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Abstract
As a special case of general fuzzy numbers, the polygonal fuzzy number can describe a fuzzy object by means of an ordered
representation of finite real numbers. Different from general fuzzy numbers, the polygonal fuzzy numbers overcome the
shortcoming of complex operations based on Zadeh’s traditional expansion principle, and can maintain the closeness of
arithmetic operation. Hence, it is feasible to use a polygonal fuzzy number to approximate a general fuzzy number. First, an
extension theorem of continuous functions on a real compact set is given according to open set construction theorem. Then
using Weierstrass approximation theorem and ordered representation of the polygonal fuzzy numbers, the convergence of a
single hidden layer feedforward polygonal fuzzy neural network is proved. Secondly, the gradient vector of the approximation
error function and the optimization parameter vector of the network are given by using the ordered representation of polygonal
fuzzy numbers, and then the gradient descent algorithm is used to train the optimal parameters of the polygonal fuzzy neural
network iteratively. Finally, two simulation examples are given to verify the approximation ability of the network. Simulation
result shows that the proposed network and the gradient descent algorithmare effective, and the single hidden layer feedforward
network have good abilities in learning and generalization.

Keywords n-polygonal fuzzy numbers · Ordered representation · Polygonal neural network · Convergence · Gradient descent
algorithm

Introduction

Artificial neural network has the ability of processing non-
linear information adaptively, and it also can overcome the
shortcomings of traditional artificial intelligence methods in
intuitive pattern, speech recognition, and unstructured infor-
mation processing. Therefore, neural networks have been
successfully applied in fields of expert system, pattern recog-
nition and intelligent control. In fact, most of the previous
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study on approximation problems of neural networks stays
on the existence of networks, and to realize the construction
of network, complex algorithmdesign andprogramoperation
are needed. In 1994, Chen [1] first proposed the approxima-
tion problem of system identification using neural network.
It was proved that integrable functions on compact set can be
approximated by the linear composition of continuous func-
tions of one variable, and a method of identifying dynamic
system with the neural network was presented. In 2003, Cao
and Xu [2] studied the problem of using a single hidden
layer neural network to approximate a continuous function
by taking the best polynomial approximation as a measure,
and methods of the network construction and approximation
speed estimation are proposed. Later, Cao and Zhang et al.
[3] gave an algorithm of using neural network to approximate
a continuous function in a special distance space. In 2008,
Xie et al. [4] proved the existence of single hidden layer
neural network interpolation under some certain conditions
satisfied for activation function, and a calculation method of
connection weights and threshold was given simultaneously.
In 2009,Xu andCao et al. [5] studied the approximation error
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of using this kind of network interpolation to approximate an
objective function. These results greatly expand the further
research on the construction method and approximation per-
formance of the single hidden layer neural networks.

As early as 1987, Prof. Kosko first proposed the concept
of fuzzy neural network by combining fuzzy set with arti-
ficial neural network. And then in 1992, Kosko proved that
fuzzy systems can approximate real continuous functions on
compact sets with arbitrary precision [6,7]. In 1992, Wang
and Mendel [8] proved that the Gaussian fuzzy logic system
is a uniform approximator.Meanwhile, a meaningful issue of
“Can fuzzy neural network be used as a tool to approximate
fuzzy function?” was presented in [8]. In 1994, Buckley et
al. first studied the problem of using fuzzy neural networks
to approximate continuous fuzzy functions [9,10], and then
in 1999, aimed at the issue presented in [8], he pointed out
that hybrid fuzzy neural networks can constitute universal
approximators for fuzzy functions in [11], yet regular fuzzy
neural networks do not. In addition, Buckley conjectured that
regular fuzzy neural networks have a universal approxima-
tion for continuously increasing fuzzy functions. Thereafter,
through the systematic research on regular networks, scholars
made some important breakthroughs [12–14]. These results
have important theoretical value for further research on fuzzy
reasoning, fuzzy control and image restoration technology.
Unfortunately, arithmetic operations involved in the above
results are all based on traditional Zadeh’s extension prin-
ciple, thus these operations are not closed in fuzzy number
space. For example, arithmetic operations are not closed even
for simple triangular fuzzy numbers and trapezoidal fuzzy
numbers. This disadvantage hinders the wide application
of fuzzy number theory. Therefore, how to approximately
implement the linear arithmetic operation for general fuzzy
numbers is a key problem worthy of attention.

In 2002, Liu [15] first proposed the concept of n-
symmetric polygonal fuzzy number based on the idea of
segmentation, which overcome the difficulty of Zadeh’s
extension principle-based arithmetic operation. A polygo-
nal fuzzy neural network (PFNN) model was established
initially, and arithmetic operation and fuzzy information pro-
cessing of n-PFNs were given through the representation of
finite ordered real numbers. In 2011, Wang and Li [16] gave
an improved concept of n-PFN in the case of equidistant
segmentation, and the ordered representation of n-PFN was
also proposed. And then the linearization operations of some
general fuzzy numberswere realized by transforming general
fuzzy numbers into the ordered representation of n-PFNs. In
2012, Baez and Moretti et al. proposed another representa-
tion for the polygonal fuzzy numbers and extended it to fuzzy
sets onRn . It was proved that fuzzy set family can constitute
a complete separable space when given a generalized Haus-
dorff metric in [17]. In 2014, Wang and Li [18] discussed the
universal approximation of a class of PFNN by introducing

the concepts of induction operator and K-integral norm. See
[19]. In fact, PFNN is a new network system which is based
on an artificial neural network and ordered representation
of n-PFN. Its main feature is that connection weights and
threshold of the network are both n-PFNs. PFNN mainly
uses linear operations of n-PFNs to adjust the parameters
directly, PFNN has the characteristics of easy implementa-
tion and strong approximation ability.

In 2012, He and Wang [20] designed a conjugate gradient
algorithm for the PFNN based on the extended the arith-
metic operations of PFNs. See [21]. In 2014, Yang andWang
et al. [22] designed a GA-BP hybrid algorithm to optimize
parameters of PFNN by combining the genetic algorithm
and BP algorithm. In 2016, Li and Li [23] constructed a
single input single output PFNN bymeans of equidistant par-
tition of domain and interpolation function. In 2018, Wang
and Suo [24] designed the connection weights and threshold
parameters, and proposed the isolation layered algorithm of
the multiple input multiple output PFNN. See [25]. In 2021,
Wang and Chen [26] further established the neural network
model of the T-S fuzzy system by using the ordered represen-
tation of n-PFNs, and proposed the TS firefly algorithm of
non-homogeneous linear polygonal T-S fuzzy system based
on the flight characteristics of fireflies. See [27–30]. These
neural networks constructed by the ordered representation
of n-PFNs show the superior performance of PFNN from
different aspects.

In 2013, Garg and Sharma [31] first proposed a redun-
dancy allocationproblem formulti-objective reliability based
on particle swarm optimization (PSO), analyzed the perfor-
mance of the complex repairable industrial system by using
the lambda-tau method of the fuzzy confidence interval, and
a hybrid PSO-GA for solving constrained optimization prob-
lemwas put forward. See [32,33]. In 2016,Gaxiola andMelin
et al. [34] used genetic algorithm and PSO to optimize the
type-2 fuzzy inference system, and applied the optimized
type-2 fuzzy inference system to estimate the type -2 fuzzy
weight of bacpropagation neural network. See Refs. [35–
37]. Later, Agrawal and Pal et al. did a lot of excellent work
by using PSO algorithm and generalized type-2 fuzzy set in
[38,39]. Especially, Khater and Ding et al. studied the adap-
tive online learning andmultivariable time series analysis for
a class of recurrent fuzzy neural networks in [40,41], respec-
tively. In 2019, Hsieh and Jeng [42] utilized locally weighted
polynomial regression to propose a single index fuzzy neural
network, and used output an activation function and polyno-
mial function to approximate the constructed network. In
2021, Wang and Xiao [43] constructed an interpolation neu-
ral network using the step path method and proved that the
network has approximation performance. These fuzzy neural
networks and their algorithms not only show their advantages
in different aspects, but also lay a theoretical foundation for
their further wide application.
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The main contributions of this paper include two aspects:
one is to prove the convergence of single hidden layer feed-
forward PFNN based on the extension theorem on a compact
set, Weierstrass approximation theorem and the ordered rep-
resentation of n-PFNs; the other is to propose the gradient
vector of the approximation error function and the optimiza-
tion parameter vector of the constructed network through the
operation rules of n-PFNs, and utilize the gradient descent
algorithm to iteratively train some optimization parameters
of PFNN, so as to design an optimization algorithm. These
results lay a foundation for the next step to combine with
ordinary neural network to show its unique advantage in
pattern recognition and information processing. The main
innovation is that n-PFNs and its ordered representations are
introduced to describe the input and output expressions of a
class of fuzzyneural networks, and anoptimization algorithm
is designed to realize the linearization of this kind of neural
networks. This is mainly because the proposed n-PFNs and
their operations do not depend on the traditional Zadeh’s
extension principle. They not only overcome the complex-
ity of traditional fuzzy number operations, but also realize
linearization operations. This is undoubtedly the key to the
introduction ofn-polygonal fuzzy number.Besides, the back-
propagation (BP) algorithm can be designed based on the
gradient descent method. It is more suitable for the learn-
ing algorithm of a multilayer neural network. Generally, its
input and output is a nonlinear mapping relationship, and its
information processing ability mainly comes from the mul-
tiple combinations of simple nonlinear functions. However,
the proposed n-PFNs can not only approximate the general
fuzzy number with arbitrary accuracy, but also satisfy the lin-
ear operation. Therefore, using the ordered representations
of n-PFNs as the input and output of a single hidden layer
fuzzy neural network is a linear mapping, which makes the
designed algorithm easier to realize the multiple replication
ability and information processing ability of nonlinear func-
tion than the backpropagation algorithm.

Because the general fuzzy number can not simply achieve
the linear operations, it can only rely on Zadeh’s extension
principle to carry out quite complex arithmetic operations,
which has always been a key problem obstructing the devel-
opment and applicationof fuzzynumber theory.However, the
proposed n-PFNs is not only the generalization of triangular
or trapezoidal fuzzy numbers, but also any fuzzy number can
be transformed into an n-PFNs by the number of subdivision
n, so as to avoid Zadeh’s expansion principle, realize linear
operations and maintain the closeness of arithmetic opera-
tions. In addition, polygonal fuzzy numbers can be described
by finite ordered real numbers (ordered representation), it not
only overcomes the complexity of the operation of general
fuzzy numbers, but also maintains some excellent properties
of the trapezoidal fuzzy numbers, and can approach general
fuzzy numbers with arbitrary accuracy. Therefore, they have

obvious advantages in fuzzy information processing. This is
our main motivation to introduce n-PFNs as a basic tool to
adjust parameters of the proposed feedforward PFNN.

