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Abstract
Group decision making (GDM) is a wisdom extracting process where a group of decision makers (DMs) could reach a
consensus on the optimal solution to the choice problem with a finite set of alternatives. This paper reports a consensus model
in GDM, where the opinions of experts are expressed as fuzzy preference relations (FPRs) without additively reciprocal
property to cope with the existing uncertainty. The concept of non-reciprocal fuzzy preference relations (NrFPRs) is proposed
to capture the considered situation. A novel additive consistency index is constructed to quantify the inconsistency degree of
NrFPRs using the relationship of two column/row vectors. An optimization model is constructed, where a new fitness function
is proposed by considering the consistency degrees of NrFPRs and the consensus level of a group of experts. A novel concept
of acceptable consensus standard is proposed to characterize the acceptance of the consensus process. The particle swarm
optimization (PSO) algorithm is utilized to solve the constructed optimization problem. As compared to the existing models,
numerical results show that the proposed model can be used to effectively reach an optimal solution to a GDM problem with
NrFPRs.

Keywords Group decision making (GDM) · Non-reciprocal fuzzy preference relation (NrFPR) · Additive consistency index ·
Acceptable consensus standard · Particle swarm optimization (PSO)

Introduction

For dealing with a complex decision-making problem, the
single DM should have the ability to address the situation
with multi-objectives, uncertainty, time dynamic and com-
petitiveness. However, one has been far from meeting the
requirements. So we need to extract the group wisdom from
multiple people involved in the decision-making problem
and integrate a set of different individual opinions into a
collective preference relation [1–3]. The process of extract-
ing wisdom from a group of DMs is called GDM and it is
a key activity in companies and organizations. Moreover,
in a social group, due to the differences in cultural values
and the conflicts of personal interests, the members could
inevitably possess different preferences for various things
[4–7]. Then it is interesting to develop the models of GDM;
and an extensive attention has been attracted by consider-
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ing various decision-making environments [8–11]. For the
preference information of DMs, multiplicative and additive
pairwise comparisonmatrices are the two typical formswhen
the alternatives are compared in pairs [12–15]. It is worth
noting that many consensus reaching models have been pro-
posed in terms of FPRs [16–20]. However, the complexity of
the actual decision-making problems, the limitations ofDM’s
level and the subjectivity in making judgments all lead to the
fact that it is difficult for DMs to give completely accurate
and logical judgments. Therefore, it is interesting to use fuzzy
numbers to express preference information of DMs, such as
interval numbers, triangular fuzzy numbers and intuitionis-
tic fuzzy numbers [21–25]. Here to cope with the uncertainty
experienced by DMs, a generic case is considered where the
decision information is expressed as FPRswithout additively
reciprocal property (NrFPRs).

In the process of reaching consensus in GDM, DMs could
discuss and negotiate many times. In each round of discus-
sions, DMs could accept the suggestions of the others and
constantly modify the initial judgments; then a final decision
could be accepted by each DM [26,27]. But the consensus
reaching process does not mean the perfect consistency of
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decision information and the full agreement among DMs
[27]. Then the consistency level of individual preference
relations and consensus measurement of the group play a
key role. Consistency level ensures the quantification of the
random and illogical behavior in DMs’ pairwise compar-
isons of alternatives. Consensus measurement quantifies the
degree of agreement amongDMs [15]. For example, the devi-
ation degree of inconsistent FPRs from consistent ones is
always used to propose a consistency index [15,18,28–30].
For the consensus levels, the distances between individual
preference values and the collective one are generally used
[18,29,30]. This study focuses on a novel approach to the con-
sistency index of NrFPRs, where the relationships between
two column/row vectors are considered. In addition, it is
worth noting that there is not a feasible method to deter-
mine the threshold of the consensus level. Herewe provide an
acceptable consensus standard to obtain the collectivematrix.

In GDM, a group of experts work together to pursue a
common goal [31]. But the negotiation process of GDM is
complex [32,33], and FPRs with the entries of fixed numeri-
cal values can not perfectly reflect the complexity of a GDM
process. In the process of negotiation, DMs need to make
a certain compromise and modify their initial judgments,
meaning that DMs should have a certain degree of flexi-
bility to express their opinions. This flexibility determines
that the entries in preference relations are not simple real
numbers, but information granularity such as intervals, fuzzy
sets, rough sets and others [34–37]. It is seen that the PSO
algorithm has been used to deal with the GDM problems
with an allocation of information granularity [19,38–42]. The
PSO algorithm is a dynamic iterative process that initializes
a group of random particles (random solutions) and finds the
optimal solution through iteration [43,44]. In each iteration,
particles update themselves by tracking two “extremes”. One
is the optimal solution found by the particle itself and the
other is the optimal solution exhibited by the whole popula-
tion. The PSO algorithm has the advantages of less control
parameters, simple operation, fast convergence speed and
optimizing multi-objective problems [45,46]. In this paper,
the consensus reaching process in GDM is addressed by
proposing a novel fitness function to construct an optimiza-
tion problem, which is solved by the PSO algorithm.

As shown in the above analysis, the novelty and contribu-
tion of the present study are covered as follows:

• The uncertainty in decision information is characterized
by proposing the concept of NrFPRs. It is found that
interval FPRs can be decomposed into two NrFPRs.

• The consistency index of NrFPRs is proposed using the
relations between two column/row vectors. The thresh-
olds of the proposed consistency index are computed for
NrFPRs with acceptable additive consistency.

• Aconsensusmodel inGDMis establishedwhere the PSO
algorithm is adopted to simulate the process of discussing
and learning from each other. An acceptable consensus
standard is defined such that the threshold of consensus
level can be captured.

For achieving the above observations, the rest of the paper is
divided into four parts. In Sect. “Fuzzy preference relations
and additive consistency indexes”, the concept of NrFPRs
is introduced and an additive consistency index is proposed.
It is found that the relations between two columns/rows in
NrFPRs can be naturally used to quantify the inconsistency
degree. Section“A novel consensus model in group decision
making” offers a novel consensus model for GDMwith NrF-
PRs. The novelty comes with the introductions of the novel
fitness function and the acceptable standard of consensus
level. Moreover, a new algorithm for solving the consen-
sus model in GDM with NrFPRs is elaborated on. In Sect.
“Comparison and discussion”, numerical computations are
carried out to illustrate the proposedmodel and comparewith
the existing models. Finally, we give some conclusions and
directions for the future study in Sect. “Conclusions and the
future study”.

Fuzzy preference relations and additive
consistency indexes

Let us consider a GDM problem to choose the best one from
a set of alternatives X = {x1, x2, . . . , xn} (n ≥ 2). A group
of DMs E = {e1, e2, . . . , em} (m ≥ 2) are invited to pro-
vide judgments on X through their knowledge, motivation,
ideas, attitudes and others. After some discussion and com-
prehensive consideration of individual opinions, the ranking
of alternatives is obtained [1,47]. To formalize the decision-
making process, we need a tool to effectively capture the
opinions of DMs. In the following, we introduce the concept
of NrFPRs and propose a novel additive consistency index
to quantify the inconsistency degree.

