
Complex & Intelligent Systems (2022) 8:3263–3278
https://doi.org/10.1007/s40747-022-00662-4

ORIG INAL ART ICLE

A novel multi-objective bi-level programming problem under
intuitionistic fuzzy environment and its application in production
planning problem

V. P. Singh1 · Kirti Sharma1 · Debjani Chakraborty2 · Ali Ebrahimnejad3

Received: 7 June 2021 / Accepted: 22 January 2022 / Published online: 20 February 2022
© The Author(s) 2022

Abstract
This paper presents an optimization method to solve a multi-objective model of a bi-level linear programming problem with
intuitionistic fuzzy coefficients. The idea is based on TOPSIS (technique for order preference by similarity to ideal solution)
method. TOPSIS method is a multiple criteria method that identifies a satisfactory solution from a given set of alternatives
based on the minimization of distance from an ideal point and maximization of distance from the nadir point simultaneously.
A new model of multi-objective bi-level programming problem in an intuitionistic fuzzy environment has been considered.
The problem is first reduced to a conventional multi-objective bi-level linear programming problem using accuracy function.
Then the modified TOPSIS method is proposed to solve the problem at both the leader and the follower level where various
linear/non-linear membership functions are used to represent the flexibility in the approach of decision-makers (DMs). The
problem is solved hierarchically, i.e., first the problem at the leader level is solved and then the feasible region is extended by
relaxing the decision variables controlled by the leader. The feasible region is extended to obtain a satisfactory solution for
the DMs at both levels. Finally, the application of the proposed approach in the production planning of a company has been
presented. An illustrative numerical example is also given to explain the methodology defined in this paper.

Keywords Multi-objective optimization problem · Bi-level programming problem · TOPSIS method · Intuitionistic fuzzy
number · Fuzzy optimization
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Introduction

A decentralized programming problem where a hierarchical
administrative structure is used to arrange multiple decision
makers (DMs) can be easily modelled using a multi-level
programming problem. A bi-level programming problem
(BLPP) is one of the special cases of multi-level program-
ming problem. In BLPP, twoDMs are located at two different
hierarchical levels. Both the DMs in bi-level programming
problem control one subset of decision variables and they
have different (maybe conflicting) objectives. In BLPP, the
upper level DM is termed as the leader and the lower level
DM is termed as the follower. Following the hierarchy, the
leader makes a decision first. Depending upon the decision
of the leader, the follower chooses his/her strategy. The strat-
egy of follower may affect the objectives achieved by the
leader. The behaviour of the leader influences the strategy
of follower; whose decisions may in turn affect the leader.
As a result of this dependency, the decision deadlocks are
natural to arise. In practical decision-making situations, the
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problem of proper distribution of decision power to DMs is
also encountered.

Real-world optimization problems consist of the situa-
tions when DMs at both the levels aim to optimize more
than one objective. This gives rise to multi-objective bi-level
optimization problems. In the presence of multiple conflict-
ing objectives, usually, one solution can not optimize all the
objectives. So, an efficient solution is needed.Modelling real-
life optimization problems also presents difficulties because
of imprecise technological coefficients. The introduction of
fuzzy set theory simplified the task of representing impre-
cise information with the help of fuzzy numbers. In real life
problems, such imprecise coefficients have uncertainty asso-
ciated in the form ofmembership as well as non-membership
degree. The use of intuitionistic fuzzy numbers (IFNs) make
it easier to handle such imprecise information and thus are
important to use while defining such situations. So, in this
work, a multi-objective bi-level linear programming prob-
lem in an intuitionistic fuzzy environment is considered for
solving such optimization problems.

The problem of optimization of multiple objectives at
multiple levels with imprecise technological coefficients is
often faced by various organizations. For example, consider
the case of diet-planning problem faced by hospital author-
ities. In such a case, the nutritionist serves as leader and
the kitchen manager serves as follower. The objective of
nutritionist is to provide the nutritious food and the food
with lesser cholesterol (the objectives at leader level) and
the objective of kitchen manager is to provide the food that
can be prepared with lesser cost and the food that gives a
maximum profit (the objectives at follower level); keeping
in mind the nutritional requirements of the patients (the con-
straints). The coefficients which are used to represent the
information such as nutrition, cost and profit associated with
various types of food can never be told precisely because
these coefficients vary according to market conditions or
according to the various types of food packets used. Since
the knowledge and semantic representation becomes more
meaningful and applicable when the information is revealed
by a logical DM. The decision of a logical DM not only
takes into account the impreciseness of data but they also
take into account the hesitation associated with that data.
This hesitation can be best represented when in addition to
the degree of membership, a degree of non-membership is
also defined which is not the exact complement of degree of
membership. Thus, the coefficients discussed need to have
uncertainty not only in presenting the degree of membership
but also in presenting the degree of non-membership. To han-
dle such coefficients, IFNs are used. Such problems also exist
in production planning when the leader and follower wishes
to optimize a certain set of objectives at their separate levels
in the hierarchy under given constraint in an uncertain envi-
ronment. This type of optimization problems can be handled

by developing methods for solving multi-objective bi-level
optimization problem with IFNs.

In this work, a solution methodology for solving a multi-
objective bi-level optimization problems under intuitionistic
fuzzy environment has been modelled. The TOPSIS method
has been modified to solve the problem under considera-
tion, so, the efficient solution is supposed not only to have
a minimum distance from positive ideal solution but also a
maximum distance from the negative ideal solution. Thus,
the obtained solution serves as one of the best choices. The
coefficients of constraints are not defuzzified and hence no
important information is lost during the solution procedure.
The proposed work can be extended for solving optimization
problems where decisions are made hierarchically and each
level in the hierarchy aims at optimizing multiple objectives.
In this work, only two levels in the hierarchy are considered.
To the best of author’s knowledge in the problem domain,
the optimization of multiple objectives in two levels in an
intuitionistic fuzzy environment has never been formulated
till date.

Literature review

The very first work regarding the solution procedure of BLPP
was presented by Candler and Townsley [1] in 1982. Some
surveys which present both new solution approaches and the-
oretical results for solving BLPP are [2–5]. In [6],Moitra and
Pal solved BLPP using fuzzy goal programming methods.
Degree of satisfaction for optimality of objectives at both the
levels was maximized while keeping in mind the optimal-
ity of decision variables controlled by the leader. Arora and
Gupta [7] used dynamic fuzzy goal programming approach
and divided the problem into two phases. In their work, the
feasible region was determined in the first phase. The sec-
ond phase dealt with the attainment of objective functions
of leader and follower and optimization of decision variables
controlled by the leader. In [8],Wanet al. proposed an interac-
tive fuzzy decision making method to solve BLPP where the
leader and the follower had a common decision variable. An
interactive fuzzy decision making method for solving BLPP
was also presented by Zheng et al. [9]. They introduced a
balance function which tackled the problem of improper dis-
tribution of decision powers. Researchers like Pramanik Roy
[10], Sinha et al. [11] developed approaches based on fuzzy
programming to solve multi level linear programming prob-
lem.

