard deviation formula are as follows:

Error = LACO − Lopt

Lopt
× 100% (21)

where LACO represents the optimal solution of each algo-
rithm, and Lopt represents the standard optimal solution of
the known test set.

std =
√
√
√
√ 1

N

N∑

i=1

(
Li − L

)2
(22)

where std is the standard deviation, N denotes the number
of times the algorithm runs, andLi represents the solution
obtained by the algorithm in the i-th experiment.

Table 9 shows the experimental results of ACS, MMAS
and DCM-ACO algorithm. In small-scale instances of less
than 300 cities, although the gap of the error rate between
DCM-ACO and the comparison algorithm is not obviously,
the standard deviation in DCM-ACO is superior to ACS
and MMAS due to the coordination of multiple colonies,
showing that our proposed algorithm has a more stable abil-
ity. When solving middle-scale instances (city scale within
600), DCM-ACO still remains with higher solution accu-
racy. And in large-scale TSP instances from 1000 to 2000
cities, the search space is so complex that traditional ant
colony algorithms can hardly deal with well, corresponding
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Fig.5 Adjustment of the entropy threshold

Fig.6 Adjustment of the convergence threshold

to the huge error rate of ACS and MMAS in Table 9. How-
ever, the error computed based on DCM-ACO is controlled
within 2%. These excellent results are mainly ascribed to the
cooperative game strategy. With the help of this strategy, the
pheromone accumulation of populations after each iteration
updates more adaptively with respect to their contributions,
so that a diversification of the search is achieved. As a result,
the performance of the algorithm is improved especially for
large-scale instances. For example, in d2103 instance, ACS
and MMAS have huge deviations that the error rate is 4.00%
and 5.73% respectively while the error rate found by DCM-
ACO is just 1.87%, which greatly outperforms the traditional
ACOalgorithms. Besides, attribute to the dynamic collabora-
tive mechanism, the interactive frequency of heterogeneous
populations is more adaptive and the efficiency of the com-
munication among sub-colonies can be improved greatly so
that a strong robustness of the algorithm is acquired. And
from the average solution and standard deviation, all the val-
ues of these factors obtained byDCM-ACO from small-scale

Table 7 The parameter setting of the algorithm

Parameter ACS MMAS

α 1 1

β 4 5

ρ 0.1 0.1

ζ 0.3 –

q0 0.8 –

M 20 20

Iteration 2000 2000

E(P)* 4 –

Con* – 0.8

instances to large-scale instances are lower than that based on
the comparison algorithms, which proves the strong stability
of the proposed algorithm for TSP.
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Fig. 7 Comparison results in different strategy

Table 8 Experiment results with
a different strategy Instance Algorithm Best Worst Average

kroA100 LOST-1 21,282 21,600 21,347.40

LOST-2 21,282 21,577 21,328.47

LOST-3 21,282 21,373 21,307.60

DCM-ACO 21,282 21,373 21,294.13

lin318 LOST-1 42,276 43,407 42,890.20

LOST-2 42,454 43,423 42,885.75

LOST-3 42,372 43,338 42,776.35

DCM-ACO 42,179 43,002 42,651.00

Bold values indicate the best results between the comparison algorithms and the proposed algorithm

Figure 8 illustrates the evolution of the best solution calcu-
lated with ACS, MMAS and DCM-ACO in the optimization
process for pr439, p654 and fl1400. Due to the coopera-
tive game strategy, the higher quality of the solution can be
strengthened in the early stage, while the information with
better diversity plays an important role in the late stage. It
means that the improved algorithm has better exploration
capacity in the initial stage and owns the strong exploitation
ability in the late stage. As shown in Fig. 8, DCM-ACO out-
performs ACS and MMAS in the initial stage. And there is a
tremendous gap between the results calculated by these three
algorithms. According to the dynamic collaborative mecha-
nism, the advantages of heterogeneous populations can be
fully exploited. Due to the public recommendation strategy,
the convergence of MMAS can be accelerated and with the
help of the pheromone fusion mechanism, ACS can jump out
of the local optima effectively. As we can see in Fig. 8, for
each instance, DCM-ACO completes the convergence in a
short cycle whereas ACS and MMAS converge to the best
solution in a larger number of iterations, and the solution

accuracy is also superior to the comparison algorithm. In
contrast to ACS and MMAS, DCM-ACO can accelerate the
convergence without losing high-quality solutions.

In a word, from those results, it can be concluded that
DCM-ACO can balance the convergence speed and the
diversity of the algorithm. In addition, to verify the authen-
ticity of the experimental results, the optimal tours found by
CGMACO are shown in Fig. 9.