Non-reciprocal fuzzy preference relations

Following the idea of fuzzy set theory [48], the definition of
fuzzy binary relations is given as follows:

Definition 1 [13] A fuzzy binary relation B on a set of alter-
natives X is a fuzzy set on the Cartesian product X × X
characterized by a membership function μB : X × X �→
[0, 1].
A fuzzy binary relation B is expressed by the n × n
matrix B = (bi j )n×n, where bi j = μB(xi , x j ) (∀i, j ∈
{1, 2, . . . , n}) is interpreted as the preference degree or the
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preference intensity of the alternative xi over the alterna-
tive x j . bi j = 0.5 means the indifference between xi and
x j expressed as xi ∼ x j . bi j = 1 indicates that xi is
absolutely preferred to x j . bi j > 0.5 implies that xi is pre-
ferred to x j (xi � x j ). In particular, we have bii = 0.5 for
∀i ∈ {1, . . . , n} since xi ∼ xi . Moreover, it is usually to
assume that FPRs have the following additively reciprocal
property:

Definition 2 [13] If a FPR B satisfies bi j + b ji = 1 (∀i, j ∈
{1, 2, . . . , n}), we call it having the additively reciprocal
property.

It is seen that the assumption of additively reciprocal
property in Definition 2 can decrease the workload of DMs
in comparing alternatives. That is, one just compares the
n alternatives n(n − 1)/2 times to produce the matrix B.

However, for a practical decision-making problem, the com-
plexity could yield the uncertainty of the DMs’ opinions.
For example, interval-valued comparisonmatrices have been
proposed to capture the uncertainty experienced by DMs
[21,22]. Here it is found that the uncertainty can be char-
acterized by relaxing the additively reciprocal property. For
instance, if the DM gives bi j = 0.3 and b ji = 0.6 when
separately offering the preference strength between the alter-
natives xi and x j , it means that the interval-valued preference
values b̄i j = [0.3, 0.4] and b̄ j i = [0.6, 0.7] are determined.
Moreover, it has been pointed out that FPRs may not always
satisfy additively reciprocal property [12,19,49]. But to our
best knowledge, the theory and methods related to NrFPRs
are not studied systemically. Therefore, the definition ofNrF-
PRs is given as follows:

Definition 3 If a FPR B does not satisfy bi j + b ji = 1 for at
least a pair of i, j ∈ {1, . . . , n},whichmakes 0 ≤ bi j+b ji <

1 or 1 < bi j + b ji ≤ 2 hold, we call it a NrFPR.

For the alternatives xi and x j , when 0 ≤ bi j + b ji < 1,
we say that the hesitancy of DMs is regarded as 1 − (bi j +
b ji ), and when 1 < bi j + b ji ≤ 2, the hesitancy of DMs is
computed as (bi j + b ji ) − 1. It is found that the difference
between the above two situations is only one negative sign. In
general,we can define the hesitancy ofDMs to give additively
reciprocal comparisons as

hi j = |1 − (bi j + b ji )|.

Moreover, we define the hesitancy degree as

h =
∑

i< j

hi j . (1)

When h = 0, NrFPRs degenerate to FPRs with additively
reciprocal property. When h 
= 0, this means a NrFPR has

been given. In particular, an interval FPR B̄ = ([b−
i j , b

+
i j ])n×n

can be decomposed into the two NrFPRs Bl = (b−
i j )n×n and

Br = (b+
i j )n×n . This means that the decision making models

with interval FPRs can be restudied according to the two
derived NrFPRs.

A novel additive consistency index

When investigating the decision information provided by
individuals, we need to pay special attention to the consis-
tency degree. For instance, one has the additive consistency
definition of FPRs as follows:

Definition 4 [13] A FPR B = (bi j )n×n is additively consis-
tent if

bi j = bik + bkj − 0.5, ∀i, j, k ∈ {1, 2, . . . , n}. (2)

It is easy to compute that the additive consistency means
additively reciprocal property, since we have bi j + b ji = 1
(∀i, j ∈ {1, . . . , n}) by applying (2). In other words, the
additively reciprocal property is a necessary condition of con-
sistent FPRs. Hence, a NrFPR must be inconsistent due to
the existence of 0 ≤ bi j + b ji < 1 or 1 < bi j + b ji ≤ 2.
It is of much importance to introduce a consistency index to
quantify the inconsistency degree of NrFPRs. One can find
that the existing consistency indexes of inconsistent FPRs are
always based on the deviation degree from a consistent one
[18,29,30]. Here we introduce a novel viewpoint to capture
the consistency degree of FPRs.

First, let us report an equivalent finding of FPRswith addi-
tive consistency.

Theorem 1 ForaFPR B = (bi j )n×n and∀i, j ∈ {1, 2, · · · , n},
the row and column vectors of B are expressed as bi · =
(bi1, bi2, · · · , bin) and b· j = (b1 j , b2 j , · · · , bnj )T , respec-
tively. If and only if B = (bi j )n×n is additively consistent,
then we have bi · − bk· = rik · (1, 1, · · · , 1) and b·i − b·k =
cik · (1, 1, · · · , 1)T , where rik and cik are constants for
∀i, k ∈ {1, 2, · · · , n}.

Proof It is calculated that

bi · − bk· = (bi1 − bk1, bi2 − bk2, · · · , bin − bkn), (3)

b·i − b·k = (b1i − b1k, b2i − b2k, · · · , bni − bnk)
T . (4)

When B = (bi j )n×n is additively consistent according to
Definition 4, the application of (2) leads to the following
results:

bi j = bil + bl j − 0.5,

bkj = bkl + bl j − 0.5, ∀i, j, k, l ∈ {1, 2, . . . , n}. (5)
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Then we have

bi j − bkj = bil − bkl , ∀i, j, k, l ∈ {1, 2, · · · , n}. (6)

Letting bi j − bkj = rik (constant), this results bi · − bk· =
rik · (1, 1, · · · , 1) by virtue of (3). Similarly, one can obtain
the result of b·i − b·k = cik · (1, 1, · · · , 1)T with a constant
coefficient cik .

On the contrary, when we have bi · − bk· = rik ·
(1, 1, · · · , 1) and b·i −b·k = cik · (1, 1, · · · , 1)T for ∀i, k ∈
{1, 2, · · · , n}. Then in terms of (3) and (4), it follows:

bii − bki = bi j − bkj ,

bii − bik = b ji − b jk, ∀i, j, k ∈ {1, 2, · · · , n}. (7)

This means

bi j + b jk + bki = bik + bkj + b ji ,

∀i, j, k ∈ {1, 2, · · · , n}. (8)

Following the observation in [50], the matrix B = (bi j )n×n

is additively consistent and the proof is completed. ��

It is seen from Theorem 1 that the additive consistency
of FPRs can be captured using the special relationship of
row and column vectors. This urges us to construct a novel
additive consistency index of FPRs. The mean values of the
elements in bi · − bk· and b·i − b·k are given as follows:

r̄ik = 1

n

n∑

l=1

(bil − bkl),

c̄ik = 1

n

n∑

l=1

(bli − blk), ∀i, k ∈ {1, 2, · · · , n}. (9)

Furthermore, the corresponding variances are computed as
the following forms:

vrik =
n∑

l=1

(bil − bkl − r̄ik)
2 , (10)

vcik =
n∑

l=1

(bli − blk − c̄ik)
2 . (11)

For convenience, the values in (9)–(11) are used to construct
four matrices as:

R̄ = (r̄ik)n×n, C̄ = (c̄ik)n×n, Vr = (vrik)n×n,

V c = (vcik)n×n . (12)

According to Theorem 1, we obtain the following corollary:

Corollary 1 If and only if a FPR B = (bi j )n×n is additively
consistent, then the defined variances in (10) and (11) satisfy
V r = V c = 0.

