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Abstract
Video foreground detection (VFD), as one of the basic pre-processing tasks, is very essential for subsequent target tracking
and recognition. However, due to the interference of shadow, dynamic background, and camera jitter, constructing a suitable
detection network is still challenging. Recently, convolution neural networks have proved its reliability in many fields with
their powerful feature extraction ability. Therefore, an interactive spatio-temporal feature learning network (ISFLN) for VFD
is proposed in this paper. First, we obtain the deep and shallow spatio-temporal information of two paths with multi-level
and multi-scale. The deep feature is conducive to enhancing feature identification capabilities, while the shallow feature
is dedicated to fine boundary segmentation. Specifically, an interactive multi-scale feature extraction module (IMFEM) is
designed to facilitate the information transmission between different types of features. Then, amulti-level feature enhancement
module (MFEM), which provides precise object knowledge for decoder, is proposed to guide the coding information of each
layer by the fusion spatio-temporal difference characteristic. Experimental results on LASIESTA, CDnet2014, INO, and
AICD datasets demonstrate that the proposed ISFLN is more effective than the existing advanced methods.

Keywords Video foreground detection · Feature enhancement · Interactive multi-scale feature · Deep learning

Introduction

Video foreground detection (VFD), which aims to identify
the changing targets in a video sequence, has become a
popular research topic in computer vision. Many applica-
tions adopt this technique, including autonomous driving
[1], remote sensing [2], action recognition [3–5], and video
surveillance [6, 7]. As an important pre-processing compo-
nent, its detection accuracy directly impacts the quality of
subsequent work. However, illumination change, dynamic
background, shadows, and camera jitter make the process
challenging.

Over the past few decades, a wide variety of tech-
niques have been proposed for VFD [8–11]. In general,
existing methods can be approximately divided into two
broad classes, traditional machine learning-based and deep
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learning-based approaches.As the classical pixel-based tech-
niques in conventionalmethods (e.g., GMM[12],KDE [13]),
the detection accuracy suffers from a great negative impact
in the face of illumination changes and camera movement.
Furthermore, region-based approaches [14, 15] lack motion
information, and multiple block-level computations increase
the complexity of the algorithm. Overall, traditional meth-
ods rely on low-level manual characteristics such as color
features, texture features, and spatial distribution. All of
these features lack high-level semantic information, which
will lead to serious target missing and detection errors, as
well as a weak response to complicated environments. In
recent years, convolutional neural networks (CNNs) have
significantly improved the quality of many image processing
tasks by virtue of their powerful feature extraction capabil-
ities. Using this technique, high-level semantic cues can be
gleaned that might not be obtainable using traditional meth-
ods. Although numerous deep learning-based approaches
have shown promising results in VFD, there are still some
issues as follows.

Firstly, several existing methods [11, 16–18] only per-
formed analysis spatial clues without considering temporal
characteristics, resulting in the isolation of information. Sec-
ondly, different types of features have variations between
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different levels. In video detection, spatio-temporal differ-
ence can provide more accurate target information, but many
approaches [19, 20] mixed them together for training. Addi-
tionally, some scholars directly employed skip connections in
the encoder-decoder structure to enhance feature expression
[20, 21], however, this will result in noise and unnecessary
information flow to the decoder and affect the performance.

Based on the limitations of existing methods discussed
above, the motivation of our approach is to construct a
model that can make full use of spatio-temporal character-
istics in the coding phase. Moreover, valuable target cues
are also crucial for the decoder. To realize these objectives,
we propose an interactive spatio-temporal feature learning
network for video foreground detection. Our thought is to
mine multi-level and multi-scale spatio-temporal features
and to encourage different types of knowledge to communi-
cate with each other. For this purpose, we design a two-path
spatio-temporal information extraction module (TSIEM) to
obtain rich spatio-temporal features while strengthening the
intrinsic connection between features. Besides, a vital chal-
lenge is how to cope with the nuisance caused by the loss
of some details after information pass through deeper lay-
ers in an encoder-decoder network. Our solution to this
concern is to propose, rather than having a simple skip con-
nection between encoder and decoder, a multi-level feature
enhancementmodule (MFEM) that can share powerful target
information with the decoder.

In brief, the contributions of this paper are summarized as
follows.

