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Abstract
As a state-of-the-art novelty detection method, Kernel Null Foley–Sammon Transform (KNFST) could identify multiple
known classes and detect novelties from an unknown class via a single model. However, KNFST only captures the global
information of the training set. The local geometrical structure is neglected. In this paper, a manifold is incorporated into
KNFST to solve this issue. First, we use manifold graphs to depict the local structure for within-class scatter and total scatter.
Second, the training samples from the same class are mapped into a single point in null space via null projected directions
(NPDs). The proposed method can overcome the weakness of KNFST caused by ignoring local geometrical structure in the
class. The experimental results on several toy and benchmark datasets show that manifold learning novelty detection (MLND)
is superior to KNFST.

Keywords Manifold learning · Novelty detection · Null projected directions · Gesture recognition

Introduction

In many real-world applications, a test sample may be from
an unknown class that is not available in the training set.
These samples can be regarded as novelties or anomalies for
known classes as they are far away from the distributions of
known classes [1,2]. The problem is termed as novelty detec-
tion or anomaly detection. When the known classes are more
than one, it is called multi-class supervised novelty detection
[3,4]. Novelty detection is widely used in the community of
pattern recognition. For instance, traffic police wants to find
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the illegal traffic flow [5], ophthalmologist wants to detect
retinal damage [6], cyber security expert needs to monitor
cyber-intrusion from massive visiting [7,8], engineer needs
to analyze big data in Internet of Things (IoT) [9], abrupt
changes in air temperature [10], unknown pixels in hyper-
spectral image [11], and medical ultrasound image analysis
[12,13] to name just a few. During the past several decades,
theworks about supervised novelty detectionmainly focus on
the training set that only contains one known class [14,15]. It
is called one-class classification [16,17]. The one-class clas-
sifier can only tell us whether a test sample is normal or not
[18,19].When the training set contains more than one known
class, it requires to treat all known classes as a superclass [20]
or learn several one-class classifiers [21]. For the former way,
it still requires to learn a multi-class classifier to tell us which
class a test sample is from if it is not a novelty.

Kernel null Foley–Sammon Transform (KNFST) [3] can
dealwith one-class classification aswell asmulti-class super-
vised novelty detection. For multi-class supervised novelty
detection, KNFST only learns a single model which can
tell us a test sample whether is a novelty or which class it
comes from if it is a normal sample. KNFST maps the sam-
ples from the same class to a single point in reproducing
kernel Hilbert space (RKHS) via null projection directions.
Let c represent the number of classes. Then, the label of a
test sample is determined by the minimum distance to the
mapping points. If the distances to mapping points are all
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very large, it is a novelty. However, KNFST can only cap-
ture the global information and neglects the local geometrical
structure. It may fail when the local geometrical structure is
complex, which also exists in classification [22] or ordinal
regression [23]. In order to address this issue, we propose
a manifold learning-novelty detection (MLND) method in
which a manifold graph is introduce to regularize within-
and between-class scatter matrices, respectively. The mani-
fold graph is used to depict local geometrical structure. The
experimental results demonstrate that MLND is superior to
KNFST on several toy and benchmark datasets. The main
contributions are summarized as following three points.

– First, we introduce a manifold into within-class scatter
and total scatter to depict local structure in class for
Foley–Sammon transform (or Fisher discriminant analy-
sis).

– Second, a new criteria for the projected directions is pro-
posed, which requires the regularizedwithin-class scatter
to be zero and the regularized total scatter to be greater
than zero in the projected space.

– Third, the manifold regularized Foley–Sammon trans-
form is used as a detect novelty method and evaluated on
several toy and benchmark datasets.

The rest of this paper is organized as follows. A simple
reviewof supervised novelty detection and kernel null Foley–
Sammon transformation (KNFST) is provided in “Related
work”. Amanifold regularized null Foley–Sammon transfor-
mation (NFST) is proposed in “Manifold regularizedNFST”.
In “Experiments and simulations”, we evaluate manifold
learning-novelty detection (MLND) on two toy datasets,
eight benchmark datasets, and Gestures dataset. The last sec-
tion is “Discussion and conclusion”.

Related work

A review of supervised novelty detection

The supervised novelty detection is used to predict the test
samplewhether is fromanunknownclass by learning amodel
from a training set which consists of massive labelled sam-
ples.When the labelled samples follow i.i.d. assumption, they
can be considered to be from the same class and the super-
vised novelty detection is a one-class classification problem
[2]. For instance, Scholkopf et al. [16] proposed to find a
decision hyperplane which could make the minimum mar-
gin between the samples in reproducing kernel Hilbert space
(RKHS) and the origin bemaximized; David and Robert [17]
proposed to find a hypersphere which could enclose most
of the training samples with minimum volume; Ruff et al.
[24] proposed a one-class classifier based on deep learning;

Iosifidis et al. [25] used extreme learning to do one-class
classification, to name just a few.

