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Abstract
Although multiobjective particle swarm optimizers (MOPSOs) have performed well on multiobjective optimization problems
(MOPs) in recent years, there are still several noticeable challenges. For example, the traditional particle swarm optimizers are
incapable of correctly discriminating between the personal and global best particles inMOPs, possibly leading to theMOPSOs
lacking sufficient selection pressure toward the true Pareto front (PF). In addition, some particles will be far from the PF after
updating, this may lead to invalid search and weaken the convergence efficiency. To address the abovementioned issues, we
propose a competitive swarm optimizer with probabilistic criteria for many-objective optimization problems (MaOPs). First,
we exploit a probability estimation method to select the leaders via the probability space, which ensures the search direction
to be correct. Second, we design a novel competition mechanism that uses winner pool instead of the global and personal
best particles to guide the entire population toward the true PF. Third, we construct an environment selection scheme with
the mixed probability criterion to maintain population diversity. Finally, we present a swarm update strategy to ensure that
the next generation particles are valid and the invalid search is avoided. We employ various benchmark problems with 3–15
objectives to conduct a comprehensive comparison between the presented method and several state-of-the-art approaches.
The comparison results demonstrate that the proposed method performs well in terms of searching efficiency and population
diversity, and especially shows promising potential for large-scale multiobjective optimization problems.

Keywords Many-objective optimization problems (MaOPs) · Competitive swarm optimizer (CSO) · Probability estimation
method · Swarm update strategy

Introduction

In many real-world industrial applications, we often face
complex decision-making problems that need to optimize
several (often conflicting) objectives simultaneously. These
problems are called multiobjective optimization problems
(MOPs). Let � denote the decision space (which refers to
a feasible search space), the notation x = (x1, x2, .........xn)
indicate the decision vector, and f represent the objective
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vector. An unconstrained minimization MOP can be defined
as follows:

minimize F(x) = ( f1(x), f2(x), ....... fm(x))

subject to x ∈ �,
(1)

where � F : � → Rm represents the objective function,
and m is the number of objectives. Being different from the
single-objective problem (SOP), the natures of the multiple
objectives are conflicting. Thus, the MOP usually obtains a
set of optimal solutions called the Pareto optimal set (PS),
and the objective vectors corresponding to PS are named
the Pareto front (PF). When MOPs have more than three
objectives, they are often calledmany-objective optimization
problems (MaOPs).

MOPs widely exist in many practical applications, such
as short-term wind forecast [1], autonomous control of
unmanned aerial vehicles (UAVs) [2], aero-engine calibra-
tion [3], and optimization of deep neural networks [4].
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It is difficult to solve MOPs using conventional mathe-
matical tools, but due to good parallelism, evolutionary
algorithms are very suitable for MOPs [5]. As a classic
heuristic technique, evolutionary algorithms (EAs) have been
demonstrated as a powerful framework for solving MOPs
and MaOPs, which have been studied intensively for many
years. According to different calculation strategies, they can
be roughly divided into three categories. The first cate-
gory is the multiobjective evolutionary algorithms (MOEAs)
based on modified Pareto-dominance, such as the evolu-
tionary algorithm based on grid dominance [6], preference
order ranking [7], and other new dominance relations [8].
These improved dominance ranking methods significantly
increase the selection pressure in non-dominated solutions
and improve the efficiency of searching the true Pareto front.
The second category is the indicator-based MOEAs which
replaces the Pareto-dominance relation by performance indi-
cators of solution quality measurement. SMS-EMOA [9] and
IBEA [10] are two representative algorithms in this cate-
gory. The third category is the decomposition-basedMOEAs.
The originalMOP is decomposed intomultiple subproblems,
and these subproblems are solved in a collaborative manner
through a population-based search [11]. Representatives of
this type include the EA based on a localized weighted sum
[12], the constrained decomposition approach with grids for
the MOEA [13], the reference vector-guided EA (RVEA)
[14] and the MOEA/D with an Ensemble of Neighborhood
Sizes (ENS-MOEA/D) [15]. The existing MOEA model is
very effective for solvingMOPs with two or three objectives.
However, it has been found in practice that the performance
of these MOEAs is severely declined when solving MaOPs.
The main reason of these poor performances is that most of
the generated solutions are mutually nondominated as the
number of objectives increases, leading to the MOEAs’ lack
of selection pressure toward the true PF [16]-[18].

As another branch of heuristic technique, the swarm intel-
ligence algorithms also have beendesigned for solvingMOPs
andMaOPs. Some literatures have shown that particle swarm
optimization (PSO), inspired by the social behavior of birds,
is a potential competitor of the genetic algorithm (GA) [19].
Although it cannot be concluded that the performance of PSO
onMOPs is better than GA, PSO has the advantages of easier
implementation, efficient storage and effective maintenance
of solution diversity [20]-[22]. PSO has the characteristic of
fast convergence in single-objective optimization problems
(SOP), which is based on the premise that the personal- and
global-best particles can be clearly confirmed. For example,
AWPSO is a novel PSO algorithm, which efficiently solves
the SOPs by a sigmoid function and clearly confirmed opti-
mal particles [23]. However, multiobjective particle swarm
optimizers (MOPSOs) do not have any particles on MaOPs
that can perform best on all objectives and they are usually

replaced by a set of tradeoff solutions. Most of the gener-
ated particles are mutually nondominated on MaOPs, which
makes it difficult to choose the personal- and global-best par-
ticles. Since the personal- and global-best particles are used
to guide the search direction of the particle swarm, they have
a considerable impact on the performance of the PSO algo-
rithm. Therefore, how to define the personal- and global-best
particles has become the most important issue that MOP-
SOs need to solve. Many PSO methods try to solve the
above problem. The first method uses the Pareto-based rank-
ing scheme to define the personal- and global-best particles.
CPSO [24],OMOPSO[25] andSMPSO[26] are three typical
algorithms. They usually choose the less crowded solutions
in the nondominated solutions as the global optimal particle.
In addition, MOPSOs based on enhanced ranking schemes
have been proposed, such as global marginal ranking [27]
and preference order ranking [28]. In these algorithms, the
particles in the external archive are first sorted according
to the corresponding criteria, and then some elite particles
can be selected as candidates for personal- and global-best
particles according to their rankings. The second strategy
is decomposition-based MOPSOs, where an original MOP
is decomposed into a number of single-objective optimiza-
tion problems where the single-objective PSO algorithms
can be directly applied. For example, in AgMOPSO [29], a
novel decomposition approach is used to select the personal-
best particle and global-best particle during the evolutionary
search process. In HMOPSO-ARA, the position informa-
tion of local best particle is introduced by the decomposition
method to improve search efficiency of PSO [30].

Recently, the competitive swarm optimizer (CSO) have
being increasingly popular due to its benefits of high search
efficiency in solving MOPs. CSO is a variant of PSO and
adopts a pairwise competition strategy to update the popu-
lation. Cheng et al. were the first to introduce a competition
mechanism into PSO and applied it to solve SOPs [31].
In their method, the dynamic system is driven by a ran-
dom competition mechanism, where any particle could be
a potential leader. Afterwards, Zhang proposed a com-
petitive mechanism based multi-objective PSO algorithm
(CMOPSO), which effectively enhance swarm diversity for
tackling MOPs with multimodal landscapes [32]. Moreover,
the large-scale multiobjective optimization based on CSO
(LMOCSO) is proposed for solving large-scale multiobjec-
tive optimization problems (large-scale MOPs). Different
from the existing algorithms that focus on the modification
of updating velocity, LMOCSO adopts a two-stage strategy
to update the position of the particles, which can signifi-
cantly improve the search efficiency [20]. In addition, some
new particle update strategies recently proposed also provide
research ideas for CSO [33].
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The PSOs and CSOs have good performances on different
types of benchmark MOPs and MaOPs, but several notice-
able problems still remain. First, due to the fact that there
is no such a particle that can perform best on all objectives,
theMOPSOs are incapable of clearly determining the swarm
leaders in solving MaOPs [34]. Second, PSO has the char-
acteristic of fast convergence in SOP, which is based on the
premise that search direction can be clearly confirmed [21].
However, in MOPSOs, several objectives need to be consid-
ered. Third, after the positions of the particles are updated,
some of them are performing invalid searches. Moreover,
similar to the problems that MOPSOs face, traditional CSOs
also perform poorly onMaOPs, and the performance of CSO
degrades dramatically with the increase in the number of
objectives in the MaOPs.

To address the abovementioned issues, we propose a com-
petitive swarm optimizer with probabilistic criteria termed
MOCSOP. Themain new contributions of this paper are sum-
marized as follows.

To clearly define the leader of swarm in solving MaOPs, we
propose a probability criterion to estimate the quality of each
particle in the population and select the leaders according
to the value of joint probability. The proposed probability
estimationmethod shows good robustness as its performance
is not affected by the number and range of objectives.
To address the issue of low convergence efficiency of the
MOPSOs on some MaOPs, we design a competitive mech-
anism with winner pool to update the particles’ position.
Compared with the velocity and updated position strategy
of the existing MOPSOs, the learning strategy, based on the
competitive mechanism with winner pool, achieves a better
performance of convergence on MaOPs.
To enable the swarm to be evenly distributed at the PF, we
construct an environment selection scheme with the mixed
probability criterion. The proposed mixed probability cri-
terion based on diversity mechanism not only effectively
develops the diversity of the population, but also strength-
ens the selection pressure to some extent in the early stage.
After the position updating of the particles, a number of
invalid particlesmay be generated. Some particles evenmove
away from the PF, which will decrease the convergence effi-
ciency. To address the abovementioned issue, we propose a
swarm update strategy by using the particles in the exter-
nal elite archive to update the current particle swarm. This
ensures that all of the particles entering the next generation
are valid, which effectively improves the convergence of the
algorithm.

The rest of this article is organized as follows. The second
section introduces the relevant background of MOPSO and
the motivation of this article. Details of the MOCSOP are

given in Sect. “Proposed algorithm”. In Sect. “Experimental
results and analysis”, some experimental studies are carried
out to elaborate on the performance of the MOCSOP algo-
rithm in detail. Finally, Sect. 5 provides our conclusions and
some possible approaches for future work.

Related background andmotivations

PSO has been widely used in SOPs [31] and other appli-
cations [4]. Recent reports show that PSO is a powerful
potential competitor of GA in solving MOPs, and many
MOPSOs have been successfully applied to MOPs. Despite
the fact that MOPSO is very effective in solving MOPs with
twoor three objectives [32, 26],most of the existingMOPSOs
still perform poorly on MaOPs. There are several significant
challenges that restrict the performance of MOPSOs.

(1) Swarm leader.
MOPSOs do not have any particles in MOPs that can per-

form best on all objectives and are usually replaced by a set of
tradeoff solutions. Thismakes it difficult to choose the swarm
leader [34]. Since swarm leader particles are used to guide
the search direction of the particle swarm, they have a con-
siderable impact on the performance of the PSO algorithm.
Especially when solving high-dimensional MaOPs, parti-
cles will oscillate repeatedly in the objective space, which
will affect the convergence speed [20]. Therefore, how to
define swarm leader has become themost important issue that
MOPSOs need to solve. In the current studies, some novel
leader selection strategies have been proposed [22, 24, 34,
35]. However, these methods have a complicated selection
procedure and can’t completely solve the leader selection
problem, which means the MOPSOs still lacks sufficient
selection pressure toward the true PFs.

(2) Convergence efficiency in solving MaOPs.
Being different from SOPs, due to the conflicting nature

between the multiple objectives, there does not exist such
a search direction that can be clearly confirmed. Therefore,
MOPSOs do not show a good convergence advantage com-
pared with MOEAs. As shown in Fig. 1, we selected five
MOPSO algorithms [32, 26, 19, 36, 22] for comparison with
MOEA/D [11], eachwith a population size of 105 and 30,000
function evaluations (FEs). It is obvious from the figure that
the convergence of MOEA/D on three-objective DTLZ3 is
significantly better than other state-of-the-art MOPSOs. As a
consequence, the convergence efficiency of PSO is not high
enough to find a set of Pareto optimal solutions within a lim-
ited number of generations.

(3) Invalid search.
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Fig. 1 Nondominated solution set obtained by (a) CMOPSO, (b) SMPSO, (c) IDMOPSO, (d) MMOPSO, (e) MaOPSO/vPF and (f) MOEA/D on
DTLZ3 with three objectives
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Fig. 2 a MMOPSO on 2-objective DTLZ5. b IDMOPSO on 2-objective DTLZ5. c SMPSO on 2-objective DTLZ5
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Although PSO has been applied to solveMaOPs and other
real-life applications, little work has been reported to con-
sider the invalid search of particles in the objective space. In
most existing MOPSOs, the velocities and the positions of
the particles are usually updated using the positional infor-
mation of the personal- and global-best particles. After all the
particles are updated, the updated particles will directly pass
to the next generation population. However, not all updated
particles are valid particles. Thismay cause insufficient selec-
tion pressure for the population to approach the true PFs. To
illustrate this fact, Fig. 2 shows the positions of eight particles
updated by MMOPSO, IDMOPSO, and SMPSO strategies
on 2-objective DTLZ5, respectively. As shown in Fig. 2, the
updated particles are not always towards the PF. Specifically,
some updated particles even move away from the PF, which
will affect the search efficiency.

To solve the abovementioned issues,wepropose a compet-
itive swarm optimizer with probabilistic criteria for MaOPs,
termed MOCSOP. On the one hand, MOCSOP guarantees
convergence efficiency of the algorithm through the winner
pool and particle swarm update strategy. On the other hand,
to producewell-distributed Pareto fronts, we use the environ-
ment selection scheme with the mixed probability criterion
to select particles which will enter the external archive. The
specific content of MOCSOP will be described in detail in
Sect. “Proposed algorithm”.

Proposed algorithm

Probability estimationmethod

MOPSOs guide the search direction of particles in the swarm
through the appropriate swarm leaders, so choosing the
swarm leaders is very important. It directly affects the perfor-
mance of the MOPSO algorithms, especially when solving
MaOPs, and an inappropriate swarm leader selectionmethod
will increase the invalid exploration of particles in the objec-
tive space.

In view of the above, we use probability estimation meth-
ods tofind the swarm leader particle among the current swarm
to form the winner pool. We first compute the probability
values of the particles in each objective on the space of prob-
abilities.