Proof As shown in Theorem 1, the additive consistency of
B = (bi j )n×n implies bi · − bk· = rik · (1, 1, · · · , 1) and
b·i − b·k = cik · (1, 1, · · · , 1)T . That is, we have r̄ik = rik
and c̄ik = cik for ∀i, k ∈ {1, 2, · · · , n}, meaning that Vr =
V c = 0.

On the other hand, when Vr = V c = 0, it follows bil −
bkl = r̄ik and bli − blk = c̄ik for ∀i, k, l ∈ {1, 2, · · · , n}.
Using Theorem 1, the matrix B = (bi j )n×n is additively
consistent. ��

In addition, based on the construction of the four matrices
in (12), an interesting result is determined as follows:

Theorem 2 For a NrFPR B, the constructed matrices R̄ and
C̄ are antisymmetric. The two matrices V r and V c are sym-
metric.

Proof For ∀i, j, k ∈ {1, 2, · · · , n}, we can get:

r̄ik = 1

n

n∑

l=1

(bil − bkl) = −1

n

n∑

l=1

(bkl − bil) = −r̄ki , (13)

and

c̄ik = 1

n

n∑

l=1

(bli − blk) = −1

n

n∑

l=1

(blk − bli ) = −c̄ki . (14)

So the matrices R̄ and C̄ are antisymmetric. Moreover, it
follows

vrik =
n∑

l=1

(bil − bkl − r̄ik)
2 =

n∑

l=1

(bil − bkl + r̄ki )
2

=
n∑

l=1

(bkl − bil − r̄ki )
2 = vrki , (15)

and

vcik =
n∑

l=1

(bli − blk − c̄ik)
2 =

n∑

l=1

(bli − blk + c̄ki )
2

=
n∑

l=1

(blk − bli − c̄ki )
2 = vcki . (16)

This implies that the matrices Vr and V c are symmetric. ��

In what follows, the novel additive consistency index of
FPRs is defined using the variances in (10) and (11).
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Definition 5 For a FPR B, its additive consistency index
AC IV is defined as follows:

AC IV (B) = 1

n2

n∑

i=1

n∑

k=1

(
vrik + vcik

)
. (17)

According to Corollary 1, it is found that if and only if
AC IV (B) = 0, the matrix B is additively consistent. The
larger the values of AC IV (B), the more inconsistent degree
the matrix B has. In particular, one can see that the additively
reciprocal property is not assumed in Theorem 1. This means
that the proposed additive consistency index is suitable for
quantifying the inconsistency degree of NrFPRs. This obser-
vation is similar to the consistencymeasure of FPRsproposed
in [18]. As compared to the additively consistency indexes
in [18,30], the basic ideas are different. In [18], the consis-
tency level of B is measured using the derivation degree of
each entry from a consistent relationship. In [30], the addi-
tive consistency index is defined using the distance from a
constructed consistent matrix. Here the additive consistency
index is based on the relationships between two column/row
vectors of B. The derived variances are used to quantify the
inconsistency degree of a FPR. Furthermore, it is interest-
ing to investigate the threshold of a NrFPR with acceptable
additive consistency. The concept of acceptable consistency
was proposed by Saaty for a multiplicative pairwise compar-
ison matrix [14]. Recently, the idea in [14] was developed
by considering the percentage of the values of the consis-
tency index in [51]. The percentage 22.086% corresponds
to the threshold 0.1 of the consistency ratio in [14]. Hence,
we choose the percentage 22.086% to determine the thresh-
old of AC IV (B). By randomly generating 100,000 NrFPRs,
the thresholds of AC IV are obtained for different orders of
NrFPRs and given in Table 1.

Example 1 For illustrating the above consistency index, we
compute the additive consistency index of the NrFPR B1

where

B1 =

⎛

⎜⎜⎜⎜⎝

0.5 0.2 0.5 0.6 0.4
0.8 0.5 0.7 0.3 0.6
0.3 0.2 0.5 0.8 0.2
0.3 0.5 0.2 0.5 0.3
0.5 0.4 0.6 0.6 0.5

⎞

⎟⎟⎟⎟⎠
.

According to (9), we can get

R̄1 =

⎛

⎜⎜⎜⎜⎝

0.00 −0.14 0.04 0.08 −0.08
0.14 0.00 0.18 0.22 0.06

−0.04 −0.18 0.00 0.04 −0.12
−0.08 −0.22 −0.04 0.00 −0.16
0.08 −0.06 0.12 0.16 0.00

⎞

⎟⎟⎟⎟⎠
,

C̄1 =

⎛

⎜⎜⎜⎜⎝

0.00 0.12 −0.02 −0.08 0.08
−0.12 0.00 −0.14 −0.20 −0.04
0.02 0.14 0.00 0.06 0.10
0.08 0.20 −0.06 0.00 0.16

−0.08 0.04 −0.10 −0.16 0.00

⎞

⎟⎟⎟⎟⎠
.

Then, using (10) and (11), we have

V r
1 =

⎛

⎜⎜⎜⎜⎝

0.0000 0.2520 0.1120 0.2080 0.0280
0.2520 0.0000 0.6280 0.3880 0.1920
0.1120 0.6280 0.0000 0.2720 0.1480
0.2080 0.3880 0.2720 0.0000 0.1320
0.0280 0.1920 0.1480 0.1320 0.0000

⎞

⎟⎟⎟⎟⎠
,

V c
1 =

⎛

⎜⎜⎜⎜⎝

0.0000 0.1680 0.0680 0.5280 0.0280
0.1680 0.0000 0.2520 0.4000 0.0920
0.0680 0.2520 0.0000 0.3320 0.0800
0.5280 0.4000 0.3320 0.0000 0.4120
0.0280 0.0920 0.0800 0.4120 0.0000

⎞

⎟⎟⎟⎟⎠
.

As shown in Theorem 2, it is seen that thematrices R̄1 and C̄1

are antisymmetric, and Vr
1 and V c

1 are symmetric. In terms
of (17), we can obtain AC IV (B1) = 0.3776. As shown in
Table 1, the threshold of acceptable additive consistency is
AC IV = 0.1278 < 0.3776 for a NrFPR with n = 5. This
means that the matrix B1 is not acceptable and it should be
modified by proposing a method for obtaining a convincing
priority vector [14,30]. In the following consensusmodel, the
proposed additive consistency index is applied to measure
inconsistency degrees of matrices. An optimization model is
constructed such that the collective matrix can be adjusted to
be with acceptable additive consistency.

