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Abstract
The incidence of inter-city bus accidents receives a lot of attention from the public because they often cause heavy casualties.
TheHumanFactorsAnalysis andClassification System (HFACS) is the prevailing tool used for traffic accident risk assessment.
However, it has several shortcomings, for example: (1) it can only identify the potential failure modes, but lacks the capability
for quantitative risk assessment; (2) it neglects the severity, occurrence and detection of different failure modes; (3) it is unable
to identify the degree of risk and priorities of the failure modes. This study proposes a novel hybrid model to overcome these
problems. First, the HFACS is applied to enumerate the failure modes of inter-city bus operation. Second, the Z-number-
based best–worst method is used to determine the weights of the risk factors based on the failure mode and effects analysis
results. Then, a Z-number-based weighted aggregated sum product Assessment is utilized to calculate the degree of risk of
the failure modes and the priorities for improvement. The results of this study determine the top three ranking failure modes,
which are personal readiness from pre-conditions for unsafe behavior, human resources from organizational influence, and
driver decision-making error from unsafe behavior. Finally, data for inter-city buses in Taiwan in a case study to illustrate the
usefulness and effectiveness of the proposed model. In addition, some management implications are provided.

Keywords Failure mode and effects analysis (FMEA) · Human Factors Analysis and Classification System (HFACS) ·
Z-number-based best–worst method (Z-BWM) · Z-number-basedweighted aggregated sum product assessment (Z-WASPAS)
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Introduction

Accidents are occurring more and more frequently due to the
continuous and rapid development of road traffic, causing an
increase in the numbers of injuries and fatalities each year
[48]. According to the “Global Plan for the Decade of Action
for Road Safety 2011–2020” released by the World Health
Organization, the annual global death toll caused by road
traffic related collisions is nearly 1.25 million [55]. More-
over, traffic accidents have become the third leading cause of
death worldwide [32]. From an economic point of view, the
losses caused by traffic accidents account for about 3% of the
Gross Domestic Product (GDP) of low- and middle-income
countries [55]. Road transportation is a complex and open
system, which is affected by many factors such as the envi-
ronment, infrastructure, hardware, software, human factors,
and their interaction.

InEuropean countries, safetymanagement action has been
implemented through Safety Management Systems (SMS)
since the 1970s. The concepts in SMS cover the managerial
actions for all accidental risks to life, health, property and the
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environment [15]. Li and Guldenmund [29] pointed out that
new technologies, audit tools and standard procedures have
been developed to improve the SMS over the past 20 years.
There are also several other widely used risk management
models, including the Systems-Theoretic Accident Model
and Processes (STAMP) developed by Newnam and Goode
[34], the Haddon matrix [51], Human Factors Analysis and
Classification System (HFACS) [45], and many others.

In recent years, many studies have focused on the use
of HFACS for transport system risk assessment and manage-
ment studies that have proved its effectiveness and reliability.
This model describes the four levels of human negligence,
namely “unsafe behavior,” “preconditions for unsafe behav-
ior,” “unsafe supervision,” and “organizational influence.”
Reinach and Viale [41] improved the original framework
and introduced a fifth aspect, “external factors,” as the high-
est level to optimize the relevant failure modes within the
entire framework. The advantage of HFACS is that it can
actively track the causes of accidents and find and deter-
mine the root cause of hazardous events. In addition, the
model can effectively and reasonably analyze the human fac-
tors in system problems as they happen. It provides a wider
range of theoretical and methodological support for accident
analysis and prevention in safety science. This model has
been widely used in various fields for the analysis of natural
gas pipelines [53], chemical storage [43], and mining safety
[27]. In regards to road safety, Zhang et al. [56] explored
the causal relationships between traffic accident factors, and
discussed the interaction between the various HFACS levels
to establish a systematic assessment method. Their results
showed “unsafe behavior” to be the most frequent failure
mode in road accidents. The priorities for accident categories
are rollover, leaks, fire, explosion, and collision. Zhang et al.
[55] also identified “unsafe behavior” as one of the most
important failure modes for traffic accidents. After a review
of many bus accidents they found the four most important
human factors to be “organizational process,” “insufficient
supervision,” “personal readiness,” and "violations.” Obvi-
ously, there aremultiple paths which can lead to failure while
passing through from the bottom to the top level, which is a
strong implication of the interdependence between the vari-
ous human factors.

Although HFACS is a useful tool to explore the possible
failuremodes in risk analysis, it is still insufficient when used
alone for road accident analysis. First, it can only identify the
potential failure modes, because of the lack of quantitative
risk assessment techniques [55]. Second, it does not con-
sider the severity, occurrence or detection of the different
failure modes [26]. Third, it is unable to identify or prioritize
the risk degree of the failure modes. Therefore, this study
proposes a novel multi-criteria decision-making (MCDM)
based risk assessment model for the improvement of road
traffic safety, especially in relation to inter-city bus traf-

fic. The model uses HFACS to identify the potential failure
modes of road accidents. Failure mode and effects analysis
(FMEA) is then applied to the proposed risk factors, includ-
ing severity (S), occurrence (O), detection (D), and expected
cost (E), to review the potential failure modes and obtain a
risk assessment matrix. Many novel FMEA models include
E as a practical risk factor, which reflects the necessity of
resource allocation [31, 32].

Finally, the Z-number-based best–worst method (Z-
BWM) is used to determine the weights of the risk fac-
tors, and Z-number-based weighted aggregated sum product
assessment (Z-WASPAS) is applied to calculate the risk
degree of the potential failure modes. The experts’ judge-
ments integrated by using the Z-number method are neces-
sary applied to estimate the failure modes because there are
insufficient data to estimate the severity, occurrence and so
on formost of the failuremodes. The Z-number allows one to
effectively integrate the uncertain or vague information of the
experts’ judgements. TheZ-number-based analytic hierarchy
process (Z-AHP) requires an excessive number of pairwise
comparisons and has poor consistency butZ-BWM improves
these problems. In addition, the calculation process of Z-
WASPAS is easier to understand and carry out than either the
Z-number-based VIseKriterijumskaOptimizacija I Kompro-
misnoResenje (Z-VIKOR) or Z-number-based technique for
order preference by similarity to ideal solution (Z-TOPSIS).
Z-WASPAS also includes the concept of the Risk Priority
Number (RPN) found in the original FMEA calculation. The
proposed model identifies potential failure modes for every
aspect and prioritizes the risk of failure modes in road traffic
accidents. Finally, a case study based on data for inter-city
bus traffic in Taiwan is carried out as an empirical example
and managerial implications are provided. The specific con-
tributions and characteristics of this research are summarized
below.

1. This studydevelops a novel risk assessmentmodel,which
usesHFACS to summarize the potential failuremodes for
inter-city bus transportation.

2. The risk factors for assessment are determined based on
FMEA theory, to obtain the S, O, and D. In addition,
considering the actual situation of resource constraints,
a fourth risk factor, “E” is added.

3. Z-numbers are used to reflect the uncertainty and confi-
dence level of the experts’ risk assessment responses.

4. Z-BWM is used to overcome the problem of too many
pairwise comparisons required by classic analytic hier-
archy process method.

5. Z-WASPAS is used to calculate the risk level of the failure
modes and decide the priorities for improvement.

6. An empirical case study of an inter-city bus system in
Taiwan is carried out to help understand the practical
implications.
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The rest of the paper is organized as follows. "Literature
review" gives a brief review of recent related FMEA and
HFACS studies, and points out gaps in the research in this
field. The calculation processes forHFACS, FMEA,Z-BWM
and Z-WASPAS used in this study are described in "The pro-
posed hybridmodel". In "Illustration in a real case study", the
inter-city Taiwan bus system used to illustrate the proposed
model is outlined. Some theoretical and practical implica-
tions are discussed in "Discussion". Finally, a summary of the
findings, contributions of this research, and future research
directions is included in "Conclusions and future work".

Literature review

Road traffic safety and accidents

Road transport is comprised of a complex system involving
personnel, vehicles, roadways, and the surrounding environ-
ment. To effectively reduce risks in such a complex system,
it is necessary to have a thorough understanding of the var-
ious factors that lead to traffic accidents, for instance, the
design of vehicles, roads and traffic systems, driving regula-
tions, as well as road and vehicle maintenance. Peden et al.
[38] pointed out that the most common causes of traffic acci-
dents arise from infrastructure, environmental, vehicular and
human factors. Stanton and Salmon [46] argued that there
is no effective structured method for assessing the effect of
human error in road transportation accidents. An effective
system for accurate classification of various causative fac-
tors is also lacking, although they found that human error
and driving behavior errors triggered about 75% of traffic
accidents. Di Pasquale et al. [12] found human error-related
factors to be the cause of about 60–90% of accidents in the
road transport system, with the remaining accidents being
attributable to technical defects. Thus, about 85% of road
transport accidents are caused by human error.