Pk(xi ) = Dk(xi )

|S| − 1
. (2)

Probability theory is used to define Pk(xi ) as the probabil-
ity that xi wins the comparison on the k-th objective. In other
words, Pk(xi ) is the probability that xi ∈ S wins a compar-
ison, according to k-th objective ( fk , k = 1, 2, .......m, m is
the number of objectives), against another randomly selected

solution from S. If Pk(xi ) > Pk(x j ), it means that the prob-
ability of xi winning the comparison on the k-th objective is
higher than that of x j .We can also say xi performs better than
x j on the k-th objective. Where S represents the finite set of
feasible solutions under consideration, | | represents the L1-
norm, |S| represents the size of the population, and Dk(xi ),
which is calculated using the competition strategy, represents
the number of times that xi has won the competition with
other particles in the population on the k-th objective. In the
minimization problem, the comparison rules are as follows:

com( j) =
{
1 i f fk (xi )< fk (x j )
0 i f fk (xi )≥ fk (x j )

, (3)

Dk(xi ) =
|S|∑

j=1, j �=i

com( j). (4)

For example, consider a problem involving the mini-
mization of three objectives, f1, f2 and f3. The population
contains four particles, a, b, c and d. Assume that the cor-
responding values of ( f1, f2, f3) for different particles are
a ≡ (0.5,1,1), b ≡ (4,4,3), c ≡ (3,3,1.5) and d ≡ (1,1.5,2),
respectively. Then we construct a probability matrix, M,
which has dimensions ||S|| ×||m||, where || || indicates the set
cardinality, S represents the population, and m is the number
of objectives. Each row of the matrix M corresponds to one
individual and each column of the matrix M corresponds to
one objective vectors. In this example, a 4 × 3 matrix is con-
stituted as shown in Fig. 3a. Then, as shown in Fig. 3b, the
number of times each particle wins the competition on k-th
objective is calculated by Eq. (4). And finally as shown in
Fig. 3c, we calculate the probability of each particle winning
the comparison on the k-th objective according to Eq. (2).

However, Pk(xi ) only reflects the probability that xi wins
a comparison on the k-th objective. To estimate the quality of
particles on all objectives in the population, we use the joint
probability representation:

P(xi ) = P1(xi ) ∗ P2(xi ) ∗ P3(xi )........ ∗ Pm(xi ) (5)

where P(xi ) is the probability that xi wins a comparison
on all objectives, against another solution randomly selected
from the current population S. The joint probability repre-
sents the probability of the particle xi wins the competitions
on all objectives. As shown in Fig. 3d, if P(xi ) = 1, it means
that xi is the best for all the objective functions and can dom-
inate all other particles in the swarm. If P(xi ) = 0, then the
convergence of xi is worse than that of other particles. The
joint probability reflects the quality of particles in the popula-
tion, but the calculation of joint probability also suffers from
the “curse of dimensionality”. For instance, consider a prob-
lem involving the minimization of five objectives, f1, f2, f3,
f4, and f5. Assume that the corresponding values of (P1(y),
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Fig. 3 Illustrative example to show the process of probability estimation

P2(y), P3(y), P4(y), and P5(y)) for y are (0.1, 0.2, 0.5, 0.9,
0.4). The joint probability of y can be calculated by the for-
mula (5): P(y) = 0.1 ∗ 0.2 ∗ 0.5 ∗ 0.9 ∗ 0.4 = 3.6 × 10−4.
when the number of objectives increases significantly, P(y)
may underflow. In addition, once a particle performs poorly
on one objective, the joint probability of value will directly
go to 0. To obtain an easy-to-calculate equivalent formula
instead of joint probability, we transform the product into a
summation form through a logarithmic operation, which is
often used in machine learning [37]. The approximate values
of the joint probability can be computed as follows:

PV (xi ) = − log(P1(xi )) − log(P2(xi ))..... − log(Pm(xi )).
(6)

It is worth noting that when Pk(xi ) = 0, we set Pk(xi ) =
10−6. A smaller PV (xi ) indicates that xi has a higher proba-
bility of winning the comparison on all objectives. Algorithm
1 gives the entire process of probability estimation. Each
particle is assigned a value of joint probability through the
probability space to reflect the particle’s quality in the swarm.

The competitionmechanismwith winner pool

Recent literature reports that the competitive swarm opti-
mizer (CSO), compared with the traditional PSO in solving
MOPs and MaOPs, improves the swarm diversity to avoid
premature convergence [20, 32]. Specifically, in the competi-
tive swarmoptimizer, two particles are randomly selected at a

time. The velocity of the particles with poor fitness is updated
according to the position of the particles with good fitness,
and the winner is directly passed to the next generation of the
swarm. In ourmethod,we also use the strategy of the compet-
itive swarm optimizer to guide the entire swarm by learning
from the winner, but we have three new contributions. First,
we clearly define the swarm leaders by probability criterion.
Second, we form the winner pool by selecting the particles
with the best value of joint probability from the current popu-
lation instead of using the random competitionmechanism to
select thewinner. Third,MOCSOPdoes not use the personal-
and global-best particles as mentioned in [19, 36, 38], and
we use the particles of winner pool directly to guide all the
particles to approach the true PFs ofMaOPs. In summary, the
particle velocity is updated in the proposed MOCSOP by:

vi , j (t + 1) = ωvi , j (t) + c1r1(xw, j (t) − xi , j (t)), (7)

where each particle has an n-dimensional position, xi (t) =
(xi , 1(t), xi , 2(t), ......xi , n(t)), t is the iteration number, ω is
the inertial weight, c1 is the learning factor, r1 is a random
number generated uniformly in the range [0, 1], the position
of the winner for xi (t) is denoted as xw and the velocity of
xi (t) is an n-dimensional velocity vector vi (t) = (vi , 1(t),
vi , 2(t), ......vi , n(t)).

It is worth noting that the winner pool is formed from the
top 10%of the particles with better values of joint probability
in the current swarm. where the winner of xi is randomly
selected from the winner pool, and then the position of xi
can be updated on the basis of the new velocity:

xi (t + 1) = xi (t) + vi (t + 1). (8)

Furthermore, similar to most existing MOPSOs, MOC-
SOP also executes polynomial mutation [39].

For further observing the position of the particles of
winner pool, Fig. 4 presents an example to illustrate. It is
interesting to find that the position of leaders in the popula-
tion. In the early stage of the evolution, the position of leaders
in the population is closer to the PF. These particles have bet-
ter quality on convergence, and are regarded as swarm leaders
to guide theCSO-based search.With the process of evolution,
most of the generated solutions are mutually nondominated.
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Fig. 4 Example to illustrate how to identify the position of leaders in
MOCSOP for DTLZ7 with three-objectives, where the population size
is set to 275 (The red points represent the leaders and blue points rep-
resent the other particles in the swarm). a solution set obtained by

MOCSOP after 759 FEs. b solution set obtained by MOCSOP after
12,903 FEs

Leaders are distributed at various positions on the PF, which
enhances the diversity search of algorithm to some extent.

Environmental selection

Similar to the existing MOEAs [39], MOCSOP also uses
a set of predefined reference points to ensure the diversity
of the obtained solutions. As presented in Algorithm 2, the
combined population Rt is divided into different layers (F1,

F2, and so on) by a nondominated sorting procedure, where
Fj is the j-th Pareto nondomination level of Rt , and the last
layer Fl is determined. The critical front is St , if |St | = N ,
then return A′ = St . Otherwise, when |St | ≥ N , we first
estimate the joint probability of the particles in St . Then,
the remaining (K = N − |A′|) swarm members are chosen
from the last front Fl by using the association and niching
operation with the mixed probability criterion (line15). In
what follows, we will describe them in more detail in the
following subsections.

Objective space normalization

In general, different objectives have different ranges, which
can directly affect the diversity estimation of the population.
Therefore,weneed to performanadaptive normalizationpro-
cedure on the critical front St . Several normalizationmethods
have been proposed [40, 41], and we utilize the adaptive
normalizationmethod proposed in [39]. Specifically, the nor-
malization of the objective functions can be computed using
the following equation:

f
′
i (xi ) = fi (xi ) − zmin

i

bi
, (9)

where the ideal point zmin = (zmin
1 , zmin

2 , .....zmin
m ) is con-

structed from the minimum value of each objective function
fi and bi is the intercept of the i-th objective axis.

1. Association and Niche-Preservation Operation
The proposed MOCSOP has a similar association and nich-
ing operation as [39], except that the probability criterion
is added to the niche-preservation operation procedure. In
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Fig. 5 Illustrative example to show the differences between archive
updated by our method and NSGA-III

our proposed method, when a reference vector already has
one member associated with it that exists in St/Fl , the parti-
cles with the best value of joint probability are preferentially
selected to pass the archive. A simple example is displayed
for illustration as shown in Fig. 5, where A, B, and C are non-
dominated solutions, D, E, F and G are dominated solutions.
Assume that five out of the seven candidate solutions need to
be selected for the next archive. Considering that A, B and C
are in the first layer, they are preferentially selected to enter
the archive. In this case, all the reference vectors have a par-
ticle associated with it in the first layer. Then, we still need to
select two particles from last layer to enter the archive. For
the reference vector 2, NSGA-III randomly chooses a parti-
cle form D and E to enter the archive. However, randomly
selected particles have uncertainty, and some particles with
good quality may be missed. In MOCSOP, the E is passed to
the archive, because of the fact that the joint probability value
of E is better than D according to Eq. 6. Similar operation,
we choose F to enter the archive.

There are two main reasons prompting that we add the
probability criterion to the association and niching oper-
ation. On the one hand, evolutionary search and swarm
update strategy are applied to the external archive (pre-
sented in Sect. “Evolutionary search on the external archive”
and “Swarm update strategy”), therefore more particles with
better joint probability value in the archive can effectively
improve the search efficiency, especially in the early stage.
On the other hand, during the experiments, we find that the
proposed method is beneficial for solving large-scale MOPs.
Refer to Sect. “Further discussion” for more details.

Evolutionary search on the external archive

To further enhance the solution quality in the external archive
and to repair the potential insufficiency of CSO search on
some MaOPs, we use the evolutionary search to further
explore the archives. Recently, [36, 38] have shown that this

hybrid scheme not only effectively improves the search abil-
ity of MOPSOs, but it also enhances the robustness of the
algorithm to tackle various complex PFs. In this paper, the
evolutionary search framework is the same as in NMPSO
[38], and we also use the simulated binary crossover (SBX)
and polynomial mutation (PM) [39] to extend the search
capabilities of the CSO. Due to space limitations, the spe-
cific details of using the evolutionary search to assist CSO
can be found in [36, 38].

Swarm update strategy

After the velocity and position of the particle swarm are
updated, the swarm has a large number of invalid particles.
These particles are mostly concentrated in crowded areas or
far from the Pareto front. In response to this problem, this
article proposes a simple and efficient particle swarm update
strategy to ensure that the particles can search the Pareto front
efficiently while avoiding the repeated search of invalid areas
that affect the convergence and equilibrium of the algorithm.
The specific details are shown in Algorithm 3. After the envi-
ronmental selection, if ai comes from the updated particle
swarm S (in line 14 of Algorithm 4) and still survive, then
ai will inherit the updated velocity (in line 10 of Algorithm
4); otherwise, the velocity of ai will set to be 0. The external
archive is directly used as the next-generation particle swarm
to ensure the effectiveness of the particles in the swarm. The
reason for the above is that the archive, after environmental
selection, retains some elite individuals of this generation,
and these individuals are obviously valid particles. Second,
the external archive saves all of the elite individuals who have
been searched so far. These individuals, as the next generation
of particles, ensure the effectiveness of the entire population
and avoid the invalid search of particles.

Figure 6 illustrates an example that shows the advantage
of the swarm update strategy over the traditional PSO. The
traditional PSO usually chooses the updated particles enter-
ing the next generation of the swarm [24, 38]. As shown in
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f1

f2
 Archive
Initial Particle Swarm
Updated Particle Swarm
Pareto Front

Fig. 6 Illustration of the procedure of swarm update strategy on a bi-
objective problem

Fig. 6, the particle swarm {d, e, f } is the next generation of
the swarm. We can find that the positions and motion direc-
tions of d and f are far away from the PF; this situation will
increase the invalid search of the PSO in the objective space
and itwill affect convergence. By contrast, the particle swarm
{a, e, g} is selected by the proposed swarm update strategy.
They are the best candidate particles in terms of convergence
and diversity. In addition, e retains the direction of velocity,
which ensures that the particles always move toward the PF.

Complete algorithm of MOCSOP

Similar to most existing MOPSOs, the proposed MOCSOP
has a very simple framework. To describe the complete
algorithm of MOCSOP in detail, Algorithm 4 presents the
pseudocode of its complete framework, and the main frame-
work of MOCSOP consists of the following steps. It begins
with the initialization of a random population S and a set
of uniformly distributed reference vectors Z . For each par-
ticle in S, its positional information is randomly generated,
and its velocity is set to 0. Furthermore, we use Das and Den-
nis’s [42] method to generate uniformly distributed reference
points. In line 3, the external archive A is initialized and all
nondominated solutions in S are distinguished and added into
A. During the evolutionary phase, we first use the probability
estimation method to find the swarm leader particles among
the S, and then select the particles with better values of joint
probability in the current swarm to create a winner pool.
After that, for each particle in S, the particle velocity and
position are updated by using Eqs. (7) and (8) in lines 10–11.
Then, to enhance the search ability of the CSO, the polyno-
mial mutation is also performed. In line 16, we update the
archiveA by executing environmental selection. Then, in line
17, the evolutionary search strategy is applied on A to obtain
new solutions. For the new population S’, we execute the
environmental selection to update archive A again. Finally,
swarm update strategy procedures are performed to ensure
that the next generation particles are all valid particles. The
main loop will repeat until a termination criterion is reached,
and the archive A is reported as the final approximated PF.

Computational complexity analysis

The computational complexity ofMOCSOP ismainly related
to the operations of probability estimation and environmen-
tal selection. For a population size N and a M-objective
problem, the computational complexity of probability esti-
mation is O(MN 2). In the population update stage, all
particles in the population are updated in the worst-case
scenario, and this requires O(N ) calculations. For the evolu-
tionary search strategy, two operations, the simulated binary
crossover (SBX) and polynomial mutation are calculated,
which requires a runtime of O(M N

2 ). In the environmental
selection, we require O(MN 2) computations for nondomi-
nated sorting and niching operation. After archive updating,
the swarm update strategy executed requires O(N ) in the
worst case. In summary, the worst-case time complexity of
one generation in MOCSOP is O(MN 2).

Compared with the existing MOPSOs and MOEAs, our
MOCSOP method is computationally efficient in solving
MaOPs. In the experimental section, we will compare the
average runtimes of MOCSOP with that of the various eval-
uated approaches for MaOPs.
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Experimental results and analysis

In this section, to prove the effectiveness of our algorithm
model, we first compare our method with five typical MOP-
SOs, namely,CMOPSO [32],NMPSO [38], IDMOPSO [19],
MMOPSO [36] and MaOPSO/vPF [22]. Where CMOPSO
is a recently proposed competitive mechanism-based PSO,
MMOPSO is an improved version of MOPSO with multiple
search strategies, NMPSO, IDMOPSO and MaOPSO/vPF
are three novel PSO algorithms designed for solvingMaOPs.
These comparable methods have shown excellent perfor-
mance on both MOPs and MaOPs with various types
of Pareto fronts. Then, we compared our approach with
five state-of-the-art MaOEAs including MaOEA/IGD [43],
NSGA-II/SDR [8], VaEA [44], MOEA/D-CMA [45] and A-
NSGA-III [46]. They have shown a good balance between
diversity and convergence on MOPs and MaOPs.

