
Complex & Intelligent Systems (2022) 8:3395–3407
https://doi.org/10.1007/s40747-022-00671-3

ORIG INAL ART ICLE

Rethinking ResNets: improved stacking strategies with high-order
schemes for image classification

Zhengbo Luo1 · Zitang Sun1 ·Weilian Zhou1 · Zizhang Wu2 · Sei-ichiro Kamata1

Received: 27 August 2021 / Accepted: 28 January 2022 / Published online: 22 February 2022
© The Author(s) 2022

Abstract
Various deep neural network architectures (DNNs)maintainmassive vital records in computer vision.While drawing attention
worldwide, the design of the overall structure lacks general guidance. Based on the relationship between DNN design and
numerical differential equations, we performed a fair comparison of the residual design with higher order perspectives. We
show that the widely used DNN design strategy, constantly stacking a small design (usually, 2–3 layers), could be easily
improved, supported by solid theoretical knowledge and with no extra parameters needed. We reorganise the residual design
in higher order ways, which is inspired by the observation that many effective networks can be interpreted as different
numerical discretisations of differential equations. The design of ResNet follows a relatively simple scheme, which is Euler
forward; however, the situation becomes complicated rapidly while stacking. We suppose that stacked ResNet is somehow
equalled to a higher order scheme; then, the current method of forwarding propagation might be relatively weak compared
with a typical high-order method such as Runge–Kutta. We propose HO-ResNet to verify the hypothesis on widely used CV
benchmarks with sufficient experiments. Stable and noticeable increases in performance are observed, and convergence and
robustness are also improved. Our stacking strategy improved ResNet-30 by 2.15% and ResNet-58 by 2.35% on CIFAR-10,
with the same settings and parameters. The proposed strategy is fundamental and theoretical and can, therefore, be applied
to any network as a general guideline.

Keywords Image classification · Deep neural networks · Neural ordinary differential equations · Image processing

Introduction

Deep neural networks (DNNs) have achieved many exem-
plary breakthroughs in computer vision, image processing,
and signal processing with powerful learning representations
from extremely deep structures and massive data. Moreover,
repeated simple functions are doing a surprisingly good job
while approximating complicated ones; even though this is
not fully understood.

Many DNNs have been proposed for more specific tasks,
which all perform well. However, despite the tremendous
success, we still lack a theoretical understanding of DNNs.
In this study, we examine DNNs from a continuous per-
spective, regard DNNs as discrete dynamical systems, and

B Zhengbo Luo
lewisluo@fuji.waseda.jp

1 Graduate School of IPS, Waseda University, Kitakyushu,
Fukuoka, Japan

2 Zongmu Technology, Shanghai, China

then improve the stacking strategy of DNNs with high-order
numerical methods.

It is common for DNNs to have more than a hundred lay-
ers; however, one usually designs a sub-network with around
2–3 layers and then repeats it multiple times rather than
designing a huge one directly. The fixed topology and rela-
tionship between blocks lead to the development of dynamic
systems.

Enormous possibilities and advantages are gained from
this view. For example, mathematical problems are easier to
solve and provide direct links to physical sciences and solid
theoretical support from differential equations. This study
focuses on the depth ofDNNs, specifically, the stacking strat-
egyof blocks: constructingDNNswith a given sub-net design
in high-order ways.

We show that a certain DNN (ResNet as the example in
this study) can be easily improved by slight adjustments
in the block stacking strategy, following numerical meth-
ods, without any changes in width and depth. Moreover, the
improvements are directly proportional to the order of the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-022-00671-3&domain=pdf


3396 Complex & Intelligent Systems (2022) 8:3395–3407

Fig. 1 HO-ResNet, stacking the same layers in higher order: given fixed
layers, with the same parameters, there are more advanced stacking
strategies supported by numerical methods. We implemented three of
them to be HO-ResNet, which achieved noticeable improvements in
several aspects. Moreover, the degradation problem occurs later with
more advanced numerical schemes

numerical methods, not only in terms of accuracy but also in
terms of convergence and robustness.

Related work

The relationship between DNNs and dynamical systems has
been widely discussed in recent years. In 2016, Liao et al.
[20] stated the equivalence of ResNet [12] and a specific
recurrent network based on formulations from dynamical
systems. A systematic proposal was published by Weinan
[30] in 2017, indicating that DNNs could be thought of as
a discretisation of continuous dynamical systems; the pro-
posal and neural ordinary differential equations motivated us
to rethink ResNet using advanced numerical methods.

Neural ODEs

In 2018, neural ordinary differential equations (NODEs [6])
took a step forward, replacing the discreteDNNswith solvers
of ordinary differential equations (ODEs).

To highlight the equivalence, we take a residual network
(ResNet) as an example. Let model ResNet be RESL(x) :
R
din → R

dout as an L-layer residual neural network. We
assume that the hidden stateN belongs toRdN, and the input
layer is N 0(x) = x ∈ R

din . The residual design is described
as follows:

F
(
x,

{
W i

})
+ x, s.t. 1 ≤ i ≤ L − 1. (1)

Fig. 2 Discrete and continuous approaches of featuremapping: discrete
methods usually design a basic structure (2–3 layers), and repeat it N
times to have various depths. The size of model, computational cost
and performance changes with the depth. Meanwhile, the NODEs map
features end-to-end with fully continuous flow and O(1) para size

i is an integer only and F (
x,

{
W i

})
represents the residual

mapping to be learned which we do not expand further.
A sequence of transformation to a hidden state N from

depth i to i+1 in residual networks can bewritten as follows,
where i ∈ {1 . . . L − 1} and W refers to the weight matrix:

N i+1 = F
(
N i ,

{
W i

})
+ N i , s.t. 1 ≤ i ≤ L − 1. (2)

The situation above always takes a step�i = 1, letting�i →
0, we have

lim
�i→0

Ni+�i − Ni

�i
= dN (i)

di
= F(N (i), i), (3)

thereby, hidden states can be parameterised using an ODE.
Data point x can be mapped into a set of features by solving
the initial value problem (IVP):

dN (i)

di
= F(N (i), i), N (0) = x, (4)

at a certain position.N (i) corresponds to the features learned
by the model. NODEs map the input to output by solving an
ODE starting from N (0) and adjust the dynamics to fit the
output of the system closer to the label.