When the labelled samples are from a mixture of distri-
butions, they are from several known classes. Then, it is a
multi-class supervised novelty detection problem [3]. Com-
pared with multi-class classification, multi-class supervised
novelty detection can identify whether a test sample is from
an unknown class or which class the test sample is from if
it comes from a known class. One way to solve multi-class
supervised novelty detection is to treat all known classes as
a superclass and learn a one-class classifier to detect the test
sample whether is from an unknown class. If the test sample
is not from an unknown class, thenwe train amulti-class clas-
sifier to predict which class it comes from [20]. Obviously,
this way needs twomodels: a one-class classifier and amulti-
class classifier.Additionally, the one-class classifierwould be
effected by the complex structure of the superclass. Another
way to solve multi-class supervised novelty detection is to
train several one-class classifiers. Each one-class classifier
is associated with a known class [21]. It has many issues to
train severalmodels, such asmore training time,more param-
eters to tune et al. To solve the issues in previous ways, some
researchers proposed to learn a single model that can iden-
tify a test sample whether is from an unknown class and
which class the test sample comes from if it is from a known
class, simultaneously. For instance, Bodesheim et al. [3] pro-
posed a multi-class supervised novelty detection method in
which the samples from the same class aremapped to a single
point in reproducing kernel Hilbert space (RKHS) via null
projected directions (NPDs). Zhang et al. [26] proposed a
semi-supervised version of KNFST and used it in person re-
identification problem. Liu et al. [27] proposed a kernel null
space discriminant analysis for incremental supervised nov-
elty detection. Huang et al. [28] used incremental KNFST in
person re-identification problem. T Ali and Chaudhuri [29]
combined maximum margin metric learning with null space
to do supervised novelty detection. The common ground of
thesemethods is that they all adopt null space skill. However,
null space only considers the global information and neglects
the local geometrical structure. To solve this issue, we pro-
pose a manifold learning-based supervised novelty detection
method in which the local geometrical structure is depicted
by a manifold.

Recap of Kernel null Foley–Sammon transform
(KNFST)

Foley–Sammon transform, also called Fisher transform or
linear discriminant analysis (LDA), maximizes the between-
class scatter and minimizes the within-class scatter, simulta-
neously. Let X j , j = 1, . . . , c represent the set consisting of
the samples which belong to class j ; the Sw, Sb, St represent
the within-class scatter, between-class scatter, and total scat-
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ter matrices, respectively; ϕ ∈ R
D be one direction in the

discriminant subspace. Then, the Fisher discriminant crite-
rion is written as follows.

J (�) = ϕTSbϕ
ϕTSwϕ

. (1)

Maximizing Eq. (1) can be done via solving a generalized
eigenvalue problem as follows:

Sbϕ = λSwϕ. (2)

The eigenvectors ϕ1, . . . , ϕk associated with the largest
eigenvaluesλ1, . . . , λk are selected as the discriminant direc-
tions.

In null Foley–Sammon transform (NFST), the direction
should make the within-class scatter be zero and between-
class scatter be positive. Therefore, Eq. (1) becomes J (ϕ) =
∞, which has the best separability. The solution in NFST
should satisfy

ϕTSwϕ = 0 and ϕT λSbϕ > 0. (3)

The directions satisfying Eq. (3) are called null projection
directions (NPDs). The Eq. (3) is equivalent to

ϕTSwϕ = 0 and ϕT λStϕ > 0. (4)

Here, St is the total scatter, St = Sw +Sb. The samples in
the same class are mapped to a single point due to ϕTSwϕ =
0. An illustration of NFST is shown in Fig. 1.

Figure 1 is a three-class problem. The c1, c2, and c3 are
the mapped points of class 1, class 2, and class 3 in null
space. For a test sample, the associated label is decided by
the minimum distance to the points, c1, c2, and c3. If the test
sample is far away from all points, it comes from an unknown
class.

In both FST and NFST, within-class scatter and between-
class scatter only capture global information andneglect local
geometrical structure. In this paper, we adopt a manifold to
regularize the within-class scatter and between-class scatter
to describe the local structure in a class.