In the experiment, we selected 16 test problems, including
DTLZ1-DTLZ7 [47] and WFG1-WFG9 [48], which were
widely used to evaluate the performance of the algorithm.
Based on the different types of Pareto fronts, these test prob-
lems can be roughly divided into three groups. The first group
is DTLZ1, which includes a linear PF. The second group
consists of DTLZ2-DTLZ4 and WFG4-WFG9, which have
a concave PF. The problemwith concave PFmay have a great
number of local optima, which imposes a great challenge for
algorithms to push the population toward the PF. The third
group consists ofDTLZ5,DTLZ6, andWFG1-WFG3. These
instances have discontinuous (DTLZ7 andWFG2), degener-
ated (DTLZ5, DTLZ6 and WFG3) and other complex PFs
(WFG1), which brings the challenge tomaintain the diversity
of population. In this paper, we use DTLZ and WFG with a
number of objectives that range from 3 to 15, because of the
fact that they can scale any number of objectives and deci-
sion variables. The number of decision variables for DTLZ
test suites is set to n = k + m − 1, where m is the number
of objectives and n is the number of decision variables. As
recommended in [43], we set k = 5 for DTLZ1, k = 10 for
DTLZ2 toDTLZ6 and k= 20 forDTLZ7. ForWFG1-WFG9
test instances, the number of decision variables is set to n =
k + l as suggested in [44], where k is set to m − 1, and the
distance-related variable l = 10.

Experimental settings

Reference points and population size:
NSGA-III, MOEA/D-CMA, MaOEA/IGD, VaEA,
IDMOPSO, MaOPSO/vPF and MOCSOP were all used
Das and Dennis’s [42] approach with two layers to generate
uniformly distributed reference points. According to the
suggestion of [16], for the test suites of 3, 5, 6, 8, 10 and 15
objectives, we set the number of weight vectors to 105, 126,
132, 156, 275, 135 respectively. In addition, for quantitative

Table 1 Parameters Settings of all the Algorithms Compared

Algorithm Parameters settings

NMPSO ω ∈ [0.1, 0.5], c1, c2, c3 ∈ [1.5, 2.5], r1, r2,
r3 ∈ [0, 1], pm = 1/D, ηm = 20

CMOPSO ω ∈ [0, 1], r1 ∈ [0, 1], pm = 1/D, ηm = 20

MMOPSO ω ∈ [0.1, 0.5], c1, c2 ∈ [1.5, 2.5], r1, r2 ∈ [0,
1], ηc = ηm = 20, pm = 1/D, pc = 1

IDMOPSO ω ∈ [0.125, 0.495], c1, c2 = 1.494, r1,
r2 ∈ [0, 1], k = 0.005

MaOPSO/vPF ω ∈ [0.1, 0.5], c1, c2 ∈ [1.5, 2.5], r1, r2 ∈ [0,
1]

MOCSOP ω ∈ [0.1, 0.5], c1 ∈ [1.5, 2.5], r1 ∈ [0, 1],
ηc = ηm = 20, pc = 1, pm = 1/D

A-NSGA-III ηc = ηm = 20, pc = 1, pm = 1/D

MaOEA/IGD pc = 0.9, ηc = ηm = 20, pm = 1/D

VaEA pc = 1, ηm = 20, pm = 1/D

NSGAII/SDR pc = 1, ηm = 20, pm = 1/D

MOEA/D-CMA T = 0.1 ∗ N , K = 5

comparisons, the population size of each comparisonmethod
is set to the same value as the number of reference points.
Experimental settings of all compared algorithms:
For fair comparisons, the parameters of all comparisonmeth-
ods were set according to their references. Table 1 lists the
related parameters used in the experiments for each algo-
rithm, where D is the dimension of the decision space, ω is
the inertial weight, c1 and c2 are two learning factors, r1 and
r2 are two uniformly distributed random numbers, and ηc and
ηm are the distribution indexes of SBX and PM, respectively.
pc and pm are the crossover and mutation probabilities used
in evolutionary operators, respectively.RegardingMOEA/D-
CMA, the number K of Gaussian models is set to 5. In
addition, for MOEA/D-CMA, T is the neighborhood size.
In IDMOPSO, k is set to 0.005 according to [45]. For MOC-
SOP, no additional parameters are needed to be specified.
Performance metrics:

To demonstrate the capability of our method in con-
vergence and diversity quality, we utilized the inverted
generational distance (IGD) [49] and hypervolume (HV) [50]
to evaluate the performance of various approaches on MOPs
and MaOPs. Specifically, the IGD and HV can measure the
convergence and diversity between nondominated solutions
generated by the algorithm and true PFs. In the calculation
of IGD and HV, the sampling of the reference points was
adopted from the suggestion of [51]. Moreover, for a com-
prehensive evaluation, Wilcoxon rank was further employed
to test the performance of various evaluated models [52].
In the experiment, the symbols “ + ,” “ − ,” and “≈” indi-
cate that the results obtained by other comparison algorithms
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are significantly better than, worse than, and similar to that
obtained by MOCSOP, respectively. In this paper, the num-
ber of evaluations is adopted as the termination criterion. For
DTLZ1-DTLZ7 and WFG1-WFG9, the maximal number of
evaluations is set to M × 30,000. In addition, all the exper-
iments performed 20 independent runs for each algorithm
on each test instance by utilizing a PC with an Intel Core
I7-8750H CPU and an Nvidia GeForce GTX 1060 GPU.

Comparisons of MOCSOPwith five competitive
MOPSOs for solvingMOPs andMaOPs

We first discuss the convergence of MOCSOP. To investi-
gate the convergence of the proposed approach in the search
process, we utilize three test functions DTLZ1, DTLZ3, and
WFG1 to conduct a comparative experiment. For a quan-
titative evaluation, all comparison models are set to use the
same initial population and each test suite is run for 20 times.
The convergence profiles of IGD values obtained by MOC-
SOP and compared methods are plotted in Fig. 7 As shown
in Fig. 7a, for DTLZ1 with linear Pareto front, MOCSOP
converges to PF significantly faster than other evaluation
approaches. Especially at the beginning of optimization,
MOCSOP has converged rapidly, which means that the pro-
posed approach is effective in solving problem with linear
PF. It is known that PSO encounters great challenges when
tacklingDTLZ3 [36]. This ismainly because theDTLZ3con-
tains a large number of local optima that will pose challenges
to existing MOPSOs in obtaining nondominated solutions.
Figure 7b shows the IGD curves of all the compared algo-
rithms on DTLZ3. We can find that CMOPSO, IDMOPSO,
MaOPSO/vPF have performed poorly on DTLZ3, one possi-
ble reason for the poor convergence of the above algorithms
is thatmaybe the PSO-based search lose its efficiency in solv-
ing problem with a great number of local optima. Although
NMPSO andMMOPSO reach the best IGDvalues, their con-
vergence speed is significantly slower thanMOCSOP during
the whole evolutionary process. Thus, it is unsurprising that
the convergence of the proposed MOCSOP is better than
NMPSO and MMOPSO on DTLZ3. To further observe the
convergence of MOCSOP for complex PF, Fig. 7c depicts
the evolutionary trends of the compared models on WFG1.
WFG1 instance includes an irregular PF, which imposes a
great challenge for MOPSOs to push the population toward
thePF.As can be seen from thefigure,MMOPSO,CMOPSO,
IDMOPSO and MaOPSO/vPF have trouble in convergence.
AS for MOCSOP and NMPSO, they obtain similar IGD val-
ues in the early stage. However, the IGD values of NMPSO
increases after 70,000 FEs. This phenomenon may be due to
the fact thatNMPSOonly reaches the local optimumanddoes
not toward the true PF. In contrast, as the iteration proceeds,
the solutions obtained by MOCSOP get closer and closer
to the true PF. By comparing the convergence of MOCSOP

with those of traditional PSO algorithms, we conclude that
the proposed method has the gratifying capacity of conver-
gence.

To make a visual comparison, Fig. 8 shows the non-
dominated set obtained by MOCSOP and other competitive
MOPSOs on three-objective WFG2. For WFG2, it includes
a disconnected PF, which brings the challenge to maintain
the diversity of population. As shown in Fig. 8, we can find
that all compared methods exhibit the good performances in
terms of convergence on WFG2 and have successfully con-
verged to the true PF. However, these algorithms perform
poorly in maintaining the diversity of population. NMPSO
has obtained the sparse nondominated set on the Pareto
front, which indicates that the balanceable fitness estimation
method is not suitable for solving the problem with discon-
nected PF. Although CMOPSO, MMOPSO, IDMOPSO and
MaOPSO/vPF have dense population, their solutions are not
uniformly distributed on the disconnected parts. In contrast,
the nondominated solution set obtained by our method has a
significant improvement compared with those of other eval-
uation approaches, as evidenced by our solution set, which
is closer to the shape of the true Pareto front.

To conduct a comprehensive comparison between the
various methods, Table 2 summarizes the median IGD com-
parison results of MOCSOP with respect to five current
MOPSOs on DTLZ1–DTLZ7 and WFG1-WFG9 with 3–15
objectives. As can be seen from Table 2, the proposedMOC-
SOP wins 46 out of the 80 comparisons, demonstrating its
efficiency in handling general MaOPs. Specifically, MOC-
SOP achieves the best IGD values on DTLZ1 with 3 to
15 objectives. It is demonstrated that the proposed MOC-
SOP achieved promising performance on the problem with
a linear PF. As for the instances with a concave Pareto front
such as DTLZ2-DTLZ4, MOCSOP also produces competi-
tive results compared with those of the other state-of-the-art
approaches, especially on the high objectives. It is worth
noting that the proposed MOCSOP performs worse than
NMPSO on DTLZ5–DTLZ7 regarding IGD. This finding
is unsurprising and is mainly because the reference points
in MOCSOP has poor distributions on those irregular PFs,
which may mislead the search efforts of the algorithm. Fur-
thermore, CMOPSOobtains theworst IGDvalues onWFG3.
This is because the conventional particle swarm update strat-
egy lacks sufficient selection pressure to approach the true
PF of problem with a disconnected PF. This phenomenon
also exists in MMPSO and MaOPSO/vPF. Although the
performance of MOCSOP is slightly worse than that of
NMPSO, it performs competitively on WFG3. As far as the
IGD is concerned, the performance measures obtained by
the proposed MOCSOP on WFG3 with 3 to 15 objectives
are better than those of MMPSO and MaOPSO/vPF. This
means that the nondominant solutions obtained byMOCSOP
is closer to the true PFs than those obtained byMMOPSOand
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Fig. 7 Evolutionary trajectories of IGD for MOCSOP, CMOPSO, NMPSO, MMOPSO, IDMOPSO and MaOPSO/vPF on a DTLZ1 with three
objectives. b DTLZ3 with three-objectives. c WFG1 with six objectives

Fig. 8 Pareto nondominant solutions with the median IGD values among 20 runs obtained by CMOPSO, NMPSO, IDMOPSO, MMOPSO,
MaOPSO/vPF and MOCSOP on three-objective WFG2

MaOPSO/vPF. For the other test instances with irregular PF,
the proposed MOCSOP also achieves good performance in
terms of both convergence and uniformity, such asWFG2and
WFG3. Therefore, the comparison results in Table 2 demon-
strate that MOCSOP has good ability of solvingMaOPs with
various types of PFs.

Comparisons of MOCSOPwith other
state−of-the-art MaOEAs

Toverify the capability ofMOCSOP for handlingMaOPs,we
compare our approachwith some state-of-the-art approaches,
including A-NSGA-III, MOEA/D-CMA, MaOEA/IGD,
NSGA-II/SDR and VaEA. These are typical methods from

different categories that use different techniques. NSGA-
II/SDR is a variation of NSGAII to tackle the MaOPs, which
uses a new dominance relation. ANSGA-III is constructed by
applying an adaptive reference point scheme to the original
NSGA-III approach. The MaOEA/IGD is an IGD indicator-
based evolutionary algorithm for solving MaOPs. Finally,
VaEA is a new vector angle-based evolutionary algorithm,
which has the significant advantage of diversity and con-
vergence. The above algorithms are very competitive in
addressing MaOPs, making the comparisons more compre-
hensive.

Table 3 summarizes the HV values obtained byMOCSOP
and five state-of-the-art MaOEAs on DTLZ1–DTLZ7 and
WFG1–WFG9with 3, 5, 8, 10 and 15 objectives. As shown in

123



Complex & Intelligent Systems (2022) 8:4697–4725 4709

Ta
bl
e
2
M
ed
ia
n
IG

D
va
lu
es

am
on
g
20

in
de
pe
nd
en
tr
un
s
ob
ta
in
ed

by
C
M
O
PS

O
,N

M
PS

O
,I
D
M
O
PS

O
,M

M
O
PS

O
,M

aO
PS

O
/v
PF

an
d
M
O
C
SO

P
on

D
T
L
Z
1–
7
A
N
D
W
FG

1–
9
w
ith

3,
5,
8,
10

an
d

15
O
bj
ec
tiv

es O
bj

C
M
O
PS

O
N
M
PS

O
ID

M
O
PS

O
M
M
O
PS

O
M
aO

PS
O
/v
PF

M
O
C
SO

P

D
T
L
Z
1

3
1.
16
81
e
+
0
(1
.3
7e

+
0)

−
2.
23
53
e−

2
(1
.2
1e

−3
)
−

3.
65
30
e

+
0
(3
.0
3e

+
0)

−
6.
78
73
e−

2
(1
.3
7e

−1
)
−

3.
16
87
e

+
0
(1
.9
1e

+
0)

−
1.
89
76
e−

2
(1
.0
4e

−6
)

5
8.
07
77
e
+
0
(4
.8
9e

+
0)

−
6.
49
01
e−

2
(2
.6
1e

−3
)
−

3.
54
72
e

+
0
(3
.3
6e

+
0)

−
1.
24
56
e

+
0
(1
.3
3e

+
0)

−
1.
75
11
e

+
0
(1
.1
5e

+
0)

−
6.
33
19
e−

2
(3
.4
1e

−5
)

8
5.
61
35
e
+
1
(2
.9
6e

+
1)

−
1.
52
57
e−

1
(1
.2
2e

−2
)
−

2.
21
51
e

+
0
(2
.8
7e

+
0)

−
3.
67
04
e

+
0
(3
.5
5e

+
0)

−
3.
06
00
e

+
0
(4
.3
5e

+
0)

−
1.
00
29
e −

1
(1
.4
3e

−2
)

10
9.
82
41
e
+
1
(2
.9
6e

+
1)

−
1.
65
98
e−

1
(1
.9
1e

−2
)
−

8.
34
10
e−

1
(4
.9
0e

−1
)
−

5.
90
88
e

+
0
(4
.3
1e

+
0)

−
2.
09
00
e

+
0
(3
.4
4e

+
0)

−
1.
13
92
e−

1
(1
.1
6e
−2

)

15
1.
65
18
e
+
2
(2
.5
6e

+
1)