Comparison with other algorithms

The first phase of this section is the comparison of the pro-
posed algorithm with SOS-ACO [4] and PSO-ACO-3opt
[13], which SOS-ACO is the ACO with hybrid symbiotic
organisms search algorithmandPSO-ACO-3opt is the hybrid
method based on Particle Swarm Optimization, Ant Colony
Optimization and 3-Opt algorithms. And the bold number in
Tables 10 and 11 denotes the minimum value of each index
calculated by these algorithms.
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Table 9 Experimental results of DCM-ACO

No TSP Optimal Algorithm Best Worst Average Error (%) Std (%)

ACS 426 435 428.6 0.00 2.18

1 eil51 426 MMAS 426 432 428.1 0.00 2.04

DCM-ACO 426 427 426.5 0.00 0.51

ACS 538 551 544.9 0.00 4.16

2 eil76 538 MMAS 538 552 542.2 0.00 4.71

DCM-ACO 538 541 538.7 0.00 1.06

ACS 21,282 21,835 21,450.6 0.00 157.83

3 kroA100 21,282 MMAS 21,282 21,945 21,396.3 0.00 166.59

DCM-ACO 21,282 21,373 21,290.3 0.00 20.30

ACS 22,270 22,496 22,366.4 0.58 53.72

4 kroB100 22,141 MMAS 22,220 22,580 22,320.3 0.36 90.47

DCM-ACO 22,141 22,275 22,167.9 0.00 38.13

ACS 6162 6348 6245.0 0.85 57.94

5 ch130 6110 MMAS 6121 6259 6188.4 0.18 37.35

DCM-ACO 6110 6218 6151.4 0.00 20.65

ACS 6548 6778 6600.5 0.31 54.02

6 ch150 6528 MMAS 6528 6641 6578.3 0.00 29.55

DCM-ACO 6528 6563 6546.4 0.00 11.86

ACS 26,244 27,269 26,699.1 0.43 292.44

7 kroB150 26,130 MMAS 26,196 27,034 29,443.9 0.25 214.31

DCM-ACO 26,130 26,463 26,294.5 0.00 75.35

ACS 29,536 30,290 29,827.9 0.57 233.57

8 kroA200 29,368 MMAS 29,460 30,184 29,639.0 0.31 213.40

DCM-ACO 29,368 29,608 29,494.6 0.00 59.89

ACS 29,737 30,701 30,343.6 1.01 272.47

9 kroB200 29,437 MMAS 29,721 30,957 30,195.9 0.96 405.92

DCM-ACO 29,437 30,081 29,653.2 0.00 136.01

ACS 49,198 51,702 49,734.4 0.13 671.45

10 pr264 49,135 MMAS 49,135 51,927 49,715.0 0.00 786.85

DCM-ACO 49,135 49,203 49,163.4 0.00 25.01

ACS 2589 2712 2636.6 0.38 35.77

11 a280 2579 MMAS 2587 2683 2624.8 0.31 27.06

DCM-ACO 2579 2608 2596.2 0.00 8.68

ACS 42,790 43,586 43,277.0 1.81 221.68

12 lin318 42,029 MMAS 43,046 44,879 43,614.5 2.42 447.74

DCM-ACO 42,179 42,915 42,638.9 0.35 177.35

ACS 12,031 12,404 12,185.9 1.43 100.58

13 fl417 11,861 MMAS 12,006 12,363 12,174.1 1.22 94.02

DCM-ACO 11,901 12,042 11,955.6 0.33 29.20

107,217 ACS 108,309 116,846 110,905.9 1.02 2402.69

14 pr439 MMAS 107,929 114,244 110,826.9 0.66 1682.36

DCM-ACO 107,400 109,158 108,408.8 0.17 475.95

ACS 35,032 37,318 35,476.7 1.12 535.75

15 p654 34,643 MMAS 36,257 37,923 36,996.8 4.66 518.65

DCM-ACO 34,795 35,496 34,927.7 0.43 161.82

ACS 279,388 293,489 285,565.9 3.40 3496.78
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Table 9 (continued)

No TSP Optimal Algorithm Best Worst Average Error (%) Std (%)

16 rl1323 270,199 MMAS 285,858 309,420 298,623.8 5.80 5855.98

DCM-ACO 273,707 279,855 276,716.7 1.29 1663.25

ACS 20,760 23,121 21,503.8 3.15 566.40

17 fl1400 20,127 MMAS 22,204 23,718 22,963.6 10.32 440.49

DCM-ACO 20,368 20,904 20,629.8 1.19 143.72

ACS 83,671 87,556 85,748.2 4.00 1147.31

18 d2103 80,450 MMAS 85,062 89,832 87,043.3 5.73 1462.16

DCM-ACO 81,957 84,382 82,853.4 1.87 546.47

Bold values indicate the best results between the comparison algorithms and the proposed algorithm