1. We propose a novel end-to-end interactive spatio-
temporal feature learning network for video foreground
detection. Compared with the existing advanced meth-
ods, our model is fast in speed (24 fps) while having a
higher detection accuracy.

2. We design two-path spatio-temporal information extrac-
tion module (TSIEM) to obtain multi-level and multi-
scale spatio-temporal difference information. In particu-
lar, the proposed IMFEM promotes the learning among
low-level, intermediate-level and high-level features.

3. We construct multi-level feature enhancement module
(MFEM) to deliver fine coding features to the decoder,
which can provide an effective way to solve the problem
of blurred boundaries and ambiguous pixels caused by
rough features.

Related work

As a hot topic in the field of artificial intelligence, vari-
ous techniques for video foreground detection are constantly
being proposed. We organize and analyze these approaches

from the perspective of traditionalmethods and deep learning
methods.

Traditional method

Initially, the popular traditional method was kicked off by
Gaussianmixturemodel (GMM) [12], which is a background
representation model based on the statistical information of
pixel samples. Specifically, a background model is gained in
GMM by counting the pixel values of each point in a video
image, followed by a process of background subtraction
that extracts the moving object. Nevertheless, this method
will cause misdetection because of the following factors: (i)
The scene changes substantially, such as sudden changes in
light or camera jitter; (ii) The colors of the foreground and
background are similar. Subsequently, Barnich et al. [22] pro-
posed a non-parametric method called Vibe. Unlike GMM,
Vibe adopts a randombackground update strategy. Due to the
pixel changes are uncertain, it is difficult to use a fixed model
to describe them. Hence, Vibe algorithm assumed that a ran-
dommodel is to some extent more suitable for simulating the
uncertainty of pixel change when the model of pixel change
cannot be determined. Additionally, the main disadvantage
of this method is that noise and static targets are blended into
the background, which brings interference to the foreground
detection. To deal with dynamic background problem, Zhao
et al. [23] first applied an adaptive threshold segmentation
approach to segment the input frame into multiple binary
images. Second, the foreground detection was performed
by lateral suppression and an improved template matching
method. Sajid et al. [24] proposed multimode background
subtraction (MBS) to overcome multiple challenges. Here,
binary masks of RGB and YCbCr color spaces were created
by denoising the merged image pixels, thus separating fore-
ground pixels from background. Roy et al. [25] constructed
3 pixel-based background models to deal with complex and
changing real-world scenarios. Tom et al. [26] employed the
spatio-temporal dependency between background and fore-
ground to build a video foreground detection algorithm in a
tensor framework.

Deep learningmethod

With the continuous development of deep learning, schol-
ars have also introduced this technology to VFD [27–31].
Akula et al. [32] employed LeNet-5 structure for infrared
target recognition. Patil et al. [33] first employed the tempo-
ral histogram to estimate the background, and then sent two
saliencymapswith different resolutions to the CNN to obtain
segmentation results. On the basis of fully convolutional net-
work (FCN), Yang et al. [34] introduced dilated convolution
to expand the receptive field. Furthermore, to prevent long-
term stationary objects from blending into the background,
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a strategy of increasing the interval of multi-frame video
sequence images is proposed. Guerra et al. [35] utilized a
U-Net-based background subtraction method to extract the
target after acquiring the background using a set of video
frames.

Recently, attention mechanisms have been proven effec-
tive in image processing [36–38]. Using this mechanism not
only highlights important knowledge, but also establishes
contextual relevance. To obtain location information, Mine-
matsu et al. [39] added an attention module to the proposed
weakly supervised frame-level labeling network. Chen et al.
[19] introduced attention mechanism and residual block into
ConvLSTM to extract temporal context cues. Additionally,
the STNmodel andCRF layer are added to the end of network
for feature refinement. After that, Qu et al. [11] designed a
symmetrical pyramid attention model in CNN to get close
contextual connections.

Moreover, there are many other types of deep learning
techniques. In 2017, Sakkos et al. [40] used 3D convolu-
tion to obtain spatial and temporal changes of the target
simultaneously. Likewise, Akilan et al. [41] proposed a
3D CNN-LSTM network consists of dual coding and slow
decoding. Further, in the D-DPDL model proposed by Zhao
et al. [42], the convolutional neural network received ran-
dom temporal pixel arrangement of features as input, and
a Bayesian refinement module was constructed to suppress
random noise. In addition, Bakkay et al. [43] adopted condi-
tional generative adversarial network for foreground object
detection. Patil et al. [44] fed the features gained by optical
flow encoder and edge extraction mechanism into a bridge
network composed of dense residual blocks, and propagated
the predicted mask of previous frame to decoder to get
exact motion targets. Li et al. [45] improved the detection
performance by acquiring and adjusting multi-scale comple-
mentary knowledge of the change map in three steps (i.e.,
feature extraction, feature fusion, and feature refining).