The main contents of each section are as follows. In “n-
polygonal fuzzy numbers (n-PFNs)”, we review some basic
concepts of n-PFNs, polygonal fuzzy value function, single
layer feedforward neural network, and so on. Some impor-
tant lemmas and related arithmetic operations are also given
in this section. In “Convergence of the neural network”,
basedon the continuation theoremof continuous function and
Weierstrass approximation theorem, a single hidden layer
feedforward polygonal fuzzy neural network model is estab-
lished, and the convergence of the network is proved. In
“Gradient descent algorithm”, a gradient descent algorithm-
based parameter vector iteration optimization method is
designed to implement the network training. In “Simulation
examples”, two simulation examples are given to verify the
effectiveness and advantages of the proposed approach. In
“Conclusion”, the main works of this paper are summarized.

n-polygonal fuzzy numbers (n-PFNs)

General fuzzy numbers can’t simply carry out linear oper-
ations, but can only carry out more complex arithmetic
operations by Zadeh’s extension principle, which hinders the
development and application of fuzzy number theory. Hence,
it is of positive significance to introduce the concept of polyg-
onal fuzzy number and discuss its extended operations. For
the sake of consistency in the expression of the whole paper,
N indicates natural number set,R is a real number set, F0(R)

indicates the set of all fuzzy numbers onR, where each fuzzy
number A ∈ F0(R) satisfies (1)–(2): (1) there is x0 ∈ R so
that A(x0) = 1; (2) for any α ∈ (0, 1], the cut set Aα is a
bounded closed interval on R.

Basic definition and ordered representation

Definition 1 For a given fuzzy number A ∈ F0(R) and n ∈
N, if the membership function of A has the following form:

A(x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/n
a1i −a1i−1

(
x − a1i−1

) + i−1
n , x ∈ [

a1i−1, a
1
i

)
,

i = 1, 2, . . . , n,

1, x ∈ [
a1n, a

2
n

]
,

− 1/n
a2i−1−a2i

(
x − a2i−1

) + i−1
n , x ∈ (

a2i , a
2
i−1

]
,

i = n, n − 1, . . . , 1,
0, x ∈ (−∞, a10

)
or

x ∈ (
a20 ,+∞)

,

(1)

where a10 ≤ a11 ≤ · · · ≤ a1n ≤ a2n ≤ · · · ≤
a21 ≤ a20 , then A is called an n-polygonal fuzzy num-
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Fig. 1 The membership function image of an n-PFN A

ber on R, and A is also abbreviated as n-PFN, the 2n +
2 ordered real numbers

{
a10, a

1
1, . . . , a

1
n, a

2
n , . . . , a

2
1 , a

2
0

}
is

called an ordered representation of A, it is expressed as
A=(

a10, a
1
1, . . . , a

1
n, a

2
n , . . . , a

2
1 , a

2
0

)
. For a geometric expla-

nation of the membership function A(x), see the following
Fig. 1.

According to Eq. (1), it can be known that themembership
function of A is continuous, and its image consists of straight
line segments. As shown in Fig. 1. It is obvious that the
support set and the kernel of A are SuppA = (a10, a

2
0) and

KerA = [a1n, a2n ], respectively.
Since the membership function A(x) can be described

by 2n + 2 intersections completely, the n-PFN A can be
simply represented by the group of intersections. That is(
a10, 0

)
,
(
a11,

1
n

)
, . . . ,

(
a1n,

n
n

)
,
(
a2n,

n
n

)
, . . . ,

(
a21,

1
n

)
,
(
a20, 0

)
.

Furthermore, since ordinates of these intersections are
determined, the n-PFN can be simply represented by the
ordered array of abscissas. Thereby, each n-PFN can be
uniquely expressed as an ordered representation of 2n + 2
real numbers. On the contrary, the membership function of
an n-PFN can also be obtained directly from the ordered
representation of the n-PFN in accordance with (1). See the
example below.

Example 1 Let an ordered representation A =
(

− 3,−2, 0,

3
2 ,

5
2 ,

10
3 , 6, 7

)
, please calculate its corresponding member-

ship function of n-polygonal fuzzy number A (Fig. 2).

In fact, since there are eight real numbers in A, let 2n+2 =
8 implies n = 3, their divided points λ1 = 1

3 , λ2 = 2
3 . It is

not difficult to obtain the inflection point coordinates of 3-
polygonal fuzzy number A as

(−3, 0) ,

(

−2,
1

3

)

,

(

0,
2

3

)

,

(
3

2
, 1

)

,

(
5

2
, 1

)

,

(
10

3
,
2

3

)

,

(

6,
1

3

)

, (7, 0) .

Fig. 2 The membership function image of 3-PFN Z3(A)

Connecting the adjacent inflection points in order with
straight line segments, we can get that the membership func-
tion and image of A be expressed as

A(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
3 + 1, −3 ≤ x < −2,
x
6 + 2

3 , −2 ≤ x < 0,
2x
9 + 2

3 , 0 ≤ x < 3
2 ,

1, 3
2 ≤ x ≤ 5

2 ,

− 2x
5 + 2, 5

2 < x ≤ 10
3 ,

− x
8 + 13

12 ,
10
3 < x ≤ 6,

− x
3 + 7

3 , 6 < x ≤ 7,

0, Otherwise.

For ordered representations of n-PFNs, theremay be some
special cases. For example, if there are i ∈ {1, 2, . . . , n} and
q ∈ {1, 2}, and hold aqi−1 = aqi for two adjacent inter-
sections, then the corresponding straight line segment of
membership function image is vertical. For a more special
case of a10 = a11 = · · · = a1n = a2n = · · · = a21 = a20 , A
degenerates to a single point fuzzy number, and its member-
ship function image is a vertical line segment. In general, we
assume that the inequality a10 ≤ a11 ≤ · · · ≤ a1n ≤ a2n ≤
· · · ≤ a21 ≤ a20 holds strictly, that is a10 < a11 < · · · <

a1n < a2n < · · · < a21 < a20 . It should be pointed out that
this assumption will not affect the subsequent discussion and
conclusion.

Let Ftn
0 (R) be the set of n-PFNs on R. Then it is obvious

that Ftn
0 (R) ⊂ F0(R). In particular, when n = 1, the 1-PFN

degenerates into a trapezoid fuzzy number or triangle fuzzy
number. For an n-PFN (n ≥ 2), if its membership function
image is regarded as the superposition of n small trapezoids
or triangle, then the n-PFN can be seen as a generalization
of trapezoid fuzzy numbers or triangle fuzzy number.

An important significance of introducing the concept of
n-PFNs is that a general fuzzy number can be approximately
represented by an n-PFN. In fact, for a general fuzzy number,
an n-PFN can be determined according to the value of n. The
operation can be described by the following Fig. 3, where
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Fig. 3 A general fuzzy number and its approximation of n-PFN

Zn(·) denotes the membership function of the determined n-
PFN. It is not difficult to see from Fig. 3 that the determined
n-PFNmainly depends on abscissas of 2n+2 points on A(x).

It is obvious that the larger the number n is, the more
trapezoids or triangle will be obtained, and then the stronger
its ability to approximate the general fuzzy number will be.
It is of course, with the increase of n, the complexity of the
n-PFN increases.

Arithmetic operations andmetric

Definition 2 [15,16] For a given n ∈ N, if A, B ∈
Ftn
0 (R), where A = (

a10, a
1
1, . . . , a

1
n, a

2
n , . . . , a

2
1 , a

2
0

)
, B =(

b10, b
1
1, . . . , b

1
n, b

2
n, . . . , b

2
1, b

2
0

)
, then the corresponding arith-

metic operations in Ftn
0 (R) are defined as follows:

1) A+B = (
a10+b10, a

1
1+b11, . . . , a

1
n+b1n, a

2
n+b2n, . . . , a

2
1+

b21, a
2
0 + b20

);
2) A−B = (

a10−b20, a
1
1−b21, . . . , a

1
n−b2n, a

2
n−b1n, . . . , a

2
1−

b11, a
2
0 − b10

);
3) A · B = (

c10, c
1
1, . . . , c

1
n, c

2
n, . . . , c

2
1, c

2
0

)
, where c1i =

a1i b
1
i ∧ a1i b

2
i ∧ a2i b

1
i ∧ a2i b

2
i , c

2
i = a1i b

1
i ∨ a1i b

2
i ∨ a2i b

1
i ∨

a2i b
2
i , i = 0, 1, . . . , n;

4) k·A =
{(

ka10, ka
1
1, . . . , ka

1
n, ka

2
n , . . . , ka

2
1 , ka

2
0

)
, k>0,

(
ka20, ka

2
1 , . . . , ka

2
n , ka

1
n, . . . , ka

1
1, ka

1
0

)
, k<0.

From Definition 2, it can be obtained that compared with
general fuzzy number space F0(R), the arithmetic operations
in n-PFN space Ftn

0 (R) are simple.
Let σ : R → R be a continuously increasing activation

function, n ∈ N, we extend the σ as σ : Ftn
0 (R) → Ftn

0 (R).
That is to say, if A = (

a10, a
1
1, . . . , a

1
n, a

2
n , . . . , a

2
1 , a

2
0

) ∈
Ftn
0 (R), we can define σ(A) = (

σ(a10), σ (a11), . . . , σ (a1n),
σ (a2n), . . . , σ (a21), σ (a20)

) ∈ Ftn
0 (R).

If n ∈ N, the mapping Zn : F0(R) → Ftn
0 (R), then

Zn is called an n−polygonal operator. In other words, for
any A ∈ F0(R), there is an n-PFN B ∈ Ftn

0 (R) such that
Zn(A) = B. In general, it is easy to obtain the n-PFN Zn(A)

corresponding to A ∈ F0(R). See Example 2 below.

Definition 3 [45] Let two given fuzzy numbers A, B ∈
F0(R) and n ∈ N, and their ordered representations
are Zn(A) = (

a10, a
1
1, . . . , a

1
n, a

2
n , . . . , a

2
1 , a

2
0

)
, Zn(B) =(

b10, b
1
1, . . . , b

1
n, b

2
n, . . . , b

2
1, b

2
0

)
, define the addition, sub-

traction and multiplication as follows:

1) Zn(A)+ Zn(B) = (
a10 + b10, a

1
1 + b11, . . . , a

1
n + b1n, a

2
n +

b2n, . . . , a
2
1 + b21, a

2
0 + b20

);
2) Zn(A)− Zn(B) = (

a10 − b20, a
1
1 − b21, . . . , a

1
n − b2n, a

2
n −

b1n, . . . , a
2
1 − b11, a

2
0 − b10

);
3) Zn(A)·Zn(B) = (

c10, c
1
1, . . . , c

1
n, c

2
n, . . . , c

2
1, c

2
0

)
,where

c1i = a1i b
1
i ∧a1i b

2
i ∧a2i b

1
i ∧a2i b

2
i and c

2
i = a1i b

1
i ∨a1i b

2
i ∨

a2i b
1
i ∨ a2i b

2
i , i = 0, 1, 2, . . . , n;

4) k · Zn(A) = (
ka10, ka

1
1, . . . , ka

1
n, ka

2
n , . . . , ka

2
1 , ka

2
0

)
,

where k > 0.

