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Abstract
Precise prediction on vacant parking space (VPS) information plays a vital role in intelligent transportation systems for it
helps drivers to find the parking space quickly to reduce unnecessary waste of time and excessive environmental pollution.
By analyzing the historical zone-wise VPS data, we find that for the number of VPSs, there is not only a solid temporal
correlation within each parking lot, but also an obvious spatial correlation among different parking lots. Given this, this paper
proposes a hybrid deep learning framework, known as the dConvLSTM-DCN (dual Convolutional Long Short-TermMemory
with Dense Convolutional Network), to make short-term (within 30 min) and long-term (over 30 min) predictions on the
VPS availability zone-wisely. Specifically, the temporal correlations of different time scales, namely the 5-min and daily-
wise temporal correlations of each parking lot, and the spatial correlations among different parking lots can be effectively
captured by the two parallel ConvLSTM components, and meanwhile, the dense convolutional network is leveraged to further
improve the propagation and reuse of features in the prediction process. Besides, a two-layer linear network is used to extract
the meta-info features to promote the prediction accuracy. For long-term predictions, two methods, namely the direct and
iterative prediction methods, are developed. The performance of the prediction model is extensively evaluated with practical
data collected from nine public parking lots in Santa Monica. The results show that the dConvLSTM-DCN framework can
achieve considerably high accuracy in both short-term and long-term predictions.

Keywords Vacant parking space availability · Deep Learning · ConvLSTM · Dense Network

Introduction

Parking is a headache for drivers. It is difficult for drivers to,
frequently, find a vacant parking space (VPS) quickly after
arriving at their destination. It takes 3–15 min for drivers
to find a VPS on average [1]. Drivers looking for park-
ing account for high percentages of traffic congestion [2].
Cruising the parking not only increases the traffic flow by
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25–40% [3], it also results in increased exhaust emissions.
Many intelligent parking assistant systems have been devel-
oped to provide real-time VPS locations to ease traffic issues
[4–8]. Equipped with sensor devices and surveillance equip-
ment, these systems collect and display the numbers of VPSs
in real time to help drivers. However, real-timeVPS informa-
tion is not satisfactory, because the number ofVPSs in a given
parking lot is likely to have changed by the time the driver has
arrived. Consequently, accurateVPS prediction is considered
amore promising technology as it enables drivers to learn the
VPS availability in advance. In view of this, recently more
research has been reported on VPS availability predictions.
These works can be divided into two categories, namely the
statistical learning model-based prediction methods and the
Machine Learning (ML) andDeep Learning (DL)-based pre-
diction methods.

Statistical learning model-based prediction methods
Assuming that the processes of vehicle arrival and departure
follow the Poisson distributions, Caliskan et al. [9] employed
the continuous-time homogeneous Markov model to pre-
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dict the number of VPSs. Xiao et al. [10] employed the
continuous-time Markov M/M/C/C queue model to effec-
tively estimate the arrival and departure rates of vehicles,
with which the number of VPSs was further estimated. Cal-
icedo et al. [11] proposed a centralized system to estimate
the number of VPSs according to the request allocation and
simulated parking duration of the discrete Gamma distribu-
tion. However, these statistical learning models were highly
dependent on the assumptions of arrival and departure pro-
cesses. Therefore, they can hardly be applied to parking lots
with rich time-varying statistical characteristics.

ML/DL-based prediction methods By leveraging the incred-
ible learning ability of ML/DL models, some ML/DL-based
methods have been proposed to predict the VPS availabili-
ties. In [12], an Auto-Regressive Integral Moving Average
(ARIMA) model was proposed to predict the unoccupied
parking space. And in [13], three ML models were lever-
aged to predict the number of VPSs: Regression Tree, Back
Propagation Neural Network (BPNN), and Support Vector
Machine (SVM). Ji et al. [14] put forth a short-term available
parking space prediction model based on Wavelet Neu-
ral Networks (WNN). In [15], multi-dimensional features,
including historicalVPS information,weather condition, and
traffic data,were uploaded to aBayesianRegularizationNeu-
ral Network (BRNN) to predict the VPS availability. Fan et
al. [16] proposed an SVR model whose essential parameters
were fine-tuned by a fruit fly optimization algorithm to pre-
dict the number of VPSs. In [17], an extensively fine-tuned
Long Short-TermMemory (LSTM) model was developed to
predict the number of VPSs.

The aforementioned ML/DL-based methods provided
good predictions, but only made use of the temporal correla-
tion of the historical data in the single target parking lot and
ignored the spatial correlation among multiple parking lots
within the same zone. Althoughmethods proposed in [18,19]
took the spatial-temporal correlation into consideration, nev-
ertheless, they likewise only predicted the VPS availability
of a single rather than multiple parking lots in the same zone.

Motivated by the above, in this paper, a hybrid DL frame-
work named dConvLSTM-DCNwhich involves two parallel
convolutional LSTM networks (ConvLSTMs) [20], a two-
layer linear network and a Dense Convolutional Network
(DCN) [21], is proposed to make zone-wise predictions on
VPS availability for all parking lots in the zone simultane-
ously. This work is a further deep extension of our previous
work [22]. Specifically, the improvements are threefold.
First, we improve the model by developing the parallel dual-
ConvLSTMs (dConvLSTM) to capture the recent and daily
temporal correlations, respectively. Second, we build a meta-
info feature extraction component to utilize the meta-info
consisting of the day of the week, the hour of the day, the
minute of the hour and weekday/weekend, since the number

of VPSs shows an obvious daily periodicity. Third, two dif-
ferent long-term prediction methods, namely the direct and
iterative prediction methods, are investigated and compared
in this work.