Manifold regularized NFST

Manifold learning for novelty detection

In manifold learning, it assumes that if two data points are
close in the original distribution, they are also close in the
projected subspace. In this paper, we use the neighborhood
preserving embedding (NPE) to describe the local geomet-
rical structure in within-class scatter and total scatter. Then,

we propose a regularized within-class scatter and a regular-
ized total scatter instead of within-class scatter and local total
scatter, respectively.

Definition 1 (Regularized within-class scatter) Given a
dataset X ∈ R

N×D . The associated label is Y (yi ∈
{1, . . . , c}). X j consists of all samples belonging to class
j . The local within-class scatter is defined as

Swreg =
N∑

i=1

⎛

⎝α
(
xi − μ j

) − (1 − α)

⎛

⎝xi −
N∑

p=1

Wi,pxp

⎞

⎠

⎞

⎠

×
⎛

⎝α
(
xi − μ j

) − (1 − α)

⎛

⎝xi −
N∑

p=1

Wi,pxp

⎞

⎠

⎞

⎠
T

.

(5)

Here,W is an adjacency graph. If xp is one of the k-nearest
neighbors of xi and has the same label as that of xi , there is
an edge between xi and xp (Wi,p �= 0); otherwise,Wi,p = 0.

The Eq. (5) can be rewritten as follows

Swreg =
N∑

i=1

⎛

⎝xi − α
1

N j

∑

xp∈X j

xp − (1 − α)

N∑

p=1

Wi,pxp

⎞

⎠

×
⎛

⎝xi − α
1

N j

∑

xp∈X j

xp − (1 − α)

N∑

p=1

Wi,pxp

⎞

⎠
T

.

(6)

Let I be a N × N identity matrix and L be a block diago-

nal matrix whose block size is N j and elements are
1

N j
. The

Swreg = X (α (I − L) + (1 − α) (I − W))

(α (I − L) + (1 − α) (I − W))T X = X
(I − (αL + (1 − α)W)) (I − (αL + (1 − α)W))T XT

holds.
Let Xw = X (I − (αL + (1 − α)W)). Then, the regular-

ized within-class scatter is rewritten as Swreg = XwXT
w.

The weights are computed by minimizing the following
objective function.

min :
∥∥∥∥∥xi −

N∑
j=1

Wi, jx j

∥∥∥∥∥

2

s.t.
N∑
j=1

Wi, j = 1, j = 1, . . . , N .

(7)

The term,
∑

x j∈K NN (xi )&c(x j ) �=c(xi ) Wi, jx j , can be
regarded as the weighted mean of k-nearest neighbors of x j .
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Fig. 1 An illustration of NFST.
The stars, x-marks, and pluses
belong to class 1, class 2, and
class 3, respectively. The left
sub-figure is the original space
and the right-subfigure is null
space. The samples from the
same class in original space are
mapped to a single point in null
space

The details to solve formula (7) can refer to the reference [30].

Definition 2 (Regularized total scatter) Given a dataset
X ∈ R

N×D . The associated label is Y (yi ∈ {1, . . . , c}). X j

consists of all samples belonging to class j . The regularized
total scatter is defined as

Streg =
N∑

i=1

(
β (xi − μ) + (1 − β)

(
xi − μ′))

(
β (xi − μ) + (1 − β)

(
xi − μ′))T (8)

Here, μ′ and μ′
j are defined as Eq. (9) and (10), respec-

tively.

μ′ = 1

Nc

Nc∑

j=1

μ′
j . (9)

μ′
j = 1

N j

∑

xi∈C j

∑

xh∈K NN (xi )

Wi,hxh . (10)

The Eq. (8) can be rewritten as follows:

Streg =
N∑

i=1

(
xi − (

βμ + (1 − β) μ′))

(
xi − (

βμ + (1 − β) μ′))T (11)

The NPDs for regularized within-class scatter and regu-
larized total scatter satisfy the following conditions.

ϕTSwregϕ = 0 and ϕTStregϕ > 0. (12)

Since Swreg is a semipositive definite matrix and can be
represented as Swreg = XwXT

w, we can obtain ϕTXwXT
wϕ =

0 ⇒ (Xw
Tϕ)

T
(Xw

Tϕ) = 0 ⇒ Xw
Tϕ = 0. By multiplying

both sides of the equation from the left with matrix Xw, then
we can obtain XwXw

Tϕ = 0 ⇒ Swregϕ = 0 holds.
On the other hand, the solution of Swregϕ = 0 exactly

satisfies ϕTSwregϕ = 0. The Swregϕ = 0 ⇐ ϕTSwregϕ = 0
holds.

From the above two points, we can obtain ϕTSwregϕ =
0 ⇔ Swregϕ = 0.