Proposition 1 [16] Let A, B ∈ F0(R), for a given n ∈ N,
then the following properties hold:

1) Zn(A ± B) = Zn(A) ± Zn(B), Zn(A · B) = Zn(A) ·
Zn(B);

2) Zn (Zn(A)) = Zn(A), Zn(k · A) = k · Zn(A), where k
can also be regarded as a set {k}.

Example 2 Let the membership functions of the fuzzy num-
bers A and B be expressed as

A(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
2x + 2 − 1, − 1

2 ≤ x < 1,
1, 1 ≤ x ≤ 2,√
2 − x

2 , 2 < x ≤ 4,

0, Otherwise;

B(x) =

⎧
⎪⎪⎨

⎪⎪⎩

3x
x+1 , 0 ≤ x < 1

2 ,

1, 1
2 ≤ x ≤ 1,

2
x − 1, 1 < x ≤ 2,
0, Otherwise.

Obviously, SuppA = [− 1
2 , 4

]
, KerA = [1, 2]; SuppB =

[0, 2], KerA = [ 1
2 , 1

]
.

For example, for the fuzzy number A, if n = 3, we choose
the divided points λ1 = 1/3 and λ2 = 2/3. When x ∈
[−1/2, 1), let A(x) = √

2x + 2 − 1 = 1
3 ,

2
3 , then x1 = − 1

9
and x2 = 7

18 can be solved, respectively; when x ∈ (2, 4],
let A(x) =

√
2 − x

2 = 1
3 ,

2
3 , then x3 = 34

9 and x4 = 28
9 can

be solved, respectively.
Hence, the ordered representation of 3-polygonal fuzzy

number Z3(A) can be obtained as

Z3(A) =
(

−1

2
,−1

9
,
7

18
, 1, 2,

28

9
,
34

9
, 4

)

.
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Fig. 4 Images of A(x) and Z3(A)(x) when n = 3

Fig. 5 Images of B(x) and Z3(B)(x) when n = 3

Similarly, if n = 4, we choose the divided points λ1 = 1
4 ,

λ2 = 2
4 and λ3 = 3

4 , and let A(x) = √
2x + 2− 1 = 1

4 ,
2
4 ,

3
4

and A(x) =
√
2 − x

2 = 1
4 ,

2
4 ,

3
4 . It is not difficult to obtain the

ordered representation of 4-polygonal fuzzy number Z4(A)

as

Z4(A) =
(

−1

2
,− 7

32
,
1

8
,
17

32
, 1, 2,

23

8
,
7

2
,
31

8
, 4

)

.

Using the same method, we can also easily solve other
ordered representations, such as

Z2(A) =
(

−1

2
,
1

8
, 1, 2,

7

2
, 5

)

,

Z2(B) =
(

0,
1

5
,
1

2
, 1,

4

3
, 2

)

;

Z3(B) =
(

0,
1

8
,
2

7
,
1

2
, 1,

6

5
,
3

2
, 2

)

,

Z4(B) =
(

0,
1

11
,
1

5
,
1

3
,
1

2
, 1,

8

7
,
4

3
,
8

5
, 2

)

.

According to the membership functions A(x) or B(x) and
their ordered representations,we can easily draw their images
as follows (Figs. 4, 5, 6, 7):

Fig. 6 Images of A(x) and Z4(A)(x) when n = 4

Fig. 7 Images of B(x) and Z4(B)(x) when n = 4

Clearly, it is not difficult to calculate the analytic expres-
sions of membership function Zn(A)(x) and Zn(B)(x). For
example, when n = 3, we have

Z3(A)(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6x
7 + 3

7 , − 1
2 ≤ x < − 1

9 ,

2x
3 + 11

27 , − 1
9 ≤ x < 7

18 ,

6x
11 + 5

11 ,
7
18 ≤ x < 1,

1, 1 ≤ x ≤ 2,

− 3x
10 + 8

5 , 2 < x ≤ 28
9 ,

− x
2 + 17

9 , 28
9 < x ≤ 34

9 ,

− 3x
2 + 6, 34

9 < x ≤ 4,

0, Otherwise;

Z3(B)(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8x
3 , 0 ≤ x < 1

8 ,

56x
27 + 2

27 ,
1
8 ≤ x < 2

7 ,

14x
9 + 2

9 ,
2
7 ≤ x < 1

2 ,

1, 1
2 ≤ x ≤ 1,

− 5x
3 + 8

3 , 1 < x ≤ 6
5 ,

− 10x
3 + 2, 6

5 < x ≤ 3
2 ,

− 2x
3 + 4

3 ,
3
2 < x ≤ 2,

0, Otherwise.
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In addition, utilizing Definition 3 and Proposition 1 we can
immediately obtain that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z3(A + B) = Z3(A) + Z3(B)

=
(

−1

2
,
1

72
,
85

126
,
3

2
, 3,

194

45
,
95

18
, 6

)

,

Z3(A − B) = Z3(A) − Z3(B)

=
(

−5

2
,−29

18
,−73

90
, 0,

3

2
,
178

63
,
263

72
, 5

)

,

Z3(A · B) = Z3(A) · Z3(B)

=
(

−1,−1

6
,
1

9
,
1

2
, 2,

56

15
,
17

3
, 8

)

.

Similarly, when n = 4 we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Z4(A + B) =
(

− 1

2
,− 45

352
,
13

40
,
83

96
,
3

2
, 3,

225

56
,
29

6
,
219

40
, 6

)

,

Z4(A − B) =
(

− 5

2
,− 291

160
,− 29

24
,− 137

224
, 0,

3

2
,
51

24
,
33

10
,
333

88
, 4

)

,

Z4(A · B) =
(

−1,− 7

20
,
1

40
,
17

96
,
1

2
, 2,

23

7
,
14

3
,
31

5
, 8

)

.

In other words, general fuzzy number operations A ± B
and A · B can be approximately expressed as the ordered
representations Zn(A ± B) and Zn(A · B), respectively. For
example, when n = 3, we have

A + B ≈
(

−1

2
,
1

72
,
85

126
,
3

2
, 3,

194

45
,
95

18
, 6

)

,

A · B ≈
(

−1,−1

6
,
1

9
,
1

2
, 2,

56

15
,
17

3
, 8

)

;

when n = 4,

A · B ≈
(

−1,− 7

20
,
1

40
,
17

96
,
1

2
, 2,

23

7
,
14

3
,
31

5
, 8

)

.

Remark 1 With the increase of n value, the approximation
ability of ordered representation becomes stronger, but its
complexity also increases. Therefore, it is very important to
choose the appropriate n according to the actual needs. In
addition, it is not difficult to see from the above operations
that the proposed arithmetic operation does not rely on the
traditional Zadeh’s extension principle, but only relies on the
ordered representation given in Definition 3. In fact, these
operations not only overcome the complexity of the tradi-
tional fuzzy number expansion operation, but also realize
the linearization operation. This is undoubtedly the key to
the introduction of n-polygonal fuzzy number. Especially, it
has important applications in the approximation theory and
optimization algorithm of fuzzy neural network.

In addition, D(A, B) = supα∈(0,1] dH (Aα, Bα) is defined
as a distance between two fuzzy numbers in [45], where

A, B ∈ F0(R), and dH is a Hausdorff distance. A conclusion
is also given that (F0(R), D) constitutes a complete metric
space. According the definition of general fuzzy number cut
set, for any α ∈ (0, 1], let Aα = [

a1α, a2α
]
, Bα = [

b1α, b2α
]
,

then the distance of fuzzy numbers can be further described
as

D(A, B) = sup
α∈(0,1]

(∣
∣
∣a1α − b1α

∣
∣
∣ ∨

∣
∣
∣a2α − b2α

∣
∣
∣

)
. (2)

Lemma 1 [15] For a given n ∈ N, if A, B ∈ Ftn
0 (R), where

A = (
a10, a

1
1, . . . , a

1
n, a

2
n , . . . , a

2
1 , a

2
0

)
, B = (

b10, b
1
1, . . . ,

b1n, b
2
n, . . . , b

2
1, b

2
0

)
, then the distance of n-polygonal fuzzy

numbers can be reduced to

D(A, B) = sup
0≤i≤n

(∣
∣
∣a1i − b1i

∣
∣
∣ ∨

∣
∣
∣a2i − b2i

∣
∣
∣

)
,

and A ⊂ B if and only if b1i ≤ a1i ≤ a2i ≤ b2i , i =
0, 1, . . . , n.

According to Refs. [15,16], it is not difficult to obtain
Zn(A)(x) → A(x) (n → ∞) if and only if
lim
n→∞D (Zn(A), A) = 0.

Remark 2 It is obvious that the arithmetic operations defined
in space Ftn

0 (R) do not depend on Zadeh’s extension prin-
ciple. More importantly, these arithmetic operations are
closed and satisfy properties of linearization operations. This
not only overcomes the shortcoming of Zadeh’s extension
principle-based arithmetic operations, but also makes the
related operations easy and intuitive. This is the key point
of introducing the concept of n-PFNs.

Convergence of the neural network

Modeling of single hidden layer neural network

In this work, a single hidden layer feedforward neural net-
work by using an ordered representation and arithmetic
operation of n-PFNswill be established. To do this, the topol-
ogy of the single hidden layer feedforward neural network
model is given firstly in the following figure (Fig. 8).

In the network, the input and output neurons are linear,
and activation function of hidden layer neurons is nonlinear.
In Fig. 8, the X denotes input signal, O denotes output signal,
p denotes the total number of neurons in the hidden layer,
Uj and Vj are connection weights, and � j are thresholds
of activation function σ(·) of the hidden layer neurons, j =
1, 2, . . . , p. Then the input output expression of the single
hidden layer feedforward neural network has the following
form,
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Fig. 8 Topological structure diagram of single hidden layer feedfor-
ward neural network

O(X) =
p∑

j=1

Vj · σ
(
Uj · X + � j

)
, (3)

where σ(·) is the activation function of hidden layer neurons.
Remark 3 For a given continuous function f on compact set
K ⊂ R, define the norm of f as ‖ f ‖ = supx∈K | f (x)|. Let
En( f ) = inf P∈�n‖ f − P‖, where �n denotes the set of one
variable polynomials of degree n or less, then En( f ) is called
as the best polynomial approximation of f . For the network
(3), the following conclusion holds.