The main contributions of this paper are summarized as
follows:

– We analyze both the temporal correlation of the historical
VPS information in each parking lot and the spatial cor-
relation among all the parking lots in the same zone. The
spatial–temporal correlation imposes a great significance
on the prediction model.

– We propose the novel dConvLSTM-DCN framework to
predict the numbers of VPS for all parking lots within
the target zone simultaneously. To be specific, the paral-
lel dual-ConvLSTM component is developed to capture
the spatial-temporal correlations of historical VPS infor-
mation, the two-layer linear network is used to extract
the meta-info features, and the dense connection pattern
is leveraged to further improve the propagation and reuse
of features in the prediction process.

– The temporal correlations of two different scales, namely
the 5-min temporal correlation and daily-wise temporal
correlation, are captured by the dConvLSTMcomponent.
In addition, two different long-term prediction methods,
namely the direct and iterative prediction methods, are
investigated to further improve the prediction accuracy.

– Sufficient comparative experiments have been conducted
to evaluate the effectiveness of the proposed prediction
method. The results show that the dConvLSTM-DCN
framework is capable of making both short-term predic-
tions and long-term predictions, with a considerably high
accuracy.

The rest of this paper is organized as follows: The section
“Methodology” describes the detailed dConvLSTM-DCN-
based predictionmethod. The section “Experimental results”
presents the comparative experiment results and analysis.
Finally, the section “Conclusion” concludes the paper.

Methodology

In this section, the novel dConvLSTM-DCN framework is
introduced in detail and the proposed VPS availability pre-
diction method is presented.

Data description and preprocessing

The data were collected from nine public parking lots (St1–
St9) in Santa Monica, California, USA (longitude range
[−118.499378, −118.49372], latitude range [34.019575,
34.01289]) from 7:00 on May 01, 2018 to 21:50 on June
11, 2018 [23]. The number of VPSs was collected every 5
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min, so that a total of 11987 historical data were obtained in
each parking lot.

The target zone is divided into H×W grids, each of which
is 100m× 100m (Fig. 1). After the division, each parking lot
is distributed in a grid which has at most one parking lot. For
the grid without parking lot, it can be regarded as a parking
lot with zero VPS. Then, the number of VPSs in this zone at
time t is denoted as

Dt =

⎡
⎢⎢⎢⎢⎣

d(1,1)
t d(1,2)

t · · · d(1,W )
t

d(2,1)
t d(2,2)

t · · · d(2,W )
t

...
...

. . .
...

d(H ,1)
t d(H ,2)

t · · · d(H ,W )
t

⎤
⎥⎥⎥⎥⎦

, (1)

where each element in the matrix, denoted as d(h,w)
t , h ∈

[0, H ], w ∈ [0,W ], is the number of VPSs in grid (h, w).
All the data were scaled within the range of [0,1] by the

Min–Max normalization.
Next, the preliminary analysis of the spatial–temporal cor-

relations of the historical VPS information is conducted. Due
to space limitations, only the spatial–temporal correlation
analysis results of the parking lot S7 are present. However,
it should be noted that the spatial–temporal analysis method
is applicable to all the other parking lots.

Temporal correlations

Figure 2a shows the dynamic temporal characteristics of
number of VPSs of S7, where x-axis represents the num-
ber of time intervals and y-axis represents the number of
VPSs. As can be seen from the figure, the number of VPSs
varies with a strong regularity. Figure 2b shows the temporal
autocorrelation of parking lot S7, where x-axis represents
the time interval τ and y-axis represents the autocorrelation
coefficient r which can be calculated as

r = 1

(T − τ)

T∑
t=1+τ

dh,w
t

dh,w
t−τ

, (2)

where T is the number of time intervals of the dataset and
(h, w) is the two-dimensional index of the given grid. It can
be observed from the figure that r is always greater than 0.6,
indicating that the number of VPSs of a given parking lot is
positively correlated in the time domain. This suggests that
the number of VPSs can be effectively predicted through
historical data. Moreover, the data in adjacent time periods
are more correlated than those farther apart in time.

Spatial correlations

To analyze the spatial correlation between any two parking
lots in the target zone, the correlation coefficient matrix is

calculated. Each element in this matrix is the Pearson corre-
lation coefficient which can be used to measure the spatial
correlation between the corresponding two parking lots, and
is defined as follows:

ρ = cov(d(i, j), d(i ′, j ′))

σd(i, j)σd(i ′, j ′)
, (3)

cov(·) is the covariance function, and σ represents the stan-
dard deviation operation. The spatial correlations among
St1-St9 as shown in Fig. 2c can be clearly seen that there
exists obvious spatial correlations between parking lots of
different areas. This calculation can be employed to increase
the accuracy of predictions.

The preliminary spatial–temporal analysis on historical
number ofVPSs verifies that the number ofVPSs has a strong
spatial–temporal correlation and is predictable.