Handling multiple objectives comes handy while solv-
ing real-life optimization problems. While solving multi-
objective optimization problem, an optimal solution to one
objective may not optimize all the objectives and in such sit-
uations, a solution which performs no worse than any other
solution is searched. Such a solution is known as an efficient
solution. There are various methods defined in the literature
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to solve multi-objective optimization problem. Zimmerman
[30] proposed an approach for solving multi-objective opti-
mization problem using fuzzy programming. Optimality
conditions for non-smooth multi-objective bi-level problems
were discussed by TD Chuong in 2020 in [31]. Gandhi et
al. in [32] discussed the optimality conditions for multi-
objective bi-level optimization problem involving set valued
constraints. TOPSISmethod is also one suchmethod that can
be used for solvingmulti-objective decisionmakingproblem.
The method is based on the concept that any solution which
is closest to the positive ideal solution and farthest from the
negative ideal solution is a good choice for the efficient solu-
tion. Hwang and Yoon [33] were first to develop the method
for solving multiple attribute decision making problem and
further themethodwas extended bymany researchers in [34–
36] and [37], to solvemulti-objective optimization problems.
Table 1 presents the literature survey in a gist.

In real-life situations, the precision of the technological
coefficients while solving multi-objective bi-level optimiza-
tion problem is not always guaranteed. A precise data may
also lead to higher information retrieval cost. Thus, an
imprecise data is considered while solving such real-world
optimization problems. Fuzzy set theory can be extensively
used to capture such impreciseness and vagueness in the data.
In fuzzy set theory, corresponding to every element, a degree
of membership is given. Psychologically, linguistic expres-
sion for defining the degree of non-membership is not the
exact complement of the degree of membership, because a
logical DM also takes into account the hesitancy correspond-
ing to its decisions. However, there is no way to model such
hesitancy in fuzzy set theory. Intuitionistic fuzzy sets, intro-
duced by Atanassov [38] address this issue in addition to the
impreciseness. IFNs can be used to handle such coefficients
which have a component of hesitation in addition to impre-
ciseness. Various researchers have worked on optimization
in imprecise environment in recent decades. Decision mak-
ing in an imprecise environment was introduced by Bellman
and Zadeh [39]. Variousworks related to linear programming
problem in intuitionistic fuzzy environment have also been
done. In [40], a crisp decision was used for defuzzification.
The use of ranking approach converts intuitionistic fuzzy
coefficients into crisp numbers and thus a lot of important
information representing uncertainty and hesitation is lost
in this process. An application of multi-objective decision
making in an intuitionistic fuzzy environment in transporta-
tion model was presented by Jana and Roy in [41]. The
design of an intuitionistic fuzzy controller for synchroniza-
tion of two non-identical hyperchaotic systems is proposed in
[42]. In [42], the performances of intuitionistic fuzzy sliding
motor controller (IFSMC) and fuzzy slidingmotor controller
were compared and Lyapunov stability condition is used to
prove the stability of IFSMC. An intuitionistic fuzzy con-
trol method for twin rotor multi-input multi-output systems

was proposed in [43]. In [43], two intuitionistic fuzzy con-
trollers are designed which works for the main and tail rotors
separately and then outputs for these two are combined. An
intuitionistic fuzzy adaptive sliding mode control system for
non-linear systems is designed in [44] by Kutlu et al.. In
[44], the parameters of adaptive sliding mode controller are
determined using intuitionistic fuzzy methods and Takagi-
Sugeno type intuitionistic fuzzy system is used to develop
the method. In [45], a hybrid approach for Modular Neural
Network design using intercriteria analysis and intuitionistic
fuzzy logic is proposed. It is clear from Table 1 that a lot of
work has been done on BLPP, multi-objective optimization
problems and on linear programming problems with IFNs
separately but a combination of these three have received less
attention despite of its applications. So, in this work, a multi-
objective bi-level optimization problem under intuitionistic
fuzzy environment is considered and a solutionmethodology
for the same is presented.

This paper is structured as follows: Preliminaries and con-
cepts regarding intuitionistic fuzzy set theory and distance
measures have been defined in “Preliminaries and con-
cepts”. In “Problem formulation and model development”, a
multi-objective bi-level linear programming problem in an
intuitionistic fuzzy environment has been formulated and
its solution methodology is presented. “Proposed TOPSIS
algorithm” presents the algorithm for the said problem. The
production planning problem of a company has been dis-
cussed in “Production planning problem”. The problems
presented in “Problem 1” and “Problem 2” are formulated in
intuitionistic fuzzy environment and are further solved using
the proposed methodology. “Conclusion” comprises of the
concluding remarks.

Preliminaries and concepts

In this section, some basic preliminaries of IFNs and basics
of TOPSIS method have been discussed.

Definition 1 Intuitionistic Fuzzy Set [38]. Let X be a uni-
verse of discourse. Then an intuitionistic fuzzy set ÃI in X
is defined by Eq. (1):

ÃI = {< x, μ
ÃI (x), ϑ ÃI (x) >: x ∈ X}, (1)

where μ
ÃI (x) and ϑ

ÃI (x) represents the degree of mem-

bership and degree of non-membership of element x in ÃI ,
respectively. h(x) = 1 − μ

ÃI (x) − ϑ
ÃI (x) represents the

degree of hesitation for element x .

Definition 2 Triangular Intuitionistic Fuzzy Number (TIFN)
[38]. A TIFN ÃI is an IFNwith themembership function and
non-membership function given by Eqs. (2) and (3), respec-
tively.
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Table 1 Some researches on various configurations of optimization problems

Author Objective Type of objective Coefficients Solution approach

(years) Single Multiple Single Mutiple Crisp Fuzzy IFN

Maiti and Roy (2019)
[12]

� � � A ranking function is used for
Stackelberg game with IFNs

Said et al. (2020) [13] � � � Evolutionary algorithms using
multiple population and
migration scheme

Vidhya et al. (2017) [14] � � � Arithmetic operations are used for
problems with interval valued
IFNs

Biswas and De (2016)
[15]

� � � A ranking technique for IFN and
used it for BLPP

Naseeri et al. (2018)
[16]

� � � Intuitionistic fuzzy primal simplex
method

Firoz Ahmad (2021)
[17]

� � � Robust neutrosophic programming
approach

Ghosh et al. (2021) [18] � � � Transformation to interval valued
problem using α − β cut

Ebrahimnejad et al.
(2018) [19]