Proposedmethod

The proposed Interactive spatiotemporal feature learning
network (ISFLN) mainly composed of two components,
namely, two-path spatio-temporal information extraction
module (TSIEM) and multi-level feature enhancement mod-
ule (MFEM). In the following subsections, we will provide
a detailed analysis of the designed modules.

Overview

The overall structure of our method is given in Fig. 1.
Specifically, TSIEM is conducted in two stages. For the
first stage, we employ a Siamese Convolutional Network

to obtain multi-level features of the current frame and ref-
erence frame. Then, multi-level spatio-temporal difference
information is derived via element-wise subtraction. For the
second stage, we analyze the different scale spatio-temporal
context cues of the object using an interactivemulti-scale fea-
ture extraction module. Two advantages exist in the design
above. On the one hand, it emphasizes the change informa-
tion of object. On the other hand, it strengthens the learning
of multi-type features from different perspectives. Next, we
guide and enhance the original coding features with two-
paths spatio-temporal information. Finally, this knowledge
is shared with the decoder to improve the expression ability
of features.

Two-path spatio-temporal information extraction
module (TSIEM)

Most models directly concatenated the current frame and
reference frame for feature extraction, which ignores the
differences between different features. Hence, to capture
detailed spatio-temporal difference characteristics, we con-
structed a two-path feature extraction module at different
levels.

For the first path, we send an input F ∈ R
H×W×Ci into the

siamese network to get themulti-resolution featuremaps F1
2
,

F1
4
, F1

8
, F 1

16
, and F 1

16
. Specifically, the number of filters in

five convolution operations Conv_ 1 → Conv_ 2 → Conv_
3 → Conv_ 4 → Conv_ 5 are 32, 64, 128, 256, 256 (that
is, Ci), respectively. All convolution blocks except Conv_5
are accompanied by BN, ReLu, and Max-Pooling, whereas
Conv_5 only contains BN and ReLu. After that, perform the
absolute difference operation on the corresponding block to
obtain the first path spatio-temporal difference features.

Although the above process has acquired multi-level fea-
tures, objects have different scales in various scenarios. Thus,
we propose an interactivemulti-scale feature extractionmod-
ule (IMFEM) to fully capture information at multiple scales,
as shown in Fig. 2.

The IMFEM divides the features into low-level,
intermediate-level, and high-level for processing, and the
entire learning process involves four steps. First of all, per-
form multi-scale feature extraction operations on low-level
features. Usually, two branches of 3 × 3 and 5 × 5 convo-
lution are used, but a large convolution kernel will cause
expensive calculations, so we replace 5 × 5 convolution
with two 3 × 3 convolution. Additionally, to reduce the
number of channels, 1 × 1 convolution is added before
3 × 3 convolution. Then, the 1 × 1 convolution → 3 ×
3 convolution branches are cross-merged to promote the
exchange of characteristics on the same level. Next, low-
level features fused at the far end are sent to the near end
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Fig. 1 An overview of the proposed model. IMFEM interactive multi-scale feature extraction module, MFEM multi-level feature enhancement
module

Fig. 2 The interactive multi-scale feature extraction module (IMFEM).
Different types of multi-scale information learn from each other

of intermediate-level features via a short-distance connec-
tion. Here, the fused features first undergo 1× 1 convolution
before connection, which reduces the number of channels.
Finally, spatio-temporal difference information of the corre-
sponding locations is extracted. Likewise, intermediate-level
and high-level features also follow the above steps.

Technically, one path in TSIEM is used to get multi-level
features, and the other path is employed to get multi-scale
context features, which can provide relatively sufficient tar-
get information for the network. Moreover, the design of
IMFEM also strengthens the learning between the same type
and different types of features. By doing this, the flow of
information across levels is promoted, thereby enhancing the
effectiveness of detection.