Let Zw = {
z|Swregz = 0

}
be the null space of Swreg,

Zt = {
z|Stregz = 0

}
be the null space of Streg, and Z⊥

t be
the orthogonal complement space of Zt . The NPDs satisfy

ϕ ∈ Z⊥
t ∩ Zw. (13)

In order to ensure ϕ ∈ Z⊥
t , each ϕ can be represented as

ϕ = γ1θ1 + γ2θ2 + · · · + λmθm = Qγ . (14)

Here, Q = (θ1, θ2, . . . , θm) and γ = (γ1, γ2, . . . , γm).
Since the Streg is seimipositive definite, the solution of
ϕTStregϕ > 0 is justZ⊥

t (Zt = {
z|Stregz = 0

}
). It means that

the subspaceϕTStregϕ > 0 is just theZ⊥
t . Let θ1, θ2, . . . , θm

be the basis of subspace which is spanned by x1 − (βμ +
(1−β)μ′), . . . , xm − (βμ+ (1−β)μ′) and can be obtained
by principal component analysis (PCA).

SubstitutingEq. (14) intoϕTS′
wϕ = 0, then (Q)TSwreg(Q)

= 0. It is equivalent to the following eigenproblem.

(
QTSwregQ

)
γ = 0. (15)

Due to Xw = X (I − (αL + (1 − α)W)) and Swreg =
XwXT

w, the Eq. (15) can be rewritten as follows.

HHT γ = 0. (16)

Here,H = QTXw = QTX(I−(αL+(1−α)W)). Eq. (16)
is an eigenproblem. After solve Eq. (16), the null projection
directions γ 1, γ 2, . . . , γ l can be obtained from Eq. (14).

The null projection directions γ 1, γ 2, . . . , γ l are associ-
ateddifferent eigenvaluesλ1, λ2, . . . , λl (λi �= λ j ). FromEq.
(16), we can obtain γ T

i HHT = λiγ
T
i , γ T

j HHT = λ jγ
T
j ⇒

γ T
i HHT γ j = λiγ

T
i γ j , γ

T
j HHT γ j = λ jγ

T
j γ j ⇒ 0 =(

λi − λ j
)
γ T
i γ j . Due to λi �= λ j , γ T

i γ j = 0 hols. There-
fore, γ i and γ j are orthogonalized.

In Eq. (14), the matrix Q is obtained from PCA. The
column vectors of Q are orthogonalized. We can obtain
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ϕT
i ϕ j = (

Qγ i

)T (
Qγ j

) = γ T
i Q

TQγ j = γ T
i γ j = 0.

Therefore, the directions obtained from Eq. (14) are orthog-
onalized as well.

LetP be amatrixwhose columns are null projection direc-
tionsϕ1, . . . ,ϕl (l < N ). A test sample x is mapped into null
space via Eq. (17) and scored via Eq. (18).

x� = Px. (17)

Score(x) = min
1≤ j≤c

dist(x�, t j ). (18)

Here, t j is the mapped point of class j in null space. The
Score(x) is the novelty score of x, which reflects the prob-
ability of a test sample from an unknown class. When it is
very large, x is a novelty with high probability.

The procedure to find NPDs is summarized as the follow-
ing Algorithm 1

Algorithm 1 (Manifold Learning for Novelty Detection,
MLND)
Input:

• The training set X and the label Y
• The number of nearest neighbours in manifold
• Parameters α, β

Output:

• NPDs ϕ j , j = 1, . . . , l

1: Compute the regularized within-class scatter and total scatter;
2: Compute the orthonormal basis θ1, θ2, . . . , θm of the subspace Z⊥

t ;

3: Solve the eigenvalue problem Eq. (16) to get γ1, γ2, . . . , γl ;
4: Output the NPDs via Eq. (14).

Compared with null space Foley–Sammon transform
(NFST), the extra cost of MLND includes solving Eq. (7)
and calculating regularized within-class scatter and regular-
ized total scatter. The rest cost of MLND is the same as that
of NFST.

Kernel formmanifold learning for novelty detection

In MLND, it assumes that Swreg is singular. When Swreg is
full rank, the samples are mapped into a reproducing Hilbert
space (RKHS) via kernel trick to avoid the null space Zw

being empty. The mapping of a sample x in RKHS is rep-
resented as Φ(x) where Φ(x) is an implicit function. The
inner product of the mappings of two samples can be cal-
culated via kernel function which is defined as k

(
xi , x j

) =
〈Φ(xi ),Φ(x j )〉, such as Radial Basis Function (RBF) ker-

nel k
(
xi , x j

) = exp
(
−‖xi−x j‖

2σ 2

)
. Obviously, Swreg is a high

dimensional space other than a d × d matrix any more. For
instance, Swreg is a in f × in f matrix when RBF kernel is
adopted.