Predictionmodel

Next, we present the dConvLSTM-DCN framework which
consists of four components, namely the two ConvLSTM
components, meta-info feature extraction component, and
the DCN component (Fig. 3). The first captures the spatial–
temporal correlations, the second is used to extract features
in meta information, and the last is used to extract features
from the output of the dual-ConvLSTM component.

Spatio-temporal correlations modeling

It is well known that although a Convolutional Neural Net-
work (CNN) has a strong spatial modeling ability, a CNN
cannot accurately extract the temporal correlations. Instead,
LSTM [24] can establish the temporal correlations for time
series data. It is natural to integrate CNN and LSTM together
to form a three-layer ConvLSTM network to simultaneously
capture the spatio-temporal correlations.

The ConvLSTMmodel is a special Recurrent Neural Net-
work (RNN). First, like all other RNNs, a ConvLSTM allows
previous outputs to be used as inputs while having hidden
states. The connections between nodes form a directed or
undirected graph along a temporal sequence, which is the
most important characteristics of RNN. Moreover, different
from traditional RNNs, ConvLSTM also has the salient fea-
ture of CNN, that is, the hidden layers include layers that
perform convolutions. Figure 4 shows the internal structure
of aConvLSTMcell.AConvLSTMcell is controlled by three
gates, namely the forget gate fg , the input gate ig , and the
output gate og . Specifically, whenever a new input arrives
at a ConvLSTM cell, the information carried by the input
will be stored in the memory cell if the input gate ig is open.
Similarly, information held in the current memory cell will
be forgotten if the forget gate fg is open. The output gate
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Fig. 1 Distribution of the
parking lots

og controls the value of the final output and determines the
final hidden state. The operation of a ConvLSTM cell over
the input Dt at any given time point t can be defined as

ig =σ(wdi ⊗ Dt+whi ⊗ Ht−1+wci � Ct−1+bi ),

fg =σ(wd f ⊗ Dt+wh f ⊗ Ht−1+wc f � Ct−1+b f ),

Ct = ig � tanh(wdc ⊗ Dt+whc ⊗ Ht−1+bc)

+ fg � Ct−1,

og =σ(wdo ⊗ Dt+who ⊗ ht−1+wco � Ct+bo),

Ht =og � tanh(Ct ),

(4)

where σ(·) is the activation function, ⊗ is the convolution
operation, � is the dot product operation, tanh(·) is a hyper-
bolic tangent function of the nonlinear excitation function,
w(·) and b(·) are weights and bias to be learned, respectively,
and Ct and Ht are three-dimensional tensors stored in the
memory cell and final hidden state at time step t , respec-
tively.

Two ConvLSTM blocks are built to capture the recent
and daily temporal correlations, respectively, as shown in
Component 1 and 2 in Fig. 3. Component 1 (consists of m ×

k ConvLSTM cells) and Component 2 (consists of n × k
ConvLSTM cells) are used to extract the spatial-temporal
correlations among all parking lots based on m 5-min scale
and n daily scale historical observations, respectively. For
each prediction,m 5-min scale recent historical observations,
denoted as

Xrecent = [
Dtc−(m−1)δ,Dtc−(m−2)δ, . . . ,Dtc

]

are input into Component 1 where δ = 5 min is the time step
size for recent temporal correlations, and tc is the current
time. The obtained output Or ∈ R

m×H×W is written as

Or = Htc ⊕ · · · ⊕ Htc−(m−2)δ ⊕ Htc−(m−1)δ,

where ⊕ is the concatenation operation.
Moreover, n daily scale observations denoted as

Xdaily = [
Dtc−(n−1)δd ,Dtc−(n−2)δd , . . . ,Dtc

]
,

where δd = 24 × 12 × δ is the daily scale time step size are
input into Component 2 to capture the daily scale temporal
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Fig. 2 The spatial and temporal dynamics of parking space

correlations. The corresponding output is

Od = Htc ⊕ · · · ⊕ Htc−(n−2)δd ⊕ Htc−(n−1)δd ,

and Od ∈ R
n×H×W .

Meta-info feature extraction

It can be read from Fig. 2a that the number of VPSs shows an
obvious daily periodicity, which implies that the information
of hour of day and day of week is of clear significance to the
predictions. In view of this, the meta-info feature extraction
component is involved in the model. Concretely, the input
time & date is extracted into four features. For instance,

the information of 7:15:00 05/11/2021 can be extracted as
a four-dimensional meta-info vector m which consists of
the day_of_week (Friday), hour_of_day (7),minute_of_hour
(15) and is_weekend (no).

Considering that there are H × W grids in each feature
map, m needs to be reshaped, such that the output of the
component Om ∈ R

H×W . For this purpose, m is first fed
into a two-layer linear network and we obtain

om = σ(wm,2σ(wm,1m + bm,1) + bm,2), (5)

where wm,i , bm,i , i = 1, 2 are the weights and biases of
the i th linear function, respectively, and om ∈ R

HW×1.

Therefore, after a Reshape function, the final output of
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Fig. 3 Framework of the proposed model. There are four components
in the model, i.e., the two ConvLSTM components for spatial-temporal
feature extraction (“Spatio-temporal correlations modeling”), the meta-

info feature extraction component (“Meta-info feature extraction”), and
the DCN component (“Densenet for feature learning”)

Fig. 4 Internal structure of a ConvLSTM cell
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the meta-info feature extraction component is Om,Om ∈
R

H×W .