Fig. 8 Comparison the convergence of different algorithms

Fig. 9 Optimal tour found by DCM-ACO

In the experiment of the comparison with SOS-ACO,
we analyse the experimental results under three factors that
include the best solution, average solution and standard devi-
ation, which the results are shown in Table10. In eil51, eil76
and kroA100 instances, both DCM-ACO and SOS-ACO find
the optimal solution whereas DCM-ACO is superior to the
SOS-ACO in the rest of instances. Moreover, the average
solution computed with DCM-ACO outperforms that com-
puted by SOS-ACO in all instances. Besides, DCM-ACOhas

a better standard deviation than SOS-ACO in the 5 instances
based on 8 instances. In the comparison experiment of PSO-
ACO-3opt, three indexes that contain the best solution, worst
solution and average solution are selected to analyse the
experimental results which are given in Table 11. FromTable
11, the average solution calculated by PSO-ACO-3opt is
superior to DCM-ACO in eil51 and eil76. However, DCM-
ACO has a better average solution than PSO-ACO-3opt in
6 other instances, such as kroA100, ch150, kroA200, pr264,
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Table 10 Compare DCM-ACO
with SOS-ACO TSP Optimal DCM-ACO SOS-ACO

Best Average Std Best Average Std

eil51 426 426 426.5 0.55 426 428.1 1.14

eil76 538 538 538.6 1.11 538 541.7 2.49

kroA100 21,282 21,282 21,289.2 8.57 21,282 21,290.1 12.56

ch150 6528 6528 6546.4 11.86 6558 6571.2 10.52

kroA200 29,368 29,368 29,494.6 59.89 29,413 29,520.7 69.31

pr264 49,135 49,135 49,163.4 25.01 49,135 49,250.7 107.60

lin318 42,029 42,179 42,638.9 177.35 42,473 42,762.7 169.69

pr439 107,217 107,400 108,408.8 475.95 107,978 108,873.8 350.89

Bold values indicate the best results between the comparison algorithms and the proposed algorithm

Table 11 Compare DCM-ACO
with PSO-ACO-3opt TSP Optimal DCM-ACO PSO-ACO-3opt

Best Worst Average Best Worst Average

eil51 426 426 427 426.5 426 428 426.4

eil76 538 538 541 538.6 538 539 538.3

kroA100 21,282 21,282 21,373 21,289.2 21,301 21,554 21,445.1

ch150 6528 6528 6563 6546.4 6538 6622 6563.9

kroA200 29,368 29,368 29,595 29,494.6 29,468 29,957 29,646.0

fl417 11,861 11,901 12,042 11,955.5 11,947 12,003 11,980.4

pr439 107,217 107,400 109,158 108,408.8 108,530 109,341 108,873.8

p654 107,217 34,795 34,927.7 34,927.7 35,052 35,145 35,098.2

Bold values indicate the best results between the comparison algorithms and the proposed algorithm

Table 12 Compare proposed
algorithm with other algorithms
in small-scale TSP instances

Algorithm eil51 eil76 kroA100 ch150 kroA200 pr264

Proposed Best 426 538 21,282 6528 29,368 49,135

Algorithm Error% 0.00 0.00 0.00 0.00 0.00 0.00

LDTACO Best 426 538 21,282 6528 29,380 –

(2021) Error% 0.00 0.00 0.00 0.00 0.04 –

DBAL Best 426 538 21,282 – 29,368 49,135

(2021) Error% 0.00 0.00 0.00 – 0.00 0.00

PPACO Best 426 538 21,282 6528 29,368 49,135

(2021) Error% 0.00 0.00 0.00 0.00 0.00 0.00

HAACO Best 426 538 21,282 6566 29,483 –

(2020) Error% 0.00 0.00 0.00 0.58 0.39 –

DSMO Best 428 558 21,298 – 30,481 –

(2020) Error% 0.67 3.72 0.07 – 3.79 –

NACO Best 426 – 21,282 6528 29,368 49,144

(2020) Error% 0.00 – 0.00 0.00 0.00 0.02

PACO-3opt Best 426 538 21,282 6570 29,368 –

(2018) Error% 0.00 0.00 0.00 0.64 0.00 –

DSOS Best 426 542 21,282 6542 29,477 50,454

(2017) Error% 0.00 0.74 0.00 0.21 0.37 2.68

HMMA Best 438 549 21,371 6654 29,999 50,554

(2015) Error% 0.00 0.00 0.09 1.89 0.34 2.89
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Table 13 Compare proposed
algorithm with other algorithms
in large-scale TSP instances