Let Φ̃(xi ) = Φ(xi ) −
(

β
N

∑N
j=1 Φ(x j ) + 1−β

N

∑N
j=1

∑
xh∈K NN (xi ) Wi, jΦ(xh)

)
, K̃ = (I−(β1N +(1−β)1NW))

K(I − (β1N + (1 − β)1NW))T , X̃ = [Φ(x1), . . . , Φ(xN )],
K be the kernel matrix where K (i, j) = 〈Φ(xi ),Φ(x j )〉.
Then, Streg in RKHS is rewritten as follows

Streg =
N∑

i=1

Φ̃(xi )Φ̃(xi )T . (19)

The eigenvector θ j in high dimensional feature space lies
in the space of Φ̃(x1), . . . , Φ̃(xN ) and there exist coefficients
δ1, j , . . . , δN , j satisfying the following equation.

θ j =
N∑

i=1

δi, j Φ̃(xi ). (20)

The eigenvalues and eigenvectors of Streg satisfy

λ jθ j = Stregθ j . (21)

Then,

λ j Φ̃(xi )T θ j = Φ̃(xi )TStregθ j , i = 1, . . . , l. (22)

SubstitutingEqs. (20) and (21) intoEq. (22),we can obtain

λ j K̃δ j = K̃K̃δ j . (23)

Here, δ j is the vector form of δ1, j , . . . , δN , j and can be
obtained by solving the following eigenvalue problem

λ jδ j = K̃δ j . (24)

Since 〈θ j , θ j 〉 = δTj K̃δ j = λ j 〈δ j , δ j 〉, the orthonormal
basis of Streg in high dimensional space is represented as
follows:

θ̃ j =
N∑

i=1

δ̃i, j Φ̃(xi ). (25)

Here δ̃i, j = λ
− 1

2
j δi, j . Equation (25) can be solved

implicitly. By introducing Eq. (25) and inner products in
reproducing kernel Hilbert space (RKHS), the matrix H is
rewritten as follows.

H = (
(I − (β1N + (1 − β)1NW))Ṽ

)T

K (α (I − L) + (1 − α) (I − W)) . (26)

Here, Ṽ = {θ1, . . . , θ l}. Then, substituting Eq. (26) into
Eq. (16), we can obtain γ j in RKHS. The final null space
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directions in RKHS are obtained by the

ϕ = (
(I − 1N )Ṽ

)
γ j . (27)

Let P = [ϕ1, . . . ,ϕl ]. In kernel MLND, the test sample
x� is mapped into null space through KT

� P. The KT
� is the

vector form of [k(x1, x�); . . . ; k(xn, x�)]. The novelty score
of x� is the minimum distance between the mapped point to
each class. The procedure of kernel MLND is summarized
as Algorithm 2.

Algorithm 2 (Kernel MLND)
Input:

• The training set X and the label Y
• The number of nearest neighbours in manifold
• Parameters α, β

Output:

• NPDs ϕ j , j = 1, . . . , l

1: Compute K ;
2: Solve Eq. (24) to get δ j , j = 1, . . . , l;
3: Obtain the matrix H via Eq. (26);
4: Solve the eigenvalue problem Eq. (16) to get γ 1, . . . , γ N ;
5: Output the NPDs via Eq. (27).

When the parameters α = 1 and β = 1, kernel form
MLND degenerates as KNFST. When α = 0 and β = 0,
the Swreg is just a LLE manifold. Compared with kernel null
space Foley–Sammon transform (KNFST), the extra cost of
MLND includes solving Eq. (7) and the time complexity of
rest part is the same as that of KNFST.

Experiments and simulations

In this section, manifold learning novelty detection (MLND)
will be evaluated on several datasets. Here, we use the ker-
nel MLND. The code of MLND is implemented by Matlab
2018b. To verify the validity of MLND, we compare MLND
with some state-of-the-art null space methods, including
KNFST [3], LocalKNFST [31], andNK3ML[29]. The codes
of KNFST, Local KNFST, and NK3ML are provided by the
authors.

The generalized histogram intersection kernel (HIK) is
used as kernel function in KNFST, Local KNFST, and
NK3ML. For fair comparision, the HIK is used as kernel
function,which is defined as k(xi , x j ) = exp(2κHIK(xi , x j )−
κHIK(xi , xi ) − κHIK(x j , x j ). The κHIK(xi , x j ) is defined as

κHIK(xi , x j ) =
D∑

d=1
min(xi,d , x j,d).