−
1.
78
09
e

+
1
(2
.0
1e

+
1)

−
1.
49
60
e

+
0
(1
.3
3e

+
0)

−
5.
95
13
e−

1
(6
.0
2
e−

)
−

5.
20
03

e−
(2
.5
5e

−1
)
−

1.
77
22
e−

1
(8
.2
6e
−3

)

D
T
L
Z
2

3
5.
62
73
e−

2
(8
.9
8e

−4
)
−

7.
39
17
e−

2
(3
.2
3e

−3
)
−

7.
66
57
e−

2
(3
.5
3e

−3
)
−

6.
65
85
e−

2
(2
.4
3e

−3
)
−

7.
59
70
e−

2
(6
.0
9e

−3
)
−

5.
03
04
e−

2
(2
.7
1e
−6

)

5
4.
36
76
e−

1
(4
.1
0e

−2
)
−

2.
15
90
e−

1
(2
.0
0e

−3
)
−

2.
45
75
e−

1
(5
.3
6e

−3
)
−

2.
48
38
e−

1
(6
.1
4e

−3
)
−

4.
41
77
e−

1
(2
.1
0e

−2
)
−

2.
11
14
e−

1
(7
.2
7e
−2

)

8
2.
29
71
e

+
0
(2
.7
0e

−2
)
−

3.
57
11
e−

1
(1
.5
4e
−3

)
+

4.
08
13
e−

1
(5
.1
0e

−3
)
+

6.
94
89
e−

1
(6
.3
6e

−2
)
−

6.
30
71
e−

1
(2
.3
5e

−2
)
−

4.
82
08
e−

1
(8
.3
7e

−2
)

10
2.
37
89
e

+
0
(3
.0
0e

−2
)
−

4.
10
57
e−

1
(1
.7
3e
−3

)
+

4.
76
50
e−

1
(3
.2
6e

−2
)
+

9.
67
14
e−

1
(8
.9
5e

−2
)
−

6.
81
63
e−

1
(4
.3
1e

−2
)
−

5.
10
69
e−

1
(4
.1
2e

−2
)

15
2.
49
04
e

+
0
(2
.5
0e

−2
)
−

8.
03
69
e−

1
(6
.7
2e

−2
)
−

6.
87
92
e−

1
(3
.2
3e

−2
)
−

1.
21
02
e

+
0
(8
.2
2e

−2
)
−

8.
01
23
e−

1
(7
.9
9e

−2
)
−

6.
45
24
e−

1
(1
.9
6e
−2

)

D
T
L
Z
3

3
5.
21
82
e
+
1
(3
.9
2e

+
1)

−
7.
47
57
e−

2
(1
.9
9e

−3
)
−

7.
20
44
e

+
1
(2
.0
2e

+
1)

−
8.
95
78
e−

1
(1
.5
7e

+
0)

−
5.
90
77
e

+
1
(3
.0
2e

+
1)

−
5.
06
57
e−

2
(5
.8
2e
−4

)

5
1.
30
99
e
+
2
(2
.6
1e

+
1)

−
2.
35
90

e−
(6
.5
3e

−2
)
−

4.
56
45
e

+
1
(2
.3
1e

+
1)

−
3.
26
22
e

+
1
(3
.2
0e

+
1)

−
4.
39
33
e

+
1
(3
.1
9e

+
1)

−
1.
95
33

e−
(5
.2
9e
−4

)

8
6.
49
89
e
+
2
(1
.2
8e

+
2)

−
5.
36
89
e−

1
(1
.9
3
e−

)
−

2.
27
68
e

+
1
(1
.2
4e

+
1)

−
1.
61
79
e

+
2
(2
.7
3e

+
1)

−
3.
39
18
e

+
1
(1
.6
9e

+
1)

−
3.
89
83
e−

1
(1
.1
4e
−1

)

10
6.
21
69
e
+
2
(9
.9
1e

+
1)

−
7.
37
90
e−

1
(6
.4
6e

−1
)
=

1.
79
63
e

+
1
(8
.5
8e

+
0)

−
1.
72
10
e

+
2
(2
.2
5e

+
1)

−
4.
03
04
e

+
1
(1
.9
8e

+
1)

−
6.
22
34
e−

1
(3
.9
7e
−1

)

15
1.
16
65
e
+
3
(1
.4
9e

+
2)

−
1.
53
01
e

+
0
(7
.1
3e

−1
)
−

4.
94
39
e

+
0
(3
.0
6e

+
0)

−
1.
72
07
e

+
2
(4
.9
8e

+
1)

−
2.
82
25
e

+
1
(2
.3
0e

+
1)

−
6.
86
62
e−

1
(3
.5
4e
−2

)

D
T
L
Z
4

3
1.
03
69
e−

1
(1
.9
8e

−1
)
=

9.
87
60
e−

2
(1
.0
4e

−1
)
=

2.
60
42
e−

1
(2
.0
9e

−1
)
=

6.
54
24
e−

2
(1
.8
5e
−3

)
+

1.
24
51

e−
(8
.1
2e

−2
)
+

4.
74
98
e−

1
(3
.2
6e

−1
)

5
4.
58
28
e−

1
(8
.1
3e

−2
)
−

2.
27
01
e−

1
(4
.7
4e

−2
)
−

3.
08
42
e−

1
(5
.2
7e

−2
)
−

2.
43
10
e−

1
(7
.2
7e

−3
)
−

3.
23
11

e−
(6
.0
6e

−2
)
−

2.
18
09
e−

1
(7
.1
3e
−2

)

8
1.
71
92
e

+
0
(3
.8
7
e−

)
−

4.
05
89
e−

1
(7
.3
0e

− 2
)
−

4.
26
94
e−

1
(1
.6
6e

−2
)
=

6.
55
01
e−

1
(5
.2
0e

−2
)
−

4.
71
79
e−

1
(2
.7
1e

−2
)
−

3.
80
15
e−

1
(9
.2
7e
−2

)

10
1.
58
25
e

+
0
(3
.0
9e

−1
)
−

4.
22
26
e−

1
(1
.7
4e

−2
)
−

4.
87
62
e−

1
(1
.1
1e

−2
)
−

1.
04
96
e

+
0
(1
.6
2e

−1
)
−

5.
07
51
e−

1
(2
.1
0e

−2
)
−

4.
20
68
e−

1
(1
.3
1e
−3

)

15
2.
28
24
e

+
0
(2
.9
2e

−1
)
−

1.
04
21
e

+
0
(1
.9
6e

−1
)
−

6.
40
65
e−

1
(4
.5
0e

−3
)
−

1.
37
24
e

+
0
(1
.6
0e

−1
)
−

7.
25
60
e−

1
(2
.7
5e

−2
)
−

6.
30
24
e−

1
(1
.4
0e
−2

)

123



4710 Complex & Intelligent Systems (2022) 8:4697–4725

Ta
bl
e
2
(c
on
tin

ue
d)

O
bj

C
M
O
PS

O
N
M
PS

O
ID

M
O
PS

O
M
M
O
PS

O
M
aO

PS
O
/v
PF

M
O
C
SO

P

D
T
L
Z
5

3
5.
71
23
e−

3
(6
.9
4e

−4
)
+

1.
44
75
e−

2
(2
.5
8e

−3
)
+

1.
15
01
e−

2
(1
.3
1e

−3
)
+

5.
47
06
e−

3
(3
.5
5e
−4

)
+

7.
18
44
e−

2
(2
.6
6e

−2
)
−

6.
10
33
e−

2
(6
.7
9e

−2
)

5
6.
06
35

e−
(2
.4
9e

−1
)
−

3.
78
36
e−

2
(3
.4
7e
−3

)
+

1.
10
36
e−

1
(2
.5
6e

−2
)
=

7.
95
44
e−

2
(3
.2
2e

−2
)
+

1.
60
98
e−

1
(5
.6
9e

−2
)
=

3.
03
79
e−

1
(1
.9
7e

−1
)

8
2.
06
69
e

+
0
(4
.5
8e

−1
)
−

6.
66
69
e−

1
(1
.6
3e

−1
)
−

1.
68
92
e−

1
(6
.3
9e

−2
)
−

1.
77
48
e−

1
(8
.6
3e

−2
)
−

2.
41
37
e−

1
(6
.4
4e

−2
)
−

1.
19
99
e −

1
(3
.3
5
e−

2)

10
1.
97
09
e

+
0
(5
.4
8
e−

1)
−

7.
54
05

e−
1
(9
.7
5e

−3
)
−

1.
22
45

e−
1
(2
.2
7e
−2

)
=

1.
48
69

e−
1
(6
.9
7e

−2
)
=

2.
28
10

e−
1
(5
.3
4
e−

2)
−

1.
26
70
e−

1
(3
.6
7e

−2
)

15
2.
34
74
e

+
0
(2
.3
6e

−1
)
−

7.
42
20

e−
1
(1
.3
0
e−

4)
−

2.
00
89

e−
1
(7
.4
5
e−

2)
=

2.
82
38

e−
1
(7
.0
8
e−

2)
−

2.
84
64
e−

1
(7
.3
8
e−

2)
−

1.
93
55

e−
1
(5
.3
3

e−
2)

D
T
L
Z
6

3
4.
00
06

e−
3
(4
.3
7
e−

5)
+

1.
36
79

e−
2
(2
.2
0
e−

3)
+

1.
13
19

e−
2
(1
.4
1
e−

3)
+

6.
08
75

e−
3
(1
.1
3
e−

3)
+

3.
15
39
e−

2
(9
.2
8
e−

4)
−

1.
88
45
e−

2
(1
.7
1e

−3
)

5
3.
92
69
e
+
0
(1
.4
9e

+
0)

−
4.
43
72

e−
2
(4
.8
0e
−3

)
+

9.
80
94
e−

2
(3
.1
3e

−2
)
+

1.
92
11
e−

1
(6
.9
2e

−2
)
−

1.
82
32
e−

1
(1
.1
6e

−1
)
=

1.
40
59
e−

1
(5
.1
7e

−2
)

8
9.
71
65
e

+
0
(1
.9
2e

−1
)
−

7.
40
79
e−

1
(5
.8
1e

−3
)
−

2.
43
55
e−

1
(1
.3
5e

−1
)
=

4.
30
09
e−

1
(1
.8
8e

−1
)
−

1.
92
68
e−

1
(8
.9
5e

−2
)
=

1.
87
08
e−

1
(7
.6
0e
−2

)

10
9.
61
89
e

+
0
(3
.1
0e

−1
)
−

7.
42
09
e−

1
(2
.2
8e

−1
6)

−
2.
29
76
e−

1
(9
.7
7e

−2
)
=

5.
89
12
e−

1
(2
.0
8e

−1
)
−

2.
23
90
e−

1
(9
.5
9e

−2
)
=

1.
94
75
e−

1
(7
.0
7e
−2

)

15
9.
88
49
e

+
0
(1
.3
2e

−1
)
−

7.
14
98
e−

1
(1
.2
1e

−1
)
−

2.
32
20
e−

1
(1
.0
3e

e−
1)

=
7.
40
97
e−

1
(5
.0
0e

−3
)
−

4.
76
76
e−

1
(2
.3
9e

−1
)
−

3.
02
60
e−

1
(1
.0
8e

−1
)

D
T
L
Z
7

3
1.
51
67
e−

1
(2
.3
1e

−1
)
+

6.
64
99
e−

2
(3
.4
2e

−3
)
+

8.
20
18
e−

1
(1
.0
4e

−1
)
−

9.
29
11
e−

2
(6
.0
0e

−2
)
=

1.
37
39
e−

1
(5
.9
9e

−3
)
=

2.
65
45
e−

1
(2
.7
3e

−1
)

5
5.
82
91
e−

1
(4
.7
8e

−2
)
−

2.
78
99
e−

1
(8
.5
8e

− 3
)
+

1.
78
12
e

+
0
(2
.0
4e

−1
)
−

3.
58
74
e−

1
(1
.2
9e

−2
)
=

6.
59
15
e−

1
(3
.0
8e

−2
)
−

5.
59
07
e−

1
(3
.9
6e

−1
)

8
9.
38
83
e
+
0
(3
.7
7e

+
0)

−
7.
21
36
e−

1
(1
.0
2e

−1
)
+

3.
35
19
e

+
0
(2
.3
5e

−1
)
−

7.
82
12
e−

1
(1
.7
4e

−2
)
+

1.
22
94
e

+
0
(2
.6
5e

−1
)
−

8.
87
60
e−

1
(1
.8
0e

−1
)

10
1.
40
10
e
+
1
(5
.7
6e

+
0)

−
8.
62
88
e−

1
(6
.6
8e
−2

)
+

4.
02
21
e

+
0
(5
.2
9e

−1
)
−

1.
36
43
e

+
0
(1
.8
0e

−1
)
−

1.
62
34
e

+
0
(2
.7
9e

−1
)
−

1.
04
21
e

+
0

(9
.2
3e

−2
)

15
7.
34
20
e
+
1
(5
.4
7e

+
0)

−
2.
56
34
e

+
0
(3
.4
9e

−1
)
+

9.
36
39
e

+
0
(4
.4
9e

−1
)
−

2.
33
37
e
+

0
(2
.7
7e

−1
)
+

6.
77
10
e

+
0
(7
.6
6e

−1
)
−

5.
32
25
e

+
0

(6
.4
9e

−1
)

W
FG

1
3

1.
46
75
e

+
0
(4
.0
6e

−2
)
−

6.
61
88
e−

1
(2
.5
7e

−1
)
−

1.
42
19
e

+
0
(3
.3
0e

−2
)
−

2.
64
34
e−

1
(2
.2
8e

−2
)
−

1.
70
01
e

+
0
(5
.1
3e

−2
)
−

1.
97
88
e−

1
(3
.5
2e

−2
)

5
2.
02
53
e

+
0
(3
.4
4e

−2
)
−

1.
35
52
e

+
0
(3
.3
4e

−1
)
−

1.
95
37
e

+
0
(3
.6
7e

−2
)
−

9.
38
78
e−

1
(5
.0
5e

−2
)
−

2.
07
69
e

+
0
(3
.4
7e

−2
)
−

4.
46
59
e−

1
(9
.6
4e

−3
)

8
2.
45
69
e

+
0
(1
.0
1e

−1
)
−

2.
35
62
e

+
0
(6
.6
3e

−1
)
−

2.
58
12
e

+
0
(5
.5
2e

−2
)
−

1.
48
92
e

+
0
(8
.1
6e

−2
)
−

2.
81
94
e

+
0
(6
.0
0e

−2
)
−

8.
62
76
e−

1
(3
.6
0e

−2
)

10
2.
63
62
e

+
0
(1
.8
5e

−1
)
−

4.
46
80
e

+
0
(1
.5
0e

+
0)

−
2.
88
05
e

+
0
(8
.4
8e

−2
)
−

1.
58
53
e

+
0
(1
.0
0e

−1
)
−

3.
16
36
e

+
0
(5
.2
5e

−2
)
−

1.
04
33
e
+

0
(1
.0
5e
−1

)