A novel consensus model in group decision
making

In GDM, the group of DMs usually need to negotiate before
reaching the optimal solution. In this negotiation process,
each DM could make a certain compromise to get a result
accepted by all members of the group and reach a high
consensus. Obviously, if DMs’ preference relations over
alternatives are very close to each other, there could exist
a high degree of consensus among DMs. Therefore, the
distance between individual preference relations and the col-
lective one is always used to measure the consensus level of
DMs [18,26,38,39].However, the objective ofGDMis to give
the optimal solution to a complex decision making problem.
The existing consensus process has no direct dependence
with respect to the ranking of alternatives provided by indi-
viduals. In this study, we propose a novel consensus reaching
process in GDM where the optimal solutions provided by
more than half of DMs are controlled to be identical.
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Table 1 The thresholds of
AC IV for a NrFPR with
acceptable additive consistency
under 22.086%

n 3 4 5 6 7 8 9

AC IV 0.0498 0.0958 0.1278 0.1599 0.1815 0.1976 0.2107

Acceptable consensus level under the control of
optimal solution

It is assumed that a group of experts E = {e1, e2, . . . , em}
(m ≥ 2) evaluate their opinions on X = {x1, x2, . . . , xn} (n ≥
2) as NrFPRs Bk = (bki j )n×n for k = 1, 2, · · · ,m. Apply-
ing an aggregation method, the collective matrix is written
as Bc = (bci j )n×n . To evaluate the degree of consensus
reached by DMs, we focus on the distance between individ-
ual and collective matrices. As shown in the existing works
[15,18,26,38,39], the method of computing the distance-
based consensus level is widely used. For the twoNrFPRs Bk

and Bc, a similarity matrix SMkc = (smkc
i j )n×n is defined

where

smkc
i j = |bki j − bci j |. (18)

Then the consensus degree of Bk and Bc is computed as

clk = 1

n(n − 1)

n∑

i=1

n∑

j=1

smkc
i j , (19)

where the value of smkc
ii = 0 for i ∈ {1, 2, · · · , n} has been

considered. When the consensus level of all DMs is quanti-
fied, we give the following equality:

cl =
m∑

k=1

λkclk . (20)

Hereafter, we always assume thatλk ∈ [0, 1] and∑m
k=1 λk =

1. One can see from (20) that the closer the value of cl is to
0, the greater the agreement among all DMs’ opinions.

In the consensus reaching process, one of the important
issues is that it is unnecessary to require the complete con-
sensus of all opinions. Hence there is an important problem
of how to give a threshold of the consensus level cl. In the
existingworks, the threshold of cl is usually given in advance
or not defined [15,18,26,38,39]. In what follows, we focus
on the important problem and propose a method under the
control of the optimal solutions of individuals. The following
acceptable consensus standard is defined:

Definition 6 If the optimal solutions to a decision making
problem determined by more than half of DMs are identical,
the corresponding consensus level is called to be acceptable.

Definition 6 shows that under the acceptable consensus level,
the group of DMs have an acceptable consensus on the opti-

mal solution. Now let us formulate the above consideration.
By considering an individual matrix Bk = (bki j )n×n, the pri-
orities of alternatives should be derived using a method such
as [52]:

ωk
i = 2

n

n∑

j=1

bki j , (21)

where ωk
i stands for the weight of xi elicited from Bk . It

is supposed that the maximum of ωk
i for ∀i ∈ {1, 2, · · · , n}

corresponds to the alternative xks .When the opinions of more
than half of DMs can be adjusted such that the optimal
solutions are identical, the consensus level cl is acceptable.
Moreover, it should be pointed out that the simple prioritiza-
tion method (21) is based on the consideration of summing
the preference intensities of an alternative over the others. It is
effective according to the discussion and comparison analysis
with the existing methods [52]. When the other prioritiza-
tion methods are applied to NrFPRs, some different rankings
of alternatives may be obtained due to the inconsistency of
NrFPRs. However, when NrFPRs are with acceptable addi-
tive consistency, the rankings of alternatives based on most
prioritization methods could be identical. For the sake of
simplicity, the formula in (21) is only adopted to derive the
priority vector from a NrFPR with acceptable additive con-
sistency. In the future, some novel prioritizationmethodswill
be developed to elicit priorities from NrFPRs.

A novel optimization problem

To reach the consensus of GDM, it is requisite to offer each
DM a flexibility degree [26,38,39]. Following the idea in
[38], the granularity level of the expert ek is given as αk .

Then the preference intensity of ek can be changed under the
following constraint conditions [20]:

Case I: b̄ki j ∈
[
max

(
0.5, bki j − αk

2

)
,min

(
1, bki j + αk

2

)]
,

(22)

for 0.5 < bki j ≤ 1, and

Case II: b̄ki j ∈
[
max

(
0, bki j − αk

2

)
,min

(
0.5, bki j + αk

2

)]
,

(23)

for 0 ≤ bki j < 0.5. When bki j = 0.5, the preference intensity
always remains unchanged in the optimization process. The
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above considerations are attributed to the idea that the deci-
sion maker has the ability to give the transitivity relation of
two alternatives. For convenience, the set of all the matrices
whose entries satisfy (22) or (23) is written as P(Bk).

Moreover,we construct an optimizationmodel to optimize
the individualNrFPRs. Twoobjectives are always considered
[20,26,38,39]: (1) the consistency degree of preference rela-
tions, (2) the consensus level of a group of experts. For the
first consideration, according to the novel consistency index
of FPRs (17), the function is given as:

Q1 =
m∑

k=1

λk AC IV (Bk). (24)

For the second objective, using (20), one has:

Q2 = cl. (25)

It is seen that the smaller the values of Q1 (Q2), the more
consistency (consensus) the individual NrFPRs (the group of
experts). Therefore, the optimization problem is established
as follows:

min(Q1, Q2). (26)

This is a multi-objective optimization problem and the sim-
plest solving method is to rewrite (26) as a linear case
[20,26,38,39]:

min Q = pQ1 + qQ2, (27)

where p and q are non-negative real numbers.
In addition, the decision variables and constraint condi-

tions of the optimization problem (27) should be determined.
Based on the above discussions, the individual matrices Bk

should be adjusted under the flexibility degree αk (k =
1, 2, · · · ,m). The collective matrix Bc is determined using
Bk through an aggregation operator. For the sake of simplic-
ity, the weighted averaging operator is used such that

Bc =
m∑

k=1

λk B
k . (28)

Hence the entries in individual matrices Bk are the decision
variables except for those on the diagonal lines. This means
that the dimension of the optimization problem ismn(n−1).
Furthermore, the entries in Bk should be subject to some
constraint conditions. Here we consider the case with the
conditions (22), (23), the consistency index AC I threshold
and the acceptable consensus level in Definition 6.

As compared to the existing fitness functions [20,26,38,
39], the novelty comes with the novel consistency index and
the standard of the acceptable consensus level.

Solution process based on particle swarm
optimization

One can see that the constructed optimization problem (27)
subject to the constraint conditions is nonlinear and complex.
It is difficult to obtain the optimal solution in the closed form
due to the nonlinearity and high dimension. For example,
if there are 3 experts and 4 alternatives, the dimension of
the optimization problem (27) is 36, where the preference
intensities bkii (i = 1, 2, 3, 4; k = 1, 2, 3) are always chosen
as 0.5. The PSO algorithm is a population-based stochastic
optimization technique proposed by Kennedy and Eberhart
[43,44]. It is inspired by the social behavior of bird flocking
and fish schooling. Particle swarm are a group of particles,
which are the possible solutions of optimization problems in
multi-dimensional search space [43,53,54]. The PSO algo-
rithm has been successfully used to simulate the consensus
reaching process in GDM [20,26,38–40]. Here the modified
PSO algorithm is used to solve the constructed optimization
problem.