Algorithm lin318 fl417 pr439 p654 rl1323 fl1400

Proposed Best 42,179 11,901 107,400 34,795 273,707 20,368

Algorithm Error% 0.35 0.34 0.17 0.43 1.29 1.19

DBAL Best 42,072 11,861 107,603 – – –

(2021) Error% 0.10 0.00 0.36 – – –

PACO-3opt Best – 11,972 108,482 35,027 – –

(2018) Error% – 0.94 1.12 1.24 – –

IVNS Best 43,924 12,180 11,175 – 295,607 21,040

(2018) Error% 4.51 2.69 4.22 – 9.45 4.53

HMMA Best 45,443 45,349 12,543 114,095 – 23,099

(2015) Error% 8.12 7.90 5.07 6.41 – 14.77

Reference [42] Best 42,487 – – – 277,642 20,593

(2011) Error% 1.09 – – – 2.75 2.32

Bold values indicate the best results between the comparison algorithms and the proposed algorithm

Table 14 Rank sum test between
DCM-ACO and ACS TSP P-value sig TSP P-value sig

eli51 9.90E−06 YES eil76 3.78E−08 YES

kroA100 3.19E−06 YES kroB100 6.16E−06 YES

ch130 3.61E−07 YES ch150 5.76E−07 YES

kroB150 9.70E−06 YES kroA200 2.91E−07 YES

kroB200 1.92E−07 YES pr264 7.46E−08 YES

a280 6.95E−05 YES lin318 1.32E−07 YES

fl417 9.10E−08 YES pr439 2.03E−05 YES

p654 1.12E−06 YES rl1323 1.20E−06 YES

fl1400 1.43E−07 YES d2103 9.17E−08 YES

Table 15 Rank sum test between
DCM-ACO and MMAS TSP P-value sig TSP P-value sig

eli51 6.30E−03 YES eil76 3.85E−08 YES

kroA100 1.02E−03 YES kroB100 5.85E−07 YES

ch130 1.14 E−03 YES ch150 4.63 E−04 YES

kroB150 1.54 E−02 YES kroA200 2.03 E−02 YES

kroB200 6.01E−07 YES pr264 1.70E−05 YES

a280 3.53E−04 YES lin318 1.23E−07 YES

fl417 7.84E−08 YES pr439 4.53E−06 YES

p654 6.79E−08 YES rl1323 6.80E−08 YES

fl1400 6.75E−08 YES d2103 6.80E−08 YES

fl417, pr439 and p654. In addition, DCM-ACO outperforms
the comparison algorithm in most instances under the best
solution and theworst solution, especially in pr439 and p654.
In total, the experimental results show that DCM-ACO has
strong competitiveness with comparison algorithms for TSP.

In the second phase of this section, we compare the
DCM-ACO with various other optimization algorithms. The
comparison optimization algorithms are mainly improved

ant colony algorithms that include HAACO [15], PACO-
3opt [35], HMMA [36], NACO [28], LDTACO [29], PPACO
[37] and other swarm intelligence algorithms that include
IVNS [38], Discrete Bat Algorithm DBAL [39], Discrete
Spider Monkey Optimization DSMO [40], Discrete Symbi-
otic Organisms Search algorithm DSOS [41] and reference
[42]. Tables 12 and 13 show the specific experiment data in
small-scale and large-scale TSP instance respectively. And
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Fig. 10 Hypothesis test summary

theBest denotes the best solution obtained by each algorithm,
the error is the error rate defined by equal (21). And the “-”
in the table denotes that the comparison algorithm does not
test the instance.

In small-scale TSP instances, as shown in Table 12, our
proposed algorithm finds all the standard optimal solutions
from eil51 to pr264, which outperforms the comparison algo-
rithms such as LDTACO, DSMO, PACO-3opt and HAACO.
Moreover, in Table 13, which shows the experimental results
in large-scale instances, DCM-ACO is also superior to the
recent algorithms. For the lin318 and fl417 instances, DBAL
find the minimum value over all the six competing algo-
rithms. While in other instances such as pr439, p654, rl1323
and fl1400, DCM-ACO obtains better solutions over all
the comparison algorithms. Especially for large-scale TSP
instances, the solution computed by DCM-ACO is superior
to that found by IVNS and reference [42] in rl1323. Besides,
in fl1400, our algorithm also outperforms IVNS,HMMAand
reference[42]. In the light of these results, DCM-ACO has
strong competitiveness with the state-of-art algorithms for
TSP, especially for large-scale instances.