15
3.
45
21
e

+
0
(2
.5
2e

−1
)
−

6.
47
81
e

+
0
(3
.3
5e

+
0)

−
3.
82
07
e

+
0
(2
.3
2e

−1
)
−

2.
40
12
e

+
0
(1
.0
2e

−1
)
−

4.
04
65
e

+
0
(1
.6
0e

−1
)
−

1.
80
71
e
+

0
(1
.7
5e

−1
)

W
FG

2
3

1.
77
63
e−

1
(4
.8
6e

−3
)
−

4.
63
50
e−

1
(5
.6
9e

−2
)
−

2.
48
68
e−

1
(1
.6
1e

−2
)
−

2.
12
80
e−

1
(1
.1
3e

−2
)
−

1.
71
07
e−

1
(5
.8
2e

−3
)
−

1.
50
05
e−

1
(1
.3
0e

−3
)

5
6.
84
53
e−

1
(2
.9
0e

−2
)
−

1.
06
27
e

+
0
(2
.0
9e

−1
)
−

5.
81
97
e−

1
(2
.8
0e

−2
)
−

7.
81
87
e−

1
(5
.3
8e

−2
)
−

4.
77
36
e−

1
(1
.1
8e

−2
)
−

4.
67
56
e−

1
(2
.5
4e

−3
)

123



Complex & Intelligent Systems (2022) 8:4697–4725 4711

Ta
bl
e
2
(c
on
tin

ue
d)

O
bj

C
M
O
PS

O
N
M
PS

O
ID

M
O
PS

O
M
M
O
PS

O
M
aO

PS
O
/v
PF

M
O
C
SO

P

8
1.
32
18
e

+
0
(5
.1
2e

−2
)
=

1.
94
94
e

+
0
(2
.9
0e

−1
)
−

1.
15
85
e

+
0
(2
.6
3e

−2
)
=

1.
38
78
e

+
0
(4
.7
0e

−2
)
−

9.
15
89
e−

1
(1
.9
1e
−2

)
+

1.
20
56
e

+
0

(2
.3
3e

−1
)

10
1.
51
69
e

+
0
(4
.0
1e

−2
)
−

1.
92
16
e

+
0
(1
.7
4e

−1
)
−

1.
21
68
e

+
0
(2
.7
4e

−2
)
−

1.
58
86
e

+
0
(6
.8
1e

−2
)
−

1.
00
67
e
+

0
(3
.9
7e
−2

)
+

1.
12
38
e

+
0

(1
.3
2e

−1
)

15
2.
48
22
e

+
0
(1
.6
9e

−1
)
−

3.
92
62
e

+
0
(6
.3
6e

−1
)
−

1.
97
97
e

+
0
(2
.3
9e

−1
)
−

2.
34
71
e

+
0
(9
.7
1e

−2
)
−

3.
35
76
e

+
0
(7
.3
4e

−1
)
−

1.
80
50
e
+

0
(7
.6
9e

−2
)

W
FG

3
3

1.
45
43
e−

1
(1
.6
0e

−2
)
−

4.
07
84
e−

2
(3
.1
8e
−3

)
+

9.
94
65
e−

2
(8
.7
1e

−3
)
−

8.
11
71
e−

2
(1
.2
8e

−2
)
−

3.
66
98
e−

1
(4
.1
5e

−2
)
−

8.
02
03
e−

2
(4
.5
9e

−2
)

5
8.
34
84
e−

1
(8
.8
0e

−2
)
+

2.
70
06
e−

1
(5
.2
5e
−2

)
+

6.
38
89
e−

1
(1
.1
0e

−1
)
+

4.
38
74
e−

1
(1
.0
3e

−1
)
+

6.
31
97
e−

1
(6
.2
1e

−2
)
+

3.
15
90
e

+
0

(8
.4
3e

−1
)

8
1.
96
82
e

+
0
(2
.3
5e

−1
)
−

6.
58
08
e−

1
(9
.7
4e
−2

)
=

8.
54
20
e−

1
(1
.2
8e

−1
)
−

1.
05
02
e

+
0
(1
.8
4e

−1
)
−

1.
74
54
e

+
0
(1
.2
1e

−1
)
−

7.
38
60
e−

1
(1
.9
0e

−1
)

10
2.
75
00
e

+
0
(2
.6
8e

−1
)
−

9.
69
80
e−

1
(2
.1
5e

−1
)
−

9.
24
72
e−

1
(1
.2
8e

−1
)
−

1.
30
64
e

+
0
(2
.7
8e

−1
)
−

2.
32
99
e

+
0
(1
.1
1e

−1
)
−

7.
45
11
e−

1
(1
.6
2e
−1

)

15
6.
30
37
e

+
0
(7
.6
8e

−1
)
−

1.
17
52
e

+
0
(2
.4
4e

−1
)
+

9.
05
67
e−

1
(1
.8
9e

−1
)
+

3.
68
74
e

+
0
(6
.3
6e

−1
)
−

4.
69
49
e

+
0
(2
.3
2e

−1
)
−

1.
59
26
e

+
0

(3
.0
4e

−1
)

W
FG

4
3

2.
56
51
e−

1
(5
.0
3e

−3
)
−

2.
98
83
e−

1
(1
.1
0e

−2
)
−

3.
22
81
e−

-1
(1
.2
7e

−2
)
−

2.
77
38
e−

1
(1
.0
6e

−2
)
−

2.
53
49
e−

1
(4
.1
5e

−3
)
−

2.
04
57
e−

1
(3
.4
1e

−4
)

5
1.
13
15
e
+

0
(2
.4
3e
−2

)
+

1.
26
71
e

+
0
(2
.0
3e

−2
)
−

1.
20
28
e

+
0
(2
.6
6e

−2
)
−

1.
20
88
e

+
0
(1
.9
1e

−2
)
−

1.
18
02
e

+
0
(1
.0
7e

−2
)
=

1.
17
55
e

+
0

(1
.0
1e

−3
)

8
3.
03
03
e

+
0
(4
.8
8e

−2
)
−

3.
12
47
e

+
0
(2
.8
5e

−2
)
−

3.
10
55
e

+
0
(3
.3
6e

−2
)
−

3.
41
59
e

+
0
(4
.5
1e

−2
)
−

3.
00
51
e

+
0
(2
.4
7e

−2
)
−

2.
96
28
e
+

0
(2
.6
4e
−3

)

10
4.
21
36
e

+
0
(4
.6
9e

−2
)
+

4.
09
18
e
+

0
(2
.3
4e
−2

)
+

4.
17
41
e

+
0
(2
.2
6e

−2
)
+

4.
58
33
e

+
0
(5
.1
4e

−2
)
−

4.
33
30
e

+
0
(4
.9
1e

−2
)
+

4.
52
49
e

+
0

(1
.5
1e

−2
)

15
8.
97
92
e

+
0
(1
.1
3e

−−
1)

+
8.
51
08
e
+

0
(1
.7
4e
−1

)
+

8.
93
35
e

+
0
(1
.7
8e

−1
)
+

8.
92
27
e

+
0
(1
.1
7e

−1
)
+

9.
04
70
e

+
0
(7
.9
3e

−2
)
+

9.
34
65
e

+
0

(2
.0
6e

−2
)

W
FG

5
3

2.
45
71
e−

1
(7
.6
2e

−3
)
−

2.
90
87
e−

1
(1
.2
4e

−2
)
−

2.
70
89
e−

1
(8
.6
8e

−3
)
−

2.
70
34
e−

1
(1
.0
1e

−2
)
−

2.
15
42
e−

1
(6
.8
0e

−4
)
−

2.
14
51
e−

1
(1
.0
0e
−4

)

5
1.
08
84
e
+

0
(9
.5
6e
− 3

)
+

1.
19
20
e

+
0
(1
.8
3e

−2
)
−

1.
13
30
e

+
0
(1
.0
3e

−2
)
+

1.
22
94
e

+
0
(2
.9
7e

−2
)
−

1.
12
57
e

+
0
(5
.3
9e

−3
)
+

1.
16
40
e

+
0

(3
.9
3e

−4
)

8
3.
02
75
e

+
0
(2
.4
3e

−2
)
−

3.
02
46
e

+
0
(2
.6
7e

−2
)
−

3.
21
89
e

+
0
(4
.1
0e

−2
)
−

3.
48
64
e

+
0
(8
.8
8e

−2
)
−

3.
14
05
e

+
0
(1
.5
9e

−1
)
−

2.
99
20
e
+

0
(1
.4
6e
−1

)

10
4.
04
54
e

+
0
(3
.3
0e

−2
)
+

4.
03
50
e
+

0
(2
.8
7e
−2

)
+

4.
24
90
e

+
0
(2
.7
0e

−2
)
+

4.
69
61
e

+
0
(7
.0
8e

−2
)
−

4.
62
59
e

+
0
(1
.4
6e

−1
)
−

4.
55
22
e

+
0

(1
.2
5e

−1
)

15
8.
36
98
e
+

0
(1
.1
2e
−1

)
+

9.
14
82
e

+
0
(7
.1
3e

−1
)
=

9.
49
49
e

+
0
(3
.6
9e

−1
)
=

8.
95
10
e

+
0
(1
.3
1e

−1
)
+

9.
19
75
e

+
0
(1
.4
9e

−1
)
=

9.
25
51
e

+
0

(6
.0
0e

−2
)

W
FG

6
3

2.
30
64
e−

1
(3
.7
5e

−3
)
−

4.
03
33
e−

1
(9
.6
1e

−3
)
−

3.
14
78
e−

1
(1
.3
1e

−2
)
−

2.
91
79
e−

1
(4
.3
9e

−2
)
−

2.
61
90
e−

1
(3
.4
2e

−2
)
−

2.
19
35
e−

1
(3
.7
3e
−2

)

5
1.
17
17
e

+
0
(2
.0
7e

−2
)
−

1.
27
89
e

+
0
(1
.8
1e

−2
)
−

1.
32
20
e

+
0
(3
.4
5e

−2
)
−

1.
32
51
e

+
0
(8
.3
9e

−2
)
−

1.
18
36
e

+
0
(7
.7
1e

−3
)
−

1.
16
78
e
+

0
(2
.7
5e
−3

)

123



4712 Complex & Intelligent Systems (2022) 8:4697–4725

Ta
bl
e
2
(c
on
tin

ue
d)

O
bj

C
M
O
PS

O
N
M
PS

O
ID

M
O
PS

O
M
M
O
PS

O
M
aO

PS
O
/v
PF

M
O
C
SO

P

8
3.
26
24
e

+
0
(5
.7
3e

−2
)
−

3.
13
93
e

+
0
(4
.6
9e

−2
)
−

3.
30
22
e

+
0
(3
.4
6e

−2
)
−

3.
58
64
e

+
0
(5
.8
6e

−2
)
−

3.
00
22
e

+
0
(1
.0
8e

−2
)
−

2.
98
55
e
+

0
(1
.7
1e
−1

)

10
4.
26
49
e

+
0
(5
.0
5e

−2
)
+

4.
19
40
e
+

0
(6
.5
9e
−2

)
+

4.
45
75
e

+
0
(6
.4
1e

−2
)
+

4.
67
99
e

+
0
(4
.9
5e

−2
)
−

4.
36
79
e

+
0
(5
.6
8e

−2
)
+

4.
54
99
e

+
0

(6
.9
9e

−2
)

15
8.
74
35
e
+

0
(1
.3
3e
−1

)
+

8.
85
90
e

+
0
(1
.7
4e

−1
)
+

9.
94
04
e

+
0
(8
.5
0e

−1
)
−

8.
93
88
e

+
0
(1
.0
1e

−1
)
+

9.
03
49
e

+
0
(1
.5
1e

− 1
)
+

9.
27
70
e

+
0

(3
.3
2e

−2
)

W
FG

7
3

2.
26
17
e−

1
(4
.4
8e

−3
)
−

3.
02
46
e−

1
(1
.0
4e

−2
)
−

3.
08
84
e−

1
(1
.2
6e

−2
)
−

2.
66
98
e−

1
(9
.6
7e

−3
)
−

2.
24
49
e−

1
(1
.6
0e

−3
)
−

2.
04
53
e−

1
(1
.5
2e
−4

)

5
1.
17
70
e

+
0
(1
.0
2e

−2
)
=

1.
28
83
e

+
0
(2
.0
3e

−2
)
−

1.
34
73
e

+
0
(2
.8
1e

−2
)
−

1.
22
76
e

+
0
(2
.8
7e

−2
)
−

1.
20
10
e

+
0
(1
.1
8e

−2
)
−

1.
17
66
e
+

0
(4
.2
3e
−4

)

8
3.
13
99
e

+
0
(1
.0
4e

−1
)
−

3.
11
11
e

+
0
(3
.9
0e

−2
)
−

3.
21
27
e

+
0
(3
.2
2e

−2
)
−

3.
57
92
e

+
0
(5
.3
4e

− 2
)
−

3.
07
37
e

+
0
(5
.3
8e

−2
)
−

2.
95
93
e
+

0
(5
.1
5e
−3

)

10
4.
27
30
e

+
0
(1
.0
3e

−1
)
+

4.
13
68
e
+

0
(3
.4
5e
−2

)
+

4.
26
79
e

+
0
(8
.6
0e

−2
)
+

4.
63
31
e

+
0
(5
.7
7e

−2
)
−

4.
52
44
e

+
0
(1
.0
6e

−1
)
=

4.
53
94
e

+
0

(9
.4
9e

−3
)

15
8.
53
41
e
+

0
(8
.4
5e
−2

)
+

8.
91
05
e

+
0
(5
.1
7e

−1
)
+

9.
91
92
e

+
0
(8
.3
9e

−1
)
−

8.
97
99
e

+
0
(9
.3
7e

−2
)
+

9.
34
29
e

+
0
(4
.0
5e

−1
)
=

9.
28
26
e

+
0

(8
.7
6e

−2
)

W
FG

8
3

3.
25
03
e−

1
(5
.2
1e

−3
)
−

3.
42
88
e−

1
(1
.0
1e

−2
)
−

3.
71
46
e−

1
(1
.1
6e

−2
)
−

3.
55
20
e−

1
(9
.1
2e

−3
)
−

3.
15
40
e−

1
(8
.4
7e

−3
)
−

2.
70
42
e−

1
(4
.6
7e
−3

)

5
1.
39
76
e

+
0
(5
.0
0e

−2
)
−

1.
24
53
e

+
0
(1
.2
1e

−2
)
−

1.
34
73
e

+
0
(3
.5
2e

−2
)
−

1.
41
40
e

+
0
(4
.6
7e

−2
)
−

1.
36
96
e

+
0
(4
.2
2e

−2
)
−

1.
14
93
e
+

0
(4
.1
4e
−3

)

8
3.
65
75
e

+
0
(4
.8
4e

−2
)
=

3.
22
09
e
+

0
(2
.9
0e
−2

)
+

3.
51
69
e

+
0
(4
.3
4e

−2
)
=

3.
76
26
e

+
0
(4
.0
0e

−2
)
=

3.
44
55
e

+
0
(7
.7
1e

−2
)
+

3.
65
91
e

+
0

(4
.3
5e

−1
)