Lemma 2 [3] Let f ∈ C(K ), where C(K ) is the set of con-
tinuous functions on compact set K . If function σ(·) has
n + 1-order continuous derivative in R, and there is a real
number x0 ∈ R satisfies σ (k)(x0) = 0, k = 0, 1, . . . , n, then
there must be a single hidden layer feedforward neural net-
work O(x) = ∑p

j=0 Vj · σ
(
Uj · x + � j

)
holds ‖O− f ‖ ≤

2En ( f ), where the number of neurons in hidden layer of the
network is n + 1.

Lemma 3 (Weierstrass approximation theorem) Let f ∈
C[a, b]. Then, for any ε > 0, there is a Bernstein poly-
nomial of degree n holds |Bn (x) − f (x)| < ε, for arbitrary
x ∈ [a, b], where the Bernstein polynomial has the form as
Bn (x) = ∑n

k=0 f ( kn )Ck
n x

k(1 − x)n−k .

Definition 4 A mapping F : D → Ftn
0 (R) is called an n-

polygonal fuzzy valued function, if F(x) = ( f 10 (x), f 11 (x),
. . . , f 1n (x), f 2n (x), . . . , f 21 (x), f 20 (x)) ∈ Ftn

0 (R), for arbi-
trary x ∈ D ⊂ R, where f qi : D → R are continuous
functions, i = 0, 1, . . . , n; q = 1, 2. A mapping F :
Ftn
0 (R) → Ftn

0 (R) is called a generalized n-polygonal fuzzy
valued function, if

F(X) =
(
f 10 (X), f 11 (X), . . . , f 1n (X), f 2n (X),

. . . , f 21 (X), f 20 (X)
)

∈ Ftn
0 (R),

for any X ∈ Ftn
0 (R).

Hence, according to Definition 4 an n-PFN can be obtained
from a real number or an n-PFN by special mapping.

The main objective of this section is to establish an
n-polygonal fuzzy numbers based neural network to approx-
imate an n-polygonal fuzzy valued function or generalized
n-polygonal fuzzy valued function. After training, the net-
work output can be used instead of an unknown function
output, and then the reconstruction problem of unknown
functions can be solved.

Convergence of polygonal fuzzy neural network
(PFNN)

In this subsection, the PFNN based single hidden layer
feedforward neural network model will be established to
approximate a continuous n-polygonal fuzzy valued func-
tion or generalized n-polygonal fuzzy valued function. In the
network, connection weightsUj , Vj and threshold� j are all
n-PFNs, and the activation function of the hidden layer neu-
rons σ(·) is continuous and monotonically increasing. Thus
this class of networks are called as polygonal fuzzy neural
networks. According to the operation characteristics of n-
PFNs, the PFNN not only has stronger learning ability and
fuzzy information processing ability but also are easy to con-
struct and implement. The topology structure of the PFNN
is consistent with Fig. 8.

It should be pointed out that the input of PFNN can be real
number or n-PFN. Without losing generality, we only con-
sider the case of network input is real number in the following
discussion.When the network input is n-PFN, corresponding
conclusion can be deduced similarly.

For the convenience of discussion, we assume that the
ordered representation of connection weights and threshold
are as follows,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Uj = (
u10( j), u

1
1( j), . . . , u

1
n( j), u

2
n( j), . . . , u

2
1( j), u

2
0( j)

)
,

Vj = (
v10( j), v

1
1( j), . . . , v

1
n( j), v

2
n( j), . . . , v

2
1( j), v

2
0( j)

)
,

� j =
(
θ10 ( j), θ11 ( j), . . . , θ1n ( j), θ2n ( j), . . . , θ21 ( j), θ20 ( j)

)
,

j = 1, 2, . . . , p.

(4)

Related operations involved in Eq. 3 are subject to Defini-
tion 2. In fact, the structure of PFNN is an operation system
of addition and multiplication of n-PFNs, and fuzzy infor-
mation is processed by ordered real numbers.

Definition 5 Let Q ⊂ R, F : Q → Ftn
0 (R) be a continuous

n-polygonal fuzzy valued function, and K ⊂ Q is a compact
set. For arbitrary ε > 0, there is p ∈ N and Uj , Vj ,� j ∈
Ftn
0 (R), j = 1, 2, . . . , p, such that D (F(x), O(x)) < ε, for

any x ∈ K , where O(x) is the output of a PFNN of the form
Eq. (3), then O(x) is said to have approximation to function
F(x).
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Lemma 4 [15] Let F(x) be a continuous n-polygonal fuzzy
valued function on Q, and Q ⊂ R. Then F(x) can be
expressed in the form of Eq. (3) if and only if

F(x) = (
F1
0 (x), F1

1 (x), . . . , F1
n (x), F2

n (x), . . . , F2
1 (x), F2

0 (x)
)
,

for any x ∈ Q,

where Fq
i (x) = ∑p

j=1 v
q
i ( j) · σ

(
uqi ( j) · x + θ

q
i ( j)

)
, uqi ( j),

v
q
i ( j) and θ

q
i ( j) are adjustable parameters, i = 0, 1, . . . , n;

q = 1, 2.

If the adjustment parameters uqi ( j), v
q
i ( j) and θ

q
i ( j) sat-

isfy the conditions (1)-(4) of Theorem 1 given in [15], by
letting hqi ( j)(x) = v

q
i ( j)·σ (

uqi ( j) · x + θ
q
i ( j)

)
, then Fq

i (x)
can be simplified as Fq

i (x) = ∑p
j=1 h

q
i ( j)(x), and h

q
i ( j)(x)

satisfy h1i ( j)(x) ≤ h1i+1( j)(x) ≤ h2i+1( j)(x) ≤ h2i ( j)(x),
i = 0, 1, . . . , n − 1; j = 1, 2, . . . , p.

Theorem 1 Let f (x) be a continuous function on compact set
K (K ⊂ R). Then there must be a closed interval [a, b] ⊂ R

and a continuous function f̂ (x) on [a, b] hold K ⊂ [a, b]
and f (x) = f̂ (x), for arbitrary x ∈ K.

Proof Because K is a compact set in R, then K is bounded.
Thus there must be a closed interval [a, b] holds K ⊂ [a, b].

On the other hand, K is a bounded closed set in R, then
R− K is an open set. According to construction theorem of
open set, there must be a family of disjoint open intervals
{(an, bn)} (n = 1, 2, ...) satisfy R − K = ⋃+∞

n=1 (an, bn).
According to extension theorem of continuous function

on closed set, a continuous function f (x) on compact set K
can be extended to a continuous function f̂ (x) on R. And
the function f̂ (x) can be constructed as the following form,

f̂ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

f (x), x ∈ K ,

f (an) + f (bn)− f (an)
(bn−an)

· (x − an), x ∈ (an, bn),
f (an), x ∈ (−∞, an),
f (bn), x ∈ (bn,+∞).

It is obvious that the constructed function f̂ (x) is contin-
uous at endpoints an and bn of each interval. That is, the
extended function f̂ (x) is continuous on R, and satisfies
f̂ (x) = f (x), for arbitrary x ∈ K . ��
Theorem 2 Let F(x) be a continuous n-polygonal fuzzy val-
ued function on compact set K , K ⊂ R. If monotonically
increasing function σ(x) has n+1-order continuous deriva-
tive on R, and there is a point x0 ∈ R satisfies σ (k)(x0) = 0,
k = 0, 1, . . . , n. Then, for any ε > 0, there is a sin-
gle hidden layer feedforward PFNN of the form (3), such
that D(F(x), O(x)) < ε, for any x ∈ K, where O(x) =(
o10(x), o

1
1(x), . . . , o

1
n(x), o

2
n(x), . . . , o

2
1(x), o

2
0(x)

)
, oqi (x) =

∑p
j=1 v

q
i ( j) · σ

(
uqi ( j) · x + θ

q
i ( j)

)
, where i = 0, 1, . . . , n;

q = 1, 2.

Proof According to the known conditions andDefinition 4, it
can be obtained that the continuous n-polygonal fuzzy value
function F(x) can be expressed as

F(x) =
(
f 10 (x), f 11 (x), . . . , f 1n (x), f 2n (x),

. . . , f 21 (x), f 20 (x)
)

∈ Ftn
0 (R),

for any x ∈ K ,

where each f qi (x) are continuous functions on K , i =
0, 1, . . . , n; q = 1, 2, and satisfies

f 1i (x) ≤ f 1i+1(x) ≤ f 2i+1(x) ≤ f 2i (x),

i = 0, 1, 2, · · · , n − 1.

According to Theorem 1, for each continuous function
f qi (x) on K ⊂ R, there must be a closed interval

[
aqi , bqi

]

and a continuous function f̂ qi (x) on
[
aqi , bqi

]
, which satisfy

K ⊂ [
aqi , bqi

]
and f̂ qi (x) = f qi (x), for any x ∈ K , i =

0, 1, . . . , n; q = 1, 2.
As K ⊂ [

aqi , bqi
]
, i = 0, 1, . . . , n; q = 1, 2, then

K ⊂ ⋂n
i=0

[
aqi , bqi

]
, and

⋂n
i=0

[
aqi , bqi

]
is a nonempty closed

interval. Let [a, b] = ⋂n
i=0

[
aqi , bqi

]
, clearly, K ⊂ [a, b].

Since each f̂ qi (x) is continuous on the compact set [a, b],
and the activation function σ(·) has n + 1-order continuous
derivative. Form Lemma 2, there must be a single hidden
layer feedforward neural network oqi as

oqi (x) =
∑p

j=1
v
q
i ( j) · σ

(
uqi ( j) · x + θ

q
i ( j)

)
,

for any x ∈ [a, b],

such that

∥
∥
∥ f̂ qi − oqi

∥
∥
∥ ≤ 2En( f̂

q
i ), i = 0, 1, . . . , n; q = 1, 2. (5)

where v
q
i ( j) and uqi ( j) are connection weights and θ

q
i ( j) is

threshold.
By Lemma 3, each continuous function f̂ qi (x) on [a, b],

for arbitrary ε > 0, there must be a Bernstein polynomial
Bn( f̂

q
i , x) satisfies

∣
∣
∣ f̂

q
i (x) − Bn( f̂

q
i , x)

∣
∣
∣ =

∣
∣
∣
∣
∣
f̂ qi (x) −

n∑

k=0

f̂ qi
( k
n

)
Ck
n x

k(1 − x)n−k

∣
∣
∣
∣
∣

< ε, for all x ∈ [a, b].