Numerous studies exploring the causes of traffic acci-
dents have appeared in the literature. According to Laaraj
and Jawab [22], the current methods can be divided into
two categories: traditional and systematic. Traditional meth-
ods mainly focus on exploring human factor errors, such
as the driver’s personality traits, driving while fatigued,
and deviations in driving behavior. Beanland et al. [6] ana-
lyzed responses to driver behavior questionnaires to uncover
the personality traits that lead to abnormal driving behav-
iors. Jiang et al. [20] used detailed statistical data from
45 serious traffic accidents to sort out key error factors in
terms of “direct cause”, “type of accident”, and “accident
responsibility”,which included “speeding”, “improper driver
operation”, “vehicle overload”, “fatigue driving”, and “bad
driving habits.” The traditionalmethods focus on driver error,

but this perspective might be too narrow to analyze themulti-
dimensionality and complexity of a transportation system.

Systematic methods, on the other hand, consider overall
factors (e.g., environmental, human or machine) and their
interaction within the road system. These methods include
the accident map (Accimap) [39], cognitive reliability and
error analysis method (CREAM) [47], HFACS [50], STAMP
[23], etc. System analysis models are more suitable than
traditional methods for understanding problems in the real
world. However, both types ofmethods show that human fac-
tors, especially driving behavior, are the key cause of road
traffic accidents. Thus, a comprehensive analysis of the effect
of human factors in the system is crucial.

HFACS

HFACSwas developed for the classification of human errors.
It was originally proposed by Shappell and Wiegmann [45]
as a tool for investigating human factors and database clas-
sification structure. It was mainly used by the US military to
investigate and analyze the human causes of aviation acci-
dents at that time. The causality framework for human caused
accidents proposed by Reason [40] used in this framework
is based on the identification of “active failures” and “la-
tent failures” in human error (the so-called Swiss cheese
model of human error) distilled into four levels, namely, “un-
safe behavior,” “preconditions for unsafe behavior,” “unsafe
supervision,” and “organizational influence” [50].

The HFACSmodel has been adapted to make it more suit-
able for application in different circumstances, such as for
the investigation of errors in railway, sea freight, healthcare,
mining, and construction settings, to name a few. HFACS
has been combined with other methods for risk analysis as
a means to remedy the shortcomings of traditional human
error identificationmethods. For example, Celik and Cebi [8]
combined the Fuzzy AHPwith HFACS to analyze the human
factors leading to marine accidents. Wei et al. [49] combined
HFACSwith expert subjective assessment methods andGrey
System Theory to analyze human error in aviation accidents.
Chiu et al. [10] used a fuzzy TOPSIS in combination with
HFACS to assess air transportationmaintenance tasks.Akyuz
[2] used the analytic network process (ANP) combined with
the HFACS to explore serious gas leakage incidents by liq-
uefied petroleum gas carriers. Hsieh et al. [18] combined
AHP and TOPSIS with HFACS to evaluate human error in
Intensive Care Units (ICUs) in Taiwan. Havle and Kılıç [16]
applied a combination of triangular fuzzy numbers and AHP
with HFACS to analyze air traffic navigation errors in the
NorthAtlantic. Chen et al. [9] combined interval type-2 fuzzy
numbers and Prospect Theory with HFACS to explore the
human factors leading to vessel accidents.

In addition, there have been many studies focusing on
verifying the reliability of HFACS [11, 13, 28, 35, 36]
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proving that HFACS can be used to analyze human factors
in a system or organization. Zhang et al. [55] and Zhang
et al. [56] used HFACS to investigate the factors influencing
major road traffic accidents in China. They summarized the
human factors into the five categories of “unsafe behavior,”
“preconditions for unsafe behaviors,” “unsafe supervision,”
“organizational influence,” and “external factors.” Past stud-
ies have shown that the consideration of external factors can
make the HFACS model broader in scope. It can be applied
for comprehensively and systematically identifying the fac-
tors of active failure and latent failure in an organization.
It can further help the user to understand potential causes
and correlations that have led to the accident. However, the
HFACS model does not take into account that information
may be difficult to quantify or that part of the information
may be missing, and lacks the ability to assess the S, O, and
D of the real problem.

FMEA combined with MCDM

The FMEA model was developed by the Grumman Aircraft
Corporation in the 1960s to analyze the flight control sys-
tems of naval aircraft [14]. It is a proactive risk assessment
technology [7]. Over the past 50 years, it has been used in var-
ious fields, especially for the evaluation of the failure modes
of products or systems. Failure is unavoidable in most sys-
tems. It is important to eliminate possible failures and prevent
system-related problems in advance. The FMEA assessment
is based on three risk factors, the S,O, andD, which together
comprise the RPN� S×O×D, which is quantified based on
the opinions of experts expressed through linguistic variables
or through estimated values and critical analysis of the fail-
ure modes [25]. However, the RPN has often been criticized
as having the following shortcomings [31]:

1. The FMEA assumes that these three factors have same
importance weights.

2. Different S,O, andD ratings may produce the same RPN
value.

3. The RPN calculation is too simplistic and problems exist
because the multiplication process makes the results sen-
sitive to any small change in the evaluation of the risk
factors.

4. Only three factors are considered while other important
factors, such as cost, correction time, etc. are ignored.

Many methods have been proposed to improve the tradi-
tional FMEA by overcoming the shortcomings mentioned
above. For example, Liu et al. [24] reviewed 169 papers
related to the application of MCDM method published
between 1979 and 2018 in efforts to solve the shortcom-
ings and improve the evaluation efficiency of the traditional
FMEA. In the real world, evaluation teams are often com-

posed of experts with different areas of expertise and from
different departments. Uncertainties in their assessment can
arise due to time pressure, insufficient information, differ-
ences in linguistic scores and differences of opinion between
the experts, or simply because of the vagaries of the risk
assessment process itself, as well as inaccuracy, uncer-
tainty and hesitation. Uncertainty theory methods have been
applied to overcome these problems. The most common
approach has been to use fuzzy set theory to deal with the
uncertainty issue, followed by evidence theory, intuition-
istic fuzzy set theory, 2-tuples fuzzy language theory, etc.
In recent years, FMEA has been applied in combination
with novel fuzzy theories and linguistic variable methods.
For example, Jiang et al. [19] combined FMEA with Z-
numbers for the evaluation of aircraft turbine runner blades;
Mohsen and Fereshteh [33] merged FMEA with Z-numbers
to study the failure modes of geothermal power plant sys-
tems; Lo and Liou [30] combined FMEA with grey theory
to explore potential failure modes of smartphones. Clearly,
the problems of ambiguity, inaccuracy, and uncertainty in
decision-making and judgment of risk assessment can be
more effectively dealt with using uncertainty theory. How-
ever, to date, no study has used combined Z-numbers with
the BWMmethod to increase the accuracy of this method for
calculating the importance of the risk factors.

Research gap

Areviewof the literature reviewshows little effort to integrate
HFACS and FMEA to form a comprehensive risk assessment
framework for traffic safety and transportation management.
Therefore, in this study, we first use HFACS to explore
the potential failure modes of intercity bus traffic accidents.
Then, FMEA is applied to evaluate the risk factors and obtain
the risk evaluation matrix. Finally, Z-BWM is used to deter-
mine the weights of the risk factors, and Z-WASPAS is used
to calculate degree of risk of the failure modes. In the real
world, experts are prone to “fuzzy, uncertain, and inaccu-
rate” risk assessments. Therefore, Z-numbers are applied to
represent the reliability of this fuzzy information. The eval-
uation of road traffic risk through Z-BWM combined with
Z-WASPAS allows us to obtain more reliable results.

The proposed hybrid model

HFACS

The HFACS is a classification method for the exploration
of human error mainly for the analysis of accidents caused
by human behavior. It was first used by the US Air Force to
investigate and analyze the human factors leading to aviation
accidents. Thismethodwas developedbyShappell andWieg-

123



Complex & Intelligent Systems (2022) 8:2451–2470 2455

mann [45] within the framework of human accident causality
based on the so-called Swiss cheese model of human error
originally proposed by Reason [40].

As in the Swiss cheese model, there are four layers in the
HFACS framework. Each layer represents a different level
of protection in the system, with the upper level affecting
the next levels. The aim in risk management, is to try to
reduce the errors that occur at all levels in the system, in
order to reduce the occurrence of accidents. This framework
has been widely applied in different fields, for rail transport,
shipping, medical care and biochemistry, but especially in
transportation systems, attracting the time and energies of
a large number of researchers. However, it has been found
that there are still shortcomings to human error identifica-
tion methods. To improve the shortcomings of the traditional
HFACS model for accident analysis, it is combined other
methods. For example, the Fuzzy AHP has been combined
with the HFACS framework to identify the key factors of
human error in the control roomof a nuclear power plant [21].
TheAHPand fuzzyTOPSISwere combinedwith theHFACS
method, to identify and prioritize failure modes based on the
analysis of 157 adverse medical events [17]. Sarıalioğlu et al.
[44] used fuzzy fault tree analysis (FTA) combined with an
HFACSmodel to analyze vessel engine roomfires and explo-
sion accidents. The afore-mentioned studies have proven that
the systematic and complete model architecture of HFACS
can effectively and reasonably analyze the human factors that
cause system problems.