Densenet for feature learning

The outputs of the two ConvLSTMs and meta-info feature
extraction component are concatenated together, denoted as
O0 = Or ⊕Od ⊕Ot , and fed into DCN. Due to its compact
internal represents and reused feature redundancy, DCNmay
be a promising feature extractor [21].Given this,DCN is used
for feature learning in our work.

The DCN component, as shown in component 4 of Fig. 3,
consists of six blocks, namely Dense Block 1, Transition
Layer 1, Dense Block 2, Transition Layer 2, Dense Block 3,
and a composite function of three consecutive operations,
i.e., batch normalization (BN), a rectified linear activa-
tion (ReLU), and a 1 × 1 convolution (Conv), denoted
as BN-ReLU-Conv(1 × 1). Each Dense Block consists of
l Denselayers. Each Denselayer has the structure of BN-
ReLU-Conv(1 × 1)-BN-ReLU-Conv(3 × 3) and is directly
connected to all its subsequent layers. Thismeans thatDense-
layer l receives the outputs of all preceding Denselayers, i.e.,
O0,O1, . . . ,Ol−1. Therefore, the output of the lth Dense-
layer can be expressed as

Ol = fl(O0 ⊕ O1 ⊕ · · · ⊕ Ol−1), (6)

where fl(·) represents the composite function of BN-ReLU-
Conv(1 × 1)-BN-ReLU-Conv(3 × 3). The transition layers
do convolution and pooling. The transition layers used in our
model are composed of a BN layer and a 1 × 1 Conv layer
followed by a 2 × 2 average pooling layer.

Finally, after the sigmoid activation function, the final pre-
diction result can be generated.

Predictionmethods

We use the gridded two-dimensional historical VPS matrix
sequence [Dtc−(m−1)δ,Dtc−(m−2)δ, . . . ,Dtc ] to simultane-
ously predict the number of VPSs for all the parking lots
in the target zone at time tc + hδ, denoted as Ŷ tc+hδ , where
hδ represents the predicted time step. A prediction over the
period of time that no more than 30 min, i.e., hδ ≤ 30 min,
is defined as a short-term prediction. Otherwise, we call it a
long-term prediction, as shown in Fig. 5.

Two fundamental prediction methods, namely the single-
step direct andmulti-step iterative prediction, are put forward
to make short- and long-term predictions. Concretely, in
single-step direct predictions, the result Ŷ tc+hδ is directly
predicted by using m historical observation data. While in
multi-step iterative prediction methods, Ŷ tc+δ is first pre-

dicted with

[Dtc−(m−1)δ,Dtc−(m−2)δ, . . . ,Dtc ]

by single-step direct predictions. Then, Ŷtc+2δ is predicted
with [Dtc−(m−2)δ, . . . ,Dtc ,Ytc+δ]. After that, Ytc+2δ is fur-
ther used to iteratively predict Ytc+3δ , and so on.

Experimental results

Experimental setup and evaluation indicators

The Mean Absolute Error (MAE), Mean Absolute Percent-
age Error (MAPE), and Root Mean Square Error (RMSE)
are adopted to measure the accuracy of the predicted val-
ues. Specifically, MAE is the average of the absolute errors
between the predicted and real values. MAE can avoid the
problem that the positive and negative errors cancel each
other out, so it can accurately reflect the actual prediction
errors. MAE can be calculated as follows:

MAE = 1

T

T∑
t=1

∣∣∣y(h,w)
t − ŷ(h,w)

t

∣∣∣, (7)

where y(h,w)
t and ŷ(h,w)

t are the actual and predicted numbers
of VPSs of grid (h, w) at time t , respectively, and T stands
for the time step.

MAPE measures the percentage error of the prediction in
relation to the actual values and usually expresses the accu-
racy as a ratio defined by the formula

MAPE = 100%

T

T∑
t=1

∣∣∣y(h,w)
t − ŷ(h,w)

t

∣∣∣
y(h,w)
t

. (8)

It should be stated that in some records, the actual numbers
of VPSs of St3 and St5 are zeros, which leads to infinite
MAPEs. In these cases, SMAPE (Symmetric MAPE) that is
defined as

SMAPE = 100%

T

T∑
t=1

∣∣∣y(h,w)
t − ŷ(h,w)

t

∣∣∣
(∣∣∣ŷ(h,w)

t

∣∣∣ +
∣∣∣y(h,w)

t

∣∣∣
) /

2
(9)

is used instead of MAPE.
RMSE is the standard deviation of the prediction errors.

Formally, it is defined as follows:

RMSE =
√√√√ 1

T

T∑
t=1

(
y(h,w)
t − ŷ(h,w)

t

)2
. (10)
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Fig. 5 Four prediction methods,
i.e., short-term direct prediction,
long-term direct prediction,
short-term iterative prediction,
and long-term iterative
prediction methods. The red
arrows represent the short-term
predictions and the blue arrows
represent long-term predictions

In summary, the smaller the values of these three indica-
tors, the better the effect of the prediction model.