Statistical test analysis

To verify the effectiveness of the proposed algorithm, we
perform the Wilcoxon rank-sum test in this section. In this
test, P-value denotes the significance level, and ifP-value <

0.05, the sig in Tables 14, 15 is YES, which means that the
original hypothesis is rejected and the performance between
our proposed method and the comparison algorithms is sig-
nificantly different. Otherwise, the sig is NO, which implies
that there is no significant difference among these algorithms.
In this part, the original hypothesis is given as: the perfor-
mance between the algorithms is no significant difference.
From Tables 14, 15, all the values of P-value in two tests
are less than 0.05, it can be concluded that the comparison
experiments between DCM-ACO and traditional ant colony
algorithms have statistical significance.

In addition, to require a fair conclusion further,weperform
Friedman’s test to verify the significant difference between
our proposed method and other improved algorithms includ-
ing NACO [28], LDTACO [29] and PPACO [37]. First, we
set the null hypothesis H0 is: DCM-ACO has no signifi-
cant difference with NACO, LDTACO, and PPACO. Then
10 experimental data from the kroA200 and lin318 instances
are selected to carry out Friedman’s test under the SPSS25
software. The results are shown in Fig. 10 and Table 16.
As we can see in Fig. 10, the decision is that rejection for
the H0 which means the proposed method has a significant
difference with comparison algorithms. Specifically, from-
Fig.11, the mean rank of DCM-ACO, NACO, LDTACO and
PPACO is 1.27, 3.07, 2.03 and 2.93 respectively. Since the
response rates differ at different frequencies, pairwise com-
parisons are necessary. Table 16 shows the results of the
pairwise comparison test. From Table 16, the Adjust sig-
nificance of DCM-ACO with NACO, LDTACO and PPACO
is 0.011, 0.002, 0.001, respectively, which all the values are
less than 0.05. It means that DCM-ACO is different from
NACO, LDTACO and PPACO. In a word, the comparison
experiments between DCM-ACO and other algorithms have
statistical significance.

Fig. 11 Related-samples Friedman’s Two-way analysis of variance by ranks

Table 16 Comparison test
Sample1–Sample2 Test statistic Std. error Std. test statistic sig Adj.Sig

DCM-ACO-NACO − 1.47 0.47 − 3.11 0.002 0.011

DCM-ACO-LDTACO − 1.67 0.47 − 3.54 0.000 0.002

DCM-ACO-PPACO − 1.80 0.47 − 3.82 0.000 0.001
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Conclusion

In this paper, we have proposed a novel ant colony algorithm,
so-calledmulti-ACOwith dynamic collaborativemechanism
and cooperative game, to solve traveling salesman problems.
In the proposed algorithm, two colonies ofAntColony System
(ACS) and one colony ofMax–Min Ant System (MMAS) are
formed heterogeneous population.And twoACSpopulations
can better amplify the convergence speed of the algorithm.
One MMAS subpopulation is added to enhance the diver-
sity of the population effectively. The advantages of multiple
populations complement to ensure the solution quality of the
algorithm.

In addition, the cooperative game based on Shapley value
is designed to regulate the pheromone accumulation among
ACS subpopulations with respect to the contribution of
each participant after each iteration. From the experimental
results, it portrays that the cooperative game has been proved
to be effective and it can adaptively control the pheromone
accumulation and improve the diversity of the algorithm.

The dynamic collaborative mechanism is introduced to
coordinate among heterogeneous populations. Two methods
that pheromone fusion mechanism and public path recom-
mendation strategy are in themechanism.The formermethod
based on information entropy can help ACS population get
rid of the local optimal and the latter accelerates the conver-
gence of the MMAS population effectively. The experiment
results in different scale TSPs demonstrate that the improved
algorithm can fully complement the advantages of the het-
erogeneous populations and balance the convergence speed
and the diversity of the algorithm effectively, especially for
large-scale TSP instances.

In the future, more types of collaborative mechanism can
be designed in heterogeneous populations and more kinds of
payoff distribution strategies based on game theory can be
used to promote co-evolution among populations. In addi-
tion, except for the evaluation criteria under information
entropy in this paper, other cross-discipline methods such
as statistics or machine learning can also be attempted to
improve the performance of the population further. Finally,
the game mechanism we proposed in this research also has
some certain practical value in the application of the ant
colony algorithm.
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