According to Formula (5), the best polynomial approx-
imation of each expansion function f̂ qi (x) on [a, b] must
satisfy
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En( f̂
q
i ) = inf P∈�n

∥
∥
∥ f̂ qi − P

∥
∥
∥ ≤

∥
∥
∥ f̂ qi − Bn( f̂

q
i )

∥
∥
∥

= sup
x∈[a,b]

∣
∣
∣ f̂

q
i (x) − Bn( f̂

q
i , x)

∣
∣
∣ < ε.

Therefore, for all x ∈ [a, b], it can be obtained that

∥
∥
∥ f̂ qi − oqi

∥
∥
∥ < 2ε, i = 0, 1, . . . , n; q = 1, 2.

And then according to the compact set K ⊂ [a, b], for any
x ∈ K , there must be

∣
∣ f qi (x) − oqi (x)

∣
∣ =

∣
∣
∣ f̂

q
i (x) − oqi (x)

∣
∣
∣ ≤

∣
∣
∣ f̂

q
i − oqi

∣
∣
∣ < 2ε.

(6)

That is to say,

f qi (x) − 2ε < oqi (x) < f qi (x) + 2ε,

i = 0, 1, . . . , n; q = 1, 2.

In particular, when q = 1, 2, it is obvious that

f 1i (x) − 2ε < o1i (x) < f 1i (x) + 2ε,

f 1i+1(x) − 2ε < o1i+1(x) < f 1i+1(x) + 2ε;
f 2i (x) − 2ε < o2i (x) < f 2i (x) + 2ε,

f 2i+1(x) − 2ε < o2i+1(x) < f 2i+1(x) + 2ε.

According to the above line drawing inequality, is can be
easily got that

o1i+1(x) − o1i (x) > f 1i+1(x) − f 1i (x) − 4ε,

o2i+1(x) − o2i (x) < f 2i+1(x) − f 2i (x) + 4ε.

Form the arbitrariness of ε, for any x ∈ K , we immediately
obtain that

o1i+1(x) − o1i (x) ≥ f 1i+1(x) − f 1i (x) ≥ 0,

o2i+1(x) − o2i (x) ≤ f 2i+1(x) − f 2i (x) ≤ 0.

Therefore, we can also obtained that

o1i (x) ≤ o1i+1(x) ≤ o2i+1(x) ≤ o2i (x),

i = 0, 1, 2, . . . , n − 1.

Let

O(x) = (
o10(x), o

1
1(x), . . . , o

1
n(x), o

2
n(x), . . . , o

2
1(x), o

2
0(x)

)
,

then O(x) is an ordered representation of n-polygonal fuzzy
value function. In other words, there is a single hidden layer
feedforward PFNN in the form of Eq. (3), where

oqi (x) =
∑p

j=1
v
q
i ( j)·σ (

uqi ( j) · x + θ
q
i ( j)

)
,

i = 0, 1, . . . , n; q = 1, 2.

By Ref. [15], the parameters uqi ( j), v
q
i ( j) and θ

q
i ( j) of

each function oqi (x) (i = 0, 1, . . . , n; q = 1, 2) can be
adjusted appropriately to satisfy the conditions (1)-(4) of
Theorem1 in [15]. If necessary, enough supplementary terms
can be added [15,17,23].

According to Lemma 1 and Formula (6), it is not difficult
to obtain that

D (F(x), O(x)) = sup
0≤i≤n

(∣
∣ f 1i (x) − o1i (x)

∣
∣ ∨ ∣

∣ f 2i (x) − o2i (x)
∣
∣
)

< sup
0≤i≤n

(2ε ∨ 2ε) = 2ε.

Therefore, a single hidden layer feedforward fuzzy neural
network (3) can approach the continuous n-polygonal fuzzy
value function F(x).

So far, with the help of Weierstrass approximation theo-
rem, the convergence of a single hidden layer feedforward
PFNNis provedunder the conditions of an activation function
satisfies certain conditions, which the network can approx-
imate to a continuous n-polygonal fuzzy valued function
is explained. This provides a theoretical basis for further
application of the network to mathematical modeling of con-
tinuous fuzzy systems. ��
Remark 4 In this subsection, an approach for a PFNN to
approximate a continuous n-polygonal fuzzy valued func-
tion is presented. For a continuous generalized n-polygonal
fuzzy valued function, a PFNN can be constructed in the
same way. The related operations involved are completely
consistent, and only need to expand the network input from
real number to n-PFN. This is also the main purpose of this
paper to establish a single hidden layer neural network based
on the ordered representation of n-polygonal fuzzy numbers.

Gradient descent algorithm

Although the structure of feedforward fuzzy neural network
is simple, it shows many advantages in dealing with uncer-
tain problems. It can not only approximate any continuous
function and square integrable function with arbitrary accu-
racy, but also accurately realize any finite training sample
set, it is a kind of static nonlinear mapping. However, the
feedforward network also has some problems to be solved
urgently, such as the optimization of network structure, the
design of learning algorithm, the improvement of conver-
gence speed and error accuracy. One of the main reasons for
these defects is that the adjustment parameters (fuzzy num-
bers) of feedforward fuzzy neural network does not meet the
linear operation, resulting in that most feedforward networks

123



Complex & Intelligent Systems (2022) 8:2383–2404 2393

are learning networks, Due to the lack of certain dynamic
behavior, its classification ability and pattern recognition
ability are generally weak. In addition, BP algorithm is a
local search optimization method. Its weight is gradually
adjusted along the direction of local improvement, which
usually makes the algorithm fall into local extremum, and
the weight converges to a local minimum, and even leads to
network training failure, such as many training times, low
learning efficiency, slow convergence speed, etc. Therefore,
it is an urgent problem to find a basic tool that can better
describe fuzzy information and meet linear operations to
expand the feedforward fuzzy neural network and backprop-
agation (BP) network.

At present, no one uses the ordered representation of n-
PFNs as a tool to study the approximationofPFNN.Although
n-PFN is a special case of general fuzzy number, it can
describe fuzzy informationwith the help of the ordered repre-
sentation of finite real numbers. Its biggest advantage is that
its arithmetic operations avoid the traditional Zadeh’s exten-
sion principle and approximately realizes the linearization
operations. This is the main motivation for us to introduce
the n-PFNs and its ordered representation. Especially, it is
of great theoretical significance to utilize the n-PFNs to deal
with the input and output of fuzzy information.

However, it is more important to realize the nonlinear
operation between the general fuzzy numbers involved in
the network. The solution of this problem is not only of great
significance to realize the optimization algorithm of the neu-
ral network, but also provides a theoretical basis for the soft
computing technology and application of the network. In fact,
the polygonal fuzzy neural network is a new network which
depends on the combination of n-polygonal fuzzy number
and artificial neural network. It does not need to implement
algorithm through general fuzzy number cut set, but design
algorithm using the ordered representation of n-PFNs based
linear operations, which can greatly simplify the process of
designing and optimizing learning algorithm.

In this subsection, the feedforward PFNNwith single hid-
den layer is studied. In the network, input variable is a real
number x ∈ R or an n-PFN X = (x10 , x

1
1 , . . . , x

1
n , x

2
n , . . . ,

x21 , x
2
0 ) ∈ Ftn

0 (R). Input output expression of the single hid-
den layer feedforward PFNN is as follows:

O(x) =
p∑

j=1

Vj · σ
(
Uj · x + � j

)
, (7)

or

O(X) =
p∑

j=1

Vj · σ
(
Uj · X + � j

)
, (8)

where the ordered representation of the connection weights
and threshold are exactly the same as Eq. (4). The activation
function σ of hidden layer neurons is monotonically increas-
ing and differentiable everywhere.

To calculate the derivative of error function conve-
niently, a metric DE is introduced to describe the dis-
tance of n-PFNs. That is, for any A, B ∈ Ftn

0 (R), and
A = (

a10, a
1
1, . . . , a

1
n, a

2
n , . . . , a

2
1 , a

2
0

)
and B = (

b10, b
1
1, . . . ,

b1n, b
2
n, . . . , b

2
1, b

2
0

)
, let

DE (A, B) =
√
√
√
√

n∑

i=0

((
a1i − b1i

)2 + (
a2i − b2i

)2
)
.

Obviously, it is not difficult to verify that DE is a metric
(distance). For the sake of unity in discussion, it is assumed
that inputs and outputs of the neural network are all n-PFNs,
that is the input space and the output space are all Ftn

0 (R).
It needs to be pointed out that the following discussion is
valid when the input space is R. In fact, for a real number
x ∈ R, if define X = (x, x, . . . , x, x, . . . , x, x) ∈ Ftn

0 (R),
then x ∈ R can be seen as a special case of X ∈ Ftn

0 (R).
Thus in the following, we only take the input X ∈ Ftn

0 (R) as
the representative to discuss.

Let (X(k); Y (k)) be k groups of n-PFNs pattern pairs
for neural network (8) training, k = 1, 2, . . . , K , where
X(k),Y (k) ∈ Ftn

0 (R), and X(k) is the input of the k-th pat-
tern pair of the network, and Y (k) is the expected output
corresponding to X(k). The output of the network corre-
sponding to input X(k) is denoted by O(k), that is the
conditions O(k) = O (X(k)) are satisfied for the network,
k = 1, 2, . . . , K . For the convenience of discussion, the net-
work inputs, expected outputs and network output are shown
in detail as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X(k) = (
x10 (k), x

1
1 (k), . . . , x

1
n (k), x

2
n (k), . . . , x

2
1 (k), x

2
0 (k)

)
,

Y (k) = (
y10 (k), y

1
1 (k), . . . , y

1
n (k), y

2
n (k), . . . , y

2
1 (k), y

2
0 (k)

)
,

O(k) =
(
o10(k), o11(k), . . . , o

1
n(k), o

2
n(k), . . . , o

2
1(k), o20(k)

)
,

k = 1, 2, . . . , K .

For a single hidden layer feedforward PFNN O(X), the error
function is defined as

E (O(X)) = 1

2K

K∑

k=1

DE (O(k), Y (k))2

= 1

2K

K∑

k=1

(
n∑

i=0

((
o1i (k) − y1i (k)

)2 + (
o2i (k) − y2i (k)

)2
)
)

.