In addition to ResNet, several outstanding networks are
linked to different numerical schemes (see Table 1). The
NODEs are a family of DNNs that can be interpreted as a
continuous equivalent of a certain discrete DNN (see Fig.
2). Inspired by several results of NODEs, we believe that

123



Complex & Intelligent Systems (2022) 8:3395–3407 3397

Table 1 Connections between neural networks and ODE schemes:
some networks have been proposed without awareness of their connec-
tion with ODE schemes such as ResNet, RevNet, and PolyNet, while

others have been proposed following the guidelines of ODE schemes
such as LM-ResNet and second-Order CNNs

Networks Corresponding ODE formula ODE Scheme

ResNet [12] N t+1 = N t + F (N t ,W t
)

Forward Euler

RevNet [10] Y t = N t + F (N t+1,W t
)
, Y t+1 = N t+1 + G (Y t ,W t

)
Forward Euler

PolyNet [32] N t+1 = N t + F (N t ,W t
) + F (F (N t ,W t

))
Backward Euler

LM-ResNet [22] N t+1 = (1 − �t)N t + �tF (N t−1,W t−1
) + F (N t ,W t

)
Linear-MultiStep

Second-order CNNs [23] N t+1 = 2N t − N t−1 + �t2F (N t ,W t
)

Second-order

The form of ResNet is widely discussed as the Euler forward scheme, which is the most straightforward way to solve the initial value problem.
RevNet is a reversible network, which means that the dynamic can be simulated from the end time back to the initial time. PolyNet includes
polynomial compositions that can be interpreted as approximations to one step of the implicit backward Euler scheme. LM ResNet adopted the
known linear multistep method in numerical ODEs and achieved the same accuracy by half the parameter size. Moreover, the second-order CNN
considers higher order states, which is another direction that can be further explored

continuous theoretical concepts could lead to equivalent
improvements in discrete DNNs.

Common high-order numerical schemes for IVP

With respect to the design of DNNs, structures by NAS have
been in a leading position in recent years. However, recent
work from theGoogle team revisited ResNet to conclude that
state-of-the-art NAS structures such as Efficient-Nets [27]
are not necessarily better thanResNets [2]. Another excellent
piece of work, RepVGG [9], also achieved state-of-the-art
results with a simple VGG-style sub-net. The comeback of
ResNet and simple sub-net motivated us to rethink the block-
stacking strategy, i.e. how to stack these sub-nets in a better
way. We studied ResNet because complicated NAS designs
did not seem necessarily better than ResNet.

Euler’s scheme is a simple and elegant one-order method,
but most networks contain a few basic components. The true
expression of the stacked network is nested and in a consid-
erably high order. Will advanced numerical methods make
things better? Our stacking designs are based on the corre-
sponding high-order methods for the differential equation.
Adopting Euler forward as the baseline ResNet [16], mid-
point [4], Runge–Kutta 4th, and Verner’s RK-8(9)th-Order
Embedded Runge–Kutta method [5,24,29] are the general
guidelines for our proposed stacking design.

Effective DNNs that related to ODE schemes

Table 1 shows several outstanding networks with their corre-
sponding schemes. Besides them, many powerful networks
are partially related to the ODE scheme. For example, dense
connections are like shortcuts of high-order RK schemes
[14], a DenseNet block is nested high-order RK; the One-
Shot Aggregation (OSA) proposed by VoVNet [18] is very
similar to how RK methods conclude the block output from
each state inside. Moreover, in NAS, which discovered sev-

eral complicated structures, its stacking links (regardless of
sub-net differences) may eventually converge to a specific
high-order scheme.

Contribution

Motivation. Our strategy is motivated by multiple recent
worksmentioned above. The comeback of the simple sub-net
design made us focus more on the stacking of blocks rather
than on the design of a small sub-net. The improved perfor-
mance of NODEs with advanced solvers indicated to us that
it would be of interest to explore stacked discrete networks,
following numerical schemes with various orders.

Difference and Novelty Advanced schemes in NODEs are
used to solve IVPs. NODEs use error tolerance instead of a
simple depth of layers; therefore, advanced schemes require
more computational cost due to complex operations. How-
ever, it is not convenient to constrain the FLOPs of NODEs
with various schemes simultaneously since the complexity of
calculation is related to the landscape of high-dimensional
features. Meanwhile, it is rather simple in discrete DNNs.
To our best knowledge, it is the first work to implement and
compare DNNs in these schemes under the same conditions.

Pros and cons.Ourmethod enablesDNNs to achievebetter
performance, more stable loss landscape (before and after
training), faster convergence, and stronger robustness, which
we will show in Sect. 3. Moreover, one can hardly notice the
additional cost when adopting 2–4-order methods, such as
midpoint and RK-4, which we will analyse at the end of
Sect. 2. However, the model requires considerable memory
to store middle states if fully following a very high-order
design, such as Verner’s RK-8(9)th scheme.

The main contributions of this study are listed as follows:

– We propose the Higher Order ResNet (HO-Net) to
explore, with a given sub-net design, how high-order

123



3398 Complex & Intelligent Systems (2022) 8:3395–3407

Fig. 3 Various schemes with a simple case: from end-to-end, higher
order methods with more steps lead to a closer fitting of the target
function but also additional steps and costs

methods help in terms of performance, convergence and
robustness.

– We provide sufficient fair comparisons, stacking basic
Euler scheme to the same order to enable comparison
with high-order methods, therefore, no extra parameters
and steps.

– Visualisations of loss landscapes are given for better
understanding.

– Corresponding theoretical supports, complexity analysis
and sufficient ablation studies.

High-order residual networks

NODEs compute the gradients of a scalar-valued loss with
respect to all inputs of any ODE solver, without back prop-
agating through the operations of the solver. Similar to
different sub-net designs in discrete networks, the methods
of the solver make a difference under the same conditions.
Thus, advanced solvers make NODEs better, but incur extra
computational costs. Figure 3 shows a simple case for better
understanding.

Will advanced numerical schemes make ResNet better in
a discrete scheme with the same cost and parameter size? In
this study, baselineResNet (Euler forward scheme),midpoint
scheme, RK-4, fixed Verner-8(9), and adaptive Verner’s 8(9)
have a basic sub-net with [2, 4, 8, 28, 28] layers, respectively.
When comparing ResNet with HO-ResNet, we maintained
the same depth and width.