10
4.
72
29
e

+
0
(4
.4
7e

−2
)
+

4.
44
35
e
+

0
(6
.1
6e
−2

)
+

4.
76
05
e

+
0
(6
.2
2e

−2
)
+

4.
86
32
e

+
0
(4
.8
3e

−2
)
+

4.
75
27
e

+
0
(6
.9
9e

−2
)
+

5.
02
67
e

+
0

(2
.8
3e

−1
)

15
9.
01
99
e
+

0
(1
.3
9e
−1

)
+

9.
89
96
e

+
0
(7
.2
4e

−1
)
=

1.
12
35
e

+
1
(4
.9
9e

−1
)
−

9.
03
52
e

+
0
(1
.0
7e

−1
)
+

9.
52
56
e

+
0
(3
.2
7e

−1
)
+

9.
80
38
e

+
0

(1
.9
4e

−1
)

W
FG

9
3

2.
14
14
e−

1
(3
.0
9e

−3
)
−

3.
38
99
e−

1
(5
.4
3e

−2
)
−

2.
67
41
e−

1
(1
.2
5e

−2
)
−

2.
75
77
e−

1
(2
.6
3e

−2
)
−

2.
13
03
e−

1
(3
.3
8e

−3
)
−

2.
06
38
e−

1
(7
.3
0e
−4

)

5
1.
13
70
e

+
0
(3
.5
2e

−2
)
=

1.
18
63
e

+
0
(2
.2
0e

−2
)
−

1.
14
42
e

+
0
(1
.4
3e

−2
)
−

1.
26
15
e

+
0
(2
.2
9e

−2
)
−

1.
13
93
e

+
0
(8
.6
2e

−3
)
=

1.
13
37
e
+

0
(7
.1
2e
−3

)

8
3.
26
07
e

+
0
(6
.6
9e

−2
)
−

3.
03
29
e

+
0
(2
.6
8e

−2
)
−

3.
14
90
e

+
0
(2
.8
6e

−2
)
−

3.
69
83
e

+
0
(7
.8
5e

−2
)
−

3.
18
55
e

+
0
(2
.0
8e

−1
)
−

2.
95
50
e
+

0
(1
.3
6e
−1

)

10
4.
34
22
e

+
0
(3
.9
2e

−2
)
+

4.
02
63
e
+

0
(2
.4
4e
−2

)
+

4.
18
29
e

+
0
(2
.8
1e

−2
)
+

4.
82
05
e

+
0
(8
.2
5e

−2
)
−

4.
67
16
e

+
0
(2
.0
8e

−1
)
−

4.
49
17
e

+
0

(1
.7
1e

−1
)

15
8.
79
70
e

+
0
(9
.1
4e

−2
)
−

8.
74
83
e

+
0
(4
.3
7e

−1
)
=

9.
21
88
e

+
0
(3
.4
4e

−1
)
−

9.
13
82
e

+
0
(1
.0
6e

−1
)
−

9.
17
44
e

+
0
(2
.5
2e

−1
)
−

8.
72
24
e
+

0
(1
.1
8e
−1

)

+
/-
/≈

17
/5
8/
5

24
/5
0/
6

15
/5
4/
11

13
/6
3/
4

12
/5
8/
10

T
he

be
st
re
su
lt
in

ea
ch

ro
w
ar
e
hi
gh

lig
ht
ed

in
bo

ld

123



Complex & Intelligent Systems (2022) 8:4697–4725 4713

Table 3 Quantitative comparison of median HV values among 20 independent runs of various models on DTLZ1- 7 and WFG1- 9 WITH 3,
5, 8, 10 AND 15 objectives

Problem Obj Adaptive
reference based

Decomposition
based

Indicator based New dominance
based

Convergence and
Diversity

Our Method

A-NSGA-III MOEA/D-CMA MaOEA/IGD NSGAII/SDR VaEA MOCSOP

DTLZ1 3 8.3515e−1
(1.01e−2) −

8.4295e−1
(4.56e−4) −

8.5314e−2
(1.41e−1) −

8.0606e−1
(1.73e−2) −

8.0844e−1
(3.35e−2) −

8.4438e−1
(1.30e−5)

5 9.7469e−1
(5.84e−4) −

9.6740e−1
(1.10e−2) −

2.5824e−1
(3.69e−1) −

9.1046e−1
(1.96e−2) −

8.7054e−1
(3.31e−2) −

9.7498e−1
(1.47e−4)

8 9.6783e−1
(8.82e−2) −

9.8828e−1
(1.07e−2) −

5.7979e−1
(4.40e−1) −

9.0843e−1
(3.38e−2) −

9.0425e−1
(3.87e−2) −

9.9662e−1
(4.43e−3)

10 9.8942e−1
(2.57e−2) −

9.8179e−1
(6.12e−2) −

8.5141e−1
(2.48e−1) −

9.3979e−1
(2.45e−2) −

9.4119e−1
(9.39e−2) −

9.9936e−1
(6.71e−4)

15 9.9975e−1
(7.73e−4) =

8.2832e−1
(9.40e−2) −

5.6103e−1
(4.02e−1) −

8.3002e−1
(1.04e−1) −

9.7124e−1
(1.41e−2) −

9.9992e−1
(7.17e−6)

DTLZ2 3 5.6065e−1
(3.12e−3) −

5.5955e−1
(4.33e−4) −

5.4585e−1
(1.17e−4) −

2.6201e−1
(2.94e−2) −

5.5804e−1
(1.25e−3) −

5.6301e−1
(2.25e−5)

5 7.9468e−1
(4.44e−4) =

7.7429e−1
(1.78e−3) −

7.9378e−1
(1.14e−3) −

4.8680e−1
(1.66e−1) −

7.7640e−1
(2.37e−3) −

7.9482e−1
(4.77e−4)

8 8.8624e−1
(3.63e−2) +

9.0677e−1
(5.66e−3) +

9.1934e−1
(2.81e−3) +

6.7048e−1
(1.76e−1) −

9.0779e−1
(2.91e−3) +

8.5430e−1
(3.72e−2)

10 9.4565e−1
(1.74e−2) =

9.4535e−1
(9.34e−3) +

9.6882e−1
(8.46e−4) +

9.6257e−1
(2.63e−3) +

9.4672e−1
(2.32e−3) +

9.3819e−1
(1.48e−2)

15 9.8143e−1
(7.98e−3) =

9.1961e−1
(1.48e−2) −

5.2330e−1
(1.38e−1) −

8.6792e−1
(1.36e−1) −

9.5773e−1
(1.96e−3) −

9.8260e−1
(7.31e−3)

DTLZ3 3 5.4659e−1
(8.45e−3) −

3.2216e−1
(2.71e−1) −

0.0000e + 0
(0.00e + 0) −

2.5851e−1
(1.45e−2) −

5.5142e−1
(8.29e−3) −

5.6302e−1
(1.99e−5)

5 7.8615e−1
(7.68e−3) −

2.9371e−1
(3.41e−1) −

0.0000e + 0
(0.00e + 0) −

6.4314e−1
(1.83e−1) −

5.8602e−1
(6.79e−2) −

7.9001e−1
(3.79e−3)

8 7.3380e−1
(8.36e−2) −

6.0547e−1
(3.30e−1) −

0.0000e + 0
(0.00e + 0) −

7.9533e−1
(1.76e−1) =

4.9001e−1
(3.17e−1) −

8.5769e−1
(9.40e−2)

10 8.5520e−1
(4.73e−2) =

5.1071e−1
(3.34e−1) −

0.0000e + 0
(0.00e + 0) −

9.6322e−1
(2.63e−3) +

2.0843e−4
(9.32e−4) −

7.8817e−1
(2.82e−1)

15 9.3167e−1
(3.96e−2) =

1.4400e−1
(2.13e−1) −

0.0000e + 0
(0.00e + 0) −

9.0331e−1
(1.03e−1) =

6.9345e−2
(1.12e−1) −

9.3463e−1
(3.47e−2)

DTLZ4 3 5.4008e−1
(6.82e−2) +

5.4623e−1
(2.56e−2) +

4.7509e−1
(9.89e−2) +

3.0415e−1
(6.98e−2) −

5.5727e−1
(1.04e−3) +

3.5787e−1
(1.68e−1)

5 7.9454e−1
(5.63e−4) +

7.5227e−1
(1.17e−2) =

7.7230e−1
(4.06e−2) +

3.1919e−1
(5.63e−2) −

7.7225e−1
(2.69e−3) =

7.2349e−1
(8.26e−2)

8 9.2005e−1
(1.59e−2) +

9.0996e−1
(4.95e−3) =

9.2211e−1
(8.86e−3) +

4.3051e−1
(5.84e−2) −

9.0023e−1
(4.36e−3) =

9.0363e−1
(3.07e−2)

10 9.5808e−1
(1.84e−2) =

9.6269e−1
(1.83e−3) −

9.6920e−1
(3.51e−3) −

5.4597e−1
(5.44e−2) −

9.4093e−1
(5.33e−3) −

9.6950e−1
(2.19e−4)

15 9.7785e−1
(9.12e−3) −

9.8593e−1
(1.45e−3) −

9.8422e−1
(6.50e−3) =

7.5782e−1
(4.96e−2) −

9.6403e−1
(2.82e−3) −

9.8639e−1
(8.01e−3)

DTLZ5 3 1.9580e−1
(9.58e−4) +

1.9258e−1
(2.27e−5) =

7.0358e−2
(4.18e−2) −

1.8386e−1
(2.24e−3) −

1.9966e−1
(1.50e−4) +

1.8859e−1
(6.69e−3)
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Table 3 (continued)

Problem Obj Adaptive
reference based

Decomposition
based

Indicator based New dominance
based

Convergence and
Diversity

Our Method

5 1.0680e−1
(7.92e−3) −

9.2697e−2
(3.29e−4) −

9.9195e−2
(1.25e−4) −

1.0984e−1
(3.67e−3) −

9.7948e−2
(5.10e−3) −

1.1378e−1
(4.65e−3)

8 9.4843e−2
(2.55e−3) −

9.9523e−2
(1.65e−4) +

8.7573e−2
(2.06e−2) −

9.2440e−2
(9.64e−4) −

9.0822e−2
(2.83e−4) −

9.7419e−2
(1.55e−3)

10 8.9958e−2
(2.11e−3) −

9.6406e−2
(2.10e−4) +

9.1602e−2
(1.98e−4) −

9.0943e−2
(2.68e−4) −

9.0768e−2
(1.07e−4) −

9.5220e−2
(1.28e−3)

15 9.1226e−2
(5.22e−4) −

9.2011e−2
(1.94e−4) =

9.1221e−2
(1.18e−4) −

9.1033e−2
(3.23e−4) −

9.0886e−2
(7.34e−5) −

9.1898e−2
(6.38e−4)

DTLZ6 3 1.9501e−1
(9.57e−4) +

1.9268e−1
(8.73e−6) +

6.2820e−2
(4.12e−2) −

1.7434e−1
(6.68e−3) −

1.9996e−1
(7.73e−5) +

1.9161e−1
(1.03e−3)

5 9.3766e−2
(4.56e−3) −

9.2791e−2
(3.22e−4) −

6.1963e−2
(4.68e−2) −

1.0962e−1
(3.79e−3) =

9.1402e−2
(2.00e−3) −

1.0998e−1
(6.29e−3)

8 8.6378e−2
(2.03e−2) −

9.9596e−2
(2.02e−4) +

6.5763e−2
(3.82e−2) −

9.1163e−2
(5.81e−4) −

6.3700e−2
(4.28e−2) −

9.3860e−2
(2.88e−3)

10 8.1772e−2
(2.80e−2) −

9.6457e−2
(2.22e−4) +

8.2523e−2
(2.82e−2) =

9.1084e−2
(3.28e−4) −

2.2726e−2
(4.04e−2) −

9.2042e−2
(1.08e−3)

15 9.0965e−2
(3.77e−4) −

9.2039e−2
(1.91e−4) +

8.6676e−2
(2.04e−2) =

9.0948e−2
(2.62e−4) −

9.0886e−2
(3.20e−4) −

9.1378e−2
(5.67e−4)

DTLZ7 3 2.7304e−1
(1.93e−3) +

2.6337e−1
(8.09e−4) =

1.3775e−1
(6.17e−2) −

2.7168e−1
(1.18e−3) =

2.7593e−1
(8.18e−3) +

2.5009e−1
(2.96e−2)

5 2.3847e−1
(7.18e−3) −

5.3815e−2
(3.68e−2) −

1.5157e−1
(4.14e−2) −

2.4586e−1
(3.46e−3) −

2.3516e−1
(4.55e−3) −

2.4847e−1
(1.78e−2)

8 2.0261e−1
(3.59e−3) =

3.1171e−2
(4.89e−2) −

1.1187e−1
(1.20e−2) −

1.7437e−1
(3.25e−2) −

1.6855e−1
(5.66e−3) −

2.0316e−1
(3.50e−3)

10 1.8510e−1
(6.57e−3) =

1.6310e−2
(3.74e−2) −

5.8181e−2
(2.75e−2) −

1.5803e−1
(3.62e−2) −

1.3905e−1
(4.65e−3) −

1.8699e−1
(2.96e−3)

15 1.1831e−1
(1.35e−2) −

1.0398e−1
(4.62e−4) −

2.7614e−2
(1.45e−2) −

1.1448e−3
(3.60e−3) −

1.0071e−1
(3.16e−3) −

1.2625e−1
(2.93e−3)

WFG1 3 9.4141e−1
(2.74e−3) +

7.2111e−1
(5.87e−2) −

1.6908e−1
(4.76e−2) −

9.2271e−1
(5.84e−3) +

9.3870e−1
(1.43e−3) +

9.0818e−1
(1.69e−2)

5 9.9633e−1
(5.33e−3) +

9.7139e−1
(9.27e−3) −

2.1356e−1
(4.52e−2) −

9.7419e−1
(9.44e−3) −

9.7940e−1
(2.37e−2) =

9.8095e−1
(1.83e−2)

8 9.9928e−1
(3.00e−4) −

7.0391e−1
(9.51e−2) −

2.4387e−1
(6.80e−2) −

9.8495e−1
(1.05e−2) −

9.9415e−1
(1.64e−2) −

9.9989e−1
(9.55e−5)

10 9.9925e−1
(2.60e−4) −

5.7805e−1
(8.86e−2) −

3.2109e−1
(5.81e−2) −

9.8902e−1
(1.45e−2) −

8.5733e−1
(5.13e−2) −

9.9980e−1
(2.09e−4)

15 1.0000e + 0
(9.31e−6) =

9.9527e−1
(9.71e−3) −

3.0483e−1
(7.09e−2) −

9.8495e−1
(1.30e−2) −

1.0000e + 0
(2.37e−6) =

9.9997e−1
(9.49e−5)