(9)

In fact, the structural expression of PFNN shown in Eqs.
(7) and (8) are operation systems of the addition and multi-
plication of n-PFNs. According to the definition of ordered
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representation, each n-PFN is uniquely determined by 2n+2
ordered real numbers. Hence, the connectionweightsUj , Vj ,
and threshold � j can be adjusted continuously to make the
network output close to the expected output. For the unity
of expression, the adjustable parameters uqi ( j), v

q
i ( j) and

θ
q
i ( j) (i = 0, 1, . . . , n; j = 1, 2, . . . , p; q = 1, 2) of the
networks (7) and (8) are integrated into a high dimensional
parameter vector, that is,

W = (
u10(1), u

1
1(1), . . . , u

1
n(1), u

2
n(1), . . . , u

2
1(1), u

2
0(1), . . . ,

u10(p), u
1
1(p), . . . , u

1
n(p), u

2
n(p), . . . , u

2
1(p), u

2
0(p),

v10(1), v
1
1(1), . . . , v

1
n(1), v

2
n(1), . . . , v

2
1(1), v

2
0(1), . . . ,

v10(p), v
1
1(p), . . . , v

1
n(p), v

2
n(p), . . . , v

2
1(p), v

2
0(p),

θ10 (1), θ11 (1), . . . , θ1n (1), θ2n (1), . . . , θ21 (1), θ20 (1), . . . ,

θ10 (p), θ11 (p), . . . , θ1n (p), θ2n (p), . . . , θ21 (p), θ20 (p)
)

� (w1, w2, . . . , wi , . . . , wN ) ,

where N = 3p (2n + 2). Therefore, the error function W
defined in Eq. (8) can be simply expressed as E(W ) or
E (w1, w2, . . . , wN ).

Lemma 5 [15] Let E(W ) be an error function defined by Eq.
(8), then the E(W ) is differentiable almost everywhere in
the high dimensional space RN , and its partial derivatives
∂E(W )/∂wi exist, i = 1, 2, . . . , N.

For convenience, denote the gradient vector of error func-
tion E(W ) as ∇E(W ), that is

∇E(W ) =
(

∂E(W )

∂w1
,
∂E(W )

∂w2
, . . . ,

∂E(W )

∂wN

)

.

In the following, a gradient descent algorithm is used to
adjust the parameter vector of PFNN. The algorithm pro-
gram of n-polygonal fuzzy numbers based single hidden
layer feedforward neural network is as follows.

Step 1 Determine the initial value of relevant parameters.
Let t = 0, ε > 0, and W (t) = W0, where t is the iteration
number, ε is the iteration termination constant, andW0 is the
initial value of neural network parameter vector. The number
of neurons in the network is p.

Step2Calculate theneural network training error E (W (t)).
If the Euclidean norm of E (W (t)) satisfies ‖E (W (t))‖ < ε,
the iteration turns to Step 6, Otherwise goes to the next step.

Step 3 Update the neural network parameter vector as
W (t + 1) = W (t) − η · ∇E (W (t)), where η is iteration
step size, and ∇E (W (t)) is the gradient vector of E (W (t)).

Step 4 Calculate the neural network connection weights
Uj (t + 1), Vj (t + 1) and threshold � j (t + 1), j ∈
{1, 2, . . . , p}. If Uj (t + 1), Vj (t + 1) and � j (t + 1) do not
belong to Ftn

0 (R), then by adjusting the order of components
to make them n-PFNs.

Step 5 Calculate the Euclidean norm of E (W (t + 1)). If
the norm satisfies ‖E (W (t + 1))‖ < ε, the iteration goes to
Step 6. Otherwise, let t = t + 1, and turn to Step 3.

Step 6 Output the parameter vector W (t + 1).
In the above algorithm, Step 4 and Step 5 are about the

design of adjustment parameters. Uj (t + 1), Vj (t + 1) and
� j (t + 1) represent connection weights and threshold of
hidden layer neuron j ( j = 1, 2, . . . , p) corresponding to
step t+1. It should benoted that these parametersmust satisfy
the following inequalities after adjusting element order,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uj (t + 1) : u10( j)(t + 1) ≤ · · · ≤ u1n( j)(t + 1)

≤ u2n( j)(t + 1) ≤ · · · ≤ u20( j)(t + 1),

Vj (t + 1) : v10( j)(t + 1) ≤ · · · ≤ v1n( j)(t + 1)

≤ v2n( j)(t + 1) ≤ · · · ≤ v20( j)(t + 1),

� j (t + 1) : θ10 ( j)(t + 1) ≤ · · · ≤ θ1n ( j)(t + 1)

≤ θ2n ( j)(t + 1) ≤ · · · ≤ θ20 ( j)(t + 1).

Remark 5 Because only the gradient information is needed,
the above-mentioned gradient descent algorithm is easy to
implement. Gradient descent algorithm is a commonmethod
of neural network training. To improve the efficiency of net-
work training, some other suitable learning algorithms can be
chosen, such as the Newton algorithm, quasi-Newton algo-
rithm. In addition, fixed step size is employed in Step 3 of
the given iterative algorithm, such as using variable step size
can be considered further. The whole work flowchart can be
shown in Fig. 9 below.

In the flowchart shown in Fig. 9, it is not difficult to see that
the proposed algorithm has a complete working system and
operation rule. According to the construction method of the
PFNN approximator given in “Gradient descent algorithm”,
the structure of the network can be determined by choosing
neurons and activation function of them. In addition, by the
gradient descent algorithm given in this section, the PFNN
approximator can be trained iteratively by using training data,
so that we can test the generalization ability of the trained
network.

Simulation examples

Because the outputs, connection weights and thresholds of
the single hidden layer neural network mentioned above are
n-polygonal fuzzy numbers, it is more intuitive and simple
to design a learning algorithm on Ftn

0 (R). Hence, two fuzzy
reasoning models which input spaces are R and Ftn

0 (R) are
simulated by using the presented polygonal fuzzy neural net-
works (PFNNs), respectively. Thesemodels can be applied to
automatic control of vehicle speed or automatic operation of
container crane, etc. Next, we will give two examples in the

123



Complex & Intelligent Systems (2022) 8:2383–2404 2395

Fig. 9 Work flowchart of
training and testing the PFNN
approximator

case of n = 3 to illustrate the effectiveness of PFNN approx-
imator. To verify the generalization ability of the trained
PFNN approximator, we randomly divide the given sample
data into two parts: training set and test set, that is, about 70%
is used for network training and about 30% for performance
testing.

For the following two examples, the actual practice is
to randomly take 9 of the 13 samples for training and the
remaining 4 for testing. In addition, for the sake of show-
ing advantage and effectiveness of the PFNN approximator
by comparison, we construct traditional neural network
(TNN) based approximator using the same sample data with
PFNN approximator. It should be pointed out that since the
dimension of the output space R

2×3+2 = R
8 is eight, the

TNN based approximators must be constructed separately
to approach each output. Thus, the structure of the TNN
approximator is complex. The details are in the following
two examples.

Example 3 Input space is R. We want to obtain a PFNN
approximator of the form (7). To do this, there are 13 groups
of sample pattern pairs (x(m); Y (m)) be used in network
training and performance testing, where x(m) and Y (m) are
inputs and expected outputs of the network, respectively,
m = 1, 2, . . . , 13. In fact, these groups of sample pattern
pairs come from a 3-polygonal fuzzy valued function F(x),
which analytic expression is as follows,

F(x) = (
x3, x, x1/2, x1/4, (x + 1)1/4, (x + 1)1/2, (x + 1)3/2,

(x + 1)2
)
,

for all x ∈ [0, 1].
(10)

After randomly selecting 13 values of variable x in inter-
val (0, 1), i.e. x(m), m = 1, 2, . . . , 13, then the corre-
sponding 13 values of the 3-polygonal fuzzy valued func-
tion F(x) can be obtained according to (10), i.e. Y (m),
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Fig. 10 Training error curve of
the PFNN approximator

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

Table 1 Training inputs xTr (k), expected outputs YTr (k), PFNN outputs OTr (k), and TNN outputs O ′
Tr (k)

k xTr (k) YTr (k) OTr (k) O ′
Tr (k)

1 0.1095
(0.0013, 0.1095, 0.3309, 0.5753,
1.0263, 1.0533, 1.1687, 1.2310)

(−0.0188, 0.2182, 0.4166, 0.6161,
0.9963, 1.0230, 1.1856, 1.2839)

(−0.0586, 0.1918, 0.4419, 0.6867,
1.0724, 1.1418, 1.2262, 1.2724)

2 0.1432
(0.0029, 0.1432, 0.3784, 0.6151,
1.0340, 1.0692, 1.2223, 1.3068)

(−0.0066, 0.2341, 0.4301, 0.6247,
0.9966, 1.0309, 1.2342, 1.3534)

(−0.0384, 0.2180, 0.4617, 0.6971,
1.0717, 1.1478, 1.2786, 1.3455)

3 0.1607
(0.0041, 0.1607, 0.4009, 0.6331,
1.0380, 1.0774, 1.2505, 1.3472)

(0.0001, 0.2428, 0.4375, 0.6296,
0.9972, 1.0354, 1.2600, 1.3911)

(−0.0277, 0.23170.4720, 0.7025,
1.0714, 1.1510, 1.3063, 1.3849)

4 0.3697
(0.0505, 0.3697, 0.6080, 0.7798,
1.0818, 1.1703, 1.6030, 1.8761)

(0.1033, 0.3673, 0.5478, 0.7112,
1.0295, 1.1117, 1.5971, 1.9128)

(0.1113, 0.3958, 0.5954, 0.7659,
1.0670, 1.1883, 1.6493, 1.9216)

5 0.4755
(0.1075, 0.4755, 0.6896, 0.8304,
1.1021, 1.2147, 1.7923, 2.1771)

(0.1723, 0.4461, 0.6197, 0.7695,
1.0644, 1.1666, 1.7864, 2.2212)

(0.1895, 0.4781, 0.6572, 0.7973,
1.0648, 1.2071, 1.8253, 2.2275)

6 0.5246
(0.1444, 0.5246, 0.7243, 0.8511,
1.1112, 1.2348, 1.8826, 2.3245)

(0.2080, 0.4862, 0.6567, 0.8005,
1.0849, 1.1959, 1.8779, 2.3705)

(0.2275, 0.5158, 0.6857, 0.8116,
1.0638, 1.2157, 1.9057, 2.3728)

7 0.7233
(0.3785, 0.7233, 0.8505, 0.9222,
1.1458, 1.3128, 2.2623, 2.9699)

(0.3742, 0.6682, 0.8271, 0.9482,
1.1925, 1.3351, 2.2639, 2.9733)

(0.3903, 0.6632, 0.7983, 0.8682,
1.0596, 1.2504, 2.2129, 2.9457)

8 0.7354
(0.3978, 0.7354, 0.8576, 0.9261,
1.1478, 1.3174, 2.2862, 3.0117)

(0.3852, 0.6802, 0.8383, 0.9581,
1.2002, 1.3445, 2.2879, 3.0082)

(0.4006, 0.6718, 0.8050, 0.8715,
1.0594, 1.2525, 2.2304, 2.9785)

9 0.8472
(0.6081, 0.8472, 0.9204, 0.9594,
1.1658, 1.3591, 2.5106, 3.4122)

(0.4907, 0.7934, 0.9454, 1.0538,
1.2753, 1.4345, 2.5090, 3.3123)

(0.4976, 0.7496, 0.8656, 0.9021,
1.0570, 1.2720, 2.3834, 3.2645)

m = 1, 2, . . . , 13. By grouping them randomly, we can
obtain training set and test set, which are expressed as
(xTr (k); YTr (k)) and (xT e(l); YTe(l)), respectively, k =
1, 2, . . . , 9, l = 1, 2, . . . , 4.