Multi-level feature enhancementmodule (MFEM)

When features pass through a deeper convolution layer, some
knowledge and details are lost [46]. Numerous studies [20,
47–49] take a skip connection approach to fixing this issue,
which adds the encoding features directly to the decoder.
Unfortunately, this will introduce noise and rough informa-
tion existing in the encoding stage, which is not conducive
to accurate segmentation of foreground objects. Conse-
quently, we employ spatio-temporal difference information
obtained in the previous section to design a multi-level fea-
ture enhancement model (MFEM) to enhance the sharing of
encoding features and decoder, as shown in Fig. 3.

The core of MFEM is to use fused spatio-temporal differ-
ence information Si {i = 1, 2, 3, 4, 5} to guide and refine
coding featureKm {m= 1, 2, 3, 4, 5}.We take the first feature
enhancementmodule (FEM) as an example for detailed intro-
duction. In the first step, perform a set of average-pooling and
max-pooling on S1 and K1 to aggregate spatial information,
respectively. An element-wise addition is adopted to fuse
the two-path aggregation features, and the output is sent to
a sigmoid activation function to adjust the hybrid features,
denoted as M:

M = σ {[AP(K1) + MP(K1)] + [AP(S1) + MP(S1)]}, (1)

where AP(·) andMP(·) denote the average-pooling and max-
pooling, respectively.σ is sigmoid function.
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Fig. 3 Illustration of the feature enhancement module (FEM)

After that, the new features are used as weights and mul-
tiplied by S1. Further, the weighted features are respectively
performed average-pooling andmax-pooling along the chan-
nel axis. The above process can be expressed by Eq. 2.

Mc = Cat[AP(S1 ⊗ M), MP(S1 ⊗ M)], (2)

where Cat(·) denotes concatenate operation.⊗ refers to
element-wise multiplication.

Then, the concatenated feature map passes through
3 × 3 convolution and sigmoid activation function, and the
enhanced coding features are obtained by element-wise mul-
tiplication with K1.

Finally, the enhanced features are fed to 3× 3 convolution
and combined with S1 to gain output OF, which is sent to
the corresponding decoder. Similarly, other levels of coding
features also perform the above operations. The OF can be
formulated from Eqs. 3 and 4.

ME = σ( f 3×3(Mc)) ⊗ K1, (3)

OF = f 3×3(ME ) + S1, (4)

where f 3×3(·) represents a 3 × 3 convolutional layer.
In short, MFEM utilizes the fused spatio-temporal differ-

ence information to guide multi-level coding features, telling
themwhich information is important and where the informa-
tion is located, thereby improving the expressive ability of
coding features. Meanwhile, it also provides more valuable

clues for the decoder and a strong guarantee for higher accu-
racy of detection.

Experiments

Datasets and parameter settings

Video sequences employed in experiments come from the
LASIESTA [50], CDnet2014 [51], INO [52], and AICD [53]
datasets, including indoor and outdoor scenes. In the training
process, 70% of the samples are employed as a training set
and the rest as a testing set.

We perform experiments with Tensorflow in Python 3.7
and run the proposed model on workstation with processor
GeForce RTX 3060 Laptop GPU and i7-10870H CPU. The
input frame size is adjusted to 224 × 224, and the network
adopts 50 epochswith a batch size 5 for training. Adam as the
optimizer has an initial learning rate of 0.001. In addition, the
loss function of our network utilizes binary cross-entropy.

In experimental analysis, the evaluation indicators [45,
51, 54] used include accuracy (Acc), precision (Pre), recall
(Rec), F1, percentage of wrong classifications (PWC), false
positive rate (FPR), false negative rate (FNR), Specificity
(Sp), area under curve (AUC), and mean intersection over
union (mIoU).

Ablation study

To verify the effectiveness of the proposed modules, we
conduct a comprehensive analysis on three datasets (i.e.,
LASIESTA, CDnet2014, INO). Here, nine indicators are
used to observe the performance of the designed module.