For example, a ResNet-Euler-18 has eight (8 × 2 layers)
Euler-style blocks, one embedding layer, and one FC layer,
where ResNet-Midpoint-18 and ResNet-RK4-18 have four
(4 × 4 layers) Midpoint-style blocks and two (2 × 8 layers)
RK4-style blocks. The higher order design evidently impacts

Fig. 4 Loss landscape without training: when processing the same
images, ResNet-18 with Euler, midpoint, and RK-4 schemes have
ranges of loss ([0, 43.16], [8.20, 18.79], [1.99, 3.08]), respectively. A
high-order scheme significantly improves the stability of models for
unseen samples; the loss will not shack too much, which leads to the
robustness of the learning rate and other properties, which will be dis-
cussed in a later section

the network, even without training (see Fig. 4, in relation to
visualisations of initial conditions.

A few definitions are necessary before introducing HO-
ResNet. The situations discussed below are without the
embedding layer and FC layers, which means that the input
and output are all features. We use F to describe any sub-
net/component, which could be any component such as a
VGG-style two-layer sub-net, three-layer bottle net, ViT
block, self-attention layer, or simple feed-forward network.

However, we used a VGG-style block in the experi-
ments because the question ‘what form shall F be?’ was
not included in our discussion. Our focus is on propagating
features in various schemes with a given F . We refer to the
input/output features as N in and N out, denote the middle
states of the input asNmid if there are two layers, ki is used
to indicate the hidden states of the input after a particular i th
F .

Euler forward scheme

Let a network be ResNet-6 which means that two ResBlocks
are stacked, and we can write the transforms between the
embedding layer and FC layer as follows:

NMid = F
(
N in,

{
W i

})
, (5)

NOut = F
(
NMid + N in,

{
W i

})
+ NMid. (6)

NMid denotes the output of the first F ; one may find that
the behaviour of two stacked ResBlocks is very similar to a
midpoint ResBlock, as shown in Fig. 5.

Midpoint scheme

TheEulermethodupdates itwith the easiest one-stepmethod,
which is �iF (

i,N i
)
, while the midpoint method updates it

in a higher order manner:

N i+�i =N i +�iF
(
i + �i

2
,N i + �i

2
N

(
i,N i

))
. (7)

123



Complex & Intelligent Systems (2022) 8:3395–3407 3399

Fig. 5 Midpoint ResBlock: comparing two stacked ResBlock-Euler
with a single design that follows the midpoint method

If we compare ResBlock-Euler and ResBlock-Midpoint, in
terms of network design, we will have different stacking, as
shown in Fig. 5. Rather than a designwith two layers, we now
have a block design consisting of four layers. Nevertheless,
we stack the Euler scheme to the same layers/orders for a fair
comparison.

There were two noteworthy differences: (1) when adding
the shortcut to obtain themid-state, themidpoint design com-
pressed the output of F by half. (2) The second shortcut is
from an earlier location, which is directly from the input. If
we write the midpoint ResBlock design as

NMid = F
(
N in,

{
W i

})
, (8)

NOut = F
(
1

2
NMid + N in,

{
W i

})
+ N in. (9)

One finds that it is very similar to the stacked ResBlock-
Euler. Therefore, we assume that stacked ResNet will be
easily improved with higher order methods because numeri-
cal problems have solid theoretical backups, which could be
more accurate than the lower order ones.

Fourth-order Runge–Kutta Scheme

Exploring this further, with a fourth-order design, Zhu et al.
[33] attempted an RK style design. In this study, we use it
as a guideline for stacking rather than a certain RK-Net. The
Runge–Kutta method (RK4) updates it in a 4-step manner,
and our implemented ResBlock-RK4 can be written as fol-
lows:

Fig. 6 RK4-ResBlock: comparing four stacked ResBlock-Euler with a
single design which follows the 4th-order Runge–Kutta method

k1 = F
(
N in

)
,

k2 = F
(
1

2
k1 + N in

)
,

k3 = F
(
1

2
k2 + N in

)
,

k4 = F
(
k3 + N in

)
,

(10)

In addition, the network output is

NOut = N in + 1

6
(k1 + 2k2 + 2k3 + k4) . (11)

Implementing a single ResBlock-RK4 requires eight layers,
and thus we compare four stacked ResBlock-Euler with it.
The stacked ResBlock-Euler can be written in the same way
for easy comparison:

k1 = F
(
N in

)
,

k2 = F
(
k1 + N in

)
,

k3 = F (k2 + k1) ,

k4 = F (k3 + k2) ,

(12)

In addition, the network output is

NOut = k4 + k3. (13)

123



3400 Complex & Intelligent Systems (2022) 8:3395–3407

k1 = F N in ,

k2 = F h

12
k1 + N in ,

k3 = F h

27
(k1 + 2k2) + N in ,

k4 = F h

24
(k1 + 3k3) + N in ,

k5 = F h

375
4 + 94

√
6 k1 − 282 + 252

√
6 k3 + 328 + 206

√
6 k4 + N in ,

k6 = F h
9 − √

6
150

k1 +
312 + 32

√
6

1425
k4 +

69 + 29
√
6

570
k5 + N in ,

k7 = F h
927 − 347

√
6

1250
k1 +

7328
√
6 − 16248
9375

k4 +
179

√
6 − 489

3750
k5 +

14268 − 5798
√
6

9375
k6 + N in ,

k8 = F h

54
4k1 + 16 −

√
6 k6 + 16 +

√
6 k7 + N in ,

k9 = F h

512
38k1 + 118 − 23

√
6 k6 + 118 + 23

√
6 k7 − 18k8 + N in ,

k10 = F h
11
144

k1 +
266 − √

6
864

k6 +
266 +

√
6

864
k7 − 1

16
k8 − 8

27
k9 + N in ,

k11 = F h
5034 − 271

√
6

61440
k1 +

7859 − 1626
√
6

10240
k7 +

813
√
6 − 2232

20480
k8 +

271
√
6 − 594
960

k9 +
657 − 813

√
6

5120
k10 + N in ,

k12 = F h (−8.14164k1 − 574.436k6 + 847.88k7 + 113.719k8 + 626.94k9 + 605.73k10 − 328.69k11) + N in ,

k13 = F h (0.0878k1 + 0.69337k6 − 1.9k7 + 0.23k8 − 0.69k9 − 0.077k10 + 2.49k11 + 0.0018k12) + N in ,

k14 = F h (−0.1k1 + 5.575k6 + 7.486k7 − 6.23k8 + 2.27k9 − 4.89k10 − 4.86k11 − 0.0235k12 + 1.78k13) + N in ,

NOut = N in + h (0.06k1 − 0.19k8 + 0.72k9 − 0.72k10 + 0.75k11 + 0.0004k12 + 0.34k13 + 0.032k14) .