The ADAM algorithm [25] is used as the gradient descent
optimization algorithm, and MAE is used as the loss func-
tion. In this study, we use the grid search to determine
the optimal values of the hyper-parameters. The fine-tuned
hyper-parameter settings of the model are listed as follows:
The learning rate is 0.01, the number of historical observa-
tions (m) is 10, the epoch size is 32, the batch size is 32, the
number of the denselayers in each denseblock (l) is 4, and the
number of the ConvLSTM layers (k) is 2. 60% of the data
are selected as the training set, 20% are selected as the vali-
dation set, and the rest are used as the test set. The numbers
of VPSs after 5, 15, 30, 45, and 60 min are predicted, corre-
spondingly. To avoid contingency, each prediction task was
independently repeated 50 times and the mean values were
taken as the final results. The algorithms were implemented
in JetBrains Pycharm Community Edition 2019.2.4 and the
performance evaluations were conducted on a 64-bit server
with Intel� Xeon E5-2620 CPU, 2.10GHz CPU, NVIDIA
GeForce GTX 1080 Ti GPU, 64 GB RAM, and a Windows
10 operating system.

Results and analysis

To investigate the effect of prediction. The following four
series of experiments were conducted:

– direct predictions with only 5-min scale historical obser-
vations;

– iterative predictions with only 5-min scale historical
observations;

– direct predictions with both 5-min and daily scale histor-
ical observations;

– iterative predictions with both 5-min and daily scale his-
torical observations.

Table 1 shows the detailed results of RMSE, MAE, and
MAPE/SMAPEof the predictions onnumber ofVPSs inSt1–
St9. In addition, Fig. 6 shows the comparisons between the
5-, 15-, 30-, 45-, and 60-min predictions and actual values,
respectively, where x-axis represents the time interval; y-axis
represents the number of VPSs.

The results are threefold. First, it can be found that the
direct prediction method always outperforms the iterative
one, both in experiments with and without daily scale his-
torical observations. Figure 7 summarizes the comparison
results between the single-step direct and multi-step itera-
tive predictions. The bar chart shows the number of times
that the direct prediction method predicts more accurately
than the iterative method in all 36 predictions (i.e., 15-/30-
/45-/60-min predictions for 9 parking lots) under different
evaluation indicators (i.e., RMSE, MAE, and MAPE). The
reason is that the prediction error is accumulated during iter-
ations and results in higher error. In view of this results,
only the direct prediction method is considered in the fol-
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Table 1 Performance evaluations in terms of MAE, RMSE, and MAPE/SMAPE

5 min 15 min 30 min 45 min 60 min 5 min 15 min 30 min 45 min 60 min

MAE Direct, without daily scale observations Iterative, without daily scale observations

st1 3.40 7.18 10.95 14.08 16.65 – 6.66 10.60 16.25 20.91

st2 4.01 6.86 11.04 14.33 16.95 – 7.78 13.40 22.23 26.54

st3 3.70 5.62 8.62 10.99 12.44 – 6.61 11.04 17.50 18.79

st4 4.00 6.15 9.27 12.03 14.46 – 7.16 12.84 19.24 24.67

st5 5.23 6.77 10.50 14.06 17.25 – 8.99 14.16 21.81 25.77

st6 5.46 9.59 15.85 21.12 24.38 – 10.93 20.29 31.22 37.56

st7 5.38 7.92 12.02 16.13 19.30 – 9.36 16.12 22.29 25.32

st8 7.46 9.16 13.31 17.10 20.50 – 10.05 16.17 26.55 32.56

st9 3.51 4.09 5.58 6.95 7.94 – 4.75 7.50 10.77 16.98

Direct, with daily scale observations Iterative, with daily scale observations

st1 3.11 5.11 7.54 9.69 11.77 – 6.38 11.41 17.67 20.90

st2 3.93 6.72 10.47 13.47 16.16 – 7.56 14.36 20.60 25.82

st3 3.63 5.51 7.54 9.38 11.14 – 6.49 10.51 14.77 18.36

st4 3.79 5.85 8.47 10.75 12.65 – 7.01 12.07 17.86 21.77

st5 4.64 7.24 11.59 16.37 20.87 – 8.66 14.28 18.67 23.92

st6 6.05 8.79 13.15 17.62 21.37 – 11.06 21.03 31.29 42.13

st7 5.08 7.69 11.21 14.58 17.69 – 8.82 16.37 21.57 28.10

st8 5.53 8.41 12.23 15.67 18.96 – 9.25 15.89 23.85 30.24

st9 2.46 3.86 5.28 7.11 8.00 – 4.57 7.59 10.02 12.72

RMSE Direct, without daily scale observations Iterative, without daily scale observations

