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Abstract
Defenses against adversarial attacks are essential to ensure the reliability of machine-learning models as their applications
are expanding in different domains. Existing ML defense techniques have several limitations in practical use. We proposed
a trustworthy framework that employs an adaptive strategy to inspect both inputs and decisions. In particular, data streams
are examined by a series of diverse filters before sending to the learning system and then crossed checked its output through
anomaly (outlier) detectors before making the final decision. Experimental results (using benchmark data-sets) demonstrated
that our dual-filtering strategy could mitigate adaptive or advanced adversarial manipulations for wide-range of ML attacks
with higher accuracy. Moreover, the output decision boundary inspection with a classification technique automatically affirms
the reliability and increases the trustworthiness of any ML-based decision support system. Unlike other defense techniques,
our dual-filtering strategy does not require adversarial sample generation and updating the decision boundary for detection,
makes the ML defense robust to adaptive attacks.

Keywords Adversarial machine learning · Computer security · Bio-inspired algorithm · Negative selection algorithm

Introduction

Adversarial attacks (AA) manipulate input data by adding
traits/noises in various trickier ways and such AAs to deep
learning models reduce trustworthiness of their use. It is to
be noted that the rationale behind AA’s success are incon-
clusive and do not provide clear explanation for real-world
applications. Szegedy et al. [78] stated the reason for attack
success is non-linearity of ML models; on the other hand,
Goodfellow et al. [34] argued that AAs take advantage of
linearity in some ML models. Another theory [80] proposed
a tilted boundary theory to explain that it is never feasible
to fit a model completely, and that is why AAs exist. Some
MIT researchers stated that all adversarial features are not
additive noise, rather these data cannot be properly classified
because human sensors are not sophisticated enough to asso-
ciate a class for these data, however this argument is disputed
by other researchers [41].
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To build a robust ML/AI-based system against malicious
adversaries, we designed a dual-filtering scheme, (which
employs end-to-end defense mechanism) one at the input
stage (before samples are fed to the core learning model) and
other at the output of ML (before the decision component).
These two filter sets can function independently as well as
dependently (i.e., in a commutative fashion). Specifically,
the input filtering layer’s main aim is to drop misleading and
out of distribution inputs (e.g., image of animal but not a
human face in a face recognition system). The output filter-
ing layer’s goal is to handle larger variations and restricting
mis-classification to improve overall accuracy of the learn-
ing system. The proposed dual-filtering strategy can be used
both in training and testing phases of ML-based systems.
For instance, the independent input filters may be used to
detect and deter the poising attacks in a supervisedML. Like-
wise, dual-filtering strategy helps in addressing adversaries
both in supervised and unsupervised ML. A machine learn-
ing (ML) framework usually consists of four main modules:
feature extraction, feature selection (optional), classifica-
tion/clustering, and decision. As depicted in Fig. 1, input
filters are placed after pre-processing of data stream/feature
selection to feed to the learning model and the output filters
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Fig. 1 Schematic diagram of the proposed dual-filtering (DF) framework

are placed after classification/clustering/raw decision mod-
ule, respectively.

As can been seen in the Fig. 1, the raw input sample
is first pre-processed and then fed to the input filter to
determine if the received feature/sample is either clean or
noisy/adversarial, and accept or reject accordingly. The out-
come by ML module is given to the output filter for further
scrutiny. The output filter uses context-information and/or
communicates with the input filter bank to make the correct
final decision. An ensemble of different noise removal or AA
detection filters was successfully applied in a recent work
[29]. Other techniques focused mostly on adding extra layer
on a ML module by adversarial sample training or modifi-
cation of deep learning models; these defense methods have
some constraints, and exposed ML models to new vulnera-
bilities [36].

In 2019, some works reported launching adaptive attacks
where they could bypass known defenses [17]. To alleviate
the situation, we consider a non-deterministic (white-box)
approach where the attackers cannot perceive our defenses
to launch adaptive attacks. Accordingly, we investigated an
active learning [73] based dual-validation scheme which
work as an extra security (filtering) layer and improve the
learning model’s trustworthiness.

Accordingly, our defensivemeasures formachine learning
model (MLM) have the following tasks:

– Input filter before MLM: The primary purpose of input
filters is to prevent adversarial input data in such a
way that can differentiate data manipulation from the
trained data. It will be examining the input by deploy-

ing application-specific filter sequence. A set of filter
sequences are selected (from a given library of filters)
using an efficient search and optimization algorithm,
called multi-objective genetic algorithm (MOGA). The
MOGA can find a sequence of filters (where each filter
can detect adversarial traits/noises) satisfying constrains
and three objectives: detection of the maximum num-
ber of attacks with higher accuracy (above a specific
threshold), with minimum processing time, and shorter
sequence of ensemble filters. By utilizing the Pareto-
set from MOGA runs, and picking a filter sequence
dynamically at different times, make filter selections
unpredictable and use an active learning approach to pro-
tect the ML from adaptive attacks.

– Output filter after MLM: Employ several class-specific
latent space-based transformation for outlier detection.
After MLM provides an output class label, it is then ver-
ified if the output falls in that class’s latent space or not.
We will make an ensemble of different outlier detection
methods and sequence dynamically and also retrain the
outlier methods during runtime.

The rest of the paper is organized as follows. “Preliminar-
ies” and “Defense objectives” provides literature review and
highlight research challenges. In “Our proposed methodol-
ogy” and “Experiments”, we described our approach with
experimental results and analysis. In the following section,
we reported advantages and limitations of our defense tech-
nique. Next, we gave conclusion with prospects of our future
work.
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Preliminaries

In this section,we detailed the adversarial propertieswe stud-
ied for our defense techniques and highlighted related works.

Adversarial machine learning (AML) attacks

Based on NIST [79] definition, AML is the manipulation of
training data, ML model architecture, or manipulate testing
data in a way that will result in wrong output from ML.

Generally speaking, adversarial examples are input data
which getmiss-classified by anAImethod but not by a human
eye. In mathematical definition:

Theorem 1 For aMLmodel M, if A is Non adversarial input
and right class label is CR, added noise is ε, Now,adversarial
example Ax = A + ε, Ax classify by M as class CW where
(CW �= CR), But if in human eye Ax ≈ A and Ax classify as
CR,