� � � Conversion to deterministic
transportation problem using
accuracy function

Biswas and De (2016)
[15]

� � � A ranking technique for IFN and
used it for BLPP

Gupta et al. (2021) [20] � � � Application in logistic problem for
multiple product supply chain
network

Alessa (2021) [21] � � � A minimal adequate level of
objective based on membership
degrees

Zhao et al. (2017) [22] � � � Interactive fuzzy decision making
method

Lv et al. (2020) [23] � � � An integrated chance constrained
& fuzzy probabilistic approach

Aggarwal et al. (2013)
[24]

� � � A ranking based approach which
minimizes non-membership
degree and maximizes
membership degree

Malik et al. (2018) [25] � � � A new ranking function for IFNs
and used it for defuzzification of
the problem

Abbassi et al. (2021)
[26]

� � � A bi-level multi-objective chemical
reaction optimization algorithm

Del Valle et al. (2020)
[27]

� � � Multi-objective bi-level model for
investment in gas infrastructure

Cao et al. (2021) [28] � � � Multi-period post-disaster relief
distribution

Deb et al. (2020) [29] � � � Population based evolutionary
algorithm

μ
ÃI (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x − a

b − a
i f a ≤ x ≤ b

1 i f x = b
c − x

c − b
i f b ≤ x ≤ c

0 otherwise

(2)

and

ϑ
ÃI (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b − x

b − a′ i f a′ ≤ x ≤ b

0 i f x = b
(x − b)

(c′ − b)
i f b ≤ x ≤ c′

1 otherwise

(3)
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Fig. 1 A triangular intuitionistic
fuzzy number

where a′ ≤ a ≤ b ≤ c ≤ c′.
This TIFN is denoted by (a, b, c; a′, b, c′). Figure1 rep-

resents the membership and non-membership functions of
TIFN defined above. The set of all TIFNs is denoted by
I F(R).

Definition 3 Accuracy Function [46]. Let ÃI = (a, b, c; a′,
b, c′) be a TIFN. The score function for membership func-
tion and non-membership function is denoted by S(μ

ÃI )

and S(ϑ
ÃI ), respectively, where S(μ

ÃI ) = a + 2b + c

4
and

S(ϑ
ÃI ) = a′ + 2b + c′

4
.

The accuracy function of ÃI is denoted by f ( ÃI ) and is
defined by Eq. (4):

f ( ÃI ) = (a + 2b + c) + (a′ + 2b + c′)
8

, (4)

Definition 4 Arithmetic Operations on TIFNs [38]: Let
ÃI = (a, b, c; a′, b, c′) and B̃ I = (p, q, r; p′, q, r ′) be two
TIFNs, then

1. Addition: ÃI ⊕ B̃ I = (a + p, b + q, c + r; a′ + p′, b +
q, c′ + r ′).

2. Subtraction: ÃI � B̃ I = (a−r , b−q, c− p; a′ −r ′, b−
q, c′ − p′).

3. Multiplication: ÃI � B̃ I = (l1, l2, l3; l ′1, l2, l ′3) where
l1 = min {ap, ar , cp, cr} l3 = max {ap, ar , cp, cr}
l ′1 = min {a′ p′, a′r ′, c′ p′, c′r ′} l ′3 = max {a′ p′, a′r ′,
c′ p′, c′r ′} l2 = bq

4. Scalar Multiplication:

k ÃI =
{

(ka, kb, kc; ka′, kb, kc′) i f k ≥ 0

(kc, kb, ka; kc′, kb, ka′) i f k < 0

Definition 5 Let ÃI
1 = (a1, b1, c1; a′

1, b1, c
′
1) and ÃI

2 =
(a2, b2, c2; a′

2, b2, c
′
2) be two TIFNs. Then ˜A1

I ≤ ˜A2
I if

a1 ≤ a2, b1 ≤ b2, c1 ≤ c2; a′
1 ≤ a′

2, c
′
1 ≤ c′

2.

Definition 6 Distance measure. If F(x) = ( f1(x), f2(x),
. . . , fm(x)) is a vector of objective functions which is to be
maximized. Then the L p metric defines the distance between
two points F(x) and F∗ as

dp =
⎧
⎨

⎩

m∑

j=1

λ
p
j [ f ∗

j − f j (x)]p
⎫
⎬

⎭

1/p

(5)

where λ j ; j = 1, 2, . . . ,m is relative importance of objec-
tive f j and F∗ = ( f1∗, f2∗, . . . , fm∗) where fi ∗ =
maxx∈S fi (x). Since the objectives are not commensurable,
so a scaling function in the interval [0, 1] should be used for
every objective function. So, the following metric could be
used.

dp =
⎧
⎨

⎩

m∑

j=1

λ
p
j

(
f ∗
j − f j (x)

f ∗
j − f −

j

)p
⎫
⎬

⎭

1/p

p = 1, 2, . . . ,m, (6)

where fi− = maxx∈S fi (x), where S is the constraint space.

Problem formulation andmodel
development

Tofind an efficient solution for amulti-objective bi-level opti-
mization problem, its formulation is required. This section
deals with the formulation of the problem in an intuitionis-
tic fuzzy environment. A modified TOPSIS method is then
proposed to solve the problem. Various linear/non-linear
membership functions are also defined and are used to deci-
pher the satisfaction level of the DMs. A standard form
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of multi-objective bi-level linear optimization problem with
intuitionistic fuzzy coefficients is given by Eq. (7):

Maximize
x

Z̃ I
1 (x, y) = [ ˜Z I

11(x, y),
˜Z I
12(x, y), . . . ,

˜Z I
1k1

(x, y)]
where y solves

Maximize Z̃ I
2 (x, y) = [ ˜Z I

21(x, y),
˜Z I
22(x, y), . . . ,

˜Z I
2k2

(x, y)]
subject to ÃI x + B̃ I y ≤ r̃ I

x, y ≥ 0

(7)

where Z̃ I
i j = ˜cIi j x + d̃ I

i j y for i = 1, 2 and j =
1, 2, . . . , ki and x = (x1, x2, . . . , xn1) ∈ R

n1 and y =
(y1, y2, . . . , yn2) ∈ R

n2 and n1 + n2 = n. In Eq. (7),

ÃI ∈ I F(Rm×n1) and B̃ I ∈ I F(Rm×n2) and r̃ I ∈ I F(Rm).