st1 4.62 7.18 10.95 14.08 16.65 – 8.74 14.07 21.80 28.26

st2 5.54 9.61 15.47 20.12 24.00 – 11.17 19.24 32.22 37.38

st3 5.06 7.88 12.07 15.68 18.22 – 9.33 15.42 25.62 29.05

st4 5.48 8.51 12.94 17.18 21.04 – 9.79 17.29 26.60 34.51

st5 14.15 19.99 27.71 33.62 38.85 – 24.26 31.70 40.23 46.77

st6 9.91 16.13 23.38 28.86 32.50 – 17.49 28.14 42.31 50.65

st7 7.57 11.14 16.91 23.14 28.67 – 12.90 22.06 31.65 36.86

st8 10.04 12.76 18.94 24.39 30.17 – 13.89 23.28 38.62 47.80

st9 4.60 5.41 7.29 8.99 10.37 – 6.15 9.57 13.91 21.41

Direct, with daily scale observations Iterative, with daily scale observations

st1 4.38 6.97 10.36 13.64 16.93 – 8.45 15.16 23.50 28.20

st2 5.39 9.27 14.42 18.88 22.87 – 10.45 20.86 27.69 35.58

st3 5.03 7.64 10.40 12.84 15.49 – 8.91 14.56 21.14 27.30

st4 5.14 8.09 11.67 14.88 17.94 – 9.41 16.12 24.12 30.04

st5 12.43 20.39 29.17 37.94 46.14 – 21.84 30.53 36.15 43.58

st6 9.97 13.13 17.55 23.52 29.24 – 17.39 30.50 41.79 56.12

st7 6.74 10.68 15.16 19.72 24.60 – 12.08 22.77 30.73 39.75

st8 7.56 11.77 17.19 21.84 26.32 – 12.92 22.67 34.46 43.70

st9 3.39 5.16 5.28 9.49 11.07 – 5.96 9.79 13.12 16.10
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Table 1 continued

5 min 15 min 30 min 45 min 60 min 5 min 15 min 30 min 45 min 60 min

MAPE Direct, without daily scale observations Iterative, without daily scale observations

st1 4.26 6.42 9.57 12.74 15.46 – 7.16 10.80 14.73 18.51

st2 1.06 1.84 2.97 3.88 4.62 – 2.12 3.66 6.18 7.07

st3 5.81 7.89 10.15 11.57 13.10 – 9.97 13.85 18.06 18.82

st4 1.27 1.98 2.97 3.91 4.72 – 2.28 4.00 5.84 7.49

st5 4.10 5.10 5.25 5.53 6.34 – 9.24 9.85 11.97 12.07

st6 1.74 2.97 4.91 6.73 7.98 – 3.48 6.39 10.47 12.05

st7 2.01 3.08 4.57 6.08 7.49 – 3.54 5.92 7.50 9.23

st8 1.82 2.51 3.58 4.43 5.16 – 2.64 4.09 6.06 7.34

st9 2.87 3.46 4.67 5.65 6.45 – 3.92 6.21 8.92 12.90

Direct, with daily scale observations Iterative, with daily scale observations

st1 5.14 6.78 9.85 12.66 15.90 – 7.94 12.98 19.89 20.33

st2 1.05 1.80 2.83 3.75 4.60 – 2.03 3.92 5.38 6.76

st3 6.17 8.03 10.07 10.96 12.90 – 8.81 12.60 14.88 17.62

st4 1.23 1.89 2.73 3.56 4.29 – 2.23 3.81 5.68 6.78

st5 3.90 4.43 5.19 6.33 6.80 – 5.07 5.89 7.44 8.60

st6 1.95 2.86 4.71 6.80 8.61 – 3.62 6.82 10.42 14.11

st7 1.89 3.04 4.41 5.78 7.28 – 3.40 6.37 8.28 10.25

st8 1.53 2.37 3.39 4.22 5.01 – 2.51 3.99 5.59 6.89

st9 2.02 3.25 4.51 5.87 6.58 – 3.72 6.19 8.91 10.41

lowing analysis. Second, for the short-term predictions, the
predicted values and the actual values of each parking lot
are very close for all the parking lots. However, for the
long-term predictions, there appear small gaps. It is reason-
able, since long-term predictions are made on the basis of
historical observations with much weaker temporal correla-
tions compared with short-term predictions. Third, the daily
scale historical observations are beneficial in most prediction
tasks. As shown in Fig. 8, for RMSE, MAE, and MAPE, the
direct predictionswith daily scale historical observations pre-
dicted better on 35, 32, and 33 out of 45 tasks, respectively,
than those without daily scale historical observations, and
in iterative predictions, predictions with daily scale histori-
cal observations outperformed those without scale historical
observations 25, 25, and 28 times (totally 36 tasks), respec-
tively.

Example 1 To illustrate how well the proposed model can
predict the actual number of VPSs, in Table 2, we list the
detailed comparisons between the real andpredicted numbers
of VPSs of St7 (from 14:30 to 15:30, 06/05/2018) output by
the proposed dConvLSTM-DCN. We also calculate the cor-
responding MAEs, MAPEs, and RMSEs. It can be observed
that the predicted values output by dConvLSTM-DCN are
quit close to the real ones. The mean absolute error (MAE)
of 5-min prediction is only 4.31, i.e., 1.54% in percentage
term (MAPE), with the standard deviation of the prediction

errors 5.05 (RMSE). Even for 60-min long-term predictions,
theMAE is 12.92 (4.63% forMAPE) and theRMSE is 13.96.