Adversarial defense

Goodfellow et al. [34] tried to training on adversarial inputs
pro-actively, Papernot et al. [66] performed defensive dis-
tillation and Miyato et al. [57] training the network with
enhanced training data all to create a protection against adver-
sarial example. Grosse et al. [35] did statistical tests using
a complementary approach to identify specific inputs, that
are adversarial. Wong et al. showed convex outer adversarial
polytope can be a proven defense [92]. Lu et al. [52] checked
whether the depthmap is consistent or not (only for image) to
detect adversarial examples. Metzen et al. implemented deep
neural networks with a small “detector” sub-network were
trained on the binary classification task of distinguishing
factual data from data containing adversarial perturbations
[56]. The same year, Madry et al. [55] published a paper on
adversarial robustness of neural networks through the lens
of robust optimization. Chen et al. tried to devise adversar-
ial examples with another guardian neural net distillation as
a defense from AAs [24]. Wu et al. [93] developed Highly
confident near neighbor (HCNN), a framework that combines
confidence information and nearest neighbor search, to rein-
force adversarial robustness of a base model. Also Paudice et
al. [67] applied anamoly detection and Zhang et al. detected
adversarial examples by identifying significant pixels for pre-
diction which only work for images [98]. Other researchers
such asWang et al. tried with mutation testing [89] and Zhao
et al. developed key-based network, a new detection-based
defensemechanism to distinguish adversarial examples from
normal ones based on error correcting output codes, using the
binary code vectors produced by multiple binary classifiers
applied to randomly chosen label-sets as signatures to match
standard images and reject adversarial examples [99]. Later

that year Liu et al. tried to use steganalysis [50] and Katzir
et al. implemented a filter by constructing euclidean spaces
out of the activation values of each of the deep neural net-
work layers with k-nearest neighbor classifiers (k-NN) [44].
A different notable strategy was taken by researchers Pang et
al. They used thresholding approach as the detector to filter
out adversarial examples for reliable predictions [63]. For
an image classification problem, Tian et al. did image trans-
formation operations such as rotation and shifting to detect
adversarial examples [82] and Xu et al. [95] simply reduced
the feature space to protect against adversary. Monteiro et al
[59] developed inputfiler which is based on bi-model deci-
sionmismatch of image. Sumanth Dathathri showedwhether
prediction behavior is consistent with a set of fingerprints (a
data set of NN) namedNFPmethod [31]. Same year, Crecchi
et al. used non-linear dimensionality reduction and density
estimation techniques [27] and Aigrain et al. tried to use con-
fidence value in CNN [3]. Some other notable works in that
year were meta-learning based robust detection method to
detect new AAs with limited examples developed by Ma et
al. [54]. Another important and effective work was done by
Chen et al., where they tried to keep the records of query and
used KNN to co-relate that with adversarial examples [25].
In the Table 1, we summarizes the adversarial defenses.

Nature of adversarial attacks

From our extensive literature review and empirical examina-
tion, we observed five basic adversarial nature. These are:

Advanced AAs are ineffective in the physical environment

Advanced adversarial methods are the method which adds
fewer noises/perturbs than other methods. In 2017, [47]
showed that in the digital version and printed version suc-
cess of adversarial methods effectiveness decline. They tried
to justify their argument with FGSM, BIM, and other itera-
tive methods. [53,61] experimented with FGSM, BIM, and
LBFGSmethods and showed the destruction rate up of 100%
based on distances invalidating these attacks.

Clean and adversarial inputs have identifiable noise
difference

Researchers [5,37,68] demonstrate adversarial and clean
images have a comparable difference in their noise value
which are identifiable for attacks such as FGSM, BIM etc.
It was also illustrated that normal filtering technique high-
lighted the noise part after pixel difference method [37], and
these noises could be detected using other metrics such as the
histogram average/ local binary pattern, signal to noise ratio
(SNR) and etc.
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Table 2 List of the filters and
their accuracy against different
attack (250 adversarial inputs
for each attack type) on MNIST
dataset (ACOORD.net library
used for experiment)

Filter family Code Filter name Attack method

FGSM BIM PGD JSMA

ANALYTICAL FT4 Distance 50 70 70 50

FT10 Morph 75 70 70 60

EDGE Base FT5 Canny 75 75 75 70

FT11 Sobel 50 75 50 75

FT16 Gaussian edge 75 70 75 75

Noise add Median Blur 65 60 65 55

Average Blur 70 70 70 70

FT1 Gaussian Blur 70 65 70 60

FT7 Gaussian Noise 60 50 60 65

Dilation 70 70 70 75

Opening 75 70 75 65

Closing 70 50 70 75

SaltAndPepper 75 75 75 75

FT13 SierraDithering 70 70 50 70

Noise reduce FT12 Erosion 75 55 75 70

FT0 Sharpen 70 70 75 50

FT6 Shrink 50 50 55 55

Texture OilPainting 75 50 75 70

Pixellate 50 70 50 50

FT14 Wavelet 70 75 70 50

FT2 Gabor 50 70 50 50

FT8 Census 55 55 55 70

Transform Top_Hat 70 50 70 75

BlackHat 70 50 75 55

FT9 Lapalce 70 75 60 75

FT3 Fourier 55 55 75 75

Exponential 50 50 50 75

FT15 Log-polar 50 55 75 65

Mirror 55 50 75 60

TopHat 55 50 55 75

WaterWave 75 50 75 70

Here we only provided successful detection rate

Same filtering technique will work for all MLmodel for a
specific dataset

Filters can detect AAs in data preprocess stage [5,37,68].
Thatmeans this techniquewill work for the black-boxmodel,
which means defense is not required to access or modify the
ML. So, if the ML changes, for example, from Resnet to
VGG or SVM to a Random Forest, the defense technique
needs no changes. It will be completely independent of the
ML changes.

Different filters have different effectiveness to detect AAs

We have experimented with different filters, as presented in
Table 2. Here, we can see that noise addition and canceling

filters are working better in the gradient-based attack, and
texture-based filters are working better for boundary-based
attack types. For example, FGSMandBIMare both gradient-
based attacks, and we find out blur works against both of
these attacks. This result is expected as AA noises have a
distinct nature related to the attackmethod.This phenomenon
proves that picking one filter from each filter family will
have more effectiveness than selecting all the filters from the
same filter family class. In this experiment, We generated
FGSM [34], BIM [55], PGD, JSMA [91] using Pytorch [33],
IBM-ART-Toolbox [62] and Cleverhans adversarial library
[64]. We noticed that the destruction rate (i.e., the rate of
failure of AA when it is converted to physical form) [47]
is presented in some attack samples. We disregarded those
from attack samples. Also, due to our restriction of ε = 0.03
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Table 3 List of outlier detection algorithm and their accuracy to detect
adversarial (FGSM) input of class label ‘O’

Abbr Algorithm Accuracy

OCSVM [26] One-class SVM 99

LMDD [7] Deviation-based 98

LOF [14] Local outlier factor 98

COF [81] Connectivity-based 91

CBLOF [40] Clustering-based 92

HBOS [32] Histogram-based 91

kNN [70] k nearest neighbors 91

ABOD [46] Angle-based 62

COPOD [49] Copula-based 75

SOS [42] Stochastic selection 66

IF [83] Isolation forest 99

FB [48] Feature bagging 99

XGBOD [100] Extreme boosting based 26

AutoEncoder [2] Fully connected AutoEncoder 43

VAE [45] Variational AutoEncoder 41

SO_GAAL [51] Single-objective GAN 40

MO_GAAL [51] Multiple-objective GAN 35

Vdetector [102] Variable size NSA 99

RNSA [30] Random real value NSA 75

as maximum noise value, we had to discard some examples
from our dataset for having higher noises.