Fig. 7 Verner’s RK-8(9)th-order scheme: the full method has 16 steps
and extra processes for error estimation and scale factor adjustment. In
our implementation, Verner’s 8(9)th-order block has 28 layers instead
of (8 × 2 × 2) layers for two reasons: (1) k15 and k16 do not impact
the block output NOut and are used to calculate the adaptive factor h.
(2) Moreover, one can update h via deep-learning frameworks directly

by setting it as a learnable tensor value. We compared both fixed h and
adaptive h, where learnable h is the only extra parameter in HO-ResNet,
usually no more than 50, making a rare difference because most models
have millions of parameters. h equals one in a fixed Verner block; for
the adaptive version, one could use a shard h for all hidden states from
k1 to k14 or every state could have a different h

According to the summary above, we can easily under-
stand the difference between 4th fourth-order RK-ResNet
and the four stacked ResBlocks. In Fig. 6, we find that RK4-
ResBlock is somehow similar to the DenseNet design [14].
However, DenseNet will shortcut every k to layers after it,
which the proposed RK4-ResNet does not. Moreover, HO-
ResNet scales the particular output of k with mathematical
support.

Midpoint-ResBlock and RK4-ResBlock only shortcut k
to the block output; identity mappings inside the block are
all from the input x of the block. However, some more high-
order methods will start to map k inside the block to other
states. However, the coefficient is precisely calculated, rather
than simply added.

Verner’s 8(9)th-order Runge–Kutta Scheme

Of course, one could keep seeking a more advanced scheme
to construct ResBlock in a higher order manner, that contains
more layers than just two or three. There are many other
versions to guide the network design.Many of these methods
are adaptivemethods that use a scaling factor. Thismeans that
the compression rate of ki can be adaptive depending on the
error returned.

In this study, we implemented the midpoint and RK4
methods directly, as they are fixed methods. However, we
did not fully implement the adaptive Verner’s RK-8 [29], as
shown in the caption of Fig. 7 for reasons.

The full Verner’s RK-8(9) ResBlock design shall contain
16 F which means 32 layers. We use ki to represent the

123



Complex & Intelligent Systems (2022) 8:3395–3407 3401

output of each block, where i is an integer in the range [1–
16]. Unfortunately, no flowchart is provided because of the
complicated connections between the hidden states.

The final output of theVerner-8(9)ResBlock depends only
on the shortcut from the start andki , where i in [1, 8, 9, 10, 11,
12, 13, 14]. The scale factor h should be adjusted depending
on ki , where i in [1, 8, 9, 10, 11, 12, 13, 14, 15, 16].

Thereby, one can implement a fixed version with an out-
of-scale factor adjustment using 14F . However, k15 and k16
are required to update h if one wants to fully follow Verner’s
method, in which we update h by directly setting it to be
learnable, to compare fixed and adaptive versions with the
same computational cost.

Complexity analysis

We compare the situation in which the same size, number,
and design of the layers are used. The space complexity can
be described by the

Space ∼ O

(
D∑
i=1

K 2
i · Cl−1 · Ci +

D∑
i=1

M2 · Ci

)
, (16)

whereK is the kernel size, C refers to the number of channels,
and D denotes the depth of the network. Thus, the com-
plexity of various ResNet designs is the same, with no extra
parameters, theoretically. However, in practice, extra space
is required to maintain the output inside the high-order block
because the block output depends on more states at particu-
lar layers rather than two fixed positions, compared with the
baseline ResNet.

Specifically, baseline ResNet only maintains a shortcut
from the block input, as does the midpoint block. For the
Runge–Kutta 4 block, we need three more shortcuts for the
block output. However, this could be optimised to one more
shortcut.

For Verner’s RK-8 block, this situation becomes rather
complicated. From the state k5, every state starts to depend
on other previous states, besides the input from the last state;
we shall maintain 16 more shortcuts for the full version or
14 more shortcuts for our version. Furthermore, the space
requirement is extremely high while forwarding, which is a
crucial shortage; sufficient space should be provided when
using such a design. Therefore, it is not recommended to
use Verner’s block; applying the adaptive step from Verner’s
block to a fourth-order scheme would be a better solution.

Our design does not affect the first term,
∑D

i=1 K
2
i ·

Cl−1 · Ci , but only the second term,
∑D

i=1 M
2 · Ci . Base-

line ResNet maintains only one feature map for shortcut as∑D
i=1 M

2 · (Ci + 1), similar to the midpoint block. RK4-
Block and Fixed-RK8-Block will take

∑D
i=1 M

2 · (Ci + 2)
and

∑D
i=1 M

2 · (Ci + 15), respectively. We could say that

Fig. 8 Visualisation of untrained ResNet-58 with various schemes: the
range of loss exploded with a low-order scheme. Euler, Midpoint, RK-
4, and Verner’s 8(9) have loss ranges ([1e5, 1e7], [1028, 7097], [4.76,
13.04], [1.47, 1.90]). The stability is significantly improved with higher
order, whichmeans that gradient problems, such as vanishing or explod-
ing, are less likely to occur

the extra space requirement could be ignored generally for
second–fourth-order schemes but is slightly too large for full
Verner’s RK-8(9).

We may describe the time complexity by

Time ∼ O

(
D∑
i=1

M2
i · K 2

i · Ci−1 · Ci

)
. (17)

According to the explanation above, we know that HO-
ResNet will frequently scale the shortcuts, unavoidably cre-
ating extra multi/add processes. Compared with the baseline
ResNet, the midpoint block has one additional multiplica-
tion operation for every four layers. Therefore, we shall add
1
4

∑D
i=1 M

2 · Ci .
The RK-4 block requires six more multiplication oper-

ations and three additional operations every eight layers.
Therefore, we shall add 9

8

∑D
i=1 M

2 · Ci . It is difficult to
observe the complexity changes among Euler, Midpoint, and
RK4. However, Verner’s RK-8 requires a considerable num-
ber of storage spaces because of the highly correlated hidden
states and extensive additional multi/add scaling. The time
consumption is approximately 1.15x–1.2xwhile the previous
three remain the same.

Table 2 shows the multiple relationships of memory and
running time in practice, taking the ResNet as the baseline.
There is no room to optimise the huge cost of Verner’s 8(9),
but one could remove the blending of RK-4 and output the
N in + k4 only instead of N in + 1

6 (k1 + 2k2 + 2k3 + k4).
RK-4 will have the same memory requirement as baseline
Euler by doing so with no evident performance drop.