Example 2 We test our model on other two parking lots, i.e.,
the parking lot at Civic Center (Longitude:−118.48997, Lat-
itude: 34.01158) and Lot 1 North (Longitude:−118.497361,
Latitude: 34.010806), in Santa Monica, California, USA.
The time range of the dataset of each parking lot is from
05/09/2018 17:00 to 06/11/2018 21:50. The settings of the
hyper-parameters are remain unchanged. For the parking lot
at Civic Center, the values of MAPEs of 5-, 15-, 30-, 45-,
and 60-min predictions are 1.07%, 1.3%, 2.28%, 3.04%, and
3.95%, respectively, and the values of RMSEs are 7.73, 9.68,
17.63, 23.20, and 30.53, respectively. And for Lot 1 North,
the values of MAPEs are 2.11%, 3.72%, 6.34%, 8.14%, and
9.77%, respectively, and the values of RMSEs are 11.02,
16.60, 26.16, 33.52, and 40.12, respectively.

The prediction performance of the dConvLSTM-DCN
model was compared with the ConvLSTM-DCNmodel pro-
posed in [22] and six other mainstream ML/DL models
developed in our previous work [17], namely an LSTM
model, a gated recurrent units neural network (GRU-NN)
model, a stacked autoencoder (SAE) model, a support vector
regression (SVR) model, a back propagation neural network
(BPNN) model, and a k-nearest neighbor (KNN) model.
The values of the hyper-parameters of the comparison mod-
els are fine-tuned by grid search. Specifically, the values
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Fig. 6 Comparisons between the 5-, 15-, 30-, 45-, and 60-min predic-
tions made by dConvLSTM-DCN and actual values. Four prediction
methods are involved, i.e., direct predictionwith day information, direct

prediction without day information, iterative prediction with day infor-
mation, and iterative prediction without day information

of the hyper-parameters of the ConvLSTM-DCN model are
just as the same as those of the dConvLSTM-DCN model,
except that the number of the ConvLSTM layers (k) of the
ConvLSTM-DCN model is 3. And the hyper-parameter set-
tings of the other six comparison models can be found in
[17]. Different from dConvLSTM-DCN and ConvLSTM-
DCN that can make zone-wise predictions, the other models

can only predicted the number of VPSs for one parking lot. In
this comparative experiment, St7 is considered as the target.

Table 3 and Fig. 9 show the comparisons results on pre-
diction errors. It can be observed that although the accuracy
of the dConvLSTM-DCN is slightly lower than that of the
LSTM model in 5-min prediction (MAPE, for example, a
tiny gap of 0.02%), our method wins in all the other predic-
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Fig. 6 continued

Fig. 7 Number of times that the
direct prediction method
predicts better than the iterative
method in 36 predictions (i.e.,
15-/30-/45-/60-min predictions
for 9 parking lots) under
different evaluation indicators
(i.e., RMSE, MAE, and MAPE)
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Fig. 8 Number of times that the
predictions with daily scale
information do better/worse
than those without daily scale
information under different
evaluation indicators (i.e.,
RMSE, MAE, and MAPE)

tion tasks, namely the 15-min, 30-min, 45-min, and 60-min
prediction tasks. Moreover, the longer the predicting term
is, the greater advantage the dConvLSTM-DCN framework
achieves.

T Tests were used to calculate the p values to inves-
tigate whether the prediction errors of dConvLSTM-DCN
and the compared models have statistically significant dif-
ferences. The results are listed in Table 4. It can be seen that
all the p values are smaller than 0.05, except the P values
between dConvLSTM-DCN and ConvLSTM-DCN in 60-
min predictions and between dConvLSTM-DCN and GRU
in 15-min predictions, which demonstrates significant differ-
ences between them in a statistical sense.

We also compared the training and prediction times of the
proposed model with and without GPU, as well as with other
models, i.e., ConvLSTM-DCN and LSTM. The experiments
were performed on a 64-bit server with an Intel� Xeon E5-
2620 CPU and an NVIDIA GeForce GTX 1080 TI GPU.
For training time, the experiments were run 30 times inde-
pendently, and we took the averages as the final results. And
for prediction time, the values were averaged from 10,000
independent predictions. The results are shown in Table 5.
We can find that with GPUs, the training time required by
our model is only 18.66% of that without GPUs. Henceforth,
we suggest the use of GPUs due to their significant speed
when compared to CPUs. However, considering the much

higher cost of GPUs, CPUs are also acceptable due to their
cost savings.

On the other hand, although the LSTM model trains and
predicts faster due to a much simpler structure, it can only
extract the temporal features of the VPS time series in a
single parking lot. By contrast, the ConvLSTM-DCN and
dConvLSTM-DCNmodels extract not only temporal but also
spatial features. Besides, they are able to deal with multiple
parking lots in an area simultaneously. Therefore, though
they consume more time on training and predictions, they
can much better learn the spatio-temporal features of the
VPS time series and make predictions with much higher
accuracy. The dConvLSTM-DCN model uses two similar
stackedConvLSTM structures to capture the spatio-temporal
features of two different scales, i.e., the recent historical and
daily observations. Naturally, it is more complex than the
ConvLSTM-DCN model and more time-consuming; never-
theless, it achieves better prediction performance.