Outlier detection methods can detect AAs as outliers

The work of Ruff et al. [71] shows that outlier detec-
tion methods can classify class label from outlier samples.
In multi-class classification, each class separately generate
their own latent space and outlier detected there as nega-
tive class and inliers are detected as positive class and able to
achieve 95%+ accuracy forMNIST class classification. Sim-
ilar approach we experimented with adversarial samples for
single class classification. We took class label ‘0’ as positive
class or inlier, all other 9 classes and adversarial samples for
class 0 are considered negative class or outlier. We trained
with 1000 positive class. We used [101] developed outlier
library in our experimentation. We tested with 500 positive
data, and 500 adversarial sample (FGSM samples generated
using [33,62]) of class label 0. The accuracy was presented in
the Table 3.We can see that one class support vector machine
andV-detector based negative selection algorithmdoes better
than other.

Static defenses can by-passed by adaptive attacks

Carlini el al [17] exhibited an adaptive attack where the
attacker can bypass the known defenses. So, if the defense

is not changes or remain static it will be vulnerable to adap-
tive attacks. Also, more recent works showed that dynamic
defensemechanismwhich claims effectiveness against adap-
tive attacks fails against gradient based adaptive attack [85].

Above natures of adversarial attacks helps us to con-
clude that filter-based techniques candetect noises andoutlier
detection method can distinguish between a adversarial and
clean input but an adaptive attack can be designed to bypass
these defense techniques.

Defense objectives

Researchers have evaluated several defense techniques [8,
16,17,19,20,85] but these evaluations focused on how many
different types of attacks a defense technique can defend
specially prioritized effectiveness against adaptive attacks.
However, many of these defense techniques have imple-
mentation issues, such as needing prior knowledge of the
ML model and dataset. Some of these techniques require
modifying theMLmodel layers or retrain themodel. Retrain-
ing the model also can reduce the efficiency of the model.
Some defense techniques have high computational costs
and are not suitable for ML model’s different domains.
Yuan et al. [96] suggested making threat models consist
of Adversarial Falsification (False negative, False Positive),
white-box, BlackBox, targeted, non- targeted, onetime and
iterative attacks. Carlini et al. [17], suggested that adversar-
ial attack and defense models need to be tested against a
diverse set of attacks. Also, they need to be evaluated against
adaptive attacks. Moreover, Tramer et al. [85] suggested dif-
ferent themes to evaluate a defense model. Keeping these
guidelines in mind, we developed our threat model inclu-
sive of basic, advanced attack and adaptive attack (against
our defenses) types. Carlini et al. [19] also recommended
using at least one gradient-free and one hard-label attack.
To address that concern, we evaluated our proposed method
with gradient-free attacks such as local search attack [60] and
hop-skip-jump attack [23]. For testing against an adaptive
attack, we used BPDA (Backward Pass Differential Approx-
imation [9]), which can be used to attack non-differential
prepossessing-based defenses. Uesato el al. [87] advised to
consider obscurity of adversarial attack when considering
the defenses. [17] pointed out that testing a defense in one
dataset is not enough, therefore we chose multiple datasets
(i.e., MNIST, CIFAR-10, and ImageNet). We considered a
standard distortion ε = 0.3 for MNIST and ε = 8/255 for
CIFAR-10, as current state-of-the-art [85] recommended.
Thus, our threat model is a combination of gradient-based,
gradient-free, and adaptive evasion based adversarial attacks
on multiple datasets. These attacks studied in this work are
a combination of White-box, Black-Box, targeted and non-
targeted attacks. Also, the presented defense will be able
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to defend against attacks that are completely unknown to
the proposed defense scheme. Considering above researchers
suggestions inmind,we aim toprovide an adversarial defense
system which will meet the below objectives:

– Defense needs to work against a diverse set of attack
types. Our provided defense technique should work
against Gradient or no-gradient, white-box or black-box,
targeted or no targeted, adaptive attacks [17].

– Defense should not reduce the accuracy of ML models.
The model accuracy should not get effected after deploy-
ing our defense technique.

– Defense needs to identify threats faster. If a defense sys-
tem takes sizeable computational time and resources, it
will lose the practicability. For example, if the defense
is employed in an autonomous car sensor, the input
responses need to evaluate first. Otherwise, an accident
can happen.

– Defense should not modify ML architecture. Defense
should work for both the white-box and black-box mod-
els. A trained ML architectural information is usually
black-box. So, it is expected that the defense framework
will comply with that.

– Defense should be adaptive in nature and dynamic to
prevent the adaptive attacks.

– Defense should not need to update ifML changes (Resnet
to VGG or ANN to RNN), and it should be cross-domain
(image, audio, text) supported.

Our proposedmethodology

In the Fig. 2, we illustrated the basic concept of our proposed
solution. As we know that it is possible to detect adversarial
input noise using different filters, we will apply filters to
detect noise. We need to know which filter we need and the
difference between the clean and adversarial noise threshold.
that is why we first use the information from the ML model
to determine the input is an outlier for the class label the ML
model is classified or not. If it is an outlier, we will send it
to the adversarial dataset. If not, we will send it to the clean
dataset and update the outlier methods decision boundary
and determine the required filters and the noise thresholds.
Before update/retrain the output and input learning model,
we will inspect the data for adaptive attack patterns in the
adaptive attack detection module.

The Fig. 3 demonstrated our proposed dual inspection
strategy. It is shown that the inspection before and after ML
are independent and can be deployed as a plugin. As in active
learning, when the clean dataset has some data, it will train
the outlier detection techniques, and the ‘inspection after
ML’ module will start to work. After the outlier finds some
adversarial examples, the adversarial dataset receives some

data. When the adversarial dataset has sufficient data, our
multi-objective Genetic algorithm started the genetic search
for filter sequences that are effective against the adversar-
ial noises and the differentiating noise thresholds for these
sequences. As time progresses, MOGA will detect more
adversarial samples, and the knowledge of the outlier detec-
tion technique will transfer to noise detection techniques.
This way ML model has to process fewer adversarial exam-
ples. We will select different filter sequences for each input
and different outlier detectionmethods for each input tomake
the defense dynamic. After each (or a specific amount of
input), outlier methods will retrain, and it will update the
outlier detection decision boundary. Similarly, MOGA will
update the filters library subsequently. This way, both out-
lier and filter-based defense technique will keep themselves
updated as time progress. As this method can be vulnera-
ble by adaptive attack, we will store the data and inspect for
adaptive attack pattern before update the filters and outlier
detection methods. We detailed that method on “Adaptive-
ness and dynamic selection”.

The basic workflows from the Fig. 2:

1. Input will be sent for filters to extract different metrics
(SNR, Histogram etc). There will be a dynamic selection
of the filter set from the filter library.

2. Extracted filter metrics value will check for perturb, if it
is above certain threshold switch S1 will open or other
wise switch s2 and s3 will open.

3. S1 open:

– inputwill be sent to adversarial dataset and the process
will terminate.

– Adversarial dataset will retrain the filter sequence
search for noise detection and change the threshold
value.

4. S3 and S2 open:

– If S3 open, extracted filter metrics value will be sent
to outlier detection system.