As shown in Table 1, we compare the performance of
one-path spatio-temporal difference module (here as the
baseline), interactive multi-scale feature extraction mod-
ule (IMFEM), and multi-level feature enhancement module
(MFEM). Specifically, F1 is the weighted average of pre-
cision and recall, and AUC represents the area under ROC
curve, which is the comprehensive result of False Positive
Rate (FPR) and True Positive Rate (TPR, that is, recall).
From the viewpoint of these two compositive indicators, our
proposed modules are effective. Additionally, Fig. 4 gives
some visual results of different modules, as seen, baseline
(BL), TSIEM, and encoder and decoder are directly con-
nected (TSIEM+EDDC)have different degrees of boundary
blur and error detection. Especially in baseline, due to the
lack of enough target information, foreground pixels cannot
be judged correctly, resulting in problems such as unclear tar-
get contours and missing targets. When IMFEM and MFEM
modules are added sequentially, the above phenomenon is
better alleviated.
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Table 1 Ablation study for different modules

Metrics

Modules Acc ↑ Pre ↑ Rec ↑ F1 ↑ PWC ↓ FPR ↓ FNR ↓ Sp ↑ AUC ↑

Baseline (BL) 0.9725 0.7848 0.7515 0.7603 1.3545 0.0082 0.2485 0.9918 0.9476

BL + IMFEM (TSIEM) 0.9735 0.8324 0.8099 0.8125 1.1616 0.0077 0.1901 0.9923 0.9703

TSIEM + EDDC 0.9749 0.8562 0.8257 0.8338 0.8721 0.0053 0.1743 0.9949 0.9724

TSIEM + MFEM (our) 0.9773 0.8786 0.8547 0.8609 0.7173 0.0042 0.1454 0.9960 0.9739

TSIEM + EDDC: encoder and decoder are directly connected. ↑indicates higher value is better, ↓ indicates lower value is better

Fig. 4 Visual comparison results of different modules on LASIESTA dataset. (Columns 1 and 2 are the input frame and ground truth, respectively.
Columns 3 to 6 indicate the detection results of different modules, respectively.)

Comparison with state-of-the-arts

We compare the ISFLN with the existing traditional
techniques and deep learning methods on LASIESTA,
CDnet2014, INO, and AICD datasets.

1. LASIESTA dataset: Table 2 presents the F1 value of
different approaches on LASIESTA [16, 55–62]. The
last column indicates the average F1 value of these
approaches across all videos, which is 89% in the pro-
posed network. Compared with the same type of deep
learning methods FgSegNet-S[16], FgSegNet-M [16],
MSFS-51 [59], MSFS-55 [59], 3CDC-51 [60], 3CDC-
55 [60], and BSUV-Net 2.0 [61], our technology has

improved by 56%, 54%, 53%, 49%, 4%, 5%, and 4%,
respectively. Figure 5 illustrates the graphical compar-
ison of F1 and average F1 for different methods. As
observed, the proposed framework performs stably on
different videos, without rapid rise or fall.
Moreover, to validate the performance of the proposed
method on unseen videos, we conduct experiments on
LASIESTA dataset, as shown in Table 3 and Fig. 6.
Specifically, training videos and test videos are differ-
ent. It should be noted here that these videos used for
experimental work also contain different challenges (see
Table 3). Quantitative and qualitative analyses show that
our approach can obtain comparable results for unseen
videos.
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Table 2 F1 score of different methods on LASIESTA dataset