The initial positions of DMs are the proposed NrFPRs Bk

(k = 1, 2, · · · ,m).When the flexibility degree αk is offered,
the entries in Bk are changed within the ranges shown in
(22) and (23). For a randomly generated particle x ∈ [0, 1],
the linear transformation z = a + (b − a)x is used [38],
where z ∈ [a, b]. For example, let us consider that bki j is
equal to 0.6 and the admissible level of granularity αk = 0.1.
Applying (22), it follows [a, b] = [0.55, 0.65]. If x = 0.4,
we have z = 0.59, meaning that the initial position with
bki j = 0.6 is changed to a new one with the value of 0.59.

When all the entries bki j for i, j ∈ {1, 2, · · · , n} with i 
= j
and k ∈ {1, 2, · · · ,m} should be optimized, the particle in
the PSO algorithm is generally expressed as the following
vector:

z =
(
b112, b

1
13, · · · , b1n(n−1), b

2
12, · · · , bmn(n−1)

)
. (29)

It is seen that the dimension of the particle is mn(n − 1),
which is based on the non-reciprocal property of preference
relations. When the additively reciprocal property is consid-
ered, the dimension of the particle should be mn(n − 1)/2
[20,38,39]. Each particle is updated using the following
guidelines [54]:

• The particle velocity is computed as

v(t + 1) = w · v(t) + u(0, φ1) · (zp − z(t)) + u(0, φ2)

·(zg − z(t)), (30)

where t is the index of iteration. zp represents the indi-
vidual best position and zg is the global best position
developed in the whole population so far. The inertia
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weight w emphasizes the effect of opposing the current
speed change. u(0, φi )(i = 1, 2) stand for the vectors
of randomly generated numbers uniformly distributed in
[0, φi ].

• The next position of the particle is calculated directly as
follows:

z(t + 1) = z(t) + v(t + 1). (31)

Moreover, it is noted that the values of the parameters
w, φ1 and φ2 are important and they have been discussed
widely [54,55]. When the inertia weightw is relatively large,
the PSO has better global searching capability and less local
searching capability. When the inertia weight w is relatively
small, the PSO has less global searching capability and bet-
ter local searching capability. Here the weight w is linearly
changed from 0.9 to 0.4 with respect to the iteration times
by following the observations in [55]. Then the global and
local searching capability can be controlled when the PSO
algorithm is performed. The learning factors φ1 and φ2 deter-
mine the effects of the particle’s original optimal experience
and group optimal experience on the particle’s trajectory. It
is considered that too large or too small values of φ1 and φ2

are not good for searching the optimal solution. The find-
ing in [56] shows that the values of φ1 and φ2 are suitable
to choose between 1 and 2.5. Here we choose the standard
value of φ1 = φ2 = 2 in the formula (30), which is the best
learning factor verified by many experimental observations
[54].When the optimal solution is determined, the individual
matrices can be reconstructed. The collective matrix is deter-
mined using (28) and the ranking of alternatives is given.

A new algorithm

It is convenient to provide the algorithm to solve the GDM
problem with NrFPRs by controlling the optimal solutions
of DMs. The resolution process of a GDM with NrFPRs is
shown in Fig. 1 and elaborated on as follows:

Step 1: In a GDM problem, a group of experts E =
{e1, e2, . . . , em} are invited to evaluate the preference
intensities of alternatives in X = {x1, x2, . . . , xn}.

Step 2: The NrFPR Bk is determined to represent the initial
position of the expert ek with the flexibility degree αk

for k = 1, 2, · · · ,m.

Step 3: The fitness function Q is constructed and the con-
straint conditions with (22) and (23) are considered.

Step 4: The PSO algorithm is used to solve the optimization
problem (27). The matrices Bk (k = 1, 2, · · · ,m)

are optimized and written as B̄k (k = 1, . . . ,m).
Step 5: The acceptable consensus standard in Definition 6

and the consistency index value are checked. When
it is not satisfied, one returns to Step 2 and the val-

       A group of DMs

            NrFPRs

  Optimization matrices

      Collective matrix

Initial solutions

Yes

Optimization
   process

 Fitness function,
        PSO

Exploitation
    phase

No

          Best solution

Acceptable
consensus

Fig. 1 Resolution process of a GDM problem with NrFPRs

ues of αk(k = 1, 2, · · · ,m) are adjusted. When it is
satisfied, one proceeds to the next step.

Step 6: Using the optimized matrices B̄k(k = 1, 2, · · · ,m),
the collective one Bc is obtained using (28).

Step 7: According to Bc = (bci j )n×n, the priorities of alter-
natives are computed by (21) and the final solution is
reached.

It should be noted that the computational complexity of
the entire solution process is worth investigating [57]. One
can see that the consensus model in GDM is proposed for m
DMs and n alternatives. The constructed optimization model
(27) is nonlinear according to the functions Q1 andQ2.When
the numbers of DMs and alternatives are increasing, the com-
putational complexity increases rapidly. By considering the
dimension of particles mn(n − 1) in the PSO, at least the
entire algorithmic complexity is O(mn(n − 1)).

On the other hand, it is interesting to investigate the con-
vergence of the GDM algorithm. First, it is convincing to
consider that the PSO algorithm is convergent to reach the
optimal solution to the optimization problem. The above
result is based on lots of numerical experiments and applica-
tions of the PSO algorithm [54–56]. Second, we can arrive at
the threshold of additive consistency index for the collective
matrix. The underlying reason is attributed to the objec-
tive function Q1, which is tending to the minimum value
in the optimization process of individual matrices. With the
increasing of the flexibility degrees, the minimum value of
AC IV (Bk) is tending to zero. Third, the consensus standard
in Definition 6 can be reached due to the objective func-
tion Q2. When minimizing the objective function Q, the
distances between individual matrices and the collective one
are tending to minimum values. This implies that individual
and collective matrices are tending to an identical matrix.
Then the rankings of alternatives could be identical when
using individual matrices. The above analysis shows that the
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convergence of the proposed GDM algorithm is indepen-
dent on the sizes of decision problems. When a sufficiently
large iteration number of the PSO algorithm is used under a
sufficiently large flexibility degree, the threshold of the pro-
posed consistency index and the consensus standard can be
simultaneously achieved. The observation will be verified by
carrying out numerical examples in the following section.

Comparison and discussion

In what follows, we report numerical examples to illustrate
the proposed concepts and the effects of the parameters α,

p and q according to the algorithm. Then some comparisons
with the existing models are offered to show the novelty of
the proposed model.

The effects of the parameters

It is interesting to investigate the effects of the parameters α,

p and q on the optimal values of Q, Q1 and Q2, respectively.