– If S2 open, input data will be sent to ML model and
Switch S5.

5. ML model will deliver the output class to S4 and outlier
detection system.

6. Outlier detection system will randomly pick one outlier
detection method. If it detected as outlier witch s1 will
open, otherwise S4 and S5 will open.

7. S1 open:

– inputwill be sent to adversarial dataset and the process
will terminate.

– Adversarial dataset will retrain the filter sequence
search for noise detection and change the threshold
value.
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Fig. 2 Illustration of basic flow
concept for proposed dual
inspection framework. If the
input is not adversarial, the
original input (not the
processed) be sent to the
learning model/ML and after
ML produce class label, that
labels latent space will be used
in outlier method. The outlier
decision boundary and the
threshold of noise will change as
the dataset of adversarial and
clean data set are updated by
each input

8. S4 and S5 open:

– S4 will provide the final output class and S5 will send
the input to clean dataset which will trigger the retrain
of outlier methods and change the outlier decision
boundary.

Multi-objective genetic search for filters

We need multiple filter sequences because we cannot use the
same sequence of filter for every input. A sequence could
be any length. Search for optimal set of sequences require
significant computational time, if we do exhaustive search,
consideringmultiple objectives. that is whywewill employ a
multi-objective GA to search for the optimal set of sequences
as pareto-front solutions. For search filters, we need to con-
sider different factors besides their accuracy. Based on our
objective, our filters need to be fast, that’s why order of filters
are important because different order of filters require dif-
ferent amounts of processing times. It is preferable to have
our solutions time efficient. If we have N number of filters,
then total possible number of sequences will be our search
space. If we do not consider time efficiency, then we do not
need to order in a combination of sequence (For different
order a sequence accuracy remain static but time efficiency
change). We can optimize our search space by limiting the
minimum sequence length and maximum sequence length.
So, our search space equation will be:

OptimizedSearchspace =
N−max∑

k=min

N !
N ! − k! (1)

Here, min andmax are the minimum andmaximum length of
a filter sequence. Suppose, we have 17 filters and minimum
length were 6, then our optimized experimental search space
has consists of 9.6614 search item. It justifies the necessity
of using heuristics search method like GA. In summary, we
need a time-efficient, to produce a reliable performance and
a unique set of sequence. Our designed multi-objective GA
can achieve all these criteria. The purpose of using a genetic
search is to find a diverse sequence of filters detecting AAs
with maximum accuracy while each filter is having distinc-
tive characteristics and capabilities when deployed such a
sequence adaptively (interchangeably) in a ML that will be
unpredictable to attackers compared to a static ensemble of
well-known filters. So, the GA will find not only the best
filter ensemble, but also a set of diverse filter sequences in
multi-objective Pareto-front.

Perturb range/threshold determination of filters

First, we need to process the clean dataset and run all the
filters and calculate theirmetrics value and gather theirMean,
Std Dev, Max. Using algorithm for each filter. Now, if Mean
is μ̄, standard deviation is σ , Our lower range (Lr ) and upper
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Fig. 3 Illustration of proposed dual inspection framework. If the input is not adversarial, the original input (not the processed) be sent to the learning
model/ML and after ML produce class label, that labels latent space will be used in outlier method. Selection of outlier and filer sequence will be
dynamic

range(Ur ) calculation denoted by Eqs. 2 and 3

Lr = Min − σ

μ̄
(2)

Ur = Max + σ

μ̄
(3)

Using Eqs. 2, 3 for 17 filters, we generated list of upper and
lowerange

Encoding

First, we encoded all filters according to Table 2. Here, 17
algorithms were assigned sequence number FT 1, FT 2 . . .

FT 17. These filters are our genes. We will create our indi-
viduals/chromosome using these genes. We generated the
population by random sequence generation using the genes.
So, each sequence is consists of different length of filters.We
remove multiple occurrences of filters in a single sequence.
As example a randomsequence FT 2FT 5FT 11FT 12means
Blur -Census - Morph - Canny. That way, we generated
multiple lengths of sequences as our initial population.

Fitness function

Wehave three objectives. they are accuracy (α), time to detec-
tion (β) and insider diverseness (γ ) of filters in sequence.
Accuracy is the success rate of detection by the filters. The
filter sequence takes adversarial and clean samples from the
dataset. Based on the filter sequence’s metrics value range,
we check how many adversarial samples we can detect and
howmany we falsely detected.We used F1 score as accuracy
value.

α(S) = F1 (4)

For time, if each filter take ti time, then total time to detection
δt can be calculated by

β(S) =
n∑

i=0

t (5)

For insider diverseness, for each filer fi ∈ Fi , here F is the
filter family and f is the filter, S is the sequence.
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Fig. 4 GA to search appropriate
filters

γ (S) =
∑

f ∈ F | f ∩ S| > 0∑
F

(6)

We normalized all three objective data using equation 7

Xsc = X − Xmin

Xmax − Xmin
. (7)

We inversed the Time data, so, we have to maximize all
of the objectives. Our fitness function denoted by

max(f(S)) = ((αn(S)), (βn(S)), (δn(S))), (8)

where αn is normalized accuracy, βn is normalized inverse
time, δn is diverseness factors.

We have penalty function to prioritize simpler solution
and weight values to speed up the GA process. We observed
that, in the beginning α is low and after a certain iteration γ

gets lower. We use W0 for α and W1 for γ as weigh value.

For penalty functions we need below parameters
LengthofBest fitted individual in previous iteration |max f (Si )

∈ ∀(S)|
Size of current Sequence = |S|
Total number of filters = ∑n

i=0 | f | ∈ ∀F
Equation for penalty function value can be denoted by

pf(S) = f(S)

100
× |S| − |max f (Si ) ∈ ∀(S)|∑n

i=0 | f | ∈ ∀(F)
(9)

So, from Eq. 8, fitness for S is

f(S) =
√

(αn(S)2 × W0 + βn(S)2 + δn(S))2 × W1 − pf(S).

(10)

Crossover, mutation and selection

We used an elitist strategy with rank selection [28] and kept
the best performing filters for the next generation in steady-
state genetic search. We used PMX crossover as the order
of the filter sequence are important optimization criteria in
a sequence [88]. In the Fig. 4, We illustrated the genetic
search of near-optimal filter sequences where search termi-
nated after specific iterations or if the fitness values do not
improve for a long period i.e. threshold number of iterations.

One class classifications outlier method

There will be different latent spaces for each class to detect
that class’s outlier. In the Fig. 5, we can see that MNIST
digits have their clusters for each class label, and these are
well separable. In the Fig. 6, we can see filter-based metrics
can very easily differentiate between adversarial and clean
sample. We suggest using an ensemble of different outlier
detectionmethods—for example, a combination of one-class
SVM, isolation forest, and negative selection algorithm. Our
experimental results shows that negative selection algorithm
is random nonlinear learning system, which is applicable for
adversarial detection and it randomnessmade is easy tomake
the system adaptive by regular updating the learning model.