Videos

Methods IBS ICA IIL IMB IOC ISI OCL ORA OSN OSU Avg

Zovkovik [62]-2004 0.53 0.83 0.24 0.87 0.95 0.91 0.88 0.83 0.38 0.71 0.71

Maddalena 1[55]-2008 0.42 0.85 0.61 0.76 0.91 0.87 0.88 0.84 0.58 0.80 0.75

Maddalena 2[56]-2012 0.40 0.86 0.21 0.91 0.95 0.95 0.87 0.85 0.81 0.88 0.77

Haines [57]-2014 0.68 0.89 0.85 0.84 0.92 0.89 0.83 0.86 0.17 0.86 0.78

Cuevas [58]-2018 0.66 0.84 0.65 0.93 0.78 0.88 0.93 0.87 0.78 0.72 0.81

FgSegNet-S-55 [16]-2018 0.22 0.60 0.39 0.60 0.23 0.39 0.23 0.15 0.13 0.37 0.33

FgSegNet-M-55 [16]-2018 0.21 0.69 0.32 0.71 0.31 0.43 0.22 0.18 0.19 0.25 0.35

MSFS-51 [59]-2020 0.22 0.60 0.32 0.50 0.30 0.44 0.31 0.24 0.28 0.38 0.36

MSFS-55 [59]-2020 0.36 0.40 0.35 0.64 0.37 0.39 0.41 0.35 0.31 0.37 0.40

3CDC-51 [60]-2021 0.81 0.76 0.90 0.90 0.90 0.91 0.89 0.89 0.72 0.85 0.85

3CDC-55 [60]-2021 0.72 0.82 0.92 0.89 0.91 0.87 0.87 0.90 0.69 0.85 0.84

BSUV-Net 2.0 [61]-2021 0.77 0.68 0.88 0.81 0.96 0.92 0.93 0.94 0.84 0.79 0.85

Our 0.85 0.90 0.94 0.96 0.95 0.83 0.94 0.94 0.79 0.84 0.89

The best and second results are highlighted in bold and italics, respectively
Avg means average F1

Fig. 5 Comparison of F1 and Avg F1 of different methods on LASIESTA dataset

Table 3 Quantitative analysis for unseen videos on LASIESTA dataset

Training Testing Metrics

Video Challenge Video Challenge Pre ↑ Rec ↑ F1 ↑

I_BS_01 Bootstrap I_CA_01 Camouflage 0.6035 0.7268 0.6417

I_IL_01 Illumination change I_SI_01 Simple sequence 0.9010 0.8754 0.8805

O_CL_01 Cloudy O_SN_01 Snowy 0.7926 0.7049 0.7356

I_CA_02 Camouflage I_MB_01 Modified background 0.5637 0.6113 0.5763

O_CL_01 Cloudy O_RA_01 Rainy 0.8574 0.8265 0.8375

I_CA_01 Camouflage I_OC_02 Occlusion 0.7366 0.5031 0.5842

O_SN_01 Snowy O_RA_01 Rainy 0.8572 0.7438 0.7851

I_IL_01 Illumination change I_CA_01 Camouflage 0.8914 0.5985 0.7069

I_IL_02 Illumination change I_MB_01 Modified background 0.8483 0.9256 0.8746

O_CL_02 Cloudy O_SU_02 Sunny 0.6109 0.5264 0.5514

Average 0.7663 0.7042 0.7174
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Fig. 6 Visual results of scene
independence analysis on
LASIESTA dataset

2. CDnet2014 dataset: Table 4 gives the performance of
different methods on CDnet2014 [11, 24, 35, 61–65],
in which the F1 value of the proposed network reaches
90.14%.Thevideo for the experimental analysis contains
many challenges, including dynamic background, cam-
era jitter, shadow, and bad weather. As can be seen from
the Table 4, no single method is omnipotent. Clearly,
from the overall performance, our model is more stable
than other methods, which is also verified in Fig. 7. In
Fig. 7a, the trend of the curve indicates that our proposed
approach is more capable of dealing with various chal-
lenges.

3. INO dataset: As reported in Table 5, we use accuracy
(Acc), recall (Rec), specificity (Sp), and area under curve

(AUC) on INO dataset to qualitatively analyze the exist-
ing methods [11, 32, 54, 66–68]. According to various
indicators, the proposed method has a competitive edge.
In terms of AUC, the proposed ISFLN is 96%, which is
23% and 6% higher than the deep learning techniques
Akula-CNN [32] and SPAMOD [11], respectively.

4. AICD dataset: We utilize this dataset to examine how
well the proposed technique performs when faced with
small targets and large changes in perspective. Table
6 gives a quantitative comparison with the existing
advanced methods (the metrics are F1 and mIoU). As
seen in Table 6, the proposed approach outperforms the
competition in both metrics. Specifically, compared with
CNN-feat [69], WS-Net [70], DeconvNet [71], Mask-
CDNet [72], and SASCNet [45], the F1 of proposed
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Fig. 7 Comparison of F1 and Avg F1 of different methods on CDnet2014 dataset

method increases by 60.2%, 74.4%, 54.8%, 51.9%, and
2.2%, respectively, while the mIoU increases by 26.6%,
41.2%, 17.6%, 15.2%, and 2.1%, respectively.