Also, ˜cIi j ∈ I F(R1×n1) and d̃ I
i j ∈ I F(R1×n2). The vector

Z̃1
I
represents the objectives at the upper level and vector

Z̃2
I
represents the objectives at the lower level. Therefore,

the problem in Eq. (7) can be written as the one given by
Eq. (8):

Maximize
x

Z̃ I
1 (x, y)=[ ˜Z I

11(x, y),
˜Z I
12(x, y), . . . ,

˜Z I
1k1

(x, y)]
where y solves

Maximize Z̃ I
2 (x, y)=[ ˜Z I

21(x, y),
˜Z I
22(x, y), . . . ,

˜Z I
2k2

(x, y)]
subject to

˜aI
i1x1 + ˜aI

i2x2 + . . . + ˜aI
in1

xn1+
˜bIi1y1 + ˜bIi2y2 + . . . + ˜bIin2 yn2

≤ r̃ Ii

x1, x2, . . . , xn1 , y1, y2, . . . yn2 ≥ 0

(8)

where Z̃ I
i j (x, y) = ˜cIi j1x1 + . . . + ˜cIi jn1xn1 + ˜d I

i j1y1 + . . . +
˜d I
i jn2

yn2 for i = 1, 2; j = 1, 2, . . . ni . First, we use the con-
cept of defuzzification and reduce every intuitionistic fuzzy
coefficient in the objective functions to a crisp coefficient
using accuracy function as defined in Eq. (4) and each intu-
itionistic fuzzy objective is reduced to five different crisp
objective using Definition 5.

Maximize
x

Z ′
1(x, y) = [Z ′

11(x, y),

Z ′
12(x, y), . . . , Z

′
1k1

(x, y)]
where y solves
Maximize Z ′

2(x, y) = [Z ′
21(x, y),

Z ′
22(x, y), . . . , Z

′
2k2

(x, y)]
subject to

ai1k x1 + ai2k x2 + . . . + aink xn1+
bi1k y1 + bi2k y2 + . . . + bink yn2

≤ rik ; k = 1, 2, · · · 5
x1, x2, . . . , xn1 , y1, y2, . . . yn2 ≥ 0

,

(9)

where Z ′
i j (x, y) = c′

i j1x1 + . . . + c′
i jn1

xn1 + d ′
i j1y1 + . . . +

d ′
i jn2

yn2 for i = 1, 2; j = 1, 2, . . . ni where a′ = f (ã I ).
Following the hierarchy, first an efficient solution for upper
level decision maker is to be obtained. The TOPSIS model
used to solve upper level multi-objective optimization prob-
lem of Eq. (9) is given by Eq. (10)

Minimize dPIS
u

p (x, y)
Maximize dNIS

u

p (x, y)
subject to

ai1k x1 + ai2k x2 + . . . + aink xn1+
bi1k y1 + bi2k y2 + . . . + bink yn2

≤ rik ; k = 1, 2, · · · 5
x1, x2, . . . , xn1 , y1, y2, . . . yn2 ≥ 0

(10)

where

dPIS
u

p =
{

k1∑

i=1

w
p
i

(
Z∗
1i − Z1i

Z∗
1i − Z−

1i

)p}1/p

, (11)

dNIS
u

p =
{

k1∑

i=1

w
p
i

(
Z1i − Z−

1i

Z∗
1i − Z−

1i

)p}1/p

(12)

and Z∗
1i = max

(x,y)∈SZ1i , Z
−
1i = min

(x,y)∈SZ1i .

S = {(x, y) = (x1, x2, . . . xn1 , y1, y2, . . . yn2) ∈ R
n :

ai1k x1 + ai2k x2 + . . . + aink xn1 + bi1k y1 + bi2k y2 + . . . +
bink yn2 ≤ rik ; k = 1, 2, . . . 5; x1, x2, . . . , xn1 , y1, y2, . . . yn2
≥ 0; i = 1, 2, . . . ,m}; and wi , i = 1, 2, . . . k1 are the rela-
tive weights of the objective functions such thatwi ≥ 0 ∀ i =
1, 2, . . . , k1 and

∑k1
i=1 wi = 1. In Eq. (11), dPIS

u

p stands for
the distance from the positive ideal solution for the objec-
tives of upper level DM and in Eq. (12), dNIS

u

p stands for
the distance from the negative ideal solution for the objec-
tives of upper level DM. The fuzzy goal programming model
is then used to solve the bi-objective optimization problem
modelled inEq. (10). The corresponding fuzzy goal program-
ming model is given by Eq. (13):
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Fig. 2 Linear membership
functions

Find {(xi , y j ); i = 1, 2, . . . , n1, j = 1, 2, . . . , n2}
subject to

dPIS
u

p ≈ dpPIS
u ∗

dNIS
u

p ≈ dpNIS
u ∗

ai1k x1 + ai2k x2 + . . . + aink xn1+
bi1k y1 + bi2k y2 + . . . + bink yn2

≤ rik ; k = 1, 2, . . . , 5;
i = 1, 2, . . . ,m

x1, x2, . . . , xn1 , y1, y2, . . . yn2 ≥ 0

(13)

where ≈ is a fuzzy goal, which means some deviations
are allowed in strict goal. Here, dPIS

u

p
∗ = min

x∈S d
PISu
p and

dNIS
u

p
∗ = max

x∈S dNIS
u

p . To change the fuzzy goal programming

model into a crisp LPP, different types of linear/non-linear
membership functions can be used. The use of these mem-
bership functions presents the flexibility to the DM to choose
a membership function which better fits their problem and
provides better aspiration levels. A linear membership func-
tion is the most utilized function in decision making process
while solvingmathematical programming problems.A linear
approximation is defined by fixing two points, the least and
most desirable levels of acceptability of an objective func-
tion. In general fuzzy set theory, such an assumption is not
always justified. Thus a justification should be made consid-
ering the fuzziness of goal in mind. From this point of view,
several linear/non-linear shapes of membership functions are
considered.

Linear membership function

Linear membership function for minimization and maxi-
mization of an objective are given by Eq. (14) and Eq. (15),
respectively, where ZL and ZU are the minimum and maxi-
mum values of the objective function Z , respectively.

μL(Z(x)) =

⎧
⎪⎪⎨

⎪⎪⎩

1 i f Z ≤ ZL
ZU − Z

ZU − ZL
i f ZL ≤ Z < ZU

0 i f Z ≥ ZU

(14)

μL(Z(x)) =

⎧
⎪⎪⎨

⎪⎪⎩

0 i f Z ≤ ZL
Z − ZL

ZU − ZL
i f ZL ≤ Z < ZU

1 i f Z ≥ ZU

(15)

Figure2a, b represents the linear membership function
when the objective is to minimize and maximize an objective
function Z , respectively.

Parabolic membership function

The parabolic membership function for minimization and
maximization of an objective can be defined by Eqs. (16) and
(17), respectively, where ZL and ZU are the minimum and
maximum values of the objective function Z , respectively.