In the Table 4, we experimented the attack sample accu-
racy rate with v-detector generated using different number
of clean samples. It is observed that after each iteration v-
detector performance slightly increased. In the Table 5, we
compare v-detector NSA results with other techniques; we
can see that OCSVM and IF performs better than NSA for
gradient-based attacks for low noise attacks NSA outper-
forms both of them. Variable Autoencoder did not perform
well due to a low number of samples. SOGAL and MOGAL
based techniques were also failed to work with low models.
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Fig. 5 PCA based clustering for class label 0, and 1 from MNIST dataset using each class own latent space

Fig. 6 FGSM based adversarial input differs from their target class using filtered metrics presented using PCA for dimensional reduction

Table 4 Detection of adversarial inputs which classified as MNIST
class label ‘0’ and with clean input of class label ‘0’, after sample size
increased 100 in each step

Attack type Step1 Step2 Step3 Step4

FGSM 0.86 0.92 0.902 0.93

BIM 0.89.0 90.0 90.0 0.90

PGD 0.92 0.94 0.95 0.95

Adaptiveness and dynamic selection

We randomly choose different filter sequence and other out-
lier methods to keep the system dynamic for each input.
After each input, the outlier detection modules are updated
by changing their decision boundaries, making the detec-
tion filters adaptive. However, the filter sequence can change,
and the noise threshold value gets updated after eachMOGA
run. This makes common adaptive attacks ineffective as each
input continuously updates the defense strategy. An adaptive

attacker will first send random clean input. And started to
add some noise in these inputs and send repeatedly until
the classification result changes. That way adaptive attackers
will know the decision boundary of the learning model. Then
adaptive attacker will start creating input that is close to the
decision boundary in the representation space.

In our method, attackers have to bypass our dynamic
and changing adversarial detection method, which decision
boundary is not affected by the actual learning model. If our
filter set or outlier detector method was static this method
would work, but dynamic selection of filterset and outlier
detection method will make it hard to formulate the adap-
tive attack. Additionally, after a certain set of inputs, we
will regenerate negative detector sets by considering these
new inputs as self data. So, entire outliers decision param-
eter would change and the adaptive attacker will not able
to establish a fixed decision boundary line for adversarial
and nonadversarial input data as adaptive attacker is look-
ing for class classification boundary not adversarial and
non-adversarial decision boundary. This update method can

123



3728 Complex & Intelligent Systems (2023) 9:3717–3738

Table 5 detection of adversarial
inputs which classified as
MNIST class label ‘0’ and with
clean input of class label ‘0’

Attack type NSA OCSVM IF VAE SOGAL MOGAL

FGSM 0.93 0.99 0.93 0.65 0.5 0.5

BIM 0.90 0.98 0.91 0.66 0.5 0.5

PGD 0.95 0.99 0.92 0.50 0.5 0.5

MBIM 0.91 0.98 0.94 0.46 0.5 0.5

HSJ 0.88 0.55 0.41 0.65

JSMA 0.9 0.56 0.8 0.83

CW 0.96 0.42 0.66 0.52

DF 0.91 0.45 0.76 0.55

also be vulnerable to adaptive attacks which aim to bias
the method accuracy, we added a adaptive attack detection
module before update/retrain our adversarial detection tech-
niques.

In the adaptive attack detection module, we will analyze
distributions of last certain number of inputs are align with
total distributions of inputs. We will use the Kolmogorov–
Smirnov goodness of fit test (K–S test) compares data with a
known distribution and lets us know if they have the same dis-
tribution. This test is nonparametric as it doesn’t assume any
particular underlying distribution [11]. The Kolmogorov–
Smirnov test determines a null hypothesis, H0, that the
two samples originate from the same distribution. Then we
explore for evidence that this hypothesis should be rejected
and formulate this as probability ρ. If the prospect of the
samples being from different distributions tops a confidence
level we reject the original hypothesis and accept hypothe-
sis H1, which stated that the two samples are from different
distributions. Based on the KS distribution table, if ρ < 1.22√

n
(where n = number of stored input) than the stored input has
inputs from adaptive attack. We disregarded those samples
as these may create data bias in our defense learning system.

In summary, our adaptive defense mechanism consists of
the following properties

– Dynamic selection of filter set sequence which will make
it harder to formulate adaptive attack based on known
filter knowledge.

– Dynamic selection of outlier detection method, it will
make the adaptive attack to consider all outlier detec-
tion method when developing attack input that will make
generating input computationally expensive.

– Defense is always learning which will continue chang-
ing the filter sequences and decision boundary of outlier
detectionmodels. It will make an adaptive attack difficult
to search decision boundary.

– To protect against continuous query-based attacks, we
will monitor and analyze input trends using the K-S test.
The number of inputs considered for the K-S test will be
dynamic. Formulate a query-based attack on the defense

system will be hard due to the randomness of the K-S
test sample number. Our input trend detection system
can effectively monitor adaptive attacks and able to take
countermeasure.

Our defense properties will make the state of the art
adaptive attack ineffective and it will make computationally
harder to formulate new adaptive attacks.

Experiments

Dataset generation

We did a comprehensive experiment with MNIST and
CIFAR-10. We did extensive testing with theMNIST dataset
for all the 10 classes and with the full dataset. We did CIFAR
testing with two classes. After that, we evaluated our method
using EMNIST, Fashion-MNIST, and IMAGENET data-set
which re-validated our methodology. We generated FGSM,
JSMA, and CW samples to test the results. We generated
100,000 FGSM samples using LENET-5. LeNet-5 LeNet-5
CNN architecture is made up of 7 layers. The layer com-
position consists of 3 convolutional layers, 2 subsampling
layers and 2 fully connected layers. For JSMA we generated
100,000 JSMA samples using a CNN. CNN architecture is
made up of 5 layers. The layer composition consists of 3
convolutional layers, 1 flatten and 1 dense layers. All of the
activation functions are using RELU. and last we generated
100,000 CW samples using VGG-16 neural net.

To establish the ground truth for our research we used
30,000 clean image samples, 10,000 FGSM, 10,000 JSMA
and 10,000 CW attack samples on MNIST dataset. For fil-
tering operation we picked 14 filters using python opencv
library. They are medianblur, GaussianBlur, AverageBlur,
Bilateral blur, AdditivePoissonNoise, AdditiveGaussian
Noise, ErodeTopHat ,Blackhat,Morphologygradient,Open-
ing, Closing, Dialte filter. We apply the filer in the image
and than extracted difference between original image and
the filtered image. After that we measure the average and
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Fig. 7 Experimental data representation space for each class of MNIST digits

Fig. 8 Experimental data representation space (here clean is green, red is FGSM, blue is JSMA and yellow is CW)

standard deviation of white color histogram for the extracted
image and horizontal and vertical signal to noise ration for
the extracted image.