FMEA

FMEA is widely used in product design, production pro-
cesses, and for quality assurance or system operation safety
and reliability requirements. Thismethod requires the forma-
tion of an expert team from different professional fields for
identification of failure modes based on the collected opin-
ions of the team members. The failure modes are then sorted
according to their risk level. This is a proactive assessment
technology for the elimination of potential risks [7]. The
evaluation and selection of key factors is the first step in
risk assessment using FMEA. In the traditional model, the
experts use linguistic scoring methods to assess the severity
of the three risk factors of severity, occurrence, and detec-
tion. The scores are then simply multiplied to obtain the risk
priority number for analyzing the failure mode [25].

In this study, it is assumed that any accidents in an inter-
city bus systemwill cause significant casualties and financial
losses, so a fourth risk factor, E, is added. Table 1 shows the
four risk factors of the risk assessment scale. The correspond-
ing linguistic variables are given in the table, and responses
range in value from 1 to 10. The higher the value of each risk
factor, the higher the risk of the failure mode. Severity refers
to the magnitude of the “impact” of system failure. If the

problem is serious, a higher severity value will be assigned.
Occurrence rate refers to the frequency with which failure
modes may occur and is described qualitatively. Detection
refers to the possibility of detecting and discovering the fail-
ure before it occurs [4]. The expected cost refers to the cost for
the implementation of risk prevention measures. If the costs
of the occurrence of failure and action for improvement are
underestimated or ignored, it may lead to greater losses. The
final risk priority index is used to assess the severity of risks
and failures, and to judge the priority for improvement.

The original RPN index ignores the relative importance of
the risk factors in the key analysis. Hence, various weighting
methods have been used to determine the weights of the risk
factors [24]. The shortcomings of the traditional FMEA risk
assessment method can be overcome by combining it with
the MCDM method. The BWM is chosen as the weighting
method in this study because of its ease-of-operation for the
decisionmaker.Also, fewer pairwise comparisons are needed
than for the popular AHP method. In addition, considering
the ambiguity, inaccuracy, and uncertainty of the expert judg-
ments, this study uses Z-numbers to integrate this vague and
uncertain information.

Z-BWM

The Z-numbers, originally proposed by Zadeh [52] as a soft
calculation method for dealing with incomplete or uncer-
tain information. The Z-number contains two kinds of fuzzy
information, the evaluation value, and the evaluation con-
fidence. The degree of certainty of a fuzzy event can be
measured by the “probability” and the “confidence.” With
the application of Z-numbers these two types of informa-
tion are converted into a set of fuzzy numbers. The Z-BWM
results clearly reflect the degree of confidence in the expert
judgements, so as to obtain more realistic appraisal results
from the experts. For amore detailed descriptions of the orig-
inal BWM method see Rezaei [42].

The scale used for pairwise comparison of the importance
between risk factors is as follows: “Equally Important (EI) (1,
1, 1),” “Weakly Important (WI) (2, 3, 4),” “Fairly Important
(FI) (4, 5, 6),” “Very Important (VI) (6, 7, 8),” “Absolutely
Important (AI) (8, 9, 9).” The five-point scale adopted for
confidence assessment of expert judgments includes “Very
Low (VL) (0, 0, 0.3),” “Low (L) (0.1, 0.3, 0.5),” “Medium
(M) (0.3, 0.5, 0.7),” “High (H) (0.5, 0.7, 0.9),” “Very High
(VH) (0.7, 1, 1).” The linguistic variables and corresponding
membership functions for Z-BWM are shown in Table 2. For
example, when the decision maker evaluates the importance
of factor S in comparison to factor O, it is given as “FI,”
and the degree of confidence in the evaluation scale is “H”.
The corresponding membership function is thus (3.35, 4.18,
5.02).

The steps of Z-BWM are summarized as follows:
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Table 1 The four risk factors on
the risk assessment scale Level Severity Occurrence Detectability Expected cost

1 No Almost never Almost certain Almost no cost

2 Very slight Remote Very high Very low

3 Slight Very slight High Low

4 Minor Slight Moderately high Slight

5 Moderate Low Medium Moderate

6 Significant Medium Low Moderately high

7 Major Moderately high Slight High

8 Extreme High Slight Very high

9 Serious Very high Remote Extremely high

10 Hazardous Almost certain Almost impossible Almost the same cost

Table 2 The linguistic variables
for Z-BWM and their
membership functions

Importance Confidence

VL L M H VH

EI (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)

WI (0.63, 0.95,
1.26)

(1.10, 1.64,
2.19)

(1.41, 2.12,
2.83)

(1.67, 2.51,
3.35)

(1.90, 2.85,
3.79)

FI (1.26, 1.58,
1.90)

(2.19, 2.74,
3.29)

(2.83, 3.53,
4.24)

(3.35, 4.18,
5.02)

(3.79, 4.74,
5.69)

VI (1.90, 2.21,
2.53)

(3.29, 3.84,
4.38)

(4.24, 4.95,
5.66)

(5.02, 5.86,
6.69)

(5.69, 6.64,
7.59)

AI (2.53, 2.85,
2.85)

(4.38, 4.93,
4.93)

(5.66, 6.36,
6.36)

(6.69, 7.53,
7.53)

(7.59, 8.54,
8.54)

Step 1. Decide on themost and least important risk factors
From the risk factors defined by the FMEAmethod, select

the most important (i.e., most satisfactory, best, or most
preferred) and the least important (i.e., most unsatisfactory,
worst, or least preferred).

Step 2. Compare the most important factor with the other
factors to produce the Z-BO vector

The relative importance of the most important risk factor
and other risk factors is assessed by the experts using the
evaluation scale, as shown in Table 2. The linguistic variable
assessments range from “〈EI, VL〉, (1, 1, 1)” to “〈AI, VH〉,
(3.33, 3.80, 4.28).” Each evaluation item is given a set of
Z-numbers. The Z-BO vector can be generated by

⊗ABj � (⊗aB1, ⊗ aB2, . . . , ⊗ aBn), (1)

where “⊗” is represented as a Z-number and ⊗aBj rep-
resents the importance of the most important risk factor B
relative to risk factor j. The comparison between the most
important risk factor and itself must be “EI” and “VH” (i.e.,
⊗aBB � (1, 1, 1)).

Step 3. Compare the remaining factors with the least
important factor to produce the Z-OW vector

Similar to Step 2, the relative importance of the other risk
factors is assessed by the experts by comparison with the

least important risk factor, to generate the Z-OW vector, as
follows:

⊗A jW � (⊗a1W , ⊗ a2W , . . . , ⊗ anW )T , (2)

where ⊗a jW represents the importance of the remaining
risk factor j relative to the least important risk factorW , and
⊗aWW � (1, 1, 1).

Step 4. Calculate the optimal weight value of each risk
factor

(⊗w∗
1, ⊗ w∗

2, . . . , ⊗ w∗
n

)
..

The two vectors of Z-BWM (Z-BO and Z-OW vectors)
can be converted into a nonlinear constrained optimization
problem. Please refer to Aboutorab et al. [1] for details about
the conversion process and principles. The nonlinear mathe-
matical equations generated by Z-BWM are

Min ⊗ζ .

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣⊗wB − ⊗aBj · ⊗w j
∣∣ ≤ ⊗ζ∣∣⊗w j − ⊗a jW · ⊗wW
∣∣ ≤ ⊗ζ

n∑

j�1
R
(⊗w j

) � 1

lwj ≤ mw
j ≤ uw

j
lwj ≥ 0

j � 1,2, . . . ,n

. (3)
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where ⊗ζ � (
lζ ,mζ ,uζ

)
, ⊗w j �

(
lwj ,mw

j ,u
w
j

)
, ⊗aBj �

(
lB j ,mBj ,uBj

)
, and⊗a jW � (

l jW ,m jW ,u jW
)
. Considering

lζ ≤ mζ ≤ uζ , we assume ⊗ζ ∗ � (k∗,k∗,k∗), k∗ ≤ lζ .
Equation (3) can be converted to Eq. (4):

Min ⊗ζ ∗.