Example 2 Suppose that the four NrFPRs {B1, B2, B3, B4}
are provided by the four DMs E = {e1, e2, e3, e4} accord-
ing to pairwise comparisons over the four alternatives X =
{x1, x2, x3, x4}. The initial positions of DMs are expressed
as follows:

B1 =

⎛

⎜⎜⎝

0.5 0.1 0.6 0.4
0.8 0.5 0.8 0.7
0.4 0.1 0.5 0.2
0.6 0.3 0.7 0.5

⎞

⎟⎟⎠ ,

B2 =

⎛

⎜⎜⎝

0.5 0.2 0.7 0.6
0.6 0.5 0.8 0.3
0.3 0.2 0.5 0.5
0.1 0.7 0.5 0.5

⎞

⎟⎟⎠ ,

B3 =

⎛

⎜⎜⎝

0.5 0.7 0.5 0.3
0.3 0.5 0.6 0.8
0.5 0.4 0.5 0.8
0.6 0.1 0.2 0.5

⎞

⎟⎟⎠ ,

B4 =

⎛

⎜⎜⎝

0.5 0.7 0.8 0.6
0.3 0.5 0.6 0.2
0.2 0.4 0.5 0.5
0.4 0.8 0.5 0.5

⎞

⎟⎟⎠ .

In the following, for the sake of simplicity, we choose
λ1 = λ2 = λ3 = λ4 = 0.25 and α = α1 = α2 = α3 = α4

for numerically computations. When running the PSO algo-
rithm, the dimension of the particle is 48, the swarm size and
the maximum number of generations are all selected as 100.
Figure2 is drawn to show the variations of the fitness function
Q versus the generation number with (p, q) = (0.25, 0.75)
for α = 0.3 and α = 0.4, respectively. It is seen from Fig. 2

0 20 40 60 80 100

Generation number

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

Q

=0.3
=0.4

(p,q)=(0.25,0.75)

Fig. 2 Plots of Q versus the generation number with (p, q) =
(0.25, 0.75) for α = 0.3 and α = 0.4, respectively

that with the increasing of the generation number, the val-
ues of Q are decreasing to a stable one. This means that the
optimal solution of the fitness function Q can be obtained by
running the PSO algorithm for 100 generations. The above
phenomenon is in accordance with the known finding in
[19,38,41]. One can also conclude from Fig. 2 that the iter-
ation number 100 of the PSO algorithm is sufficiently large
to obtain the optimal solution to the optimization problem.
In addition, one can determine the values of AC IV , cl, Q1,

Q2 and the priorities of alternatives. For instance, we choose
α = 0.3 to give the various values in Table 2 and the collec-
tive matrix as follows:

B̄c
0.3 =

⎛

⎜⎜⎝

0.5000 0.4250 0.5500 0.4250
0.5125 0.5000 0.6500 0.6500
0.2000 0.2625 0.5000 0.4250
0.4375 0.4000 0.4375 0.5000

⎞

⎟⎟⎠ .

It is found from Table 2 that the final ranking is x2 � x1 �
x4 � x3. The acceptable consensus standard in Definition 6
is satisfied since the best alternative is x2 according to the
priorities derived from B̄k

0.3 (k = 1, 2, 3, 4).
Moreover, the effects of the flexibility degree α on the

optimal values of Q, Q1 and Q2 are shown in Fig. 3 by
choosing (p, q) = (0.25, 0.75). The values of α are chosen
from 0 to 0.4 with the step length 0.005. The underlying rea-
son is that the flexibility degrees of DMs are considered to
be not too large. Certainly, from the view of numerical com-
putations, the values of α could be any non-negative number.
One can see from Fig. 3 that the optimal values of Q, Q1 and
Q2 are not strictly monotonic decreasing and they exhibit
some oscillations. The above observations are similar to the
results in [19,38,41]. In addition, as compared to the findings
in [19,38,41], there is a difference among the optimal values
of Q. It is seen that the greater the value of the flexibility
degree α, the stronger the oscillation of the value of Q is.
The main reason is that the optimal matrices have not the
constraint of additively reciprocal property. When the pref-
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Table 2 The values of AC IV ,

cl, Q1, Q2 and the priorities of
alternatives according to
B̄1
0.3 − B̄4

0.3 and B̄c
0.3,

respectively

Priorities ω1 ω2 ω3 ω4 AC IV cl

B̄1
0.3 0.7500 1.4750 0.6750 0.8500 0.0981 0.1333

B̄2
0.3 0.9500 1.0500 0.5250 0.8250 0.1531 0.0938

B̄3
0.3 1.0000 1.2000 1.0000 0.8000 0.1587 0.1354

B̄4
0.3 1.1000 0.9000 0.5750 1.0750 0.0931 0.1188

B̄c
0.3 0.9500 1.1563 0.6938 0.8875 Q1 = 0.1258 Q2 = 0.1203

erence relations are not with additively reciprocal property,
the dimension of the particles in the PSO is twice as that with
additively reciprocal property. The higher dimension of the
particles leads to the greater oscillation of the value of Q.

At the end, the influences of p and q on the optimal values
of Q are investigated and shown in Fig. 4. The step length
0.05 of α ∈ [0, 0.4] is chosen, which is different to 0.005
adopted in Fig. 3. For the values of p and q, we consider the
three cases: (a) p = 0.25 together with the selected values of
q; (b) q = 0.75 together with the selected values of p; and
(c) the selected values of p under p+q = 1. It is found from
Fig. 4a, b that the increasing of p and q for a fixed α increases
the values of Q. The observed results are in agreement with
the finding in [20]. When considering the constraint p +
q = 1, Fig. 4c shows that there are some intersections in
the lines with p = 0, 0.25, 0.5, 0.75, 1, respectively. The
observation is different to those in Fig. 4a, b and similar to
the phenomenon observed in [19,38]. Based on the above
observations, some results are covered as follows:

(1) There are some small differences among the curves of Q
in Fig. 4a–c when the same values of p and q are used
such as p = 0.25 and q = 0.75. The reason behind this
phenomenon is that some random parameters have been
used in the PSO algorithm.

(2) When the value of α is fixed, different combinations of
p and q could yield different values of Q.

(3) The parameters of p and q aremainly used as the weights
of Q1 and Q2 to affect the optimal values.

Comparative analysis

It is worth noting that the consensus models in GDM with
FPRs or additive reciprocal matrices have been investigated
in [19,20]. The initial positions of DMs are characterized
using NrFPRs in [19] and FPRs with additive reciprocity in
[20]. Here we still use NrFPRs to express the initial opinions
of DMs. The main novelties are the novel consistency index
(17) and the standard of acceptable consensus level (Defini-
tion 6). It is interesting to compare the consensus model in
[19] using numerical results.
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(p,q)=(0.25,0.75)
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Fig. 3 Plots of the optimal values of Q, Q1 and Q2 versus α for the
selected values of (p, q) = (0.25, 0.75)
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Table 3 Priorities of
alternatives and the optimal
solutions according to B5 − B8

Priorities ω1 ω2 ω3 ω4 The optimal solutions

B5 0.8000 1.4000 0.6000 1.0500 x2

B6 1.0000 1.1500 0.8000 0.9000 x2

B7 1.0000 1.1000 1.1500 0.7500 x3

B8 1.0500 0.8500 1.1000 1.1000 x3 or x4
Bc 0.9625 1.1250 0.9125 0.9500 x2 � x1 � x4 � x3