In the Fig. 7 ‘b’ we visualized how adversarial (FGSM +
JSMA + CW) inputs of one class label overlap with other
class label compared with ‘a’ where only clean inputs where
presented. This shows that adversarial samples are hard to
distinguish between class labels. In the Fig. 8, we represented
all inputs with their adversarial attack type along side the
clean input. Here blues are the clean one. We can see here
the FGSM which is visualized with red are not overlapping
with clean one or other attack type much. But JSMA and
CW are highly overlapping with each one and also partially
with clean one. CW inputs are more overlapping with clean
samples.

In the Fig. 9, we represented the adversarial and clean
samples after applying 14 filters. In the Fig. ‘a’ of 9, we

represented the SNR values of the images and it showed
FGSM (blue) samples are very easily separable but JSMA
(red) and CW(yellow) are hard to separate using SNR values
only. However, JSMA are more separable but CW and clean
samples are completely overlapping. In the Fig. ‘b’ of 9,
we illustrated using histogram value and it made CW more
separable than the clean ones. In the Fig. 10, we applied
both SNR and histogram metrics together, and it visible that
adversarial and clean samples are nowmore easily separable.
In the Fig. ‘b’ of 10 blues are the clean samples and re are
the adversarial samples. We can see some clean samples are
overlapping with adversarial samples but other way is rare.
In the figure ‘a’ we presented the adversarial attack type two
andwe see someCWsamples are also overlappingwith clean
samples but it is negligible.

In the Fig. 11, we presented each class label adversar-
ial and clean data both without adversarial classification
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Fig. 9 Experimental data representation space after filter applied with one metrics (here clean is green, red is FGSM, blue is JSMA and yellow is
CW)

Fig. 10 Experimental data representation space after filter applied with two metrics

and with adversarial classifications. This visual presentation
shows that, when we each class as inlier and all other as out-
lier, than adversarial samples were more easily detectable.

In the Table 6, we used six different learning method to
differentiate between clean and adversarial attack type using
image pixel information, it is evident that random forest per-
forms better than others and in the Table 7, we converted in as
binary problem where only clean and adversarial input was
classified. SVMmethod performed very poorly as the repre-
sentation spaces was not linear. But random forest performs
well that other methods. But when we applied SNR and His-
togram feature based classification all other method except
SVM started to performs well and neural network started to
outperforms other methods as presented in Tables 8 and 9.

In the Table 10, we presented the identification of different
class labels correctly using SNR and histogram value-based
checking. We used Random-forest learning. It is seen that
some classes are harder to identify than other class labels. As
an example, class 2 and 3 is harder than identify adversarial
class for input label 9.

Experiment with CIFAR and IMAGENET

In the Table 11, we compared v-detector performance on
MNIST digits (0–9) as illustrated in Fig. 11 and 4 class’s of
CIFAR-10 dataset. Our result shows that v-detector outper-
forms other out-lire detector consistently for all attack type
and dataset.
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Fig. 11 Experimental data
representation space for each
class of MNIST digits with
adversarial attack (here clean is
blue, red is fgsma, green is
JSMA and yellow is CW)

Table 6 Adversarial type
classification for MNIST dataset
for Clean, FGSM, JSMA, and
CW

Model AUC CA F1 Precision Recall LogLoss Specificity

Random Forest 0.973 0.845 0.844 0.844 0.845 0.412 0.926

kNN 0.870 0.643 0.624 0.626 0.643 0.753 0.810

Naive Bayes 0.794 0.562 0.444 0.367 0.562 0.947 0.691

Neural network 0.815 0.573 0.501 0.629 0.573 0.919 0.763

SVM 0.527 0.523 0.399 0.434 0.523 2.073 0.606

Logistic regression 0.813 0.566 0.489 0.442 0.566 0.952 0.724
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Table 7 Binary classification
for MNIST dataset for clean and
adversarial (FGSM, JSMA, and
CW)

Model AUC CA F1 Precision Recall LogLoss Specificity

Random Forest 0.998 0.970 0.970 0.970 0.970 0.154 0.985

kNN 0.966 0.844 0.840 0.837 0.844 0.332 0.928

Naive Bayes 0.914 0.737 0.740 0.749 0.737 0.613 0.916

Neural network 0.951 0.816 0.810 0.807 0.816 0.420 0.919

SVM 0.860 0.302 0.208 0.681 0.302 1.598 0.853

Logistic regression 0.937 0.790 0.783 0.778 0.790 0.473 0.910

Table 8 Adversarial type
classification for MNIST dataset
for Clean, FGSM, JSMA, and
CW after applied histogram and
SNR based features

Model AUC CA F1 Precision Recall LogLoss Specificity

Random Forest 1.000 0.999 0.999 0.999 0.999 0.007 1.000

kNN 0.999 0.984 0.984 0.984 0.984 0.038 0.995

Naive Bayes 0.999 0.983 0.983 0.984 0.983 0.203 0.994

Neural network 1.000 0.998 0.998 0.998 0.998 0.008 0.999

SVM 0.896 0.590 0.531 0.815 0.590 1.317 0.864

Logistic regression 0.999 0.983 0.983 0.983 0.983 0.056 0.994

Table 9 Binary classification
for MNIST dataset for clean and
adversarial (FGSM, JSMA, and
CW) after apply SNR and
histogram features

Model AUC CA F1 Precision Recall LogLoss Specificity

Random Forest 1.000 0.999 0.999 0.999 0.999 0.002 0.998

kNN 1.000 0.998 0.998 0.998 0.998 0.005 0.995

Naive Bayes 0.998 0.999 0.999 0.999 0.999 0.042 0.997

Neural network 1.000 0.999 0.999 0.999 0.999 0.005 0.997

SVM 0.996 0.753 0.652 0.814 0.753 0.563 0.265

Logistic regression 0.999 0.997 0.997 0.997 0.997 0.017 0.992

Table 10 Confusion matrix of
MNIST adversarial input
detections using SNR and
histogram value

Predicted
0 (%) 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 9 (%)

∑

Actual 0 96.7 0.2 0.4 0.2 0.5 0.2 0.3 0.7 0.6 0.2 3259

1 0.2 97.5 0.3 0.3 0.3 0.4 0.2 0.4 0.4 0.0 3313

2 0.4 0.3 95.4 0.6 0.8 0.8 0.7 0.4 0.5 0.1 3254

3 0.6 0.3 0.5 95.4 0.7 0.6 0.4 0.5 0.7 0.2 3272

4 0.5 0.5 0.5 0.5 96.4 0.3 0.5 0.1 0.5 0.3 3262

5 0.6 0.5 0.7 0.6 0.7 95.1 0.6 0.6 0.6 0.2 3265

6 0.5 0.4 0.5 0.3 0.5 0.5 96.5 0.2 0.4 0.1 3263

7 0.3 0.5 0.3 0.3 0.6 0.4 0.3 96.8 0.3 0.2 3292

8 0.5 0.3 0.4 0.1 0.3 0.3 0.6 0.5 96.5 0.4 3309

9 0.1 0.2 0.2 0.3 0.2 0.1 0.2 0.2 0.2 98.5 3266
∑

3275 3334 3224 3225 3295 3227 3271 3307 3331 3266 32755

In the Table 12, we presented results using similar
experiments we used for ground truth experiments. Our per-
formance of CIFAR and IMAGENET is very good compare
to the state-of-the-art attack. Also, a good portion of false
positives was failed adversarial examples due to perturba-
tion loss while converting physical form. This result verifies
that the same filters and histogram, SNR-based methods are

applicable for all datasets of the same domain. We also tried
to formulate BPDA attack against our defense but failed to
formulate the attack.