WFG2 3 9.3010e−1
(1.42e−3) −

9.0239e−1
(1.20e−2) −

5.5834e−1
(9.54e−2) −

9.1477e−1
(6.03e−3) −

9.2663e−1
(1.62e−3) −

9.3304e−1
(8.36e−4)

5 9.9580e−1
(9.16e−4) +

9.8793e−1
(8.09e−3) −

8.8827e−1
(3.71e−2) −

9.6384e−1
(5.91e−3) −

9.9103e−1
(1.26e−3) −

9.9418e−1
(3.80e−3)

8 9.9714e−1
(1.83e−3) −

9.7749e−1
(1.07e−2) −

9.5425e−1
(6.30e−2) −

9.7671e−1
(5.47e−3) −

9.9635e−1
(1.02e−3) −

9.9840e−1
(1.45e−3)

10 9.9711e−1
(1.48e−3) −

9.7956e−1
(8.51e−3) −

9.8174e−1
(4.43e−2) −

9.8602e−1
(3.88e−3) −

9.9550e−1
(1.08e−3) −

9.9962e−1
(1.92e−4)

15 9.9877e−1
(9.70e−4) −

9.6767e−1
(2.43e−2) −

9.1372e−1
(8.69e−2) −

9.8453e−1
(6.20e−3) −

9.9819e−1
(6.93e−4) −

9.9999e−1
(1.21e−5)

WFG3 3 3.9425e−1
(5.49e−3) −

3.7899e−1
(1.75e−3) −

8.2905e−2
(2.40e−2) −

3.8630e−1
(1.47e−2) −

3.7306e−1
(4.69e−3) −

4.0469e−1
(4.87e−3)
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Table 3 (continued)

Problem Obj Adaptive
reference based

Decomposition
based

Indicator based New dominance
based

Convergence and
Diversity

Our Method

5 1.5119e−1
(3.07e−2) −

9.1183e−2
(3.20e−4) −

8.0990e−2
(7.92e−3) −

2.0529e−1
(1.55e−2) −

1.2926e−1
(1.84e−2) −

2.2276e−1
(2.92e−2)

8 7.4832e−2
(1.15e−2) −

8.8073e−2
(7.50e−3) −

1.9227e−2
(2.01e−2) −

7.1934e−2
(1.60e−2) −

8.3947e−2
(6.13e−3) −

1.5248e−1
(1.74e−2)

10 8.2630e−3
(1.38e−2) −

8.3533e−2
(8.35e−3) −

1.6455e−2
(2.15e−2) −

4.7022e−3
(7.17e−3) −

3.6423e−2
(1.84e−2) −

1.2782e−1
(1.28e−2)

15 0.0000e + 0
(0.00e + 0) −

5.0802e−2
(3.54e−2) =

0.0000e + 0
(0.00e + 0) −

0.0000e + 0
(0.00e + 0) −

1.7160e−3
(4.93e−3) −

6.3708e−2
(3.43e−2)

WFG4 3 5.3259e−1
(3.34e−3) −

5.0547e−1
(1.66e−2) −

1.0712e−1
(3.38e−2) −

5.5077e−1
(1.77e−3) −

5.5176e−1
(2.48e−3) −

5.5629e−1
(9.72e−3)

5 7.8819e−1
(2.61e−3) =

5.6231e−1
(4.57e−2) −

9.8550e−2
(3.53e−2) −

7.6996e−1
(3.58e−3) −

7.6056e−1
(3.44e−3) −

7.8736e−1
(1.14e−3)

8 8.5585e−1
(7.49e−3) −

7.1269e−1
(3.15e−2) −

1.1143e−1
(3.65e−2) −

9.1105e−1
(3.30e−3) −

8.9272e−1
(5.82e−3) −

9.1470e−1
(1.34e−3)

10 9.1632e−1
(1.73e−2) −

7.7755e−1
(1.63e−2) −

1.1528e−1
(3.82e−2) −

9.5829e−1
(1.53e−3) +

9.2094e−1
(5.25e−3) −

9.5215e−1
(1.85e−3)

15 9.8774e−1
(4.34e−3) −

7.7479e−1
(3.40e−2) −

1.3055e−1
(5.97e−2) −

9.7838e−1
(2.41e−3) −

9.5416e−1
(4.59e−3) −

9.8808e−1
(7.37e−4)

WFG5 3 5.0688e−1
(2.06e−3) −

4.7383e−1
(4.17e−3) −

3.0985e−1
(1.83e−1) −

5.1544e−1
(1.44e−3) −

5.1746e−1
(1.28e−3) −

5.2168e−1
(1.18e−4)

5 7.4008e−1
(2.40e−3) −

5.5026e−1
(3.71e−2) −

9.3956e−2
(3.39e−2) −

7.2731e−1
(3.69e−3) −

7.2239e−1
(3.23e−3) −

7.4348e−1
(3.69e−4)

8 8.2354e−1
(6.33e−3) −

6.2343e−1
(3.01e−2) −

9.2631e−2
(2.52e−2) −

8.5300e−1
(5.61e−3) −

8.4021e−1
(2.33e−3) −

8.5369e−1
(2.26e−2)

10 8.6882e−1
(3.29e−3) −

6.9082e−1
(2.52e−2) −

1.8628e−1
(2.32e−1) −

8.9771e−1
(1.85e−3) −

8.7069e−1
(3.85e−3) −

8.9859e−1
(1.29e−2)

15 9.1678e−1
(3.63e−3) −

6.6081e−1
(3.32e−2) −

1.0111e−1
(3.70e−2) −

9.0941e−1
(2.52e−3) −

8.7803e−1
(3.11e−3) −

9.1729e−1
(1.31e−4)

WFG6 3 4.9520e−1
(9.98e−3) −

4.9281e−1
(3.67e−2) −

2.0183e−1
(1.37e−1) −

5.0422e−1
(1.77e−2) −

5.0164e−1
(8.83e−3) −

5.2845e−1
(3.83e−2)

5 7.2235e−1
(1.59e−2) =

5.9705e−1
(1.24e−1) −

1.8175e−1
(1.04e−1) −

7.1314e−1
(1.68e−2) =

7.0423e−1
(1.46e−2) =

6.6252e−1
(6.93e−2)

8 7.9300e−1
(3.11e−2) =

6.7922e−1
(7.35e−2) −

2.5249e−1
(1.75e−1) −

8.4355e−1
(2.33e−2) +

8.2976e−1
(1.27e−2) =

7.7303e−1
(7.78e−2)

10 8.4905e−1
(1.59e−2) +

7.1369e−1
(7.33e−2) −

3.0262e−1
(2.27e−1) −

8.8343e−1
(1.20e−2) +

8.5517e−1
(1.58e−2) +

7.9172e−1
(7.93e−2)

15 8.9087e−1
(2.62e−2) =

6.6379e−1
(6.69e−2) −

3.7987e−1
(2.34e−1) −

7.9825e−1
(1.84e−1) =

8.7404e−1
(1.97e−2) =

8.5001e−1
(9.17e−2)

WFG7 3 5.3832e−1
(3.51e−3) −

5.3415e−1
(1.56e−2) −

1.8221e−1
(7.31e−2) −

5.5477e−1
(1.43e−3) −

5.4970e−1
(2.13e−3) −

5.5990e−1
(3.21e−4)

Table 3, the proposedmethod yields superior performance on
most of the test instances. Although the proposed algorithm
produces the suboptimal results on some concave problems,
it performs well on the test instances containing complex,
degenerate and disconnected Pareto fronts. For instance, our
method generates the best HV values on DTLZ1, WFG5 and
WFG7 and produces competitive results on DTLZ2, DTLZ3

and WFG2. It is widely recognized that the PSO operators
do not perform well on WFG1 [36]. However, MOCSOP
obtains the competitive HV values on WFG1, which means
that the proposed method ensures the diversity of the gen-
erated solutions and avoids to local optima. Moreover, the
MOCSOP performs a constant good performance couple
with the increasing of the number of objectives in MaOPs.
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Table 3 (continued)

Problem Obj Adaptive
reference based

Decomposition
based

Indicator based New dominance
based

Convergence and
Diversity

Our Method

5 7.8646e−1
(2.69e−3) −

7.4730e−1
(1.90e−2) −

2.1400e−1
(5.33e−2) −

7.7702e−1
(2.79e−3) −

7.7015e−1
(3.43e−3) −

7.9035e−1
(8.05e−4)

8 8.6850e−1
(7.89e−3) −

7.2689e−1
(2.56e−2) −

2.1328e−1
(5.80e−2) −

9.0740e−1
(6.59e−3) −

9.0490e−1
(2.88e−3) −

9.1897e−1
(9.24e−4)

10 9.1748e−1
(8.71e−3) −

7.8972e−1
(2.23e−2) −

2.0461e−1
(7.43e−2) −

9.6146e−1
(2.31e−3) =

9.4563e−1
(2.30e−3) −

9.6225e−1
(1.54e−3)

15 9.8162e−1
(6.64e−3) =

7.6172e−1
(3.39e−2) −

1.6754e−1
(4.78e−2) −

9.5275e−1
(8.97e−2) −

9.6337e−1
(2.89e−3) −

9.8591e−1
(5.06e−3)

WFG8 3 4.5299e−1
(6.26e−3) −

4.2727e−1
(2.91e−3) −

2.7114e−2
(5.07e−2) −

4.6840e−1
(1.87e−3) −

4.6536e−1
(3.13e−3) −

4.7479e−1
(2.69e−3)

5 6.3239e−1
(1.36e−2) −

2.5882e−1
(1.43e−2) −

4.8700e−2
(5.08e−2) −

6.5411e−1
(6.27e−3) −

6.3129e−1
(9.01e−3) −

6.8349e−1
(1.64e−3)

8 7.6734e−1
(2.01e−2) −

5.4002e−1
(2.83e−2) −

1.7448e−1
(5.29e−2) −

8.1175e−1
(3.17e−2) +

7.2140e−1
(1.35e−2) −

7.8165e−1
(1.41e−2)

10 8.5147e−1
(1.94e−2) −

6.0872e−1
(2.34e−2) −

2.1895e−1
(6.04e−2) −

9.2902e−1
(2.56e−2) +

7.9615e−1
(2.10e−2) −

8.6663e−1
(6.80e−3)

15 9.3018e−1
(2.14e−2) +

5.2797e−1
(3.72e−2) −

1.7331e−1
(6.03e−2) −

8.2870e−1
(1.01e−1) =

8.3167e−1
(1.54e−2) −

9.1593e−1
(5.67e−3)

WFG9 3 5.0308e−1
(3.80e−2) −

4.8777e−1
(5.92e−3) −

2.0248e−1
(4.63e−2) −

5.3992e−1
(2.92e−3) =

5.2550e−1
(2.75e−2) −

5.4006e−1
(1.71e−3)

5 7.2880e−1
(3.35e−2) −

4.2003e−1
(7.11e−2) −

1.8381e−1
(4.42e−2) −

7.4414e−1
(5.26e−3) +

6.9484e−1
(5.56e−2) −

7.4126e−1
(3.14e−2)

8 7.8446e−1
(4.80e−2) −

5.9512e−1
(3.24e−2) −

2.4657e−1
(1.20e−1) −

8.6871e−1
(4.68e−3) +

8.0052e−1
(5.16e−2) −

8.2808e−1
(6.57e−2)

10 8.5827e−1
(3.62e−2) −

6.5132e−1
(3.66e−2) −

2.2908e−1
(1.41e−1) −

9.1609e−1
(4.61e−3) +

8.4365e−1
(3.36e−2) −

8.8849e−1
(3.64e−2)

15 9.3329e−1
(1.36e−2) +

5.7310e−1
(6.17e−2) −

1.9430e−1
(1.27e−1) −

9.0208e−1
(7.15e−2) +

8.0339e−1
(7.12e−2) −

8.5970e−1
(9.93e−2)

+/-/≈ 13/52/15 9/65/6 5/72/3 12/59/9 8/65/7

The best result in each row are highlighted in bold

This indicates that MOCSOP is a competitive model for
handling MaOPs. For a visual comparison of the evaluated
approaches, Fig. 9 plots the final nondominated solutions
with the median HV value among 20 independent runs of
various models on the 10-objective DTLZ1 instance by par-
allel coordinates. As shown in Fig. 9, both MOEA/D-CMA
and VaEA showworse performance in terms of convergence.
Due to the effective reference point adaptation strategy, A-
NSGA-III shows very competitive diversity performance, but
it does not converge well the entire PF. Although solutions of
NSGA-II/SDR reach the PF region, they fail to cover all the
objectives due to modified Pareto-dominance that may have
a negative effect on guidance. Furthermore, the solution sets
obtained by MaOEA/IGD have shown good distribution on
DTLZ1, but Table 3 shows that they have smaller HV value
than MOCSOP, which indicate that they may not actually
reach the true PF. As shown in Fig. 9 and Table 3, MOC-

SOP is the only algorithm that achieves good diversity and
impartial convergence to the Pareto front on DTLZ1.

To further analyze the robustness of each algorithm, we
introduce performance scores [53] to evaluate the overall
performance of the compared algorithms. Specifically, the
performance score shows howmany other algorithms are sig-
nificantly better than the selected algorithmon the considered
problem instance. Figure 10 summarizes the average perfor-
mance scores for the different numbers of objectives and the
different test problems. A smaller value means better per-
formance of the algorithm. As shown in Fig. 10, MOCSOP
performs best overall in 10 out of 16 test problems, which
demonstrates that the MOCSOP has excellent performance
in all test instances. For further observations, the line chart of
MOCSOPdoes not showhugefluctuations compared to other
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Fig. 9 Nondominated solution set with the average HV values among 20 runs on the 10-objective DTLZ1, shown by parallel coordinates. a A-
NSGAIII. bMOEA/D-CMA. c MaOEA/IGD. d NSGA-II/SDR. e VaEA, f MOCSOP
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Fig. 10 Average performance score over all dimensions for different normalized test problems, namely DTLZ (Dx) and WFG (Wx). The smaller
the score, the better the PF approximation in terms of HV metric

methods, which shows that our model has good robustness
and strong search ability on different PF shapes.

Runtimes

To investigate the computational efficiency of MOCSOP,
we record the actual running time of those nine compared
algorithms on DTLZ1-DTLZ7 and WFG1-WFG9. To make
a comprehensive comparison, all algorithms were imple-
mented in an identical running platform (Matlab2019a).
Figure 11a shows the average runtimes of the evalu-
ated MOPSOs tested on all instances with 8 objectives.