123



3402 Complex & Intelligent Systems (2022) 8:3395–3407

Table 2 Multiple relationships of memory requirements and running time: the second- to fourth-order scheme has rare extra operations, and thus
does not reflect on the running time

Schemes Euler Midpoint RK-4 Verner-8(9)

Memory 1x 1x 1.5x (1x) 7x

Time 1x 1x 1x 1.15x–1.2x

However, more memory is required because RK-4 blends all hidden states for the output. Verner’s 8(9) requires huge amounts of memory because
it blends not only hidden states for output but also previous states for hidden states in a later stage

Fig. 9 ResNet-86with various schemes against different initial learning
rates: under the same condition, ResNet with higher order could be
trained with a noticeable larger learning rate. Baseline Euler scheme
diverged with learning rate 0.13 and all lr larger than it, while midpoint
could converge with lr close to 0.2, RK-4 could converge at lr 0.23 and
Verner’s-8(9) can converge at lr 0.4 (or even above)

Fig. 10 One midpoint block vs. two Euler blocks: the second-order
scheme shows noticeable improvements in both accuracy and loss dur-
ing training and testing

Experiments

Datasets and implementation

In this study, we conducted most studies on the CIFAR–10
datasets [17], which all consist of coloured natural images

Fig. 11 One Rk4 block vs. twoMidpoint blocks and four Euler Blocks:
the fourth-order RK-4 scheme outperforms the midpoint and baseline
Euler as a basic sub-net. Note that the advantages will become increas-
ingly evident for deeper situations

with 32 × 32 pixels with 50,000 images for training and
10,000 images for testing, which has 10 target classes in
total for CIFAR-10 with 6000 images per class.

We directly stacked blocks 64 dim after a conv(3, 64).
Stochastic gradient descent [3] under a weight decay of 1e-4
and momentum of 0.9, was used with weight initialisation in
[11] and batch norm [15]. The models were trained with a
batch size of 128, starting with an initial learning rate of 0.1,
step scheduler with [100, 150, 200, 230], factor 0.1, and 260
epochs trained.

Augmentations and tricks

Our focus was on the differences in behaviour for each of the
stacking strategies to verify whether the high-order stacking
could provide general guidance for neural network design,
but not on pushing a certain line of results or seeking a
more considerable number. Therefore, we intentionally com-

123



Complex & Intelligent Systems (2022) 8:3395–3407 3403

Fig. 12 ResNet-58 with various schemes: training accuracy and loss on top and testing accuracy and loss at the bottom. Note that the difference
between schemes is becoming increasingly noticeable compared with observations on shallow versions

pared those stacking strategies using methods that enabled
fair comparisons to be drawn.

When comparing a single block design with the cor-
responding deep baseline ResNet, we used raw data and
observed overfitting even under 10 layers. Therefore,we used
the autoaugments’ CIFAR10 policy [7] to address this ques-
tion.

Robustness against learning rate

Figure 8 shows a deeper situation with different schemes.
Comparing with the case of ResNet-18 shown by Fig. 4, the
loss exploded due to the chain rule. Meanwhile, higher order
schemes show significant advantages, such as more flatten
loss surfaces being provided. Such a phenomenon greatly
enhances the robustness of models when different learning
rates are given.

The learning rate is one of the primary hyperparameters of
deep-learning systems. Slight adjustments in the learning rate
could cause vast impacts on the whole system, large learning
rates will easily lead to divergence, and small learning rates
usually fail to converge well.

Taking ResNet-86 as an example, 84 layers could consist
of [42, 21, 7, 3] of [Euler, Midpoint, RK-4, Verner’s 8(9)]
blocks. Figure 9 shows how higher order schemes are dealing
with a larger range of learning rates.ResNet-86 in the 4th/8th-
order scheme could be well trained with 2x/4x learning rate
at the point where the baseline Euler diverged

Fair comparison of single block

If one compares each block designwith equivalent deep base-
line ResBlocks, it is found that the improvements are stable

but not apparent in the shallow situation.However, the advan-
tageswere rapidly becoming evident inmore profound cases.

Euler-x2 and Midpoint-x1 Given ResNet-6, we have four
layers beside the input and output layers. We performed
experiments onCIFAR-10 rawdatawith rare tricks; as shown
in Fig. 10, loss and accuracy are stably improved.

Euler-x4, Midpoint-x2 and RK4-x1 If ResNet-10 was
given, one could stack four baseline ResBlocks, which is
the red line in Fig. 11, while Midpoint-2 and single RK-4
block benefit from more accurate updating methods.

Deeper situation with augmentation

Wenoticed overfitting when using ResNet shallower than 10.
Therefore, we added auto-augmentation [7] in this compari-
son. Without the input and output layers, 56 layers could be
divided into Baseline ResBlock X28, Midpoint x14, RK4-
Block x7, and fixed-RK8 X2.

As shown in Fig. 12, baseline ResNet, represented by the
red line, is clearly improved by high-order stackingmethods,
using the same setting and parameters. We noticed that the
fixed-RK8 method has the potential to improve. In the early
stages, it was above RK-4. In Verner’s RK-8(9) [29] design,
one should also maintain a scale factor h and error to adjust
the step side. Adaptive-step Verner’s RK-8(9) converges at a
slightly slower rate but outperforms all other schemes overall.

Table 3 shows more details against different depths;
all schemes perform similarly in shallow cases but show
more evident gaps while getting deeper. Moreover, there are
numerous benefits to be gained from high order, besides the
performance, such as loss landscape and robustness against
hyperparameters, Fig. 13 and Table 4 show the improvement
in the speed of converging.

123



3404 Complex & Intelligent Systems (2022) 8:3395–3407

Table 3 Classification accuracy on CIFAR-10: various schemes with different depth are compared

Models Layers Params Cifar-10

Euler X4 10 0.3M 91.72

Midpoint X2 10 0.3M 91.97

RK4 X1 10 0.3M 91.51

Euler X8 18 0.59M 92.68

Midpoint X4 18 0.59M 92.95

RK4 X2 18 0.59M 92.98

Euler X14 30 1.03M 93.02

Midpoint X7 30 1.03M 93.17

RK8 X1 Fix 30 1.03M 93.39

RK4 X3 26 0.89M 93.41

RK8 X1 Adaptive 30 1.03M+1 94.17

Euler X28 58 2.07M 92.81

Midpoint X14 58 2.07M 94.08

RK4 X7 58 2.07M 94.79

RK8 X2 Fix 58 2.07M 94.91

RK8 X2 Adaptive 58 2.07M+2 95.06

Euler X42 86 3.01M 92.73

Midpoint X21 86 3.01M 93.87

RK4 X10 82 2.87M 94.83

RK8 X3 Fix 86 3.01M 95.02

RK8 X3 Adaptive 86 3.01M+3 95.15

All schemes perform similar when depth smaller than 18. After that, higher order schemes are showing more and more apparent advantages in
terms of classification accuracy

According to Fig. 1 and Table 3, most schemes have diffi-
culties achieving better performance as the depth increases.
Therefore, we added warm-up and adaptive steps in training,
and more epochs were trained to study situations over 100
layers and a rather aggressive case with 1000 layers. Table
5 shows comparisons under deeper situations. Especially the
case with 1000 layers shows a noticeable drop compared
with depth 194 within limited epochs. However, ResNets in
advanced schemes performed better and much stabler with
fewer drops, which support previous observations.