First, we adopt an EMG dataset to demonstrate the effec-
tiveness of MLND on real dataset; then, two toy datasets are
used to further evaluate MLND; lastly several benchmark

datasets which are collected by UCI 1 or Libsvm website
[32] are adopted to further evaluate MLND. The experimen-
tal results are reported in terms of AUC value, ROC curve
and accuracy. The AUC value and ROC curve are used to
evaluate novelty detection methods. The higher AUC value
is, the better the novelty detector is. Accuracy is defined as
the ratio of correctly predicted normal samples to all normal
samples. It is used to measure the classification performance
of multi-class supervised novelty detection for normal sam-
ples.

Experiments on EMG dataset

In this section, we use Gestures, which is an electromyo-
gram signal (EMG) dataset, to verify MLND. The signals
are collected via MYO Thalmic bracelet which is worn on
user’s forarm. The bracelet is equipped with 8 sensors to col-
lect myographic signals simultaneously. The raw signals are
from 36 subjects. Each subject performs 2 series. Each series
contains 6 or 7 basic gestures: hand at rest, hand clenched in
a fist, wrist flexion, wrist extension, radial deviations, ulnar
deviations, and extended palm. In this experiment, we only
consider former six gestures since the extended palm is not
performed in some subjects. An illustration of the signals of
former six gestures is shown in Fig. 2. The label of horizon-
tal axis is the channel which the signal are collected from. A
channel is associatedwith a sensor inMYOThalmic bracelet.

Different from previous gesture recognition work [33],
this paper converts the gesture recognition as a multi-class
supervised novelty detection problem to identify unknown
gesture. Except seven basic gestures, some of the signals are
not marked as basic gestures. In this section, we use hand at
rest, hand clenched in a fist, wrist flexion, wrist extension,
radial deviations, and ulnar deviations as normal classes. The
extended palm and unmarked signals are used as anomalies.
Therefore, the task of Gesture recognition becomes to recog-
nize whether the EMG signal are from basic hand gestures
or which basic hand gesture the EMG signal comes from if it
belongs to one of the basic hand gestures. Obviously, it is a
multi-class supervised novelty detection problem. The ges-
ture recognition can be widely used in robot control [34,35]
and traffic control [36,37].

We set a 200 ms window for sampling. The window over-
laps with a 100 ms step. Then, we generate 30,240 normal
samples (5,040 samples per class) and 10,000 abnormal sam-
ples as novelties. The normal samples are divided into two
parts equally. One part is used as a training set, the other part
and abnormal samples are used as a test set. The features
from eight channels are reorganized as an 800*1 vector.

In MLND, we directly set parameters as (α = 0.5, β =
0.5). The number of nearest neighbors in Definition 1 and

1 https://archive.ics.uci.edu/ml/index.php.
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Fig. 2 The signals of hand gestures. In the first row, the signals are from
hand at rest, hand clenched in a fist, and wrist flexion, respectively. In
the second row, the signals are from wrist extension, radial deviations,

and ulnar deviations, respectively. The ch1 to ch8 are associated with
eight sensors on MYO Thalmic bracelet

Definition 2 is directly set as 20 to avoid extra cost to tune
parameters. To avoid randomness, we repeat the experiment
30 times. The results are reported as mean ± std. form in
terms of AUC value and accuracy. The results are reported
in Table 1.

From Table 1, it can be found the average AUC value
of MLND reaches 0.9251 which is higher than KNFST,
Local KNFST, and NK3ML; the average accuracy ofMLND
reaches 93.87% which is also higher than KNFST, Local
KNFST, and NM3ML. The ROC curve of one trail is drawn
in Fig. 3.

From Fig. 3, the ROC curve of MLND is still superior
to that of KNFST, Local KNFST, and NK3ML. MLND per-

forms better than KNFST, Local KNFST, and NK3ML on
Gesture.

Furthermore, we also consider the influence of different
parameter k in Definitions 1 and 2 on the performance of
MLND. The parameter k is in the range from 10 to 100
steps by 10. Here, the parameters α and β are both set as
0.5 directly. The curve between AUC value and the param-
eter k is shown in the left sub-figure of Fig. 4. The curve
between accuracy and the parameter k is shown in the right
sub-figure of Fig. 4.