μP (Z(x)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if Z ≤ ZL
(

ZU − Z

ZU − ZL

)2

if ZL ≤ Z < ZU

0 if Z ≥ ZU

(16)

μP (Z(x)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if Z ≤ ZL
(

Z − ZL

ZU − ZL

)2

if ZL ≤ Z < ZU

1 i f Z ≥ ZU

(17)

Figure3a, b represents the parabolic membership function
when the objective is to minimize and maximize an objective
function Z , respectively.
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Hyperbolic membership function

The hyperbolicmembership function is concave over the part
where the decision maker is performing better than the goal
and he tends to have a small marginal rate of satisfaction and
the membership function is convex over the part when the
decision maker is worse off the goal and he tends to have a
higher marginal rate of satisfaction. The complete functions
in case of maximization and minimization of objectives are
given by Eqs. (18) and (19), respectively, where ZL and ZU

are the minimum and maximum values of the objective func-
tion Z , respectively.:

μH (Z(x)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if Z ≤ ZL

1

2
+ 1

2
tanh

((

Z(x) − ZU + ZL

2

)

αp

)

if 0 < ZL ≤ Z < ZU

1 if Z ≥ ZU

(18)

μH (Z(x)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if Z ≤ ZL

1

2
+ 1

2
tanh

((

Z(x) − ZU + ZL

2

)

αp

)

if 0 < ZL ≤ Z < ZU

0 if Z ≥ ZU

(19)

where αp = 6
ZU−ZL

Figure4a, b represents the hyperbolic membership func-
tion when the objective is to minimize and maximize an
objective function Z , respectively.

Various membership functions defined in Eqs. (14)–(19)
can be used according to the satisfaction level of the decision
maker and a crisp programming model of the fuzzy goal
programming model is constructed. A corresponding crisp
programming model is given by Eq. (20):

Maximize λ

subject to
μ(dPIS

u

p ) ≥ λ

μ(dNIS
u

p ) ≥ λ

ai1k x1 + ai2k x2 + . . . + aink xn1+
bi1k y1 + bi2k y2 + . . . + bink yn2

≤ rik ; k = 1, 2, . . . , 5; i = 1, 2, . . . ,m

x1, x2, . . . , xn1 , y1, y2, . . . yn2 ≥ 0

(20)

An optimal solution of Eq. (20) is a vector of the form
(λ, x∗

1 , x
∗
2 , . . . , x

∗
n1 , y

∗
1 , x

∗
1 , y

∗
2 , . . . , y

∗
n2) which implies that

(x∗
1 , x

∗
2 , . . . , x

∗
n1 , y

∗
1 , x

∗
1 , y

∗
2 , . . . , y

∗
n2) is an efficient solution

of the upper level optimization problem. According to the
concept of bi-level programming technique, which states that
the leader sets the value of the decision variables controlled
by him, assume t Lk and t Rk , k = 1, 2, . . . n1 be the maximum
acceptable negative and positive relaxation values for deci-
sion variable xk , respectively, controlled by the leader. The

tolerances t Lk and t Rk are not necessarily the same. The toler-
ances are provided so as to extend the feasible region for the
search of the satisfactory solution. The tolerance value of the
decision variables controlled by the leader are modified in a
way such that the feasible region for follower is non-empty.

Proposed TOPSISmethod for multi-objective bi-level
optimization problem

A satisfactory solution for the multi-objective bi-level opti-
mization problem can be obtained using the TOPSIS appro-
ach, where the objective is to minimize the distance from the

positive ideal solution (dPIS
B

p ) and maximize the distance

from the negative ideal solution (dNIS
B

p ), where (dPIS
B

p ) and

(dNIS
B

p ) are given by Eqs. (21) and (22), respectively.

dPIS
B

p =
{

k1∑

i=1

w
p
i

(
Z∗
1i − Z1i

Z∗
1i − Z−

1i

)p

+
k2∑

j=1

w
p
j+k1

(
Z∗
2 j − Z2 j

Z∗
2 j − Z−

2 j

)p
⎫
⎬

⎭

1/p

(21)

and

dNIS
B

p =
⎧
⎨

⎩

k1∑

j=1

w
p
j

(
Z1 j − Z−

1 j

Z∗
1 j − Z−

1 j

)p
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Fig. 3 Parabolic membership
functions

Fig. 4 Hyperbolic membership
functions

+
k2∑

j=1

w
p
j+k1

(
Z2 j − Z−

2 j

Z∗
2 j − Z−

2 j

)p
⎫
⎬

⎭

1/p

(22)

where w′
j s represents the weights and Z∗

i j = max
(x,y)∈SZi j ,

Z−
i j = min

(x,y)∈SZi j for i = 1, 2; j = 1, 2, . . . ki .

To obtain an efficient solution, the problem defined in
Eq. (7) is reduced to the following bi-objective optimization
problem with conflicting objectives

Minimize dPIS
B

p (x, y)

Maximize dNIS
B

p (x, y)
subject to

ai1k x1 + ai2k x2 + . . . + aink xn1+
bi1k y1 + bi2k y2 + . . . + bink yn2

≤ rik ; k = 1, 2, . . . , 5; i = 1, 2, . . . ,m

x1, x2, . . . , xn1 , y1, y2, . . . yn2 ≥ 0

(23)

Since both the objectives are usually conflicting to each

other, so we solve them separately and let dPIS
B

p
∗ =

min
x∈S d

PISB
p , dNIS

B

p
∗ = max

x∈S dNIS
B

p and dPIS
B

p
− = max

x∈S dPIS
B

p ,

dNIS
B

p
− = min

x∈S d
NISB
p . Then based on the preference concept,

the solutionwith the shorter distance fromPIS andwith larger
distance from NIS is assigned a larger degree of acceptance.
The membership degree of dPIS

B

p and dPIS
B

p is defined using
various linear/non-linear membership functions as defined in
Eqs. (14)–(19). To generate a satisfactory solution of multi-
objective bi-level optimization problem defined in Eq. (7),
a crisp model is to be solved which minimizes the distance
from positive ideal solution andmaximizes the distance from
negative ideal solution while giving some relaxation in the

decision variables controlled by the leader. A single objective
optimization model corresponding to this situation is given
by Eq. (24).
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Maximize δ

subject to

μ(dPIS
B

p ) ≥ δ

μ(dNIS
B

p ) ≥ δ

xk − (x∗
k − t Lk )

t Lk
≥ δ; k = 1, 2, . . . , n1

(x∗
k + t Rk ) − xk

t Rk
≥ δ; k = 1, 2, . . . , n1

ai1k x1 + ai2k x2 + . . . + aink xn1+
bi1k y1 + bi2k y2 + . . . + bink yn2

≤ rik ; k = 1, 2, . . . , 5; i = 1, 2, . . . ,m

x1, x2, . . . , xn1 , y1, y2, . . . yn2 ≥ 0
δ ∈ [0, 1]

(24)

A single objective optimization problem is then modelled
using various membership functions explained in Eqs. (14)–
(19) and an optimal solution to the problem is obtained with
the help of various software packages. An optimal solution
of Eq. (24) of the form (δ, x∗

1 , x
∗
2 , . . . , x

∗
n1 , y

∗
1 , y

∗
2 , . . . , y

∗
n2)

implies that an efficient solution of Eq. (7) is given by
(x∗

1 , x
∗
2 , . . . , x

∗
n1 , y

∗
1 , y

∗
2 , . . . , y

∗
n2).