Whenwewere evaluating our defense against an advanced
attack (with very low noises/perturbs) we observed that as
all adversarial attack types aim to reduce the perturbation in
advanced attack types, the magnitude of perturbation gets so
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Table 11 Comparison of results
with different outlier detection
models to compare V-detector
NSA performance with other
OCC methods

Models used MNIST CIFAR

FGSM JSMA CW FGSM JSMA CW

MCD 0.9846 0.99 0.9101 0.8616 0.864 0.7871

OCSVM 0.6851 0.697 0.5421 0.8731 0.535 0.5417

LMDD 0.6673 0.601 0.553 0.5752 0.561 0.5965

LOF 0.997 0.912 0.93 0.8963 0.832 0.8096

COF 0.3991 0.37 0.3568

CBLOF 0.9866 0.959 0.9

HBOS 0.9865 0.915 0.9 0.8354 0.859 0.0016

KNN 0.9993 0.909 0.9628 0.9957 0.925 0.0682

SOD 0.3842 0.461 0.3831

ABOD 0.9994 0.999 0.9776 0.9982 0.922 0.8881

COPD 0.9273 0.996 0.8105 0.8255 0.803 0.7099

SOS 0.4551 0.37

FB 0.9942 0.99 0.9692 0.8863 0.839 0.7716

IF 0.9933 0.97 0.89 0.8444 0.834 0.6339

LSCP 0.9992 0.9 0.9832 0.8982 0.827 0.78

XGBOD 0.5 0.5 0.59

LODA 0.9703 0.99 0.91 0.7766 0.661 0.6286

AE 0.6738 0.73 0.62

VAE 0.8833 0.78 0.7

SOGAL 0.4 0.3 0.3

MOGAL 0.2 0.374 0.34

V-Detector 0.98 0.99 0.94 0.99 0.86 0.78

Table 12 adversarial attacks on CIFAR and Imagenet detection rate (each class has 200 positive and 200 adversarial samples which classifies as
that class by a Alexnet for imagenet and VGG-16 for CIFAR)

Attack CIFAR ‘CAT’ CIFAR ‘Truck’ CIFAR ‘DOG’ CIFAR ‘Ship’ Imagenet ‘gorilla’ Imagenet ‘hyena’

FGSM 0.93 0.92 0.93 0.92 0.68 0.87

BIM 0.90 0.90 0.91 0.71 0.83 0.82

PGD 0.95 0.92 0.92 0.90 0.73 0.72

MBIM 0.91 0.90 0.94 0.96 0.73 0.72

HSJ 0.84 0.65 0.80 0.65

JSMA 0.7 0.76 0.7 0.73 0.63 0.62

CW 0.76 0.67 0.66 0.62

small that they get vanished in rounded values when convert-
ing to visual form. Kurkin and Yan Goodfellow in their paper
describe this phenomenon of destruction rate by the below
equation [47]. Our results in imagenet dataset also effected
by this phenomenon.

Comparison with other methods

There are two primary kinds of thewaywhenmaking defense
against adversarial samples, one is Proactive, and another
is Reactive. Reactive is detecting the adversarial example

before it enters in ML models. An alternative approach is
making the ML model better to identify the right class of the
adversarial example from the targeted class [29,84]. Defense
techniques against adversarial methods can be summarized
in three types:

– Denoising strategy or gradient masking: Try to remove
the distortions of the image.

– Basic adversarial training: Train the neural network with
adversarial example

– Ensemble methods: Add multiple neural network with
transformed dataset to combine a majority result
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Table 13 Here, we provided a
comparison with other
adversarial input detection
techniques based on accuracy

AML detection method MNIST CIFAR Avg

FGSM JSMA HSJ CW FGSM JSMA HSJ CW

RF [38] 0.96 0.84 0.98 0.66 0.64 0.63 0.60 0.72 0.77

KNN [38] 0.98 0.80 0.98 0.6 0.56 0.52 0.52 0.69 0.73

SVM [38] 0.98 0.89 0.98 – 0.69 0.69 0.64 0.77 0.81

Feature Squeezing [95] 1.00 1.00 – 0.20 0.88 0.77 – 0.77

Ensemble [10] 0.99 – 0.45 – 0.99 – 0.42 – 0.71

Decision mismatch [59] 0.93 0.93 0.91 – 0.93 0.97 0.91 – 0.93

Image quality features [5] 1.00 0.90 1.00 – 0.72 0.70 0.68 – 0.83

(Our framework) 1.00 1.00 1.00 1.00 0.98 0.98 0.99 0.94 0.99

On average, we outperforms other methods. As examples, our methods work with 99% accuracy in the CIFAR
data-set where the feature squeezing technique has 0.88% accuracy
Bold indicates best accuracy

In some adversarial defense techniques, well-known robust
recognition models are trained on adversarial inputs proac-
tively, performing defensive distillation and training the
network with enhanced training data all to create a protection
against adversarial example [34,57,66]. For detecting adver-
sarial input, histogram-based methods are also used [68]. In
2017, [19] tested ten defense techniques; by detailed evalu-
ation, they showed that pre-processing techniques could be
easily bypassed. In Table 13, we compared our results with
other techniques; it is exhibited that our defense’s perfor-
mance is similar to other defense techniques, but our defense
technique has some advantages over those like our model
does not modify the ML model, it is impossible to have an
adaptive attack on our defense. ML model efficiency does
not reduce; instead, results get re-verified thus improve trust-
worthiness. However, the efficiency of our approach largely
depends on the individual accuracy of outlier detectionmeth-
ods and noise detection filter sequences.

Adversarial training diminishes the MLmodel’s accuracy
and can make the ML model more exposed to general-
ization [69]. Another disadvantage of Adversarial training
based defense techniques is that we need to retrain the
model whenever some new attack samples are discovered.
It will be hard to update all deployed ML models. Our
strategy does not require any dataset not it changes ML
anyway, thus no effect onMLmodel performance. Most pre-
processing techniques reduce the adversarial effect before
sending it to the ML model. The major drawback of these
techniques is that their processing techniques are static; they
do not evolve alongside the attack. Our strategy updates
itself, it is not vulnerable to this type of adaptive attack. We
also have a detection technique module which can detect
adaptive attack query. Distillation techniques work by com-
bining the double model, and the second model uses the
first model knowledge to improve accuracy. The black-box
attack’s recent improvement makes this out-of-date defense
[22]. The strong transfer-potential of adversarial samples

across neural network models [66] is the main reason for
this method’s collapse. It is not robust as simplistic variation
in a neural network can make the system exposed to attacks
[18]. The advantage of our approach over defense distilla-
tion is we do not need to modify the neural network. Our
proposed approach does not need to know or change any
ML model layer. So, our model remains the same for both
black box and white box attack methods. [39] concluded
that combining/ensemble weak defenses does not automat-
ically improve a system’s robustness. Also, the ensemble
technique remains static and vulnerable to a new attack. Our
proposed solution selects defense technique (filer method
and outlier detection method) dynamically, thus it is robust
and auto-updating decision boundaries also defend against
query-based attacks. Feature squeezing [95] method reduces
the data, and it reduces the accuracy of the MLmodel. There
is no such reduction in actualmodel accuracy in our proposed
solution. [72] proposed a mechanism to leverage the power
of Generative Adversarial Networks to decrease adversar-
ial perturbations’ efficiency. The GAN efficiency depends
on the GAN training, which is computationally complicated
and needs proper datasets, whereas our system does not need
a complicated training method. In summary, any commercial
product that is using advanced machine/deep/reinforcement
learning can benefit from our innovative DF technique.