From the results in Fig. 4, it can be found that both
AUC value and accuracy decrease with the increasing of the
number of k nearest neighbors in MLND when k > 30.
The reason is that the manifold is used to depict a small

Table 1 The experimental
results of gestures recognition

KNFST Local KNFST NK3ML MLND

AUC value 0.8919±0.0034 0.8986±0.0041 0.9152±0.0047 0.9251±0.0051

Acc. (%) 90.21±0.19 90.73±0.27 91.79±0.23 93.87±0.37
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Fig. 3 The AUC curve of Gestures. The greed dashed, dotted, dashdot,
and red dashed represent the ROC curves of KNFST, Local KNFST,
NK3ML, and MLND respectively

region. When the neighborhood is too large, the manifold
is invalid. When k = 20, the AUC value reaches the peak
(AUC = 0.9152). When k = 30, the accuracy reaches the
peak (accuracy = 94.65%). In our experience, the param-
eter k in MLND cannot be set too large. In the following
experiments, the parameter k is set as 20 directly.

Experiments on toy datasets

In this subsection, we will evaluate MLND on two toy
datasets. The first one contains 3 normal classes and the sec-
ond one contains 2 normal classes. In toy 1, the samples in
X j , j = 1, 2, 3 follows the below distributions:

X j = N j . (28)

Here, N1 ∼

(
[0 0],

[
0.52 0
0 1.252

])
,

N2 ∼

(
[2 0],

[
0.52 0
0 1.252

])
,N3 ∼

(
[4 0],

[
0.52 0
0 1.252

])
.

An illustration of toy 1 is shown in Fig. 5a.
In toy 2, the samples in X j , j = 1, 2 follows the below

distributions:

X j = N j +
[
1 − x3i,2

25
+ ε

]
. (29)

Here, N1 ∼

(
[0 0],

[
22 0
0 22

])
, N2 ∼

(
[3 3],

[
22 0
0 22

])
,

ε ∼ N
(
0, 0.252

)
. An illustration of toy 2 is shown in Fig. 5b.

In toy 1, we generate 600 samples in the training set (200
samples per class) and 2000 samples in the test set (500 sam-
ples per class and 500 novelties). In toy 2, we generate 400
samples in the training set (200 samples per class) and 1500
samples in the test set (500 samples per class and 500 novel-
ties). To refrain the randomness, we repeat the experiments
30 times. The AUC value and accuracy are reported in the
form of mean ± std. in Table 2.

In Table 2, the sixth column represents the results of
MLND via fine-tuned parameters α, β. The parameters α, β

are tuned via grid search in the range from 0.1 to 1 stepped
0.1. The seventh column of Table 2 represents the results of
MLND with fixed parameters α = 0.5, β = 0.5.

For Toy 1, the average AUC value of MLND is 0.9589
when tuning parameters α, β via grid search and is 0.9492
when α = 0.5, β = 0.5. For Toy 2, the averageAUCvalue of
MLND is 0.9314when tuning parametersα, β via grid search
and is 0.9249when α = 1, β = 1. The averageAUCvalue of

Fig. 4 The performance with different parameter k in MLND. Left: the curve between the AUC value and the parameter k; right: the curve between
the accuracy and the parameter k
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Fig. 5 The illustration of toy datasets. In a, the samples from class 1, 2, and 3 are denoted as pluses, stars, and x-marks, respectively; the novelties
are denoted as circles. In b, there are two normal classes in which the samples are denoted as pluses and stars, respectively; the circles are novelties

Table 2 The experimental results of toy datasets

KNFST Local KNFST NK3ML MLND

Fine-tuned α, β α = 0.5, β = 0.5

Toy 1

AUC value 0.9159±0.0026 0.9250±0.0031 0.9398±0.0023 0.9589±0.0042 0.9492±0.0047

Acc. (%) 92.17±0.54 92.53±0.67 94.01±0.57 96.71±0.63 95.17±0.58

Toy 2

AUC value 0.8977±0.0034 0.9074±0.0029 0.9165±0.0033 0.9314±0.0045 0.9249±0.0051

Acc. (%) 90.34±0.61 90.43±0.52 92.53±0.64 93.47±0.72 93.28±0.67

MLND is higher than KNFST, Local KNFST, and NK3ML
even the parameters are directly set as α = 0.5, β = 0.5.

For Toy 1, the average accuracy ofMLND is 96.71%when
tuning parameters α, β via grid search and is 95.17% when
α = 0.5, β = 0.5. For Toy 2, the average accuracy ofMLND
is 93.47% when tuning parameters α, β via grid search and
is 93.28% when α = 0.5, β = 0.5. The average accuracy of
MLND is higher than KNFST, Local KNFST, and NK3ML
even the parameters are directly set as α = 0.5, β = 0.5 as
well.