Proposed TOPSIS algorithm

In this section, the modified TOPSIS algorithm proposed is
presented to solve the multi-objective bi-level optimization
problem under intuitionistic fuzzy environment.

Step 1: Use accuracy function as defined in Eq. (4) and
reduce every intuitionistic fuzzy coefficient of objective func-
tions to a crisp coefficient and every intuitionistic fuzzy
constraint is reduced to five crisp constraints.

Step 2: Find the maximum and minimum values of all the
objective functions at both leader and follower level under
the given constraints.

Step 3: Construct a pay off table of positive ideal solution
(PIS) of leader and obtain Z∗

1i = (Z∗
11, Z

∗
12, . . . , Z

∗
1k1

), the
individual optimal solutions.

Step 4:Construct a pay off table of negative ideal solution
(NIS) of leader and obtain Z−

1i = (Z−
11, Z

−
12, . . . , Z

−
1k1

), the
individual negative ideal solutions.

Step 5:Construct equations for dPIS
u

p and dNIS
u

p as defined
in Eqs. (11) and (12), respectively.

Step 6: Ask the decision maker to select p and wi , i =
1, 2, . . . k1.

Step 7: Reduce the leader problem to a bi-objective opti-
mization problem as defined in Eq. (10).

Step 8: Optimize both the objectives of model (10) sepa-
rately and denote them by (dPIS

u

p )∗ and (dNIS
u

p )∗.

Step 9: Convert the bi-objective optimization model into
a fuzzy goal programming model, where the goal is to find
the value of decision variables such that (dPIS

u

p ) is approxi-

mately equal to (dPIS
u

p )∗ and (dNIS
u

p ) is approximately equal

to(dNIS
u

p )∗.
Step 10: Use various linear/non-linear membership func-

tion to convert the fuzzy goal programmingmodel into a crisp
LPP as defined in Eq. (20).

Step11:Theoptimal solutionofEq. (20); (λ, xu1
∗, xu2

∗, . . . ,
xun1

∗, yu1
∗, yu2

∗, . . . , yun2
∗) implies that the efficient solu-

tion of the upper level optimization problem is given by
(xu1

∗, xu2
∗, . . . , xun1

∗, yu1
∗, yu2

∗, . . . , yun2
∗) based onwhich the

maximum left and right tolerance values; t Lk and t Rk on the
decision variables controlled by the leader are to be defined.

Step 12:Construct a pay off table of positive ideal solution
(PIS) of multi-objective bi-level linear programming prob-
lem and obtain Z∗

i j , i = 1, 2; j = 1, 2, . . . ni , the individual
optimal solutions.

Step 13: Construct a pay off table of negative ideal solu-
tion (NIS) of multi-objective bi-level optimization problem
and obtain Z−

i j ; i = 1, 2; j = 1, 2, . . . , ni , the individual
negative ideal solutions.

Step 14: Construct equations for dPIS
B

p and dNIS
B

p as
defined in Eqs. (21) and (22), respectively.

Step 15: Reduce themulti-objective bi-level optimization
problem to a bi-objective optimization problem, as defined
in Eq. (23).

Step 16: Optimize both the objectives of Eq. (23) sepa-

rately and denote them by dPIS
B

p
∗
and dNIS

B

p
∗
, respectively.

Step 17: Formulate the model as given in Eq. (24) for
multi-objective bi-level optimization problem using various
membership functions.

Step 18: Solve model given by Eq. (24) to get (x∗, y∗) =
(x∗

1 , x
∗
2 , . . . , x

∗
n1 , y

∗
1 , y

∗
2 , . . . , y

∗
n2).
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Step 19: If leader and follower are satisfied with solution
in Step 19, go to Step 20, else go to Step 21.

Step 20: Stop with the satisfactory solution, (x∗, y∗) =
(x∗

1 , x
∗
2 , . . . , x

∗
n1 , y

∗
1 , y

∗
2 , . . . , y

∗
n2).

Step 21:Modify the maximum negative and positive tol-
erance values on the decision variables (xu1

∗, xu2
∗, . . . , xun1

∗),
t Lk and t Rk , k = 1, 2, . . . n1 and go to Step 17.

Production planning problem

The production planning problem ofmanufacturing firms are
considered. The model for the problems are constructed and
then are solved with the help of methodology proposed in
this work.

Problem 1

A manufacturing firm produces three commodities, say A,
B and C. The objective is to find the number of units of
each commodity that should be produced so that the decision
makers at both the levels are satisfied with the production.
The decision maker at the upper level comprises of central
governmental authorities which controls the production of
commodity A and aims at minimizing the waste product gen-
eration and power consumption. The decision maker at the

lower level comprises of the organization running the manu-
facturing company and it aims at maximizing the total profit
earned and minimize the revenue to be given to the govern-
ment. The profit contribution of commodities A, B and C per
unit are 5̃I , 4̃I and 3̃I , respectively, and the revenue given to
the government in the same order per unit of commodities are
2̃I , 3̃I and 0̃I . The waste generated per unit of commodity
A, B and C is 2̃I , 1̃I and 2̃I whereas the power needed to
produce one unit of B and C is 4̃I and 5̃I , respectively. A can

be produced without power. Each commodity requires some
manufacturing time, packaging time and some initial capital
investment. The figures for manufacturing time of commod-
ityA, B andC are 2̃I , 4̃I and 3̃I and the corresponding figures
for packaging time are 3̃I , 2̃I and 2̃I hours. The initial cap-
ital investment required per unit of A, B and C are ˜10I , ˜15I
and 5̃I . The production of A is controlled by the government
and at least 5̃I units of A are to be produced. The number of
units of B commodity produced should be at least twice the
number of units of C for the better position in the market.
The total production of the company should be greater than
˜40I . The number of units of each commodity in a week is to

be calculated when ˜180I hours of manufacturing time, ˜100I

hours of packaging time and an initial capital investment of
˜500I is made available.
A model for the explained production planning problem

in an intuitionistic fuzzy environment is given by Eq. (25)
which is then solved using Proposed TOPSIS algorithm. Let
x1, x2 and x3 represent the units of commodityA,BandC that

should be produced. Here ˜Z I
11(x1, x2, x3),

˜Z I
12(x1, x2, x3) be

the objectives of the upper level DM which represents the
waste product generation and power consumption, respec-

tively, and ˜Z I
21(x1, x2, x3),

˜Z I
22(x1, x2, x3) be the objectives

of the lower level DMwhich represents the total profit earned
and revenues given to the government.