Conclusion

In this paper, we predict the VPS availabilities for all park-
ing lots within a given zone using a hybrid DL model. First,
through data analysis, we find that there are strong tempo-
ral autocorrelations within the historical VPS data of a given
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Table 2 Comparisons between
the real and predicted numbers
of VPSs of St7 (from 14:30 to
15:30, 06/05/2018)

Time Real Predicted values

Points Values 5 min 15 min 30 min 45 min 60 min

14:30 277 273 272 282 293 290

14:35 277 276 273 287 295 287

14:40 278 277 273 287 295 286

14:45 272 278 284 289 290 280

14:50 284 275 285 285 286 269

14:55 281 282 284 296 284 268

15:00 285 282 285 295 284 270

15:05 284 286 288 297 286 275

15:10 281 286 284 296 289 287

15:15 275 283 297 294 290 290

15:20 284 278 297 283 293 295

15:25 279 282 300 296 295 297

15:30 274 281 298 288 297 301

MAE 4.31 9.00 11.23 11.38 12.92

MAPE 1.54% 3.25% 4.04% 4.11% 4.63%

RMSE 5.05 12.14 12.59 13.49 13.96

Table 3 Comparisons of
prediction errors

Models Indicators 5 min 15 min 30 min 45 min 60 min

dConvLSTM-DN RMSE 6.74 10.68 15.16 19.72 24.60

MAE 5.08 7.69 11.21 14.58 17.69

MAPE (%) 1.89 3.04 4.41 5.78 7.28

ConvLSTM-DN RMSE 7.57 11.14 16.91 23.14 28.67

MAE 5.38 7.92 12.02 16.13 19.30

MAPE (%) 2.01 3.08 4.57 6.08 7.49

LSTM RMSE 5.77 11.35 18.82 27.11 36.13

MAE 3.96 7.96 13.47 19.38 25.78

MAPE (%) 1.87 3.74 6.09 8.24 10.39

GRU-NN RMSE 5.83 11.57 19.40 27.85 36.92

MAE 4.01 8.02 13.79 19.45 26.93

MAPE (%) 1.92 3.72 6.36 8.69 11.61

SAE RMSE 7.24 12.67 19.84 27.73 36.70

MAE 5.02 8.92 14.04 18.67 26.58

MAPE (%) 2.71 4.25 6.84 9.39 11.88

SVR RMSE 12.55 14.41 20.08 28.69 38.14

MAE 10.12 10.44 14.94 21.58 28.68

MAPE (%) 3.50 5.40 6.75 9.15 11.66

BPNN RMSE 5.81 11.63 19.62 28.37 37.91

MAE 3.98 8.17 14.22 20.81 27.82

MAPE (%) 1.88 3.79 6.34 8.88 11.38

KNN RMSE 6.66 12.99 21.19 29.87 39.20

MAE 4.59 8.90 14.21 19.50 24.47

MAPE (%) 2.12 4.32 7.24 9.74 12.00

The values in bold indicate the best performances
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Fig. 9 Comparisons of the predictions of the number of VPSs in St7 between dConvLSTM-DCN and comparison models under different evaluation
indicators (i.e., RMSE, MAE, and MAPE)

Table 4 P values between
dConvLSTM-DCN and
comparison models calculated
by T -test

Comparison P-values

Models 5 min 15 min 30 min 45 min 60 min

ConvLSTM 6.01E−11 4.03E−95 2.35E−03 2.27E−03 7.73E−01

LSTM 2.91E−05 3.45E−28 2.34E−30 4.19E−07 7.06E−47

GRU 5.76E−17 1.79E−01 2.64E−45 1.78E−05 7.26E−34

SAE 5.85E−03 2.65E−05 1.45E−14 1.50E−02 4.05E−27

SVR 5.26E−98 5.00E−23 6.81E−30 7.16E−18 3.51E−50

BPNN 2.03E−16 3.80E−02 1.02E−21 3.69E−14 1.49E−45

KNN 1.04E−05 5.11E−06 7.43E−18 2.66E−05 4.03E−14
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Table 5 Runtime comparisons
among different models

Models Training time (s/epoch) Prediction time (µs/Prediction)

dConvLSTM-DCN 254.89 15.05

dConvLSTM-DCN(GPU) 47.56 3.86

ConvLSTM_DCN(GPU) 28.36 1.62

LSTM(GPU) 1.19 0.93

parking lot.And there also exists apparent spatial correlations
between different parking lots. In view of this, we develop the
dConvLSTM-DCN framework which consists of two paral-
lel ConvLSTM components and a DCN to fully utilize the
spatial-temporal correlations in historical VPS data to predict
the VPS availability in 5–60min of all parking lots within the
target zone. Both the 5-min scale and daily-wise historical
observations are fed into the dConvLSTM model to capture
the recent and daily spatial–temporal correlations, and the
information on hour of day and day of week are as well used
to promote the prediction accuracy. Moreover, two predic-
tion methods, namely, the single-step direct and multi-step
iterative predictionmethods, are proposed tomake long-term
predictions.

Sufficient experiments have been conducted using real-
world data collected from 9 public parking lots in Santa
Monica, California, USA. The experiment results show that
our model can achieved considerably high accuracy with
MAPEs of lower than 5% in short-term predictions and lower
than 8% in long-term predictions, respectively.We also com-
pared the dConvLSTM-DCN-based prediction method with
the ConvLSTM-DCN-based method proposed in [22] and
the sufficiently fine-tuned LSTM-based method presented
in [17]. The results demonstrate that the dConvLSTM-DCN
framework is superior to others, especially in long-term pre-
dictions.
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