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣
∣∣
(
lwB ,mw

B ,uw
B

) − (
lB j ,mBj ,uBj

) ·
(
lwj ,mw

j ,uw
j

)∣
∣∣ ≤ (k∗,k∗,k∗)

∣∣
∣
(
lwj ,mw

j ,uw
j

)
− (

l jW ,m jW ,u jW
) · (

lwW ,mw
W ,uw

W

)∣∣
∣ ≤ (k∗,k∗,k∗)

n∑

j�1
R
( lwj +4·mw

j +u
w
j

6

)
� 1

lwj ≤ mw
j ≤ uw

j

lwj ≥ 0

j � 1,2, . . . ,n

.

(4)

The optimal fuzzy weights
(⊗w∗

1, ⊗ w∗
2, . . . , ⊗ w∗

n

)
can

be obtained by solving Eq. (4).
Step 5. Integrate the Z-BWM analysis results from the

experts
This study uses the arithmetic mean to integrate the Z-

BWM results from the experts, that is, the obtained multiple
sets of weights are averaged to generate the criterion group
weights ⊗w

agg
j .

Z-WASPAS

In the original FMEA method, the risk priority number
is obtained simply by multiplying the three risk factors
together.However, different combinationsmight generate the
same RPN number and they are strongly sensitive to varia-
tions in the RPN element evaluations [31]. To remedy the
above shortcomings, WASPAS, a hybrid MCDM method,
was developed by combining two systems the weighted sum
model (WSM) and weighted product model (WPM). This
method has been used to deal with variousMCDMproblems.
Its ranking accuracy is higher than the traditional methods [3,
5]. The Z-WASPAS method proposed in this paper is used
to determine the risk scores of the failure modes and their
ranking. The Z-WASPAS operation steps are as follows:

Step 1. Obtain the initial assessment matrix
The linguistic variables in Table 1 are applied to iden-

tify the scores of the failure modes. Next, the experts assign
confidence levels for each score according to the five-level
scale: “Very Low (VL) (0, 0, 0.3),” “Low (L) (0.1, 0.3, 0.5),”
“Medium (M) (0.3, 0.5, 0.7),” “High (H) (0.5, 0.7, 0.9),” or
“Very High (VH) (0.7, 1, 1).” The linguistic variables for Z-
WASPAS and its corresponding membership functions are
listed in Table 3.

Assume that the FMEA team has k experts. These experts
assess the score of failure mode i for risk factor j to obtain

the initial D assessment matrix (Eq. 5), where k � 1, 2,…,
p; j � 1, 2,…, n; and i � 1,2,…, m.

⊗D(k) �

⎡

⎢⎢
⎢⎢⎢⎢
⎣

⊗d(k)11 ⊗d(k)12 · · · ⊗d(k)1n

⊗d(k)21 ⊗d(k)22 · · · ⊗d(k)2n
...

...
. . .

...

⊗d(k)m1 ⊗d(k)m2 · · · ⊗d(k)mn

⎤

⎥⎥
⎥⎥⎥⎥
⎦

, (5)

where⊗d(k)i j represents the score of the kth expert’s assess-

ment of failure modei under risk factor j, and ⊗d(k)i j �
(
⊗d(k),li j , ⊗d(k),mi j , ⊗d(k),ui j

)
.

Step 2. Use Eq. (6)to calculate the average assessment
matrix

⊗X �

⎡

⎢⎢⎢⎢⎢⎢
⎣

⊗x11 ⊗x12 · · · ⊗x1n

⊗x21 ⊗x22 · · · ⊗x2n
...

...
. . .

...

⊗xm1 ⊗xm2 · · · ⊗xmn

⎤

⎥⎥⎥⎥⎥⎥
⎦

, (6)

where ⊗xi j �
∑p

k�1 ⊗di j
k and ⊗x (k)i j �

(
⊗x (k),li j , ⊗x (k),mi j , ⊗x (k),ui j

)
.

Step 3. Calculate the normalized matrix
To unify the units and score range of the assessment risk

factors, the normalized matrix Eq. (7) is obtained through
Eq. (8) as follows:

⊗P � [⊗pi j
]
m×n, (7)

⊗pi j � ⊗ai j
10

. (8)

Step 4. Calculate the performance indexesWSM andWSP
In this step, the group weights obtained for Z-BWM are

used as the parameter values for the calculation of perfor-
mance indexes WSM and WSP.

⊗SQi �
n∑

j�1

⊗pi j . ⊗ w
agg
j , (9)

⊗PQi �
n∏

j�1

(⊗pi j )
⊗w j . (10)

Step 5. Calculate the integrated risk index ϕ.
The centroid method is used to deburr the fuzzy value, for

example, ⊗θ � (
θ l , θm, θu

)
, to obtain the crisp value (θ ),

as shown in Eq. (11).

θ � θ l + 4 · θm + θu

6
. (11)
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Table 3 The linguistic variables for Z-WASPAS and their membership functions

S, O, D,
and E

Confidence

Level VL L M H VH

1 (0.32, 0.32, 0.47) (0.55, 0.55, 0.82) (0.71, 0.71, 1.06) (0.84, 0.84, 1.25) (0.95, 0.95,
1.42)

2 (0.47, 0.63, 0.79) (0.82, 1.10, 1.37) (1.06, 1.41, 1.77) (1.25, 1.67, 2.09) (1.42, 1.90,
2.37)

3 (0.79, 0.95, 1.11) (1.37, 1.64, 1.92) (1.77, 2.12, 2.47) (2.09, 2.51, 2.93) (2.37, 2.85,
3.32)

4 (1.11, 1.26, 1.42) (1.92, 2.19, 2.47) (2.47, 2.83, 3.18) (2.93, 3.35, 3.76) (3.32, 3.79,
4.27)

5 (1.42, 1.58, 1.74) (2.47, 2.74, 3.01) (3.18, 3.53, 3.89) (3.76, 4.18, 4.60) (4.27, 4.74,
5.22)

6 (1.74, 1.90, 2.06) (3.01, 3.29, 3.56) (3.89, 4.24, 4.60) (4.60, 5.02, 5.44) (5.22, 5.69,
6.17)

7 (2.06, 2.21, 2.37) (3.56, 3.84, 4.11) (4.60, 4.95, 5.30) (5.44, 5.86, 6.27) (6.17, 6.64,
7.12)

8 (2.37, 2.53, 2.69) (4.11, 4.38, 4.66) (5.30, 5.66, 6.01) (6.27, 6.69, 7.11) (7.12, 7.59,
8.06)

9 (2.69, 2.85, 3.00) (4.66, 4.93, 5.21) (6.01, 6.36, 6.72) (7.11, 7.53, 7.95) (8.06, 8.54,
9.01)

10 (3.00, 3.16, 3.16) (5.21, 5.48, 5.48) (6.72, 7.07, 7.07) (7.95, 8.37, 8.37) (9.01, 9.49,
9.49)

The next step is to de-fuzzify all fuzzy numbers using
Eq. (11). BothWSMandWSPare considered inZ-WASPAS,
and the preference ratio of these two is determined by the
parameter. The integrated risk index ϕ is

ϕi � λsQi + (1 − λ)pQi . (12)

The failure modes are ranked according to the index ϕ.
The failure mode with the highest performance value ϕ has
the highest priority for improvement.

Illustration in a real case study

This study uses data for inter-city buses in Taiwan for empir-
ical analysis. Many highway bus accidents, often causing a
large number of casualties, have occurred in recent years. For
example, in September 2017, an inter-city highway bus dodg-
ing another vehicle lost control and crashed into a guardrail,
resulting in 6 deaths and 11 injuries. Another highway bus
roll-over accident which occurred in June 2019 caused 3
deaths and 13 injuries. In addition to the injuries and deaths,
serious traffic accidents also pose a huge challenge to the
economy. The annual economic losses caused by traffic acci-
dents accounted for about 3.13% of Taiwan’s GDP [54]. All
of this makes effective reduction of possible accidents before
they occur an urgent issue for government.

Identifying the failure modes through HFACS

The literature review in "Literature review" shows that
although the HFACS has been used for comprehensive risk
assessment in various fields, most of these studies did not
consider the impact of external factors. This study thus adds
“external factors” to the HFACS analysis. Initially, 5 types
of human factors and 15 failure modes were derived from
the literature review. Then, 10 experts were invited as an
assessment team. The team members included supervisors
from government agencies, senior researchers from a trans-
portation institute, mangers of inter-city bus companies, and
accident investigators. The experts have an average of more
than 10 years’ experience in related fields with rich levels of
professionalism, knowledge, and industry-related practical
experience, thus, their assessment results are deemed credi-
ble.