Minimize,Minimize
x1

Z̃ I
1 (x1, x2, x3) = [ ˜Z I

11(x1, x2, x3),
˜Z I
12(x1, x2, x3)]

where x2, x3 solves

Maximize, Minimize Z̃ I
2 (x1, x2, x3) = [ ˜Z I

21(x1, x2, x3),
˜Z I
22(x1, x2, x3)]

subject to

2̃I x1 + 4̃I x2 + 3̃I x3 ≤ ˜180I (manufacturing time)

3̃I x1 + 2̃I x2 + 2̃I x3 ≤ ˜100I (packaging time)

1̃0
I
x1 + ˜15I x2 + 5̃Ia x3 ≤ ˜500I (initial capital)

1̃I x1 ≥ 5̃b
I
(Decision controlled by leader)

1̃I x2 ≥ 2̃I x3 (better position in market)

1̃I x1 + 1̃I x2 + 1̃I x3 ≥ 4̃0
I
(market demand)

x1, x2, x3 ≥ 0

(25)

where

˜Z I
11(x1, x2, x3) = (1, 2, 3; 0, 2, 4)x1 + (0.5, 1, 1.5; 0, 1, 2)x2

+(1, 2, 3; 0, 2, 4)x3
˜Z I
12(x1, x2, x3) = (2, 4, 6; 0, 4, 8)x2 + (4, 5, 6; 3, 5, 7)x3
˜Z I
21(x1, x2, x3) = (4, 5, 6; 3, 5, 7)x1 + (2, 4, 6; 0, 4, 8)x2

+(2, 3, 4; 1, 3, 5)x3
˜Z I
22(x1, x2, x3) = (1, 2, 3; 0, 2, 4)x1 + (2, 3, 4; 1, 3, 5)x2

(26)
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and

2̃I = (1, 2, 3; 0, 2, 4) 4̃I = (3, 4, 5; 2, 4, 6) ˜180I = (100, 180, 260; 60, 180, 300)
3̃I = (2, 3, 4; 1, 3, 5) 1̃0

I = (8, 10, 12; 5, 10, 15) ˜100I = (50, 100, 150; 20, 100, 180)
5̃a

I = (3, 5, 7; 0, 5, 10) 1̃5
I = (13, 15, 17; 10, 15, 20) ˜500I = (400, 500, 600; 300, 500, 700)

5̃b
I = (2.5, 5, 7.5; 0, 5, 10) 1̃I = (0.5, 1, 1.5; 0, 1, 2) 4̃0

I = (20, 40, 60; 0, 40, 80)

Using the accuracy function, every intuitionistic fuzzy
coefficient of objective function can be reduced to a crisp
coefficient and each intuitionistic fuzzy constraint can be
reduced to five crisp constraints. Let S denotes the set of
crisp constraints corresponding to intuitionistic fuzzy con-
straints. The individual maximum and minimum value of all
the objectives in two levels are given in Table 2.

The positive ideal solution pay off table for the leader is
shown by Table 3 and thus (Z∗

11, Z
∗
12) = (54.6667, 127).

The negative ideal solution pay off table for the leader is
shownbyTable 4 and thus (Z−

11, Z
−
12) = (61.5385, 154.375).

The equation for dPIS
u

p and dNIS
u

p can be formulated by

taking w1 = w2 = 1
2 and p = 2.

Themaximumandminimumvalues ofdPIS
u

p are 0.6530497
and 0.1552311, respectively. The maximum and minimum
values of dNIS

u

p are 0.513403 and 0.07710929, respectively.

Thus, (dPIS
u

p
∗
, dNIS

u

p
∗
) = (0.1552311, 0.513403).

Table 2 Maximum and minimum values

Z11 Z12 Z21 Z22

Maximum 61.5385 154.375 165.625 89

Minimum 54.666 127 153.33 80

Table 3 PIS pay off for leader

Z11 Z12 x1 x2 x3

54.6667∗ 147.997 5.333 25.333 9.333

57 127∗ 10 23 7

Table 4 NIS pay off for Leader

Z11 Z12 x1 x2 x3

61.5385− 149.999 7.6923 23.07692 11.53846

57.5 154.375− 5.00 23.75 11.875

Converting the bi objective optimization problem to a goal
programming model gives:

Find (x1, x2, x3)
subject to

dPIS
U

p ≈ 0.1552311

dNIS
U

p ≈ 0.513403
and x ∈ S

(27)

Solving the crisp LPP corresponding to (27) using
linear membership function, we get (λ, x∗

1 , x
∗
2 , x

∗
3 ) =

(0.6165644, 5.849917, 24.8850, 9.265083). Let the upper
level decision maker decides x1 = 5.849917 with 2 as posi-
tive and negative tolerance limits.

The positive ideal solution pay off table and the nega-
tive ideal solution pay off table for the follower is shown
by Tables 5 and 6 and thus (Z∗

21, Z
∗
22) = (165.625, 80) and

(Z−
21, Z

−
22) = (153.33, 89).

The equation for dPIS
B

p and dNIS
B

p is formulated by tak-

ing w1 = w2 = w3 = w4 = 1
4 and p = 2 and then the

proposed TOPSIS method is used to find efficient solution.
Applying various models from Eq. (14)–(19) and solving by
LINGO, the optimal solution to the problem (25) using vari-
ous membership functions is given by Table 7. The degree of
satisfaction of various objectives using different membership
functions is represented by Fig. 5.

A comparison between the proposed approach and the
approach defined in [24] is given in Table 8. The method in
[24] does not take into account the hesitation in coefficients
of objective functions and intuitionistic fuzzy coefficients are
defuzzified in the very first step which results in the loss of

Table 5 PIS pay off for follower

Z21 Z22 x1 x2 x3

165.625∗ 85.9375 7.8125 23.4375 10.9375

160 89∗ 10 20 10

Table 6 NIS pay off for follower

Z21 Z22 x1 x2 x3

153.33− 79.99 5 23.33 11.66

163 89− 10 23 7
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Table 7 Solutions for Problem 1

Linear function Parabolic function Hyperbolic function

(x1, x2, x3) (6.7028, 23.1137, 10.1834) (6.1449, 23.6826, 10.1724) (6.9859, 22.093, 11.0046)

δ 0.5735036 0.1909812 0.5002931

Z11 56.886306 56.317388 58.0748

Z12 143.37185 145.59288 143.3974

Z21 156.519495 155.97244 156.31789

Z22 82.746886 83.337668 80.25244

Fig. 5 Comparison of Various membership functions for Problem 1

information and reduction of the problem to a crisp multi-
objective bi-level optimization problem.