Before network training, we need to determine the struc-
ture of the network. The number of neurons and the activation
function of these neurons are chosen as p = 5 and σ(x) =

1
1+e−x , respectively. The network training parameters are

chosen as η = 0.5 and ε = 0.01. After doing these, a PFNN
approximator can be constructed and trained.

After 3194 iterations, the training process of the PFNN is
terminated. Figure 10 shows the change of training error with
the increase of iteration times. It can be seen that the training
error decreases gradually with the increase of the iteration
times.

Remark 6 It should be pointed out that the network training
speed is related to the number of neurons p, activation func-
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Fig. 11 Training results of the two approximators: PFNN and TNN

Table 2 Test inputs xTe(l), expected outputs YTe(l), PFNN outputs OTe(l), and TNN outputs O ′
T e(l)

l xT e(l) YTe(l) OTe(l) O ′
T e(l)

1 0.2039
(0.0085, 0.2039, 0.4516, 0.6720,
1.0475, 1.0972, 1.3210, 1.4494)

(0.0180, 0.2653, 0.4569, 0.6429,
1.0000, 1.0478, 1.3255, 1.4880)

(−0.0007, 0.2656, 0.4975, 0.7158,
1.0705, 1.1587, 1.3755, 1.4862)

2 0.2297
(0.0121, 0.2297, 0.4793, 0.6923,
1.0531, 1.1089, 1.3637, 1.5123)

(0.0295, 0.2795, 0.4694, 0.6517,
1.0026, 1.0560, 1.3657, 1.5487)

(0.0159, 0.2859, 0.5128, 0.7237,
1.0699, 1.1633, 1.4175, 1.5493)

3 0.3490
(0.0425, 0.3490, 0.5907, 0.7686,
1.0777, 1.1615, 1.5668, 1.8197)

(0.0912, 0.3532, 0.5310, 0.7011,
1.0241, 1.1022, 1.5614, 1.8554)

(0.0966, 0.3795, 0.5832, 0.7597,
1.0675, 1.1846, 1.6142, 1.8637)

4 0.5551
(0.1710, 0.5551, 0.7450, 0.8631,
1.1167, 1.2470, 1.9392, 2.4182)

(0.2313, 0.5121, 0.6807, 0.8209,
1.0989, 1.2151, 1.9355, 2.4640)

(0.2515, 0.5389, 0.7033, 0.8204,
1.0632, 1.2211, 1.9548, 2.4629)

tion σ(·) and iteration parameters η, ε, etc. In addition, it can
be seen that the training algorithm converges faster in early
stage and slower in a later stage. By improving algorithm,
the overall convergence efficiency may be improved.

The specific input and expected output data used for the
PFNN approximator training is given in Table 1 below (see
the second and third columns of the table). The actual output
data of the PFNNapproximator is shown in the fourth column
of Table 1. To give numerical comparison results, outputs of
the TNN approximator are shown in the fifth column of Table
1.

In addition, to intuitively show the training performance of
the PFNN approximator and the TNN approximator, images
of these 3-PFNs are given in Fig. 11.

Clearly, it is not difficult to see from Fig. 11 that the
training outputs of the PFNN approximator and the TNN
approximator can approach the expected outputs well.

In the following, we will verify the generalization ability
of the trained PFNN approximator and compare it with the
trained TNN approximators. We input xTe(l) into the trained
PFNN approximator, and then the corresponding test outputs
OTe(l) can be obtained, l = 1, 2, . . . , 4. See the fourth col-
umn of Table 2 for specific data. To compare test results, the
expected outputs and the test outputs of the TNN approxi-
mator are also given in Table 2, where YTe(l) is the expected
outputs and O ′

T e(l) the TNN outputs, l = 1, 2, . . . , 4.
In addition, in order to intuitively give the comparison of

the test results, images of the outputs, that are YTe(l), OTe(l),
and O ′

T e(l), l = 1, 2, . . . , 4, are shown in Fig. 12.
We can see from Fig. 12 that the test outputs of the PFNN

approximator and the TNN approximator can approach the
expected outputs well.

Next, we will numerically analyze distances between out-
puts of approximators and expected outputs to verify the
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Fig. 12 Test results of the two approximators: PFNN and TNN

performance of the PFNN and TNN. Since these outputs are
all 3-PFNs, we use the distance of 3-PFNs given in Lemma
1 for numerical analysis. It is easy to understand that the
smaller the distance values, the stronger the approximation
ability of the network.

For convenience, let O(m) be outputs of PFNN approxi-
mator corresponding to x(m), and O ′(m) outputs of the TNN
approximator, m = 1, 2, . . . , 13. According to Tables 1 and
2, the distance data shown in Table 3 can be obtained, where
D (Y (m), O(m)) and D

(
Y (m), O ′(m)

)
are the distances in

the sense of Lemma 1, m = 1, 2, . . . , 13.
To compare the performance of the PFNN approximator

and the TNN approximator, According to Table 3, the scatter
plots of these distance data are given in Fig. 13 as follows:

Remark 7 It should be pointed out that generally speaking,
the approximation effect of the PFNN and the TNN can be
further improved by increasing the number of neurons p or
decreasing the value of iteration parameter ε, etc.

Example 4 Input space is Ftn
0 (R). Wewant to obtain a PFNN

approximator of the form (8). To do this, there are 13 groups
of sample pattern pairs (X(m); Y (m)) be used in network
training and performance test, where X(m) and Y (m) are
inputs and expected outputs of the network, respectively,
m = 1, 2, . . . , 13. In fact, these groups of sample pat-
tern pairs come from a 3-polygonal fuzzy valued function
F : Ft3

0 (R) → Ft3
0 (R), which analytic expression is given

Table 3 Distances between outputs of approximators and expected out-
puts

m D (Y (m), O(m)) D
(
Y (m), O ′(m)

)

1 0.1087 0.1114

2 0.0910 0.0833

3 0.0821 0.0736

4 0.0686 0.0608

5 0.0699 0.0820

6 0.0676 0.0831

7 0.0551 0.0861

8 0.0553 0.0884

9 0.1174 0.1477

10 0.0613 0.0617

11 0.0529 0.0561

12 0.0675 0.0541

13 0.0643 0.0805

as follows. For all x ∈ [0, 1],

X =
(
x3, x, x

1
2 , x

1
4 , (x + 1)

1
4 , (x + 1)

1
2 ,

(x + 1)
3
2 , (x + 1)2

)
∈ Ftn

0 (R), (11)

F(X) =
(
x4, x

3
2 , x, x

1
4 (x + 1)

1
4 , (x + 1)

1
2 ,

x2 + x + 1, (x + 1)2, (x + 1)3
)

. (12)
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Fig. 13 Scatter plot of distances

After randomly selecting 13 values of variable x in
interval (0, 1), then inputs and outputs of sample pattern
pairs X(m) and Y (m) can be obtained according to (11)
and (12), respectively, m = 1, 2, . . . , 13. Then after ran-
dom grouping, there are 9 groups of sample pattern pairs
in training set and 4 groups of sample pattern pairs in
test set. Let (XTr (k); YTr (k)) represent the training set,
and (XTe(l); YTe(l)) the test set, k = 1, 2, . . . , 9, l =
1, 2, . . . , 4.

We determine the structure of the network which has the
form of (8) as follows: the number of neurons is p = 4, and
activation function of neurons is σ(x) = 1

1+e−x . Parameters
used for the PFNN training are chosen as η = 0.2 and ε =
0.1, respectively. The specific data of input and output used

for approximator training is given in Table 4 (See the second
and third columns of the table for details).

After 3423 iterations, training process of the PFNN is ter-
minated. Figure 14 shows the changeof training errorwith the
increase of iteration times, that is, the training error decreases
gradually with the increase of the iteration times.

From Figs. 10 and 14, it can be seen that the training
error decreases gradually with the increase of the number
of iterations. Especially in the initial stage of iteration, the
error decreases very fast. It shows that the gradient descent
algorithm given in “Gradient descent algorithm” is effective.

Similar to Example 3, we use the same training set to
construct a TNN approximator and compare its performance
with the PFNN approximator. The training outputs of the two
approximators are also given inTable 4,where OTr (k) for the
PFNNapproximator and O ′

Tr (k) for the TNNapproximator,
k = 1, 2, . . . , 9.

In addition, to intuitively show the training performance
of the two approximators, Fig. 15 gives the images of
these outputs. We can see that the training outputs of the
PFNN approximator and the TNN approximator approach
the expected outputs well.

From Figs. 11 and 15, it can be seen that the training
outputs of the PFNN approximator are close to the expected
outputs. It shows that the proposedmethods of PFNNapprox-
imator constructing and training in “Convergence of the
neural network” and “Gradient descent algorithm” are effec-
tive.