Table 4 The priorities of
alternatives and the optimal
solutions according to
B̄5
0.1 − B̄8

0.1 and B̄c
0.1,

respectively

Priorities ω1 ω2 ω3 ω4 The optimal Solutions

B̄5
0.1 0.8750 1.3250 0.6750 1.0250 x2

B̄6
0.1 0.9750 1.1250 0.8000 0.9000 x2

B̄7
0.1 0.9750 1.0750 1.0750 0.7250 x2 or x3

B̄8
0.1 1.1250 0.8750 1.0750 1.1000 x1

B̄c
0.1 0.9875 1.1000 0.9063 0.9375 x2 � x1 � x4 � x3

Table 5 The priorities of
alternatives and the optimal
solutions according to
B̄5
0.2 − B̄8

0.2 and B̄c
0.2,

respectively

Priorities ω1 ω2 ω3 ω4 The optimal solutions

B̄5
0.2 0.9038 1.4500 0.6500 1.0189 x2

B̄6
0.2 0.9435 1.2000 0.9000 1.0000 x2

B̄7
0.2 1.0000 1.1821 1.1000 0.8000 x2

B̄8
0.2 1.1000 0.8780 1.0681 1.0907 x1

B̄c
0.2 0.9868 1.1775 0.9295 0.9774 x2 � x1 � x4 � x3

Example 3 For convenience, the existing matrices without
additively reciprocal property in [19] are still used for numer-
ically computations:

B5 =

⎛

⎜⎜⎝

0.5 0.1 0.6 0.4
0.8 0.5 0.8 0.7
0.4 0.1 0.5 0.2
0.6 0.3 0.7 0.5

⎞

⎟⎟⎠ ,

B6 =

⎛

⎜⎜⎝

0.5 0.2 0.7 0.6
0.6 0.5 0.9 0.3
0.3 0.3 0.5 0.5
0.1 0.7 0.5 0.5

⎞

⎟⎟⎠ ,

B7 =

⎛

⎜⎜⎝

0.5 0.7 0.5 0.3
0.3 0.5 0.6 0.8
0.5 0.4 0.5 0.9
0.6 0.1 0.3 0.5

⎞

⎟⎟⎠ ,

B8 =

⎛

⎜⎜⎝

0.5 0.8 0.2 0.6
0.4 0.5 0.6 0.2
0.8 0.4 0.5 0.5
0.4 0.8 0.5 0.5

⎞

⎟⎟⎠ .

First, let us compute the weights of alternatives according
to the matrices B5 − B8 and show in Table 3. It is seen from
Table 3 that the optimal solutions using B5 and B6 are x2,

and the others are x3 or x4. This means that the standard of
acceptable consensus level in Definition 6 is not satisfied.

Second, the flexibility degrees are offered to DMs and the
optimization process of NrFPRs is performed. By selecting
p = 0.25, q = 0.75 and the maximum number of iterations
100, some cases for different values of α are investigated.
For example, when α = 0.1, the consensus model is applied
to give the optimized matrices as follows:

B̄5
0.1 =

⎛

⎜⎜⎝

0.5000 0.1500 0.6500 0.4500
0.7500 0.5000 0.7500 0.6500
0.4500 0.1500 0.5000 0.2500
0.5500 0.3500 0.6500 0.5000

⎞

⎟⎟⎠ ,

B̄6
0.1 =

⎛

⎜⎜⎝

0.5000 0.2500 0.6500 0.5500
0.5500 0.5000 0.8500 0.3500
0.2500 0.3500 0.5000 0.5000
0.1500 0.6500 0.5000 0.5000

⎞

⎟⎟⎠ ,

B̄7
0.1 =

⎛

⎜⎜⎝

0.5000 0.6500 0.4500 0.3500
0.2500 0.5000 0.6500 0.7500
0.4500 0.3500 0.5000 0.8500
0.5500 0.0500 0.3500 0.5000

⎞

⎟⎟⎠ ,

B̄8
0.1 =

⎛

⎜⎜⎝

0.5000 0.8500 0.2500 0.6500
0.4500 0.5000 0.5500 0.2500
0.7500 0.4500 0.5000 0.4500
0.4500 0.7500 0.5000 0.5000

⎞

⎟⎟⎠ .
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Table 6 The priorities of
alternatives and the optimal
solutions according to
B̄5
0.3 − B̄8

0.3 and B̄c
0.3,

respectively

Priorities ω1 ω2 ω3 ω4 The optimal solutions

B̄5
0.3 0.8750 1.3250 0.8000 1.0000 x2

B̄6
0.3 1.1000 1.2250 0.8000 0.9000 x2

B̄7
0.3 1.0000 1.1750 1.1250 0.8500 x2

B̄8
0.3 1.1500 0.9250 1.0750 1.0000 x1

B̄c
0.3 1.0313 1.1625 0.9500 0.9375 x2 � x1 � x3 � x4

Table 7 The values of additive
consistency index of B̄5 − B̄8

and Q1 under various flexibility
degrees

Flexibility degrees AC IV (B̄5) AC IV (B̄6) AC IV (B̄7) AC IV (B̄8) Q1

α = 0.0 0.0206 0.3856 0.4150 0.3725 0.2984

α = 0.1 0.0275 0.2525 0.3706 0.2714 0.2305

α = 0.2 0.0962 0.3301 0.2023 0.2022 0.2077

α = 0.3 0.1362 0.2252 0.1056 0.1631 0.1575

The collective matrix is obtained as:

B̄c
0.1 =

⎛

⎜⎜⎝

0.5000 0.4750 0.5000 0.5000
0.5000 0.5000 0.7000 0.5000
0.4750 0.3250 0.5000 0.5125
0.4250 0.4500 0.5000 0.5000

⎞

⎟⎟⎠ .

The priorities of alternatives and the optimal solutions
using B̄5

0.1 − B̄8
0.1 and B̄c

0.1 are determined and shown in
Table 4. It is found that the standard of acceptable consensus
level is reached. The final solution is x2 and the result has
a high consensus level of DMs. In addition, based on the
consensus model in [19], the optimized matrices for α = 0.1
are computed. The collective matrix is obtained as:

B̃c
0.1 =

⎛

⎜⎜⎝

0.5000 0.4500 0.4750 0.4750
0.5250 0.5000 0.7250 0.5000
0.5000 0.3000 0.5000 0.5000
0.4000 0.4750 0.4750 0.5000

⎞

⎟⎟⎠ .

Thenone candetermine thepriority vector as (0.9500, 1.1250,
0.9000, 0.9250) and the ranking x2 � x1 � x4 � x3. The
obtained result is in agreement with the finding in Table 4.
The main differences and novelties of the present study are
the novel consistency index and the standard of acceptable
consensus level. Moreover, letting α = 0.2, 0.3 and others,
the optimized and the collective matrices can be obtained.
For the sake of simplicity, the obtained priorities and the
optimal solutions for α = 0.2 and 0.3 are given in Tables 5
and 6, respectively. It is seen from Tables 4, 5 and 6 that with
the increasing of the values of the flexibility degree α, the
ranking of alternatives could be changed. Under the proposed
model, the optimal solution is kept with the high consensus
level. Therefore, the proposed standard of acceptable con-
sensus level can be considered as a good strategy to reach
the final solution accepted by most DMs in GDM.