Problem 2

Assume that a manufacturing firm produces packets of two
commodities, say A and B. Government authorities serves as
the leader and controls the production of packets of A and
firm owner serves as the follower. Government authorities
wish to maximize their revenue and minimize the carbon
emission. Firm owners wish to maximize the production and
the profit earned. The profit earned per packet of commodity
A andB are 3̃I and 8̃I , respectively. The revenues given to the
government per packet of commodity A and B are 5̃I and 2̃I ,
respectively, and the carbon emission produced per packet
of commodity A and B are 3̃I and 2̃I , respectively. Both the
products can be made with the help of two machines. One
packet of commodity A requires 2̃I hours on first machine
and 4̃I hours on second machine. One packet of commodity

B requires 5̃I hours on first machine and 2̃I hours on second
machine. The objective is to find the number of packets of

A and B that should be manufactured with 1̃0
I
hours of first

machine time and 1̃2
I
hours of second machine time to meet

the market demand of atleast 2̃I packets.
Amodel for the above stated production planning problem

in an intuitionistic fuzzy environment is given by Eq. (28)
which is then solved by proposed TOPSIS algorithm. Let
x1 and x2 represent the packets of commodity A and B

that should be produced. Here, ˜Z I
11(x1, x2),

˜Z I
12(x1, x2) be

the objectives of the upper level DM which represents the
revenues generates and carbon emissions, respectively, and
˜Z I
21(x1, x2),

˜Z I
22(x1, x2) be the objectives of the lower level

DMwhich represents the packets produced and profit earned,
respectively.

Maximize,Minimize
x1

Z̃ I
1 (x1, x2) = [ ˜Z I

11(x1, x2),
˜Z I
12(x1, x2)]

where x2, x3 solves

Maximize, Maximize Z̃ I
2 (x1, x2) = [ ˜Z I

21(x1, x2),
˜Z I
22(x1, x2)]

subject to

2̃I x1 + 5̃I x2 ≤ 1̃0
I
(first machine hours )

4̃I x1 + 2̃I x2 ≤ 1̃2
I
(second machine hours)

1̃I x1 + 1̃I x2 ≥ 2̃I (market demand )
x1, x2 ≥ 0

(28)

where

˜Z I
11(x1, x2) = (3, 5, 7; 1, 5, 9)x1 + (1, 2, 3; 0, 2, 4)x2
˜Z I
12(x1, x2) = (2, 3, 4; 1, 3, 5)x2 + (1, 2, 3; 0, 2, 4)x3
˜Z I
21(x1, x2) = (0.5, 1, 1.5; 0, 1, 2)x1 + (0.5, 1, 1.5; 0, 1, 2)x2
˜Z I
22(x1, x2) = (2, 3, 4; 1, 3, 5)x1 + (6, 8, 10; 4, 8, 12)x2

(29)

Table 8 Comparison of various
solutions of Problem 1

Final solution Satisfactory degree

Linear membership function (6.702893,23.11370,10.18341) 0.5735036

Parabolic membership function (6.144904, 23.68262,10.17248) 0.1909812

Hyperbolic membership function (6.985970, 22.0935,11.00468) 0.5002930

IFO technique as in [24] (1.2234568, 8.732510, 4.199588) 0.01791839
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Table 9 Solutions for Problem 2 Linear function Parabolic function Hyperbolic function

(x1, x2) (1.561102, 0.87796) (1.670181, 0.6596385) (1.732006, 0.5359882)

δ 0.5422036 0.138518 0.2571697

Z11 9.56143 9.670182 9.7320064

Z12 6.439226 6.32982 6.2679944

Z21 2.439062 2.3298195 2.2679942

Z22 11.706986 10.287651 9.4839236

Fig. 6 Comparison of Various membership functions for problem 2

and

2̃I = (1, 2, 3; 0, 2, 4) 4̃I = (2, 4, 6; 0, 4, 8) 1̃0
I = (6, 10, 14; 4, 10, 16)

5̃I = (3, 5, 7; 2, 5, 8) 1̃I = (0.5, 1, 1.5; 0, 1, 2) 1̃2
I = (10, 12, 14; 8, 12, 16)

The solution of the problem given by Eq. (28) by using
various membership functions is given by Table 9.

The degree of satisfaction of various objectives using dif-
ferent membership functions is represented by Fig. 6.

The comparison of the proposed method with the method
presented in [24] for Problem 2 is given in the Table 10.

Conclusion

In this paper, a concept for solving multi-objective bi-level
linear optimization problem in intuitionistic fuzzy envi-
ronment is introduced. The concept of intuitionistic fuzzy
environment not only allows one to define a degree of mem-
bership but also a degree of non-membership; which is not
simply the complement of membership degree. The problem
is reduced to a conventional multi-objective bi-level opti-
mization problem using accuracy function and comparison
of two IFNs. A satisfactory solution for the multi-objective
problems at both the levels is acquired usingTOPSISmethod.

After obtaining a satisfactory solution for the leader level
optimization problem, the decision variables controlled by
leader are relaxed with the help of several linear and non-
linear membership functions so as to extend the feasible
region for the follower. The left and right satisfactory lev-
els of decision variable controlled by the leader should be
done while keeping in mind the non-negativity constraints.
It is discovered that the satisfaction of the decision maker
follows the order, Linear > Hyperbolic > Parabolic, in the
case of given numerical examples.

Addition of a constraint may lead to the rank reversal of
the alternatives and this comes up as a major limitation of
the proposed model. In the proposed approach, the choice

of weights to upper level decision makers’ problem (when
both the levels have different number of objectives) may
land us in a position when upper level objectives are not
taken proper care of. However, this problem can be solved
by manually updating the weights of all the objectives. In
this work, a real world application of the proposed prob-
lem has been explained in the production planning process
of a manufacturing company. The proposed model can be
extended for solving Multi-level multi-objective optimiza-
tion problems, which can be applied in hierarchical decision
making process. The model can also be used for solving
bi-level multi-objective fractional programming problems.
The study of fractional objectives is necessary because
they prove to be a better tool to measure the efficiency
of the system. The approach presented in this work can
be implemented on a complete real life problem from an
industry such as manufacturing, scheduling, transportation,
communication networks and many more which involves
multi-objective hierarchical decision making in an uncertain
environment.
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Table 10 Comparison of
various solutions of Problem 2

Final solution Satisfactory degree

Linear membership function (1.561102, 0.87796) 0.5422036

Parabolic membership function (1.670181, 0.6596285) 0.138518

Hyperbolic membership function (1.732006, 0.5359882) 0.2571697

IFO technique as in [24] (0.8899, 0.5119668) 0.056
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