Scaling factors

The most effective DNNs have a relatively light stacking
design between blocks and rarely feature scaling factors on
block outputs. Following the Midpoint and RK4 scheme, the
output should be compressed with a scaling factor of 0.5, and
RK4 will have 1/6 and 1/3 factors when averaging the output
inside the block.

In RK-8 [29], a constraint [0.125, 4] was given while scal-
ing the output from a particular layer. Although we did not
further explore the adaptive stacking design,we tried a simple
test on how various scaling factors impact the same DNNs.

Taking ResNet-58 as an example, which has two fixed
Verner’s RK-8 blocks and two extra parameters, see Table 4.
Although the full Verner’s RK-8 constrains the factor inside
[0.125, 4], we did not follow the constraint when applying
the adaptive step for practical reasons. However, the results
still show a noticeable improvement, as expected.

Ablation study on various sub-nets

Most previous works focussed on the specific design of the
sub-network; however, we consider the certain sub-network
abstractly as a function. In the previous section, we present
stackings under various depths with the VGG-style block
only. Several famous sub-nets are studied in this sub-section
under common depths around 50 and 100 to demonstrate our
strategy’s effectiveness and generalisation ability.

Various sub-nets show more or less performance due to
different designs; however, our strategy works well on them
as shown in Table 6. Not only on VGG-style block without
change in dimension, but also on BottleNeck, SE block and
CoT.

123



Complex & Intelligent Systems (2022) 8:3395–3407 3405

Fig. 13 Running time comparison approaching 0.8, and 0.85 train accu-
racy (ResNet-58): high-order schemes have evident advantages in terms
of the speed of convergence. The second-order midpoint takes half of
the time to reach 0.8, and 0.85, compared with Euler, while the 4th-
and 8(9)th- order methods take 20–30 percent of the time. See details
in Table 4

Table 4 Ratio of time cost (ResNet-58): note that Verner’s RK-8 costs
a 1.15 increase in time compared to the others; this situation leads RK-4
to be deemed to achieve the best performance in terms of time

Schemes Euler Midpoint RK-4 Fix RK-8 Ada RK-8

To 0.8 1x 2.27x 4.43x 3.31x 3.84x

To 0.85 1x 2.28x 3.92x 3.53x 3.03x

Accuracy 92.71 94.08 94.79 94.72 95.06

Extra para – – – – 2

Adaptive Verner’s RK-8 appears to struggle in the mid-stage but does
converge to achieve the best overall performance in the end, with only
two extra parameters needed

Table 5 Depth over 100 layers and a aggressive case with 1000 layers:
with some training tricks and more epochs, deep networks could be
trained better

Models Layers Params Cifar-10

Euler X72 146 5.40M 94.76

Midpoint X36 146 5.40M 95.17

RK4 X18 146 5.40M 95.42

RK8 X5 Fix 142 5.26M 95.57

RK8 X5 Adaptive 142 5.26M+5 95.71

Euler X96 194 7.18M 94.93

Midpoint X48 194 7.18M 95.28

RK4 X24 194 7.18M 95.79

RK8 X7 Fix 198 7.32M 95.97

RK8 X7 Adaptive 198 7.32M+7 96.06

Euler X500 1002 36.89M 94.53

Midpoint X250 1002 36.89M 94.87

RK4 X125 1002 36.89M 95.59

RK8 X28 Fix 982 36.16M 95.82

RK8 X28 Adaptive 982 36.16M+28 95.91

The phenomena we observed before still exist in these situations

Table 6 Stacking various sub-networks with different schemes under
common depths (around 56 and 110): including VGG-style block [25],
BottleNeck block [12], Squeeze-and-Excitation [13] version VGG and
BottleNeck, Mobile-Conv block searched by NAS [27] and Contextual
Transformer Block [19]

Depth 56 ± 2 Euler Midpoint RK-4 Fix RK-8 Ada RK-8

VGG 92.81 94.08 94.79 94.91 95.06

BottleNeck 93.32 92.78 94.65 94.83 94.92

SE-VGG 93.51 94.36 94.92 95.14 95.31

SE-BottleNeck 93.65 93.97 94.85 95.03 95.16

MBConv 94.54 95.02 95.21 95.87 95.93

CoT 95.02 95.34 95.65 95.91 96.12

Depth 110 ± 4 Euler Midpoint RK-4 Fix RK-8 Ada RK-8

VGG 92.71 93.65 94.81 95.04 95.15

BottleNeck 93.21 92.64 94.51 94.93 95.21

SE-VGG 93.92 94.21 94.97 95.19 95.42

SE-BottleNeck 93.45 93.87 94.74 95.09 95.31

MBConv 94.72 95.24 95.47 95.94 96.07

CoT 95.23 95.52 95.79 96.13 96.32

The overall situations with various sub-networks are as expected

Table 7 ResNet around depth 56 and 110 with various schemes on
Cifar-100 and ImageNet: the phenomena we observed before still exist
on more challenging datasets

Cifar-100 Euler Midpoint RK-4 Fix RK-8 Ada RK-8

Depth 56 ± 2 70.14 70.41 70.83 71.25 71.42

Depth 110 ± 4 71.08 71.43 71.81 72.05 72.24

ImageNet 92.71 94.08 94.79 94.72 95.06

Depth 56 ± 2 76.23 76.31 76.47 76.52 76.63

Depth 110 ± 4 76.74 76.82 76.95 77.03 77.12

More challenging datasets

Besides those advantages on several aspects, one may won-
der about the generalisation on more challenging datasets.
Therefore, we also verify our strategy onCifar-100 and IMA-
GENET with common depths around 56 and 110. Cifar-100
contains more specific labels than Cifar-10, which is evi-
dently harder to train. Moreover, the ImageNet contains 1.28
million training images that consist of 1000 classes.We eval-
uated models on the validation set with 50 k images and
obtained final results on the test set containing 100 k images.
Table 7 shows that results are as expected.