The five human factors include “external factors,” “orga-
nizational influence,” “unsafe supervision,” “preconditions
for unsafe behavior,” and “unsafe behavior.” Based on
the HFACS analysis and two rounds of interviews, some
of the initial failure modes were modified and five more
added to more accurately reflect the operating environ-
ment in Taiwan. Two failure modes from external factors
and 18 failure modes from internal factors comprise the
evaluation framework in this case study. The two fail-
ure modes for external factors are “Regulatory omissions
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Fig. 1 Proposed HFACS
framework for analysis of
potential failure modes for
inter-city buses
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(FM1)” and “Administrative omissions (FM2)”. The 18 fail-
ure modes within internal organizations include “Human
resources (FM3),” “Financial resources (FM4),” “Equipment
and resources (FM5),” “Safety atmosphere (FM6),” “Organi-
zational operation (FM7),” “Insufficient supervision (FM8),”
“Incompletely planned operating mechanism (FM9),” “Fail-
ure to correct known errors (FM10),” “Regulatory violations
(FM11),” “Personal readiness (FM12),” “Human resource
management (CRM) (FM13),” “Poor mental state (FM14),”
“Poor physical state (FM15),” “Physical/Psychological lim-
itations (Intelligence) (FM16),” “Driver decision-making
error (FM17),” “Driver operating error (FM18),” “Driver per-
ception error (FM19),” and “Driver violations (FM20).”

The five types of human factors and the final 20 failure
modes identified by the HFACS method are listed in Fig. 1
and described in detail in Table 4.

The HFACS framework is a useful tool to assist in the
investigation and establishment of preventive measures for
traffic accidents. The expert team can effectively and sys-
tematically distinguish potential failure modes that cause
accidents within the organization. However, the failure
modes obtained by the HFACS model cannot quantify their
degree of risk and lacks a tool for the assessment of the sever-
ity, frequency, and measurability of actual problems.

To remedy the shortcomings of the original FMEA
method, the modified model considers factor importance
and the RPN value calculated by the WASPAS method. In

addition, Z-numbers are incorporated to consider the ambi-
guity and uncertainty of the experts’ survey responses. The
proposed model uses Z-numbers combined with BWM to
determine the importance of the risk factors, and the WAS-
PAS method to prioritize the failure modes.

Weighted RPN elements through Z-BWM

The advantages of the Z-BWM and its calculation process
are explained in detail in "Z-BWM". First, each expert is
required to select the most important and least important risk
factors. The steps to obtain the Z-BO and Z-OW vectors
from each expert are based on the evaluation scale in Table
2. The results obtained from professional feedback from the
10 experts are shown in Tables 5 and 6. For example, as
indicated in Table 5, the first expert believes that S is themost
important risk factor. Therefore, compared with other risk
factors, the Z-BO vector formed by S is {(1, 1, 1), (3.35, 4.18,
5.02), (7.59, 8.54, 8.54), (4.24, 4.95, 5.66)}. Similarly, D is
selected as the least important risk factor, and the transposed
Z-OW vector is {(7.59, 8.54, 8.54), (5.02, 5.86, 6.69), (1,
1, 1), (4.24, 4.95, 5.66)}, as shown in Table 6. All experts’
responses are processed similarly. Before performing the Z-
BWMcalculation, the consistency ratio (CR) is calculated for
all BWM questionnaire responses to confirm the logic and
reliability of the experts’ answers. The average CR value is
0.035, indicating a high degree of consistency [42].
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Table 4 Proposed failure mode evaluation

Level Code Failure mode Description

External factors FM1 Regulatory omissions 1. Laws and regulations are not rigorous or
precise enough

2. Regulations are out-of-date and need
amendment to meet industry and social
circumstance demands

FM2 Administrative omissions 1. The government department has not
implemented the relevant laws and
regulations or carried out its supervisory
and management responsibilities

2. Failure to strengthen policy advocacy or
insufficient safety subsidy policies

Organizational influence FM3 Human resources 1. Drivers demonstrate unsuitable
personality traits, such as hostility,
emotional, nervous, aggressive etc

2. The shortage of drivers in the work
force affects the quality and safety of
transportation services

FM4 Financial resources 1. Insufficient budgeting for regular
vehicle renewal and equipment
maintenance

2. Inappropriate salary and bonus system

FM5 Equipment and resources 1. Lack of regular vehicle inspection and
maintenance

2. Using inappropriate vehicle or
maintenance equipment

FM6 Safety atmosphere 1. Safety-related issues are not frequently
or actively discussed

2. Lack of mutual encouragement to drive
safely

FM7 Organizational operation 1. No regular review of safety plans and
procedure

2. No rigorous working hour rules or
violation record system

Unsafe supervision FM8 Insufficient supervision 1. Failure to conduct regular safety
inspections of drivers and vehicles

2. Failure to conduct on-the-job training
for drivers and strengthen driving safety
education and training

FM9 Insufficient supervision 1. Inappropriate management resulting in
non-compliance or improper working
hours

2. Lack of standardization of working
procedures and risk assessment
mechanisms

FM10 Failure to correct known errors 1. Failure of the company’s administrative
division to issue warnings and initiate
improvement measures for known
defects in the system

2. Failure to correct improper driving
habits
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Table 4 continued

Level Code Failure mode Description

FM11 Regulatory violations Managers ignore safety regulations and
fail to follow procedures in the execution
of daily operating tasks

Pre-conditions for unsafe behavior FM12 Personal readiness 1. Drivers have insufficient rest between
shifts

2. Drivers are not familiar with road
conditions

3. Driver’s personal health is poor

FM13 Human resource management CRM 1. Poor communication between
management staff and drivers

2. Interpersonal relationships in the work
team are not harmonious

FM14 Poor mental state 1. Attitude or personality problems, such
as carelessness or impatience

2. Fatigue causing inattention

FM15 Poor physical state Loss of driving control due to illness,
medications, physical discomfort or
dizziness

FM16 Physical/psychological limitations
(intelligence)

1. Work load exceeds the level that the
driver can bear physically/mentally

2. Deterioration of vision or physical
response

Unsafe behavior FM17 Driver decision-making error 1. Misjudging the driving status of other
vehicles and responding to emergencies

2. Misjudgment of road conditions

FM18 Driver operating error 1. Improper driving behavior, such as
incorrect lane changing, deviating from
lanes, failure to maintain safe driving
distance, etc

2. Failure to check vehicle condition
before departure

FM19 Driver perception error 1. Monotonous road conditions lead to
perception errors

2. Poor vision at night

FM20 Driver violations 1. Violation of road traffic regulations or
drunk driving

2. Distracted driving, for example, using a
mobile phone or tablet device while
driving

Table 5 Z-BO vectors
Expert no Best S O D E

1 S (1, 1, 1) (3.35, 4.18, 5.02) (7.59, 8.54, 8.54) (4.24, 4.95, 5.66)

2 S (1, 1, 1) (5.02, 5.86, 6.69) (3.79, 4.74, 5.69) (2.83, 3.53, 4.24)

3 D (6.69, 7.53, 7.53) (3.79, 4.74, 5.69) (1, 1, 1) (1.67, 2.51, 3.35)

4 D (1.90, 2.21, 2.53) (5.02, 5.86, 6.69) (1, 1, 1) (2.83, 3.53, 4.24)

5 S (1, 1, 1) (1.41, 2.12, 2.83) (1.67, 2.51, 3.35) (5.69, 6.64, 7.59)

6 E (3.35, 4.18, 5.02) (1.90, 2.85, 3.79) (1.41, 2.12, 2.83) (1, 1, 1)

7 S (1, 1, 1) (1.67, 2.51, 3.35) (5.69, 6.64, 7.59) (3.35, 4.18, 5.02)

8 S (1, 1, 1) (1.67, 2.51, 3.35) (3.35, 4.18, 5.02) (3.79, 4.74, 5.69)

9 S (1, 1, 1) (3.35, 4.18, 5.02) (1.67, 2.51, 3.35) (3.79, 4.74, 5.69)

10 S (1, 1, 1) (1.67, 2.51, 3.35) (1.67, 2.51, 3.35) (3.79, 4.74, 5.69)
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Table 6 Z-OW vectors

Expert no 1 2 3 4 5

Worst D O S O E

S (7.59, 8.54, 8.54) (5.02, 5.86, 6.69) (1, 1, 1) (2.83, 3.53, 4.24) (5.69, 6.64, 7.59)

O (5.02, 5.86, 6.69) (1, 1, 1) (2.83, 3.53, 4.24) (1, 1, 1) (3.35, 4.18, 5.02)

D (1, 1, 1) (1.90, 2.85, 3.79) (6.69, 7.53, 7.53) (5.02, 5.86, 6.69) (3.35, 4.18, 5.02)

E (4.24, 4.95, 5.66) (1.41, 2.12, 2.83) (5.02, 5.86, 6.69) (5.02, 5.86, 6.69) (1, 1, 1)

Expert no 6 7 8 9 10

Worst S E E D E

S (1, 1, 1) (3.35, 4.18, 5.02) (3.79, 4.74, 5.69) (1.67, 2.51, 3.35) (3.79, 4.74, 5.69)

O (1.41, 2.12, 2.83) (4.24, 4.95, 5.66) (1.67, 2.51, 3.35) (1.41, 2.12, 2.83) (1.67, 2.51, 3.35)

D (1.41, 2.12, 2.83) (1.10, 1.64, 2.19) (3.35, 4.18, 5.02) (1, 1, 1) (1.67, 2.51, 3.35)

E (3.35, 4.18, 5.02) (1, 1, 1) (1, 1, 1) (1.41, 2.12, 2.83) (1, 1, 1)

Expert 1’s Z-BO factors and Z-OW factors are used as an
example to demonstrate calculation process of the Z-BWM,
the nonlinear mathematical model, as shown in Eq. (13).

