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Abstract
Many models were recently proposed to classify students, relying on a large amount of pre-labeled data to verify their
classification effectiveness. However, those models lack to accurately classify students into various behavioral patterns,
employing nominal class labels, rather than ordinal ones. Meanwhile, such models cannot analyze high-dimensional learning
behaviors among learners according to students’ interaction with course videos. Since online learning data are huge, the
main challenges associated with data are insufficient labeling and classification using nominal class labels. In this study,
we proposed a model based on Graph Convolutional Network, as a semi-supervised classification task to classify students’
engagement in various behavioral patterns. First, we proposed a label function to label datasets instead of manual labeling,
in which input and output data are labeled for classification to provide a learning foundation for future data processing.
Accordingly, we hypothesized four behavioral patterns, namely (“High-engagement”, “Normal-engagement”, “At-risk”, and
“Potential-At-risk”) based on students’ engagement with course videos and their performance on the assessments/quizzes
conducted after. Then,we built a heterogeneous knowledge graph representing learners, course videos as entities, and capturing
semantic relationships among students according to shared knowledge concepts in videos. Our model intrinsically works for
heterogeneous knowledge graphs as a semi-supervised node classification task. It was evaluated on a real-world dataset across
multiple settings to achieve a better predictive classification model. Experiment results showed that the proposed model can
predict with an accuracy of 84% and an f1-score of 78% compared to baseline approaches.
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Introduction

Recently, online learning platforms have become a modern
environment for educational process advancement, most uni-
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versities have headed to leverage these platforms in order for
the educational process to continue, especially in the hard
times of the COVID-19 outbreak. The online learning plat-
forms provide courses in form of video lectures, discussion
forums, assessment online, and even live video discussions.
Video lectures play a prominent role in online courses and
cover all course concepts. Learners spend most of their time
interactingwith video lectures.However, learnersmay ignore
or skip some videos of the course looking for some specific
concepts or knowledge to achieve their goals based on their
personal needs. Accordingly, each student has his own learn-
ing style, which affects his way of getting, understanding,
and perceiving information in learning environments. The
differences in learning behaviors and learning styles of stu-
dents have led to the rise of a wide variety of researchable
problems about students’ behavior in different educational
contexts [1].

Fortunately, online learning environments provide a huge
volume of students’ data educational various that have
established novel research direction called Learning Ana-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-022-00647-3&domain=pdf
http://orcid.org/0000-0003-2747-6722


2184 Complex & Intelligent Systems (2022) 8:2183–2201

lytics (LA), which have primarily focused on resolving
significant educational problems, such as tracking student’s
performance, reducing high dropout rates among enrolled
students, and improving their learning environments [2]. In
this respect, many efforts were made including behavior
prediction [3], course recommendations [4], understanding
user intentions [5], early prediction of students who dropout
[6], assessment of students’ performance [7], and tracing
knowledge [8]. Some related studies indicated that course
completion rate is lower than 5% [9] and the rate ranges
between 0.7 and 52.1% with a median value of 12.6% [10].
Other studies indicated that completion of online courses can
be predicted by analysis of students’ behaviors during video-
watching [11, 12]. They analyzed the viewing behavior to
obtain useful feedback. These feedbacks serve to enhance
the effectiveness of video lectures, to predict student’s per-
formance, and likewise to improve the learning process.
They also indicated that the study of the learning behaviors
result from students’ interactionwith course videos related to
metacognition field and self-organized learning. In line with
this, many of these studies have emphasized the significance
of learner video-viewingbehavior as a key feature for dropout
status predicting. For instance, Lan et al. [13] employed
behavioral data to model learners’ engagement during view-
ing lecture videos and connected it to their learningoutcomes.
The authors selected behaviors interactive such as number
of pauses, number of rewinds, number of fast-forwarding,
and average playback rate. They indicated that it was possi-
ble to measure student engagement only with their log data.
However, those studies ignored the clicks behavior vis a vis
learning styles and individual differences, which can be an
important feature to improve video-viewing behavior anal-
ysis. Kim et al. [14] examined learners’ learning patterns
engaging in open courses through the lens of self-regulated
learning. The authors connected learner engagement with
their ability to self-regulate through time and resource man-
agement skills. The results demonstrated learners, who were
more engaged in social interaction, with high levels of self-
regulated learning skills. Rybakova and Witte [15] observed
that low-engaged students only view the course content. Kim
et al. [16] referred to proxy variables identifying students’
self-regulated learning by employing students’ log data in an
asynchronous learning course video. Results indicated that
their model can identify at-risk students with low engage-
ment in the early days of the online course.

In a MOOCs’ environment, individual skills among stu-
dents are clearly evident in terms of learning duration, elected
learning content, and their learning style. Among all these
skills, learning style is a significant factor that impacts
students’ individual differences [17]. Also, video-viewing
behavior analytics can convert as an important advantage in
the learning process to classify students into different behav-
ioral patterns based on their engagement level.