Discussing

Stacking strategy is vital In the past few years, some network
designs have been regarded as ODE schemes such as ResNet
and PolyNet [12,21]; some networks are designed under the
guidance of ODE schemes such as LM-ResNet and RK-Net

123



3406 Complex & Intelligent Systems (2022) 8:3395–3407

[22,33]. However, most of them focus more on the sub-net
design, while the stacking strategy is also critical. Block-
to-block is similar to layer-to-layer, especially when some
networks will even stack 84 blocks in a single stage.

Three principles from high-order schemes (1) One shall
apply an adaptive time step; it can easily be plugged in to
any network. In fact, several excellent studies have already
proposed methods in this manner from other perspectives.
Highway networks [26], Fixup [31], SkipInit [8], ReZero
[1], and LayerScale [28] are the approaches that are most
closely related. (2) One should consider connections over
long distances, but not nested ones such as DenseNet [14]
to avoid huge memory requirements. (3) Blending from dif-
ferent hidden states works, but it is not as important as the
previous two points. Moreover, it requires at least 1x extra
memory.

Unavoidable degradation ResNet [12] significantly alle-
viated the degradation problem that deeper networks shall
perform better in theoretical but worse in practice. The short-
cut does not provide extra capacity but makes models easier
for training, so does HO-ResNet. We implemented ResNet
with advanced numerical methods based on the equivalence
between ResNet and Euler Forward scheme; the results in
Fig. 1 show that the degradation was better handled and
further alleviated with more advanced numerical schemes;
however, the degradation will still come eventually.

Conclusion

Inspired by several existing studies [2,6,12,22,30], we
assume that DNNs are extremely complicated numerical
solvers for differential equations. Most designs are relatively
low order, while the networks are frequently deeper than 100
or 200. We propose a general higher order stacking strat-
egy, following several numerical methods, which proved that
high-order numerical methods could be adopted as general
guidance for block stacking and network design. Sufficient
experiments show that high-order improvements are stable,
robust, and fully explainable in terms of math. We show that
with very fewchanges in stacking,ResNet has shown remark-
able durability.

Acknowledgements This work was supported by JST SPRING, Grant
number JPMJSP2128.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Bachlechner T, Majumder BP, Mao HH, Cottrell G, McAuley J
(2021) Rezero is all you need: fast convergence at large depth. In:
de Campos CP, Maathuis MH, Quaeghebeur E (eds.) Proceedings
of the thirty-seventh conference on uncertainty in artificial intel-
ligence, UAI 2021, Virtual Event, 27–30 July 2021, Proceedings
of Machine Learning Research, vol. 161, pp. 1352–1361. AUAI
Press. https://proceedings.mlr.press/v161/bachlechner21a.html

2. Bello I, Fedus W, Du X, Cubuk ED, Srinivas A, Lin TY, Shlens J,
Zoph B (2021) Revisiting resnets: improved training and scaling
strategies. arXiv preprint arXiv:2103.07579

3. Bottou L (2010) Large-scale machine learning with stochastic gra-
dient descent. In:LechevallierY,SaportaG (eds.) 19th international
conference on computational statistics, COMPSTAT 2010, Paris,
France, August 22–27, 2010—Keynote, Invited and Contributed
Papers. Physica-Verlag, pp 177–186. https://doi.org/10.1007/978-
3-7908-2604-3_16

4. Burrage K, Lenane I, Lythe G (2007) Numerical methods for
second-order stochastic differential equations. SIAM J Sci Comput
29(1):245–264. https://doi.org/10.1137/050646032

5. Butcher JC (1976) On the implementation of implicit Runge-Kutta
methods. BIT Numer Math 16(3):237–240

6. Chen RT, Rubanova Y, Bettencourt J, Duvenaud DK (2018) Neural
ordinary differential equations. In: Advances in neural information
processing systems, pp 6571–6583

7. Cubuk ED, Zoph B, Mané D, Vasudevan V, Le QV (2019)
Autoaugment: learning augmentation strategies from data. In:
IEEE conference on computer vision and pattern recognition,
CVPR 2019, Long Beach, CA, USA, June 16–20, 2019, pp 113–
123. ComputerVision Foundation/IEEE (2019). https://doi.org/10.
1109/CVPR.2019.00020

8. De S, Smith SL (2020) Batch normalization biases residual blocks
towards the identity function in deep networks. In: Larochelle
H, RanzatoM, Hadsell R, BalcanM, Lin H (eds.) Advances in neu-
ral information processing systems 33: annual conference on neural
information processing systems 2020, NeurIPS 2020, December
6–12, 2020, virtual

9. Ding X, Zhang X, Ma N, Han J, Ding G, Sun J (2021) Repvgg:
making vgg-style convnets great again. In: IEEE conference on
computer vision and pattern recognition, CVPR 2021, virtual, June
19–25, 2021, pp 13733–13742. ComputerVision Foundation/IEEE

10. Gomez AN, Ren M, Urtasun R, Grosse RB (2017) The reversible
residual network: backpropagation without storing activations.
In: Guyon I, von Luxburg U, Bengio S, Wallach HM, Fer-
gus R, Vishwanathan SVN, Garnett R (eds) Advances in neural
information processing systems 30: annual conference on neural
information processing systems 2017, December 4–9, 2017, Long
Beach, CA, USA, pp 2214–2224

11. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers:
surpassing human-level performance on imagenet classification.
In: 2015 IEEE international conference on computer vision, ICCV

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://proceedings.mlr.press/v161/bachlechner21a.html
http://arxiv.org/abs/2103.07579
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1137/050646032
https://doi.org/10.1109/CVPR.2019.00020
https://doi.org/10.1109/CVPR.2019.00020


Complex & Intelligent Systems (2022) 8:3395–3407 3407

2015, Santiago, Chile, December 7–13, 2015, pp 1026–1034. IEEE
Computer Society. https://doi.org/10.1109/ICCV.2015.123

12. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: 2016 IEEE conference on computer vision
and pattern recognition, CVPR 2016, Las Vegas, NV, USA, June
27–30, 2016, pp 770–778. IEEEComputer Society. https://doi.org/
10.1109/CVPR.2016.90

13. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks.
In: 2018 IEEE conference on computer vision and pattern
recognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22,
2018, pp 7132–7141. Computer Vision Foundation/IEEE Com-
puter Society.https://doi.org/10.1109/CVPR.2018.00745. http://
openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-
and-Excitation_Networks_CVPR_2018_paper.html

14. HuangG, Liu Z, van derMaaten L,Weinberger KQ (2017)Densely
connected convolutional networks. In: 2017 IEEE conference on
computer vision and pattern recognition, CVPR 2017, Honolulu,
HI, USA, July 21–26, 2017, pp 2261–2269. IEEE Computer Soci-
ety. https://doi.org/10.1109/CVPR.2017.243

15. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In: F.R. Bach,
D.M. Blei (eds.) Proceedings of the 32nd international conference
on machine learning, ICML 2015, Lille, France, 6–11 July 2015,
JMLRworkshop and conference proceedings, vol. 37, pp 448–456.
JMLR.org. http://proceedings.mlr.press/v37/ioffe15.html

16. Jacod J, Protter P et al (1998) Asymptotic error distributions for
the Euler method for stochastic differential equations. Ann Probab
26(1):267–307

17. Krizhevsky A, Hinton G, et al (2009) Learning multiple layers of
features from tiny images

18. Lee Y, Hwang J, Lee S, Bae Y, Park J (2019) An energy and
gpu-computation efficient backbone network for real-time object
detection. In: IEEE conference on computer vision and pattern
recognition workshops, CVPRWorkshops 2019, Long Beach, CA,
USA, June 16–20, 2019, pp. 752–760. Computer Vision Founda-
tion/IEEE. https://doi.org/10.1109/CVPRW.2019.00103

19. Li Y, Yao T, Pan Y, Mei T (2021) Contextual transformer networks
for visual recognition. CoRR arxiv:2107.12292

20. Liao Q, Poggio TA (2016) Bridging the gaps between resid-
ual learning, recurrent neural networks and visual cortex. CoRR
arXiv:1604.03640

21. Liu W, Rabinovich A, Berg AC (2015) Parsenet: looking wider to
see better. CoRR arXiv:1506.04579

22. Lu Y, Zhong A, Li Q, Dong B (2018) Beyond finite layer neural
networks: Bridging deep architectures and numerical differential
equations. In: Dy JG, Krause A (eds) Proceedings of the 35th
international conference on machine learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10–15, 2018, Proceedings
ofmachine learning research, vol. 80, pp3282–3291. PMLR. http://
proceedings.mlr.press/v80/lu18d.html

23. Ruthotto L, Haber E (2020) Deep neural networks motivated by
partial differential equations. J Math Imaging Vis 62(3):352–364.
https://doi.org/10.1007/s10851-019-00903-1

24. Shampine LF (1986) Some practical Runge-Kutta formulas. Math
Comput 46(173):135–150

25. Simonyan K, Zisserman A (2015) Very deep convolutional net-
works for large-scale image recognition. In: Bengio Y, LeCunY
(eds.) 3rd international conference on learning representations,
ICLR 2015, San Diego, CA, USA, May 7–9, 2015, conference
track proceedings. arXiv:1409.1556

26. Srivastava RK, Greff K, Schmidhuber J (2015) Highway networks.
CoRR arXiv:1505.00387

27. Tan M, Le QV (2019) Efficientnet: Rethinking model scaling for
convolutional neural networks. In: Chaudhuri K, Salakhutdinov R
(eds) Proceedings of the 36th international conference on machine
learning, ICML 2019, 9–15 June 2019, Long Beach, California,
USA, Proceedings of machine learning research, vol. 97, pp 6105–
6114. PMLR. http://proceedings.mlr.press/v97/tan19a.html

28. Touvron H, Cord M, Sablayrolles A, Synnaeve G, Jégou H
(2021) Going deeper with image transformers. arXiv preprint
arXiv:2103.17239

29. Verner JH (1978) Explicit Runge-Kutta methods with estimates of
the local truncation error. SIAM J Numer Anal 15(4):772–790

30. Weinan E (2017) A proposal on machine learning via dynamical
systems. Commun Math Stat 5(1):1–11

31. Zhang H, Dauphin YN, Ma T (2019) Fixup initialization: residual
learning without normalization. In: 7th international conference
on learning representations, ICLR 2019, New Orleans, LA, USA,
May 6–9, 2019. OpenReview.net. https://openreview.net/forum?
id=H1gsz30cKX

32. Zhang X, Li Z, Loy CC, Lin D (2017) Polynet: a pursuit of struc-
tural diversity in very deep networks. In: 2017 IEEE conference on
computer vision and pattern recognition, CVPR 2017, Honolulu,
HI, USA, July 21–26, 2017, pp 3900–3908. IEEE Computer Soci-
ety. https://doi.org/10.1109/CVPR.2017.415

33. ZhuM, Fu C (2018) Convolutional neural networks combinedwith
runge-kutta methods. CoRR arXiv:1802.08831

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2018.00745
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
https://doi.org/10.1109/CVPR.2017.243
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1109/CVPRW.2019.00103
http://arxiv.org/abs/2107.12292
http://arxiv.org/abs/1604.03640
http://arxiv.org/abs/1506.04579
http://proceedings.mlr.press/v80/lu18d.html
http://proceedings.mlr.press/v80/lu18d.html
https://doi.org/10.1007/s10851-019-00903-1
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1505.00387
http://proceedings.mlr.press/v97/tan19a.html
http://arxiv.org/abs/2103.17239
https://openreview.net/forum?id=H1gsz30cKX
https://openreview.net/forum?id=H1gsz30cKX
https://doi.org/10.1109/CVPR.2017.415
http://arxiv.org/abs/1802.08831

	Rethinking ResNets: improved stacking strategies with high-order schemes for image classification
	Abstract
	Introduction
	Related work
	Neural ODEs
	Common high-order numerical schemes for IVP
	Effective DNNs that related to ODE schemes

	Contribution

	High-order residual networks
	Euler forward scheme
	Midpoint scheme
	Fourth-order Runge–Kutta Scheme
	Verner's 8(9)th-order Runge–Kutta Scheme
	Complexity analysis

	Experiments
	Datasets and implementation
	Augmentations and tricks
	Robustness against learning rate
	Fair comparison of single block
	Deeper situation with augmentation
	Scaling factors
	Ablation study on various sub-nets
	More challenging datasets
	Discussing

	Conclusion
	Acknowledgements
	References