– Use of commutative dual filtering technique in any
AI/ML–based utility applications.

– Use of negative filtering will prevent Trojan AI to change
decision resulting in robust AI/ML systems.

– Easy to incorporate in existing and future ML systems
will increase adoption and deploy ability.

– Enhanced performance/accuracy and robustness of ML
products and online services will increase in diverse
applications.

– Improved security will result in quality of experience of
users.
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Conclusions

We have designed a dual-filtering strategy that does not
require any modification to the ML model or information
inside the ML model. Our strategy can implement in any
ML-based system without costly pre-training. It is to be
noted that current adaptive attacks are ineffective in our DF
defense. Since our strategy verifies the inputs of the ML
model and its output with non-obvious diverse inspection
and secondary (outlier) detection. Empirical results exhibited
that it could increase the trustworthiness of the ML-based
applications. Our experiments were primarily on the com-
puter vision domain, but our DF technique is also suitable
for other domains (audio, text, time series). Future work will
expand our experiments in different domains and enrich our
filter ensemble for better performance.We plan to release this
filter collection as a library with our DF framework so that
secure learning systems can be developed and deployed. Our
technique can be suitably tuned for speed and accuracy; also,
as it is independent of the ML, making the DF framework
suitable for privacy-preserving applications.
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Appendix A: Adversarial attack types

A.1 Gradient-based attacks

This method computes an adversarial image by adding a
pixel-wide perturbation of magnitude in the direction of the
gradient. This perturbation is computed with a single step,
thus is very efficient in terms of computation time [34]. A
simple formulation:

x ′ = x + ε × sign(Δx J (x, y)) (11)

here, x ′ is the adversarial example that should look similar
to x when ε is small, and y is the models output. ε is a small
constant that controls the magnitude of the perturbation, and
J denotes the loss function of the model.

Optimization-based attack

The Carlini and Wagner method is a bit different from the
above gradient-based methods in that it is an optimization-
based attack that constructs adversarial examples by approx-
imately solving the minimization problem [95]. This formu-
lation of the loss function in CW attack can be stated as

f (x ′) = max(max{Z(x ′
i ) : i �= t} − Z(x ′

t ),−k) (12)

Here, Z(x ′) denotes the logits (the outputs of a neural net-
work before the softmax layer) when passing adversarial
input (x ′) and t represents the target misclassification label
(the label that we want the adversary to be misclassified as),
while k is a constant that controls the desired confidence
score .

A.2 Score-based attack

Other usual adversarial images are constructed by perturb-
ing all pixels with an overall constraint on the strength of
accumulated modification which they tried to make smaller
as possible. But in one pixel or few pixel attack attacker tried
to change as much as possible to convert the images to an
adversarial image [77]. Here differential evolution (DE) is
used, which is a population based optimization algorithm for
solving complex multi-modal optimization problems.

A.3 Decision-based attack

Decision-based AAs basic algorithm is it initialized from a
point that is already adversarial and then performs a random
walk between the adversarial and non-adversarial region in
a way that it fill up below criteria,

– (1) It stays in the adversarial region.
– (1) Distance between two image is reduced [13].

Appendix B: Adversarial defense

Angelova and Abu-Mostafam [6] used pruning training sets
for learning of object categories they applied to bootstrap and
Naïve Bayes algorithm. Brückner and Scheffer use of game
theory in 2011 also shows a diverse approach in develop-
ing input filters [15]. Goodfellow et al. [34] tried to training
on adversarial inputs pro-actively, Papernot et al. performed
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defensive distillation [66] and Miyato et al. training the net-
work with enhanced training data all to create a protection
against adversarial example [57].

Grosse et al. [35] did statistical tests using a complemen-
tary approach to identify specific inputs, that are adversarial.
Wong et al. showed convex outer adversarial polytope can
be a proven defense [92]. Lu et al. [52] checked whether
the depth map is consistent or not (only for image) to detect
adversarial examples.Metzen et al. implemented deep neural
networks with a small “detector” sub-network were trained
on the binary classification task of distinguishing factual
data from data containing adversarial perturbations [56]. The
same year, Madry et al. [55] published a paper on adversar-
ial robustness of neural networks through the lens of robust
optimization. Chen et al. tried to devise adversarial examples
with another guardian neural net distillation as a defense
from AAs [24]. Wu et al. [93] developed highly confident
near neighbor (HCNN), a framework that combines confi-
dence information and nearest neighbor search, to reinforce
adversarial robustness of a base model. Also Paudice et al.
[67] applied anamoly detection and Zhang et al. detected
adversarial examples by identifying significant pixels for pre-
diction which only work for images [98]. Other researchers
such asWang et al. tried with mutation testing [89] and Zhao
et al. developed key-based network, a new detection-based
defensemechanism to distinguish adversarial examples from
normal ones based on error correcting output codes, using the
binary code vectors produced by multiple binary classifiers
applied to randomly chosen label-sets as signatures to match
standard images and reject adversarial examples [99]. Later
that year Liu et al. tried to use steganalysis [50] and Katzir
et al. implemented a filter by constructing euclidean spaces
out of the activation values of each of the deep neural net-
work layers with k-nearest neighbor classifiers (k-NN) [44].
A different notable strategy was taken by researchers Pang et
al. They used thresholding approach as the detector to filter
out adversarial examples for reliable predictions [63]. For
an image classification problem, Tian et al. did image trans-
formation operations such as rotation and shifting to detect
adversarial examples [82] and Xu et al. [95] simply reduced
the feature space to protect against adversary. Monteiro et al
[59] developed inputfiler which is based on bi-model deci-
sionmismatch of image. Sumanth Dathathri showedwhether
prediction behavior is consistent with a set of fingerprints (a
data set of NN) namedNFPmethod [31]. Same year, Crecchi
et al. used non-linear dimensionality reduction and density
estimation techniques [27] and Aigrain et al. tried to use con-
fidence value in CNN [3]. Some other notable works in that
year were meta-learning based robust detection method to
detect new AAs with limited examples developed by Ma et
al. [54]. Another important and effective work was done by
Chen et al., where they tried to keep the records of query and
used KNN to co-relate that with adversarial examples [25].
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