Min ⊗ζ ∗.

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣(lwS ,mw
S ,uw

S

) − (3.35, 4.18, 5.02) · (
lwO ,mw

O ,uw
O

)∣∣ ≤ (k∗,k∗,k∗);
∣∣(lwS ,mw

S ,uw
S

) − (7.59, 8.54, 8.54) · (
lwD,mw

D,uw
D

)∣∣ ≤ (k∗,k∗,k∗);
∣∣(lwS ,mw

S ,uw
S

) − (4.24, 4.95, 5.66) · (
lwE ,mw

E ,uw
E

)∣∣ ≤ (k∗,k∗,k∗);
∣∣(lwO ,mw

O ,uw
O

) − (5.02, 5.86, 6.69) · (
lwD,mw

D,uw
D

)∣∣ ≤ (k∗,k∗,k∗);
∣
∣(lwE ,mw

E ,uw
E

) − (4.24, 4.95, 5.66) · (
lwD,mw

D,uw
D

)∣∣ ≤ (k∗,k∗,k∗);
lwS +4·mw

S +u
w
S

6 +
lwO+4·mw

O+u
w
O

6 +
lwD+4·mw

D+u
w
D

6 +
lwE +4·mw

E+u
w
E

6 � 1;

lwS ≤ mw
S ≤ uw

S ;l
w
O ≤ mw

O ≤ uw
O ;l

w
D ≤ mw

D ≤ uw
D;l

w
E ≤ mw

E ≤ uw
E ;

lwS ,lwO ,lwD,lwE ≥ 0.

(13)

Equation (13) is further expanded to get Eq. (14).
Min k∗.

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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∣∣uw
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D

∣∣ ≤ k∗;
∣∣uw
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E
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E
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∣
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D

∣
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∣
∣uw

O − 6.69 · lwD
∣
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∣∣lwE − 4.24 · uw
D
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∣∣mw
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D
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∣∣uw

E − 5.66 · lwD
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lwO+4·mw

O+u
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O

6 +
lwD+4·mw

D+u
w
D

6 +
lwE +4·mw
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6 � 1
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w
O ≤ mw
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w
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w
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. (14)

The weight value of the risk factor from Expert 1 can
be obtained through the single-objective solution, which is
presented as follows:

(
lwS ,mw

S ,uw
S

) � (0.618,0.658,0.692);
(
lwO ,mw

O ,uw
O

) �
(0.084,0.093,0.104);

(
lwD,mw

D,uw
D

) � (0.056,0.062,0.071);(
lwE ,mw

E ,uw
E

) � (0.170,0.188,0.205).
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Table 7 Weight results for Z-BWM

Risk factor Weight Rank

S (0.381, 0.419, 0.451) 1

O (0.136, 0.166, 0.204) 4

D (0.199, 0.235, 0.271) 2

E (0.157, 0.180, 0.202) 3

Fig. 2 Schematic diagram of the relative importance of risk factors

The group optimal weights integrated from the 10 experts’
responses are listed in Table 7. Obviously, S is the risk factor
with the highest weight, (0.381, 0.419, 0.451). The median
value of the fuzzy Z-number of the risk factor is shown in the
schematic diagram of the relative importance of weights in
Fig. 2. Next, the Z-BWM results are used as one of the input
parameters for the Z-WASPAS to find the aggregated RPN
for each failure mode.

Ranking failure modes through Z-WASPAS

Inter-city bus system operations are complex and involve
many internal and external organizations. Prioritizing the
failure modes can allow decision makers to more effectively
concentrate on certain critical failure modes. WASPAS is
one of the most effective ways to solve this type of prob-
lem because its analytical process is simple and fast. It meets
the needs of decision makers and supports the formulation
of strategies for improvement and prevention for key failure
modes. The number of failure modes does not affect the effi-
ciency and reliability of this method. In this study, 10 experts
evaluated the risk degrees of 20 potential failure modes using
semantic variables as shown in Table 3. The average assess-
ment Z-matrix of the 10 experts is shown in Table 8.

The differences in importance of the risk factors are con-
sidered based on the results of the weights calculated by
Z-BWM and are included in the Z-WASPAS calculation.
Table 9 shows the Z-WASPAS results. The top five fail-
ure modes in the ranking are FM12, FM3, FM17, FM2, and
FM18. It is determined that failure mode FM12 has the high-

est integrated RPN,which is 0.5527, therefore, it should have
the highest priority for prevention and correction.

Discussion

Management implications

Using the HFACS method, the potential failure modes can
be easily and systematically identified. Themethod considers
five factors and their interaction for more effective detection
of any possible failures. The modified FMEA and MCDM
methods are further applied to remedy the shortcomings of
the HFACS. According to the empirical results of Z-BWM,
the priority is S 	 D 	E 	 O with the risk factor of sever-
ity having the highest Z-number (0.381, 0.419, 0.451). For
bus companies and government agencies, severity represents
the consequences of human error as a threat to human life.
This is the most important risk factor. The second place rank-
ing is D. This risk factor can be divided into pre-detection
and degree of discoverability when risk occurs and can be
greatly reduced by regular testing and evaluation of drivers
and vehicles before human error occurs. The third ranked
factor is E, which refers to the economic cost that needs to
be invested or the resources required to repair or restore func-
tioning after failure has occurred. How to prevent or reduce
the risk of high-cost human error is one of the key factors.
Finally, O represents the occurrence of traffic accidents due
to human behavior and faulty decision-making. The occur-
rence rate will be reduced if the first three risk factors are
properly controlled.

The Z-WASPASmethod is used to rank the failure modes.
The results of the evaluation show the following risk priority
index from high to low: FM12 	 FM3 	 FM17 	 FM2 	
FM18 	 FM14 	 FM19 	 FM6 	 FM4 	 FM20 	 FM1
	 FM15 	 FM16 	 FM13 	 FM8 	 FM5	 FM9 	 FM7
	 FM10 	 FM11. The subsequent analysis is dedicated to
those failure modes ranked from number 1 to 6, because
these are the modes requiring the most urgent attention and
the implementation of solutions by the management team.

Thefirst ranked failuremode is personal readiness (FM12)
with an RPN value of 0.5527, giving it the highest priority for
improvement. The job of inter-city bus drivers entails long
working hours and requires intense concentration while on
duty. Serious accidents are more likely to happen if the driver
fails to effectively manage off-duty time or maintain good
physical condition. In addition, the driver needs to main-
tain good health. Human resource (FM3) is ranked in second
place with an RPN value of 0.5005. The possible mistakes
related to this include employing drivers with inappropriate
personality traits, insufficient risk perception training, and
work force shortages leading to excessive overtime shifts. It
is recommended that managers should consider the person-
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Table 8 The initial assessment matrix

Failure mode S O D E

FM1 (3.538, 3.948, 4.388) (2.851, 3.210, 3.599) (5.073, 5.512, 5.952) (4.027, 4.466, 4.906)

FM2 (5.109, 5.550, 5.991) (4.683, 5.121, 5.559) (3.686, 4.127, 4.567) (3.799, 4.226, 4.667)

FM3 (6.233, 6.677, 7.121) (4.423, 4.867, 5.311) (2.347, 2.713, 3.109) (4.469, 4.913, 5.357)

FM4 (4.793, 5.228, 5.663) (3.069, 3.427, 3.814) (2.763, 3.165, 3.597) (4.824, 5.258, 5.693)

FM5 (5.636, 6.074, 6.512) (2.496, 2.841, 3.232) (1.592, 1.881, 2.185) (3.753, 4.176, 4.614)

FM6 (5.016, 5.454, 5.892) (4.088, 4.496, 4.934) (3.413, 3.792 4.186) (3.440, 3.864, 4.302)

FM7 (4.543, 4.978, 5.413) (2.983, 3.388, 3.823) (2.323, 2.696, 3.084) (2.974, 3.393, 3.829)

FM8 (5.131, 5.572, 6.013) (3.706, 4.131, 4.572) (2.207, 2.602, 3.043) (2.405, 2.817, 3.260)

FM9 (4.768, 5.200, 5.633) (3.530, 3.932, 4.364) (2.343, 2.745, 3.177) (2.867, 3.252, 3.637)