5. Visual results: Fig. 8 provides a qualitative analysis
through visual comparison. There are a variety of chal-
lenges in the videos shown, such as dynamic background,
camera jitter, shadows, turbulence, and bad weather.
The visual results given comprise two traditional meth-
ods, Zovkovik [62] and PAWCS [63], as well as four
deep learning methods, DeepBS [64], RT-SBS-V2 [65],
SPAMOD [11], and BSUV-Net 2.0 [61]. It can be seen
from Fig. 8 that our proposed network can obtain stable
output in the face of various challenges. As an example,
in rows 4, 8, 9, 10, and 12, there are problemswithmissed
detection, holes, and false detection in targets obtained
by other approaches. Figure 9 shows visualization results
of the proposed method on AICD dataset. Particularly,
the first row gives input frame, the second row is ground
truth, and the third row pictures detection results of the
proposed approach. It is obvious that the proposedmodel
is able to obtain relatively clear objects under small tar-
gets and large view variations.
The proposed method relies on the reference frame and
the current frame to obtain spatio-temporal difference
information for foreground detection. It ismainly applied
to video surveillance with fixed cameras. In experiments,
we observe that the detection performance of the pro-
posed framework is limited when scene changes greatly
and in a turbulent situation. In view of the above limita-
tions, we plan to guide the network to identify features
by propagating the predictionmask of the previous frame
in future work.

6) Real-time: Time complexity is also one of the factors to
investigate model performance. In Table 7, we present
a comparison of the FPS and the number of trainable
parameters for some recent methods. Specifically, the
reasoning speed of the proposed network is 24 frames per

Table 5 Acc, Rec, Sp, and AUC scores of different methods on INO
dataset

Metrics

Methods Acc ↑ Rec ↑ Sp ↑ AUC ↑

STSM [66]-2015 0.75 0.70 0.28 0.70

Akula-CNN [32]-2016 0.79 0.73 0.26 0.73

DL [67]-2017 0.80 0.75 0.20 0.74

MRF [68]-2018 0.81 0.79 0.19 0.78

Qiu [54]-2019 0.83 0.80 0.16 0.81

SPAMOD [11]-2021 0.98 0.62 0.90 0.90

Our 0.98 0.77 0.99 0.96

The best and second results are highlighted in bold and italics, respec-
tively
Avg means average F1

Table 6 F1 and mIoU scores of different models on AICD dataset

Metrics

Methods F1 ↑ mIoU ↑

CNN-feat [69]-2015 0.287 0.535

WS-Net [70]-2017 0.145 0.389

DeconvNet [71]-2018 0.341 0.625

Mask-CDNet [72]-2020 0.370 0.649

SASCNet [45]-2020 0.867 0.780

Our 0.889 0.801

The best and second results are highlighted in bold and italics, respec-
tively

second with about 5.27 M trainable parameters. Overall,
our method is competitive in terms of real-time perfor-
mance.
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Fig. 8 Qualitative comparison of proposed method with other existing
approaches on CDnet2014 dataset. (Columns 3–9 display the results of
Zovkovik [62], PAWCS[63],DeepBS [64],RT-SBS-V2 [65], SPAMOD
[11], BSUV-Net 2.0 [61] and our method, respectively.)

Fig. 9 Visual results on AICD dataset

Table 7 Speed comparison of different methods

Method FPS #Param

FgSegNet [16]-2018 18 2.60 M

3CDC [60]-2021 25 0.13 M

BSUV-Net 2.0 [61]-2021 6 NA

MFCN [17]-2018 27 20.83 M

RT-SBS [65]-2020 25 NA

SASCNet [45]-2020 10 NA

SPAMOD [11]-2021 13 35.1 M

our 24 5.27 M

Conclusion

In this paper, we propose a novel end-to-end video
foreground detection approach called Interactive Spatio-
temporal Feature Learning Network (ISFLN). Our innova-
tions are the design of a two-path spatio-temporal infor-
mation extraction module (TSIEM), and a multi-level fea-
ture enhancement module (MFEM). The design of TSIEM
strengthens the learning between different types of infor-
mation, and obtains sufficient spatio-temporal difference
knowledge from multi-level and multi-scale aspects, which
is extremely key for video object detection tasks. Further,
fine coding features are captured by MFEM and shared with
the decoder to enhance feature expression ability to get more
accurate detection results. We demonstrate the effectiveness
of designed modules by ablation experiments. Moreover,
compared with the existing advanced approaches in LASI-
ESTA, CDnet2014, INO, and AICD datasets, ISFLN can
achieve better detection results, and also achieves a compet-
itive processing speed (24 fps). In future work, we will try
to enhance the learning of spatial features by incorporating
edge label training, and perform in-depth research on scene
independence analysis.
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