Table 8 The values of consensus level of B̄5− B̄8 and Q2 under various
flexibility degrees

Flexibility degrees cl5 cl6 cl7 cl8 Q2

α = 0.0 0.1875 0.1500 0.1917 0.1750 0.1760

α = 0.1 0.1510 0.1260 0.1656 0.1677 0.1526

α = 0.2 0.1619 0.1217 0.1517 0.1503 0.1464

α = 0.3 0.1260 0.1135 0.1052 0.1573 0.1255

Table 9 The best alternatives determined by individual matrices B9 −
B12 and the collective ones under various flexibility degrees

Flexibility degrees B9 B10 B11 B12 Bc B̃c [19]

α = 0.0 x6 x3 x6 x1 x6 x6

α = 0.1 x6 x6 x6 x1 x6 x6

α = 0.2 x6 x3 x6 x6 x6 x6

α = 0.3 x6 x6 x6 x1 x6 x6

Third, it is interesting to present the variations of the addi-
tive consistency index and the consensus level. The computed
results are shown in Tables 7 and 8, respectively. One can find
from Tables 7 and 8 that with the increasing of the flexibil-
ity degrees, the values of Q1 and Q2 decrease. When the
acceptable consensus standard is chosen as a value of Q2, it
can also be achieved by adjusting the values of the flexibility
degrees.

On the other hand, it is noted that the number of alterna-
tives is only 4 in Examples 2 and 3. The proposed algorithm is
suitable for different sizes of decision making problems with
various alternatives and DMs. When the numbers of alterna-
tives and DMs are increasing, the computational complexity
increases rapidly due to the dimension of the particle in the
PSO algorithm. In spite of this, the computational results
could be similar to those in Examples 2 and 3, respectively.
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Fig. 4 Plots of the optimal values of Q versus α with the step length
0.05 under the conditions of a p = 0.25 together with the selected
values of q; b q = 0.75 together with the selected values of p; and c
the selected values of p under p + q = 1, respectively

As an illustration, here we choose the number of alternatives
as 6 to give some further computations.

Example 4 Considering the alternatives x1−x6, the fourDMs
e1 − e4 give the initial NrFPRs as follows:

B9 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.5 0.4 0.6 0.6 0.4 0.3
0.6 0.5 0.7 0.5 0.4 0.5
0.4 0.4 0.5 0.4 0.6 0.3
0.4 0.5 0.6 0.5 0.4 0.3
0.7 0.6 0.4 0.6 0.5 0.4
0.7 0.5 0.6 0.7 0.6 0.5

⎞

⎟⎟⎟⎟⎟⎟⎠
,

B10 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.5 0.5 0.4 0.4 0.4 0.4
0.5 0.5 0.3 0.4 0.8 0.5
0.6 0.7 0.5 0.4 0.4 0.5
0.7 0.5 0.6 0.5 0.3 0.4
0.3 0.2 0.7 0.7 0.5 0.3
0.5 0.5 0.5 0.4 0.6 0.5

⎞

⎟⎟⎟⎟⎟⎟⎠
,

B11 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.5 0.3 0.4 0.6 0.7 0.5
0.7 0.5 0.5 0.4 0.6 0.5
0.7 0.4 0.5 0.8 0.3 0.4
0.4 0.5 0.2 0.5 0.4 0.4
0.4 0.4 0.7 0.6 0.5 0.3
0.6 0.5 0.5 0.6 0.6 0.5

⎞

⎟⎟⎟⎟⎟⎟⎠
,

B12 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.5 0.6 0.4 0.6 0.7 0.6
0.3 0.5 0.6 0.5 0.6 0.5
0.6 0.5 0.5 0.5 0.3 0.4
0.4 0.6 0.5 0.5 0.4 0.4
0.4 0.3 0.7 0.6 0.5 0.3
0.5 0.5 0.5 0.6 0.7 0.5

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Let us still choose p = 0.25, q = 0.75 and the maxi-
mum iteration number 100.Under various flexibility degrees,
Table 9 shows the best alternatives determined by individ-
ual NrFPRs and the collective ones. It is seen from Table 9
that when α = 0, the acceptable consensus standard in
Definition 6 is not satisfied. When the individual NrFPRs
are optimized by offering a certain flexibility degrees, the
acceptable consensus standard is achieved. The final solu-
tion is determined as x6, which is in agreement with the
result based on the model in [19]. Furthermore, the values of
additive consistency index, consensus level, Q1 and Q2 are
computed and given in Tables 10 and 11, respectively. One
can see that with the increasing of the flexibility degrees, the
values of Q1 and Q2 are decreasing. This means that the
acceptable additive consistency level and acceptable consen-
sus measure can be achieved in terms of the corresponding
thresholds. The obtained results are similar to those in Exam-
ple 3. By considering the thresholds in Table 1, the acceptable
additive consistency has been reached for α = 0.1, 0.2, 0.3,
respectively.

Conclusions and the future study

This paper has reported a consensus model in group deci-
sion making (GDM) where non-reciprocal fuzzy preference
relations (NrFPRs) are used to express the opinions of deci-
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Table 10 The values of additive
consistency index of B̄9 − B̄12

and Q1 under various flexibility
degrees

Flexibility degrees AC IV (B̄9) AC IV (B̄10) AC IV (B̄11) AC IV (B̄12) Q1

α = 0.0 0.1380 0.3667 0.2713 0.2069 0.2457

α = 0.1 0.0957 0.2072 0.1950 0.1070 0.1512

α = 0.2 0.0481 0.1353 0.0950 0.0608 0.0848

α = 0.3 0.1001 0.0971 0.0541 0.0633 0.0787

Table 11 The values of the consensus level of B̄9 − B̄12 and Q2 under
various flexibility degrees

Flexibility degrees cl9 cl10 cl11 cl12 Q2

α = 0.0 0.1042 0.0892 0.0675 0.0575 0.0796

α = 0.1 0.0727 0.0681 0.0578 0.0430 0.0604

α = 0.2 0.0539 0.0578 0.0483 0.0372 0.0493

α = 0.3 0.0455 0.0506 0.0271 0.0355 0.0397

sion makers (DMs). The novel consistency index has been
proposed to quantify the inconsistency degree of NrFPRs. A
novel optimization model has been constructed to consider
the consistency degrees of NrFPRs and the consensus level.
The particle swarm optimization (PSO) algorithm has been
used to model the consensus process of reaching the final
solution. Some findings are shown as follows:

• The proposed consistency index can be effectively used
to quantify the inconsistency degree of NrFPRs. And it
is easy to be computed and understood as compared to
the existing ones.

• The standard of acceptable consensus level is adopted to
keep the final solution to a GDM problem accepted by
the most of DMs.

• The observations show that with the increasing of the
flexibility degrees of DMs, the ranking of alternatives
could be changed considerably.

In the future, the idea shown in NrFPRs could be used
to propose the concept of non-reciprocal pairwise compar-
ison matrices (NrPCMs) in the analytic hierarchy process
(AHP). The relations among various preference relations
could be investigated. The prioritization methods of NrFPRs
andNrPCMs could be developed. The standard of acceptable
consensus level could be extended to propose the consensus
models with incomplete NrFPRs and others.
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