FM10 (4.730, 5.157, 5.584) (3.614, 3.979, 4.358) (1.853, 2.172, 2.506) (2.851, 3.216, 3.595)

FM11 (4.559, 4.980, 5.415) (3.213, 3.618, 4.053) (2.379, 2.752, 3.140) (2.060, 2.389, 2.732)

FM12 (6.261, 6.694, 7.126) (4.860, 5.292, 5.725) (4.375, 4.807, 5.240) (3.729, 4.147, 4.580)

FM13 (4.377, 4.812, 5.247) (3.416, 3.836, 4.271) (3.510, 3.916, 4.352) (2.592, 2.965, 3.353)

FM14 (5.440, 5.869, 6.299) (4.438, 4.867, 5.297) (3.436, 3.835, 4.265) (2.974, 3.328, 3.713)

FM15 (5.100, 5.530, 5.959) (3.264, 3.664, 4.093) (2.559, 2.988, 3.418) (2.672, 3.072, 3.502)

FM16 (4.963, 5.395, 5.827) (3.217, 3.649, 4.082) (2.9949 3.397, 3.829) (2.337, 2.755, 3.187)

FM17 (6.057, 6.493, 6.928) (3.231, 3.667, 4.102) (3.840, 4.276, 4.711) (3.198, 3.589, 3.979)

FM18 (6.133, 6.576, 7.020) (4.436, 4.879, 5.323) (2.615, 2.998, 3.397) (3.105, 3.533, 3.977)

FM19 (5.677, 6.121, 6.565) (4.388, 4.832, 5.275) (2.949, 3.334, 3.733) (2.876, 3.289, 3.733)

FM20 (5.874, 6.312, 6.750) (4.245, 4.683, 5.121) (1.707, 2.087, 2.525) (2.648, 3.086, 3.524)

Table 9 The ranking results
from Z-WASPAS Failure mode ⊗SQi ⊗PQi ϕi Rank

FM1 (0.338, 0.429, 0.531) (0.430, 0.422, 0.422) 0.4269 11

FM2 (0.391, 0.491, 0.601) (0.492, 0.486, 0.488) 0.4900 4

FM3 (0.414, 0.513, 0.621) (0.493, 0.485, 0.485) 0.5005 2

FM4 (0.355, 0.445, 0.545) (0.444, 0.434, 0.430) 0.4408 9

FM5 (0.339, 0.421, 0.512) (0.396, 0.380, 0.371) 0.4018 16

FM6 (0.369, 0.462, 0.566) (0.465, 0.456, 0.455) 0.4604 8

FM7 (0.307, 0.389, 0.483) (0.388, 0.377, 0.374) 0.3848 18

FM8 (0.328, 0.414, 0.512) (0.401, 0.392, 0.392) 0.4047 15

FM9 (0.321, 0.406, 0.502) (0.403, 0.393, 0.390) 0.4009 17

FM10 (0.311, 0.391, 0.481) (0.384, 0.370, 0.363) 0.3820 19

FM11 (0.297, 0.376, 0.467) (0.372, 0.360, 0.355) 0.3697 20

FM12 (0.450, 0.556, 0.672) (0.551, 0.546, 0.549) 0.5527 1

FM13 (0.324, 0.411, 0.509) (0.414, 0.405, 0.403) 0.4092 14

FM14 (0.383, 0.477, 0.582) (0.474, 0.465, 0.464) 0.4724 6

FM15 (0.332, 0.418, 0.515) (0.412, 0.402, 0.399) 0.4115 12

FM16 (0.329, 0.416, 0.514) (0.411, 0.402, 0.400) 0.4104 13

FM17 (0.401, 0.498, 0.604) (0.490, 0.481, 0.479) 0.4908 3

FM18 (0.395, 0.491, 0.597) (0.473, 0.465, 0.465) 0.4795 5

FM19 (0.380, 0.474, 0.580) (0.465, 0.456, 0.456) 0.4668 7

FM20 (0.357, 0.447, 0.548) (0.415, 0.407, 0.408) 0.4286 10
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ality traits of the drivers and strengthen training systems for
worker recruitment. Another recommendation is to change
the salary structure so that the driver is not driving in poor
mental condition and is regularly paid for overtime. Driver’s
decision-making error (FM17) and administrative negligence
(FM2) are ranked in third and fourth place. Driver decision-
making errors include inappropriate response to emergencies
and poor judgment of the direction and status of oncoming
vehicles. Improper operation or behavior are the main causes
for the above failures. Managers should provide good train-
ing and educate drivers about the importance of following the
standard operatingprocedures.Amonitoring systemorwarn-
ings about excessive speed might be possible enforcement
solutions. Administrative negligence can include govern-
mental negligence in implementing the relevant traffic rules
and guidelines for supervision and management responsibil-
ities, and not ensuring that transportation companies conduct
safety training and are managed well. Bus companies tend to
disregard regular employee training to save on costs and cap-
ital investment for vehicles maintenance and replacement. It
is recommended that the relevant government departments
should strengthen safety regulations and subsidy policies, by
requiring bus companies to build safetymanagement systems
and/or offering subsidies for maintenance of equipment and
vehicle replacement. In addition, government departments
could request bus companies to hold training seminars to
strengthen driver safety knowledge and awareness. “Driver
operating error (FM18)” and “poor mental state (FM14)”
ranked fifth and sixth. Driver mistakes can include overly
rapid acceleration or deceleration, improper lane changes,
failure to maintain safe driving distances, etc. Poor mental
state can include personal attitudes, not caring about safety,
driver fatigue, mental fatigue, and so on. Bad moods also
increase the chance of accidents. Therefore, these human
error factors are also the key failuremodes that decisionmak-
ers need to pay attention to and improve.

Model comparison

In this section, a variety of methods are compared and dis-
cussed starting with three weighting methods, which include
AHP, the Full Consistency Method (FUCOM) [37], and
BWM. These three methods are all based on the use of pair-
wise comparisons to derive the criteria weights. The AHP
requires the largest number of pairwise comparisons, which
is n (n− 1)/2 followed by FUCOMandBWMwith n− 1 and
2n− 3, respectively. The higher the number of pairwise com-
parisons, the less consistent results may result. Obviously,
FUCOM’s consistency performance is the best. However,
although BWM offers slightly weaker consistency results,
its input data are comprised of two conceptually different
vectors (BO and OW vectors), which can more accurately
reflect the expert’s evaluation. The three methods were tested

and the weights of the risk factors found to be only slightly
different. The importance ranking remained the same S 	 D
	 E 	 O for all three methods, and there was no effect on
the ranking of the failure modes. The results indicated that
all three methods are applicable but the BWM method was
selected for case analysis in this study because it can reflect
the experts’ assessment information from two different per-
spectives.

A comparison of six alternative ranking methods was
performed to illustrate the practicality of the proposed inte-
grationmodel for the rankingof failuremodes. The risk factor
weight settings for these six models are all based on those in
Table 7, to ensure consistency. Model 1, Z-WASPAS, is the
method proposed in this study, model 2 is the original FMEA
calculation method, where the values of S, O, D, and E are
multiplied. In addition, four common MCDM methods are
included in themodel comparison,Z-number-basedAdditive
RatioASsessment (Z-ARAS),Z-TOPSIS,Z-VIKOR, andZ-
number-based grey relational analysis (Z-GRA). Z-numbers
are introduced into all six models to reflect the uncertainty
and confidence level of the experts. Table 10 shows the fail-
ure mode ranking results for the six models. Obviously, F12
is ranked the highest risk failure mode by all models. How-
ever, the ranking of the other failure modes is inconsistent, as
shown in Fig. 3. A further step is carried out using the Spear-
man correlation coefficient to identify the correlation in the
ranking results obtained with the six methods. Z-WASPAS,
the original FMEA, Z-ARAS, and Z-GRA have higher cor-
relation coefficients (greater than 0.9), as shown in Table 11.
On the other hand, Z-TOPSIS and Z-VIKOR are based on
the concept of distance, thus, their results are different from
the Z-WASPAS results. Although we cannot prove that the
proposed Z-WASPAS method offers excellent results, this
method is intuitive and simple to implement, which helps
FMEA experts to analyze and find the root causes in real cir-
cumstances. In addition, one of the calculation parameters of
Z-WASPAS is based on the original concept of FMEA mul-
tiplication which also corresponds to the FMEA calculation
process.