Then, we test the generalization ability of the two approx-
imators with the test inputs XTe(l), l = 1, 2, . . . , 4, and
compare the output results. The test inputs, expected out-

Table 4 Training inputs XTr (k), expected outputs YTr (k), PFNN outputs OTr (k), and TNN outputs O ′
Tr (k)

k XTr (k) YTr (k) OTr (k) O ′
Tr (k)

1
(0.1638, 0.5471, 0.7397, 0.8600,
1.1153, 1.2438, 1.9243, 2.3936)

(0.0896, 0.4047, 0.5471, 0.9592,
1.2438, 1.8464, 2.3936, 3.7031)

(0.1160, 0.4062, 0.5364, 0.9464,
1.2361, 1.6629, 2.4769, 3.7488)

(−0.0203, 0.2827, 0.4123, 0.7979,
1.0893, 1.8497, 2.3895, 3.7358)

2
(0.1473, 0.5281, 0.7267, 0.8525,
1.1118, 1.2362, 1.8890, 2.3350)

(0.0778, 0.3838, 0.5281, 0.9478,
1.2362, 1.8070, 2.3350, 3.5681)

(0.1153, 0.4024, 0.5333, 0.9430,
1.2340, 1.6555, 2.4308, 3.6332)

(−0.0228, 0.2784, 0.4105, 0.7946,
1.0869, 1.8349, 2.3543, 3.6178)

3
(0.1348, 0.5127, 0.7160, 0.8462,
1.1090, 1.2299, 1.8605, 2.2882)

(0.0691, 0.3671, 0.5127, 0.9384,
1.2299, 1.7755, 2.2882, 3.4613)

(0.1149, 0.3994, 0.5307, 0.9402,
1.2323, 1.6496, 2.3941, 3.5420)

(−0.0247, 0.2750, 0.4091, 0.7918,
1.0850, 1.8228, 2.3260, 3.5240)

4
(0.0389, 0.3390, 0.5822, 0.7630,
1.0757, 1.1571, 1.5494, 1.7928)

(0.0132, 0.1973, 0.3390, 0.8208,
1.1571, 1.4538, 1.7928, 2.4005)

(0.1114, 0.3652, 0.4987, 0.9029,
1.2123, 1.5817, 2.0195, 2.6624)

(−0.0428, 0.2420, 0.3903, 0.7593,
1.0627, 1.6824, 2.0184, 2.6056)

5
(0.2599, 0.6382, 0.7989, 0.8938,
1.1313, 1.2799, 2.0968, 2.6837)

(0.1659, 0.5098, 0.6382, 1.0112,
1.2799, 2.0455, 2.6837, 4.3964)

(0.1196, 0.4246, 0.5508, 0.9618,
1.2459, 1.6976, 2.7100, 4.3411)

(−0.0073, 0.3048, 0.4201, 0.8133,
1.1007, 1.9186, 2.5587, 4.3210)

6
(0.4343, 0.7573, 0.8702, 0.9329,
1.1514, 1.3256, 2.3296, 3.0881)

(0.3289, 0.6590, 0.7573, 1.0741,
1.3256, 2.3308, 3.0881, 5.4268)

(0.1262, 0.4490, 0.5682, 0.9796,
1.2581, 1.7425, 3.0449, 5.1800)

(0.0126, 0.3369, 0.4287, 0.8322,
1.1150, 2.0019, 2.7754, 5.0775)

7
(0.3153, 0.6806, 0.8250, 0.9083,
1.1386, 1.2964, 2.1787, 2.8244)

(0.2146, 0.5615, 0.6806, 1.0342,
1.2964, 2.1438, 2.8244, 4.7468)

(0.1216, 0.4333, 0.5572, 0.9684,
1.2503, 1.7137, 2.8254, 4.6346)

(−0.0006, 0.3159, 0.4233, 0.8202,
1.1059, 1.9493, 2.6369, 4.5963)

8
(0.0103, 0.2175, 0.4664, 0.6829,
1.0504, 1.1034, 1.3434, 1.4824)

(0.0022, 0.1015, 0.2175, 0.7174,
1.1034, 1.2649, 1.4824, 1.8049)

(0.1104, 0.3421, 0.4715, 0.8677,
1.1972, 1.5331, 1.7976, 2.2018)

(−0.0517, 0.2262, 0.3744, 0.7334,
1.0470, 1.5829, 1.8234, 2.1383)

9
(0.1201, 0.4933, 0.7024, 0.8381,
1.1055, 1.2220, 1.8249, 2.2301)

(0.0592, 0.3465, 0.4933, 0.9265,
1.2220, 1.7367, 2.2301, 3.3302)

(0.1143, 0.3955, 0.5274, 0.9365,
1.2302, 1.6421, 2.3489, 3.4304)

(−0.0271, 0.2708, 0.4072, 0.7884,
1.0825, 1.8075, 2.2905, 3.4086)
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Fig. 14 Training error curve of
the PFNN approximator
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Fig. 15 Training results of the two approximators: PFNN and TNN

puts, and the outputs of the two approximators are given in
Table 5, where YTe(l) are the expected outputs, OTe(l) the
outputs of PFNN approximator, and O ′

T e(l) the outputs of
the TNN approximator, l = 1, 2, . . . , 4.

According to Table 5, the test results of the PFNN approx-
imator and the TNN approximator are shown in Fig. 16. We
can see that the test outputs of the PFNN approximator and

the TNN approximator can approach the expected outputs
well.

From Figs. 12 and 16, it can be seen that the test outputs of
the PFNN approximator are close to the expected outputs, i.e.
that the trained PFNN approximator has good generalization
ability. This further shows the effectiveness of the proposed
PFNN constructing approach.
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Table 5 Test inputs XTe(l), expected outputs YTe(l), PFNN outputs OTe(l), and TNN outputs O ′
T e(l)

l XTe(l) YTe(l) OTe(l) O ′
T e(l)

1
(0.1199, 0.4932, 0.7023, 0.8380,
1.1054, 1.2220, 1.8246, 2.2295)

(0.0592, 0.3463, 0.4932, 0.9264,
1.2220, 1.7364, 2.2295, 3.3291)

(0.1143, 0.3955, 0.5274, 0.9365,
1.2302, 1.6421, 2.3485, 3.4294)

(−0.0271, 0.2707, 0.4072, 0.7884,
1.0825, 1.8073, 2.2902, 3.4076)

2
(0.0401, 0.3424, 0.5851, 0.7649,
1.0764, 1.1586, 1.5553, 1.8020)

(0.0137, 0.2003, 0.3424, 0.8234,
1.1586, 1.4596, 1.8020, 2.4189)

(0.1114, 0.3659, 0.4994, 0.9038,
1.2127, 1.5831, 2.0262, 2.6771)

(−0.0425, 0.2426, 0.3907, 0.7600,
1.0631, 1.6852, 2.0242, 2.6209)

3
(0.1074, 0.4753, 0.6894, 0.8303,
1.1021, 1.2146, 1.7919, 2.1765)

(0.0510, 0.3277, 0.4753, 0.9151,
1.2146, 1.7012, 2.1765, 3.2111)

(0.1139, 0.3919, 0.5243, 0.9330,
1.2282, 1.6352, 2.3075, 3.3295)

(−0.0292, 0.2670, 0.4054, 0.7851,
1.0802, 1.7931, 2.2577, 3.3036)

4
(0.4706, 0.7779, 0.8820, 0.9391,
1.1547, 1.3334, 2.3705, 3.1608)

(0.3661, 0.6860, 0.7779, 1.0844,
1.3334, 2.3829, 3.1608, 5.6194)

(0.1276, 0.4532, 0.5711, 0.9825,
1.2602, 1.7502, 3.1059, 5.3268)

(0.0164, 0.3427, 0.4300, 0.8353,
1.1173, 2.0154, 2.8114, 5.1996)

0 1 2 3 4 5 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6
−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
−0.2

0

0.2

0.4

0.6

0.8

1

Y
Te

O
Te

O’
Te

Fig. 16 Test results of the two approximators: PFNN and TNN

Let O(m) be outputs of the PFNN approximator corre-
sponding to the input X(m), and O ′(m) the outputs of the
TNN approximator, m = 1, 2, . . . , 13. According to Tables
4-5, the distance data can be obtained as shown in Table 6,
where D (Y (m), O(m)) and D

(
Y (m), O ′(m)

)
are the dis-

tances in the sense of Lemma 1, m = 1, 2, . . . , 13.
According to Table 6, the scatter plots of the distances

D (Y (m), O(m)) and D
(
Y (m), O ′(m)

)
are given in Fig. 17

below.
From Figs. 13 and 17, we can conclude that after train-

ing, the PFNN can achieve the same level of approximation
performance with TNN. However, it should be emphasized
again that to realize the output of 3-PFNs, the TNN approx-
imator needs eight independent neural networks to output
each corresponding component, respectively. So the struc-
ture of TNN approximator is more complex. Therefore, in

comparison, the PFNN approximator has the advantage of a
simple structure.

By analyzing the results of the two simulation examples,
we can get that the proposed PFNN approximator construc-
tion method and the gradient descent algorithm are effective.
From Tables 1, 4 and Figs. 11, 15, it can be known that the
proposed method of PFNN approximators constructing and
training is effective. Figs. 10 and 14 show that the given
gradient descent algorithm has good convergence. In addi-
tion, it can be seen from Tables 2, 5 and Figs. 12, 16 that
the trained PFNN approximator have good generalization
ability. Figs. 11, 12, 15, 16 and Tables 3, 6 indicate that
the constructed PFNN approximator has good approxima-
tion efficiency. Therefore, the constructed polygonal fuzzy
neural network based on ordered representation of n-PFNs
has some advantages over the traditional neural network.
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Table 6 Distances between outputs of approximators and expected out-
puts

m D (Y (m), O(m)) D
(
Y (m), O ′(m)

)

1 0.1835 0.1613

2 0.1515 0.1532

3 0.1259 0.1466

4 0.2619 0.2286

5 0.3479 0.2181

6 0.5883 0.3493

7 0.4301 0.2573

8 0.3969 0.3410

9 0.1188 0.1395

10 0.1190 0.1395

11 0.2582 0.2256

12 0.1310 0.1344

13 0.6327 0.4198

Conclusion

As a universal approximator, a neural network has the ability
to learn and approximate any unknown continuous func-
tion, while fuzzy theory has a unique effect in dealing
with problems with uncertainty. Fortunately, the proposed
n-PFNs not only satisfies the linear operation, but also can
approximately describe the general fuzzy numbers through
the ordered representation of finite real numbers. Therefore,

selecting n-PFNs as the adjustment parameter of feedfor-
ward fuzzy neural network can make the network form a
linear mapping, so as to linearize the input and output of the
constructed network. A feedforward neural network with a
single hidden layer is established byWeierstrass approxima-
tion theoremunder the ordered representation of n-polygonal
fuzzy number. It is proved that the proposed network has
the approximation to a continuous n-polygonal fuzzy value
function or a generalized n-polygonal fuzzy value function.
This provides a theoretical basis for the application of the
fuzzy neural network with single hidden layer in a contin-
uous system. A gradient descendent algorithm is designed
by using the iterative operations of parameter vectors in
n-PFNs space. The effectiveness of the network and train-
ing algorithm is verified by simulation examples. A single
layer PFNN is established by the ordered representation of
n-PFNs, and the method of describing fuzzy information by
n-PFNs can be further extended to the construction of other
fuzzy neural networks, such as the convolutional neural net-
work and recurrent fuzzy neural network, and then explore
and design some intelligent algorithms of these networks.
Besides, to improve the efficiency and convergence speed of
network training, the n-PFNs can be further considered to
be applied to genetic algorithm or particle swarm optimiza-
tion algorithm, and then the improvement of gradient descent
algorithm and variable step-size method are also the focus of
the next step research.

Fig. 17 Scatter plot of distances
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