This is because MLND considers both global information
and local structure in class. The ROC curves of Toy 1 and
Toy 2 are shown in Fig. 6.

From Fig. 6, we can obtain the same conclusion that is
from AUC value and accuracy for Toy 1 and Toy 2.

Experiments on benchmark datasets

In this subsection, we will compare MLND with KNFST,
Local KNFST, and NK3ML on several benchmark dataset
which are collected fromUCI repository and Libsvmwebsite
[32]. The details of these datasets are listed in Table 3.

These datasets are reorganized to suit for evaluating
multi-class supervised novelty detection. For DNA, protein,
satimage, and shuttle, we remove a class from the training
set and add the samples from this class into a test set for
testing. For pendigits poker, SVHN, and usps, we remove
five classes from the training set and add the samples from
these classes into the test set for testing. The parameters in
MLND is directly set as α = 0.5, β = 0.5 and k = 20.
The AUC value and accuracy are reported in Tables 4 and 5,
respectively.

In Tables 4 and 5, the last row is the win-loss-tie (W-L-
T) of AUC value and accuracy, respectively. The MLND is
used as a based method. From Table 4, it can be found that
the AUC value of MLND is higher than that of KNFST on
eight datasets, Local KNFST on eight datasets, and NK3ML
on seven datasets. From Table 5, it can be found that the
accuracy of MLND is higher than that of KNFST on eight
datasets, Local KNFST on eight datasets, andNK3MLon six
datasets. The MLND is superior to KNFST, Local KNFST,
and NK3ML on most of these benchmark datasets.
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Fig. 6 The ROC curves of toy datasets. a Toy 1; b Toy 2. The green dashed, dotted, dashdot, red dashed, and magenta dotted lines represent
the ROC curves of KNFST, Local KNFST, NK3ML, MLND with fine-tuned parameters, and MLND with fixed parameters (α = 0.5, β = 0.5),
respectively

Table 3 The details of
benchmark datasets

Datasets #Classes #Training samples (classes) #Test samples (classes) #Features

DNA 3 2000 1186 180

Protein 3 17,766 6621 357

Satimage 6 4435 2000 36

Shuttle 7 43,500 14,500 9

Pendigits 10 7494 3498 16

Poker 10 25,010 1,000,000 10

SVHN 10 73,257 26,032 3072

usps 10 7291 2007 256

Table 4 The AUC value results of benchmark datasets

Datasets KNFST Local KNFST NK3ML MLND

DNA 0.8623 0.8773 0.8832 0.8907

Protein 0.8359 0.8438 0.8542 0.8601

Satimage 0.9368 0.9342 0.9439 0.9397

Shuttle 0.7987 0.8051 0.8115 0.8179

Pendigits 0.8907 0.8832 0.8944 0.9073

Poker 0.8347 0.8215 0.8279 0.8369

SVHN 0.7853 0.7974 0.8093 0.8164

USPS 0.9304 0.9357 0.9423 0.9546

Avg. 0.8593 0.8622 0.8708 0.8779

W-L-T 0-8-0 0-8-0 1-7-0 –

Discussions and conclusion

In this paper, we propose a manifold learning-based novelty
detection method. The manifold learning novelty detection
(MLND) can be regarded as an improvement of kernel null

Table 5 The accuracy results of benchmark dataset

Datasets KNFST Local KNFST NK3ML MLND

DNA 86.73 87.14 89.03 91.31

Protein 84.34 85.47 86.63 87.74

Satimage 94.31 93.92 95.44 94.97

Shuttle 80.23 79.87 83.11 82.91

Pendigits 90.35 90.93 90.78 91.69

Poker 83.58 83.31 84.07 85.94

SVHN 79.37 81.09 82.36 84.15

USPS 94.06 95.13 95.89 96.93

Avg. 86.62 87.1 88.41 89.45

W-L-T 0-8-0 0-8-0 2-6-0 –

space Foley–Sammon transformation (KNFST). In MLND,
first we introduce a manifold into within-class scatter and
total scatter to depict the local geometrical structure in class;
then we map the samples from the same class into a single
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point via null projection directions. Compared with KNFST,
MLND considers both global information and local geomet-
rical structure in the class. Therefore, MLND can overcome
the weakness of KNFST caused by ignoring local geo-
metrical structure in the class. We evaluate MLND on an
EMG Gesture dataset, two toy dataset and eight benchmark
datasets. The experimental results demonstrate MLND is
superior to KNFST and its two improved methods: Local
KNFST and NK3ML.
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