The risk factor E is included in our proposed model,
which is significantly different from the conventional FMEA
(only three risk factors S, O, and D) calculation. Figure 4
shows the difference between E and without E. For example,
FM3 is ranked 2nd and 6th, respectively, which will affect
the improving strategies of decision-makers. In addition to
FM3, there are also many failure mode sequencing differ-
ences. In practice, risk costs are generally divided into three
categories, that is, tangible costs, intangible costs, and pre-
vention or control costs of risk losses. In the transportation
system, the occurrence of risk accidents will cause the loss of
the expected economic benefits of the enterprise. This paper
proposes HFACS-FMEA for the first time to summarize and
analyze the potential failure modes and risks of the inter-city

123



2466 Complex & Intelligent Systems (2022) 8:2451–2470

Table 10 Ranking results of
failure modes for the six models Z-WASPAS Original FMEA Z-ARAS Z-TOPSIS Z-VIKOR Z-GRA

ϕi Rank RPNi rank K i Rank cci Rank Qi Rank ri Rank

FM1 0.427 11 312.864 9 0.048 11 0.245 19 0.653 20 0.825 12

FM2 0.490 4 495.901 2 0.055 4 0.411 7 0.530 7 0.881 5

FM3 0.501 2 433.910 3 0.057 2 0.510 2 0.498 3 0.926 2

FM4 0.441 9 299.008 10 0.050 10 0.328 11 0.573 12 0.840 10

FM5 0.402 16 136.155 19 0.047 12 0.359 10 0.575 13 0.834 11

FM6 0.460 8 360.114 6 0.052 8 0.366 9 0.552 8 0.852 9

FM7 0.385 18 154.788 17 0.044 19 0.247 18 0.618 18 0.789 19

FM8 0.405 15 169.639 16 0.046 15 0.315 13 0.571 10 0.817 14

FM9 0.401 17 183.092 15 0.046 17 0.279 15 0.597 15 0.805 16

FM10 0.382 19 143.673 18 0.044 18 0.260 17 0.607 16 0.795 18

FM11 0.370 20 118.878 20 0.042 20 0.237 20 0.625 19 0.780 20

FM12 0.553 1 706.614 1 0.062 1 0.587 1 0.430 1 0.961 1

FM13 0.409 14 214.885 11 0.046 16 0.263 16 0.616 17 0.804 17

FM14 0.472 6 365.714 4 0.053 6 0.417 6 0.520 6 0.872 7

FM15 0.412 12 186.542 13 0.047 13 0.318 12 0.572 11 0.818 13

FM16 0.410 13 184.661 14 0.047 14 0.309 14 0.580 14 0.814 15

FM17 0.491 3 365.275 5 0.056 3 0.495 3 0.474 2 0.901 4

FM18 0.480 5 340.479 7 0.055 5 0.479 4 0.502 4 0.901 3

FM19 0.467 7 325.000 8 0.053 7 0.429 5 0.508 5 0.875 6

FM20 0.429 10 191.174 12 0.050 9 0.403 8 0.554 9 0.861 8

Fig. 3 Ranking results of the six
models

bus accidents. Due to the rising awareness of risk costs man-
agement, this study incorporates this concept to make the
analysis results closer to practice and more reliable.

Sensitivity analysis

The most important risk factor is S with a weight value of
(0.381, 0.419 and 0.451). Obviously, it has a significant influ-
ence in the overall evaluation system. In this section, we
explore whether changes to the weight of risk factor S will

affect the overall ranking results of the evaluation system.
Sensitivity analysis is conducted to observe whether there
will be any significant change in the priority ranking of the
failure modes analysis. We changed the value of the weight
of S from 0.1 to 0.9 and adjusted the weights of other risk
factors proportionally. Since the Z-number is comprised of
a set of three values, the upper boundary value was used as
the basis for adjustment, as shown in Table 12. According to
Fig. 5, changing the weights led to a change in the ranking of
all failure modes except for FM12, which remained in first
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Table 11 Correlation
coefficients between models Z-WASPAS Original FMEA Z-ARAS Z-TOPSIS Z-VIKOR Z-GRA

Z-WASPAS 1 0.956 0.980 0.895 0.875 0.956

Z-RPN 0.956 1 0.911 0.777 0.765 0.862

Z-ARAS 0.980 0.911 1 0.928 0.893 0.988

Z-TOPSIS 0.895 0.777 0.928 1 0.979 0.950

Z-VIKOR 0.875 0.765 0.893 0.979 1 0.914

Z-GRA 0.956 0.862 0.988 0.950 0.914 1

Fig. 4 The difference between E and without E

place. This indicates the extreme sensitivity of the other fail-
ure modes. This phenomenon indicates that it is necessary
to determine the weights of the risk factors, for example by
using the Z-BWM evaluation method described in this study
is an essential step to estimate the weights of the risk factors
while conducting a risk assessment.

Conclusions and future work

This study proposes a new hybrid model for risk assessment
regarding inter-city bus transportation. The model improves
several shortcomings of the HFACS. First the HFACS frame-
work is used to establish possible failure modes. Then the
FMEA is combined with MCDM for risk assessment. Z-
numbers are used in the analysis in combination with BWM
to determine the importance of the risk factors, and finally
the Z-WASPAS method is applied to rank the failure modes.
The conclusions are summarized below:

1. The results show that severity has the highest weight
value, thus, management needs to assign it the first pri-
ority for problem solving.

2. The results show that FM12 (personal readiness) is the
number one ranked failure mode. Management should
prioritize it for improvement.

3. Z-numbers are utilized to deal with the vagueness and
uncertainty of expert judgements, allowing consideration
of the confidence level and differences in reliability. In
addition, to avoidmissing information by using linguistic

variables while conducting expert survey, the weights of
the risk factors and values of failure modes are all fully
retained through fuzzy interval values during the calcu-
lation process, which makes the evaluation results more
reliable.

4. The risk factor of expected cost is added to the risk
assessment model and failure modes extended to include
external factors in response to real circumstances. Man-
agement can adopt more comprehensive strategies for
improvement in the safety of inter-city bus service.

This study proposes a hybrid model to effectively identify
potential risks before system failure occurs with the aim of
eliminating the risk of failure by preventing and improving
the risk factors. However, there are some restrictions and
suggestions for decision-makers and further research.

1. The assessment of the risk factors by the 10 experts
was integrated by an arithmetic mean method. However,
due to differences in the area of expertise and degree
of experience of each expert, we can also consider giv-
ing different weight values or using the multiple attribute
group decision-making (MAGDM) method to consider
the different weights.

2. The proposed evaluation model can be applied to other
types of public transportation, such as railways, ferries,
airplanes, subway systems, and the like. In addition, it
could be adapted for other industries, for example, for
product quality or supplier selection problems in manu-
facturing.

3. In the past, there have been very few studies in the trans-
portation field that have combinedMCDM and FMEA to
produce hybridmodel. This study focuses on the applica-
tion ofZ-numbers combinedwithBWMandZ-WASPAS
calculations. This hybrid model can be extended and
compared with other MCDMmethods, such as TOPSIS,
VIKOR, COPRAS, and GRA in the future. In addition,
Z-numbers can be compared with other fuzzy theories,
such as Pythagorean fuzzy sets, spherical fuzzy sets, Fer-
matean fuzzy sets, etc., to select the most suitable fuzzy
theory for each application.

4. This research focuses on ranking the risk factors but
assumes that they are independent of each other. It is
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Table 12 Nine weight
combinations S O D E

Run 1 (0.084, 0.093, 0.1) (0.211, 0.258, 0.317) (0.310, 0.365, 0.422) (0.245, 0.281, 0.314)

Run 2 (0.169, 0.186, 0.2) (0.190, 0.232, 0.285) (0.279, 0.328, 0.379) (0.220, 0.252, 0.282)

Run 3 (0.253, 0.279, 0.3) (0.168, 0.206, 0.252) (0.247, 0.291, 0.336) (0.195, 0.223, 0.250)

Run 4 (0.338, 0.372, 0.4) (0.147, 0.179, 0.220) (0.216, 0.254, 0.293) (0.170, 0.195, 0.218)

Run 5 (0.422, 0.465, 0.5) (0.125, 0.153, 0.188) (0.184, 0.216, 0.250) (0.145, 0.166, 0.186)

Run 6 (0.507, 0.558, 0.6) (0.104, 0.127, 0.155) (0.152, 0.179, 0.207) (0.120, 0.138, 0.154)

Run 7 (0.591, 0.651, 0.7) (0.082, 0.100, 0.123) (0.121, 0.142, 0.164) (0.095, 0.109, 0.122)

Run 8 (0.675, 0.744, 0.8) (0.061, 0.074, 0.091) (0.089, 0.105, 0.121) (0.070, 0.080, 0.090)

Run 9 (0.760, 0.837, 0.9) (0.039, 0.048, 0.059) (0.057, 0.068, 0.078) (0.045, 0.052, 0.058)

Fig. 5 Ranking results from the nine sensitivity analyses

suggested that DEMATEL can be introduced to consider
the interdependence of the risk factors, to determine the
degree of mutual influence as laid out in a causal rela-
tionship diagram.
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