In this figure, we can find that the MMOPSO achieves
the best performance in terms of computational efficiency
because the simple swarm leader selection strategy has a
significant benefit in real-time computation. However, the
proposed MOCSOP produces the second best result and
performs better on the metrics of IGD value compared
with MMOPSO. It is worth noting that, although both
CMOPSO and MOCSOP use the competition mechanism,
MOCSOP performs significantly better in terms of com-
putational efficiency relative to CMOPSO. This is due to
the fact that, in MOCSOP, the worst computational com-
plexity of the proposed probability estimation method is
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Fig. 11 Average runtimes of the
various evaluated approaches
tested on the all the benchmark
instances. a 8-objective.
b 15-objective
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O(MN 2). Additionally, the implementation of competition
mechanism with winner pool is also simple, with negli-
gible computational cost. By contrast, CMOCSO requires
O(MN 2) and O(MN log N ) to calculate the nondominated
sorting and crowding distance, respectively. For competition
mechanism, two operations, selection of leader and the angle
between the vectors are calculated, costing O(MN ). As a
result, the competition mechanism of CMOCSOP requires
a maximum total runtime of O(MN 2) + O(MN log N ) +
O(MN ). As can be further observed from Fig. 11b, pro-
posedMOCSOPpresents a competitive performance in terms
of computational efficiency with the other state-of-the-art
MOEAs.

Discussions on probability estimationmethod

To further observe the differences between leaders obtained
by our method and other fitness assignment methods, we use

two common fitness estimation methods to select leaders.
The first fitness assignment method considers the L2-norm
of objective value [16], which can be formulated as follows:

Fitness(x) =
√√√√

m∑
i=1

fi (x)2. (10)

The second fitness estimator is calculated by the sum of
all the objectives [24] as:

Fitness(x) =
m∑
i=1

fi (x), (11)

where fk(x) denotes the k-th objective value of x. Figure 12
presents an example to show the position of leaders by form-
ing winner pool with the above fitness estimator. As shown
in Fig. 12a, in the early stages, the leaders are scattered in the
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Fig. 12 Illustrative example to show the position of leaders for DTLZ7
with three-objectives, where the population size is set to 275 (The red
points represent the leaders and blue points represent the other parti-
cles in the swarm). a Solution set obtained by the first fitness estimator

after 759 FEs. b solution set obtained by the first fitness estimator after
12,903 FEs. c Solution set obtained by the second fitness estimator after
759 FEs. d Solution set obtained by the second fitness estimator after
12,903 FEs

objective space. However, the position of leaders obtained by
the proposed probability estimation method is closer to the
ideal point, as illustrated in Fig. 4a. This means that the lead-
ers obtained by the proposed method can guide the entire
population towards the true PF in the early stages. As can
be further observed from Fig. 12b, with the nondominated
solutions increase, the leaders only focus on local regions
of the PF instead of entire PF. On the contrary, the leaders
are distributed over the entire PF in the Fig. 4b. Similarly,
the second fitness estimator encounters the same problem. In
summary, the proposed probability estimation method can
adaptively adjust the position of leaders at different stages
and guide the entire population towards the Pareto front.

Ablation experiment

To demonstrate the benefits of the proposed swarm update
strategy in convergence efficiency, we utilize four 10-
objective instances to conduct an ablation experiment.
Figure 13 plots the evolutionary trajectories of IGD val-
ues obtained by MOCSOP and MOCSOP-SU averaged over
20 runs. In Fig. 13, the MOCSOP-SU model denotes the
MOCSOP method without the proposed swarm update strat-
egy. As shown in Fig. 13, for problems with concave PF
(DTLZ4), both MOCSOP and MOCSOP-SU can guide the
entire particle swarm to converge to the PF quickly, and they
finally obtain similar IGD values. However, for DTLZ6 with
degenerate PF, using swarm update strategy improves the
speed of convergence significantly. The comparison results
between MOCSOP and MOCSOP-SU indicate that the pro-
posed swarm update strategy is beneficial for improving the
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Fig. 13 Evolutionary trajectories
of IGD values obtained by
MOCSOP and its variant on four
10-objective test problems. (a)
DTLZ4. (b) DTLZ6. (c) WFG1.
(d) WFG9
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performance of convergence speed, especially in MaOPs
with complex PF.

Discussion of free parameters

In the proposedMOCSOP, the size of thewinner pool has cer-
tain influence on the performance, becausewe use thewinner
pool to guide the particle swarm toward true PF. To achieve
the desired nondominated solution set, the size of the winner
pool needs to be given reasonable values. In the evolutionary
process, we expect that most of the particles in the population
are to be updated. If the size of thewinner pool is too large, the
number of the updated particles in the particle swarm will be
too small. Thismaydecrease the performanceof the proposed
method.Therefore,we suggest that the size of thewinner pool
should be set small. We choose 5%, 10%, 15%, 20% as the
candidate values for experimental comparative analysis. To
investigate the influence of the choice of different values on
the performance of the algorithm, we use the DTLZ as the
benchmark test suites. Table 4 shows four results of MOC-
SOP that correspond to different choices of the size of the
winner pool on DTLZ1-ZDT7 with six objectives. Among
them, MOCSOP-1, MOCSOP, MOCSOP-2 and MOCSOP-
3 represent the size of the winner pools as 5, 10, 15 and 20
percent of the population size, respectively. To allow a fair
comparison, the other parameters are remained unchanged.

As seen in Table 4, we find that MOCSOP significantly out-
performsMOCSOP-1,MOCSOP-2 andMOCSOP-3 in 5 out
of 7 instances. In particular, MOCSOP has achieved rela-
tively good results on DTLZ5. This is mainly because the
inappropriate candidate values increase the randomness of
the competition, which affects the performance of the algo-
rithm inevitably on irregular problems. This phenomenon is
also observed on DTLZ3. Therefore, based on the statistical
results in terms of the obtained IGD values on the DTLZ
test suite, we recommend setting the size of winner pool to
10 percent of the population size, even though the selected
values of the free parameters may not be the best choices for
other evaluation datasets.

Further discussion

During the experiment, we find that MOCSOP has shown
promising potential in large-scaleMOPs. Table 5 exhibits the
median IGDvalues obtained byMOCSOPand other state-of-
the-art MOEAs on three-objective LSMOP1-LSMOP9 [20]
with 300decisionvariables,where thepopulation size is set to
496. For fair comparisons, all compared algorithms are indi-
vidually executed 20 independent times with 4,500,000 FEs.
It is worth noting that the LMEA [54] and S3-CMA-ES [55]
are two typical MOEAs for large-scale MOPs, which have
shown good performance on large-scale MOPs. As shown
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Table 4 The median values of
IGD obtained by different sizes
of winner pools on
DTLZ1- DTLZ7 with 6
objectives

Problem Obj MOCSOP-1 MOCSOP MOCSOP-2 MOCSOP-3

DTLZ1 6 8.3902e−2
(8.70e−3)

8.1109e−2
(5.38e−5)

8.1097e−2
(7.97e−5)

8.1122e−2
(5.32e−5)

DTLZ2 6 3.3216e−1
(1.02e−1)

3.2999e−1
(9.75e−2)

3.4635e−1
(1.10e−1)

3.4997e−1
(1.50e−1)

DTLZ3 6 3.5508e−1
(4.35e−1)

2.5729e−1
(2.51e−3)

2.7088e−1
(5.98e−2)

2.9007e−1
(1.48e−1)

DTLZ4 6 3.7955e−1
(1.25e−1)

2.7523e−1
(5.91e−2)

3.5368e−1
(1.03e−1)

3.5819e−1
(1.22e−1)

DTLZ5 6 9.9070e−2
(2.04e−2)

9.1844e−2
(2.54e−2)

9.7820e−2
(2.36e−2)

1.1346e−1
(3.72e−2)

DTLZ6 6 2.5947e−1
(7.83e−2)

2.0725e−1
(6.62e−2)

2.2787e−1
(7.41e−2)

2.2481e−1
(7.50e−2)

DTLZ7 6 9.3145e−1
(4.00e−1)

7.8771e−1
(1.45e−1)

7.6855e−1
(1.55e−1)

7.8917e−1
(7.55e−2)

The best result in each row are highlighted in bold

Fig. 14 Nondominated solutions obtained by MOCSOP and its variant on three-objective LSMOP1 with 300 decision variables, where the number
of evaluations is set to 4,500,000 and the population size is set to 496. (a) MOCSOP. (b) MOCSOP(NSGA-III)

in Table 5, MOCSOP obtains the best IGD results on 7 out
of the 9 test instances. The comparison results demonstrate
that our method performs competitively on the large-scale
MOPs. It is interesting to find that the potential of MOCSOP
for solving large-scale MOPs is related to our proposed envi-
ronmental selection strategy. The proposed MOCSOP has a
similar environmental selection strategy asNSGA-III, except
that the probability criterion is added. In MOCSOP, when a
reference vector has several associated particles, the parti-
cles with the best value of joint probability are preferentially
selected to enter the archive. This procedure is beneficial
for solving large-scale MOPs, mainly due to the fact that

large-scale MOPs has a large number of decision variables
that require greater selection pressure than general MOPs.
Figure 4a shows that particles with better joint probability
values are closer to the ideal point in the early stages. In
MOCSOP, evolutionary search and swarm update strategy
are applied to the external archive, therefore the more par-
ticles with better joint probability value in the archive can
effectively improve the search efficiency, especially in the
early stage. In general, the proposed environmental selection
scheme indirectly strengthens the selection pressure to some
extent and improves the performance of MOCSOP for solv-
ing large-scale MOPs. To verify the above hypothesis, we
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Fig. 15 Nondominated solutions
obtained by MOCSOP and
LMOCSO on three-objective
DTLZ7 with different numbers
of decision variables

Table 5 The median values of
IGD obtained by LMEA,
S3- CMA- ES, and MOCSOP
on three- objective
LSMOP1- LSMOP9 with 300
decision variables

Problem Dec Obj LMEA S3-CMA-ES MOCSOP

LSMOP1 300 3 1.6363e−1 (1.66e−1) − 2.6539e−1 (2.28e−2) − 2.7128e−2
(3.43e−2)

LSMOP2 300 3 7.7888e−2 (4.77e−2) − 2.5764e−2 (2.77e−3) + 4.1071e−2
(4.02e−4)

LSMOP3 300 3 1.0608e + 0 (5.59e−1) = 4.3582e + 0 (3.76e−1)
−

8.7867e−1
(2.52e−1)

LSMOP4 300 3 1.0093e−1 (6.71e−2) − 1.9768e−1 (7.76e−3) − 9.4951e−2
(6.40e−3)

LSMOP5 300 3 4.7119e + 0 (3.65e + 0) − 9.4596e−1 (3.62e−6) − 8.6403e−2
(4.51e−2)

LSMOP6 300 3 5.6708e + 2 (1.78e + 3) − 1.6622e + 0 (3.25e−1)
−

6.1006e−1
(5.58e−2)

LSMOP7 300 3 1.3049e + 0 (3.80e−2) − 9.4735e−1 (7.50e−5) − 6.9049e−1
(1.90e−1)

LSMOP8 300 3 1.2684e−1 (1.43e−2) − 9.4603e−1 (2.76e−4) − 8.6589e−2
(1.06e−3)

LSMOP9 300 3 7.3443e−1 (6.37e−1) + 7.3294e−1 (1.13e−1) + 1.3153e + 0
(6.33e−2)

+/-/≈ 1/7/1 2/7/0

The best result in each row are highlighted in bold

123



Complex & Intelligent Systems (2022) 8:4697–4725 4723

Table 6 The median values of
IGD obtained BY LMOCSO,
and MOCSOP on three−
objective DTLZ1- DTLZ7 with
300 decision variables, where
the number of evaluations is set
to 4,500,000 and the population
size is set to105

Problem Dec Obj LMOCSO MOCSOP

DTLZ1 300 3 4.5219e + 2 (1.80e + 2) − 5.0219e + 1 (4.48e + 1)

DTLZ2 300 3 5.0327e−2 (5.15e−6) − 5.0301e−2 (2.20e−8)

DTLZ3 300 3 7.5266e + 2 (2.85e + 2) − 7.6585e + 1 (9.82e + 1)

DTLZ4 300 3 2.7841e−1 (2.82e−1) = 4.0400e−1 (2.42e−1)

DTLZ5 300 3 3.0352e−2 (6.02e−4) + 1.2438e−1 (7.46e−2)

DTLZ6 300 3 3.1016e−2 (5.22e−4) − 1.8591e−2 (2.89e−3)

DTLZ 7 300 3 1.5751e−1 (9.07e−2) − 7.5740e−2 (7.32e−3)

+/-/≈ 1/5/1

The best result in each row are highlighted in bold

compared the proposed method with its variant, in which the
proposed environmental selection strategy is replaced by the
environmental selection of NSGA-III. Figure 14 displays the
experimental result, we can find that MOCSOP can obtain a
solution set with good convergence and diversity on three-
objective LSMOP1 with 300 decision variables, whereas the
solution sets obtained by variant is not satisfactory. The com-
parison results demonstrate that the proposed environmental
selection strategy is beneficial for improving the performance
of MOCSOP on large-scale MOPs.

In addition, to further examine the capability of the pro-
posed MOCSOP in dealing with large-scale MOPs, we
compare it with LMOCSO [20] on DTLZ test problems.
Specifically, the LMOCSO is a competitive swarm optimizer
(CSO)-based efficient searching method, and it shows good
performance on solving large-scale MOPs. Table 6 lists the
IGD values of the MOCSOP and LMOCSO evaluated on
three-objective DTLZ1–DTLZ7with 300 decision variables.
The comparison results indicate that the proposed MOC-
SOP performs better than the LMOCSO on most of the
test functions. For a visual comparison, Fig. 15 illustrates
the nondominated solution set obtained by MOCSOP and
LMOCSO on DTLZ7 with different numbers of decision
variables. As shown in Fig. 15, the MOCSOP achieves a
competitive performance on three-objectiveDTLZ7with 300
decision variables compared with LMOCSO. It is noticeable
that LMOCSO yields uniform distributions on DTLZ7 with
300 decision variables and it fails to maintain population
diversity on DTLZ7 with 22 decision variables. The compar-
ison results indicate that LMOCSO performs poor versatility
with respect to problems containing low-dimensional deci-
sion variables. By contrast, our method has good versatility
regarding different numbers of decision variables. The com-
parison results demonstrate that the proposed MOCSOP is
effective for dealing with large-scale MOPs.

Conclusions

In this paper, we proposed a competitive swarm optimizer
with probabilistic criteria to tackle MaOPs, termed MOC-
SOP. First, we estimated the joint probability of the particles
in the population and selected some of the swarm leaders,
according to the value of joint probability. Second, we uti-
lized a competition mechanism with winner pool to update
position, which can improve the efficiency of searching the
true Pareto front. Then, we exploited a diversity mechanism
with the mixed probability criterion to ensure the diversity
of the swarm. Finally, we designed a swarm update strat-
egy using the particles in the external elite archive to update
the current particle swarm, which can effectively improve
the convergence of the algorithm. The experimental results
on the DTLZ1-7 and WFG1-9 test instances demonstrated
that the proposed method presents robust and superior per-
formance compared to other MOPSOs and MaOEAs for
tackling MOPs and MaOPs. Furthermore, the comparison
results between MOCSOP and other state-of-the-art large-
scale MOEAs indicated that the MOCSOP has promising
potential in large-scale MOPs.

In the future, we will further investigate the performance
of MOCSOP for large-scale many-objective optimization
problems (large-scale MaOPs) and apply it to some real-
world problems.
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