In line with that, researchers have made relevant contri-
butions concerning how to classify students into different
levels according to their own learning styles and engagement
levelwith educational content. They employedmachine/deep
learning techniques to students’ performance modeling, and
they showed that there is a positive relationship between stu-
dents’ engagement and academic performance with higher
engagement levels associated with better grades [18–20].
Meanwhile, many previous works studied various meth-
ods of defining students’ engagement levels using different
engagement metrics. Some researchers proposed a three-
level model [21, 22] which classified students’ levels as
either high, nominal, or low. Others assumed a five-level
model for classifying students into one of the following cat-
egories: authentic engagement, ritual compliance, passive
compliance, retreatism, and rebellion [23]. Kamath [21] clas-
sified students into three levels based on their engagement
using image recognition as the basis of their classification
by constructing a custom dataset of images representing var-
ious engagement levels. However, this is as only useful in
a real-time scenario, and their models evaluated students’
engagement based on in-classroom interaction, making it
more difficult to adopt in an online environment. These
studies provided approaches for intelligent classification and
prediction of students’ outcomes. However, such approaches
were not based on large-scale online learning platforms.
Additionally, these classification approaches analyze only
the surface student characteristics (e.g., stages of engage-
ment embodied within the motivational perspective, or the
large-grained behavioral and the emotional perspectives), but
they are unable to accurately classify learners into different
behavioral patterns based on video-viewing behavior. Fur-
thermore, the algorithms used require enormous amounts of
labeling data for classification, which is unrealistic for online
learning data. Because, these data are lacking labeled and
classification specifically nominal class labels.

For this purpose, a significant aspect of this study aims
to come up with novel methods to investigate students’
interactive engagement that can be detected by investigat-
ing student–video interaction and their performance on the
assessments/quizzes conducted after. Thus, students are clas-
sified according to the identified learning behavioral patterns,
and then, those who are mostly at-risk of dropping out of
the course are identified. Therefore, instructors can then
make interventions based on student classification by pro-
viding more intensive interventions for the students who are
at a higher risk, or providing lighter interventions for the
students who are at a lower risk. In line with the above dis-
cussion, the first step is to build a heterogeneous knowledge
graph to model the relation among different entities (stu-
dents, videos) and identify the link among students on the
basis of the concept of knowledge related to video. Based on
the heterogeneous knowledge graph constructed, supervised
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classification learning algorithms cannot be employed due to
the huge amount of graph data and high labeling cost. There-
fore, we seek to employ semi-supervised learning classify
students’ engagement levels in online courses.

Semi-supervised classification methods can be expressed
as the incorporation of unsupervised and supervised
approaches [24], and can employ both of them. Many uti-
lized semi-supervised learning techniques have several types
such as self-training, co-training, transductive support vec-
tormachines, and graph-based techniques,which incorporate
labeled and unlabeled data to increase performance accuracy
of prediction [24, 25]. Semi-supervised learning utilizes a
set of labeled and unlabeled data and seeks to converge and
predict data points. Utilizing both classes of data is due to
the enormous amounts of unlabeled data, while labeled data
are difficult to find, and it is a very expensive task to label
the unlabeled data [26]. In graph-based techniques, nodes
and edges are used to model data structure as a graph struc-
ture. Nodes define labeled and unlabeled datasets and edges
represent similarities between nodes [27].

According to above facts, node classification in graphs
is an unsupervised learning task that indicates clustering of
nodes with similar characteristics. Uncovering the labels for
a small percentage of nodes transforms the unsupervised
node classification task into a semi-supervised learning task.
Graph-based semi-supervised learning methods aim to pre-
dict the labels of those unlabeled nodes by utilizing label
dependency information reflected by known label informa-
tion.

In accordance with that, we propose a novel classification
approach based on Graph Convolution Networks (GCNs) as
semi-supervised learning tasks for classification on large-
scale online learning data.

The proposedmodel intrinsicallyworks for heterogeneous
knowledge graphs to classify students’ learning styles and
predict their performance in online courses. The proposed
model also works to solve the gradient vanishing problem in
deep GCNs by adding direct mapping between different lay-
ers of the deep GCNs to ensure that the L + 1 layer network
contains more image information than the L layer. There-
fore,GCNspredict the classes through the ‘message-passing’
mechanism, i.e., they aggregate the semantic representations
between each node and its neighbors at each layer to gener-
ate the final-layer predictions. Then, prediction of students’
performance is formalized in a semi-supervised scenario to
classify them at different levels.

In this method, four behavioral patterns, i.e., High-
engagement,Normal-engagement, Potential-At-risk, andAt-
risk, were adopted as the classification criteria (more details
are presented in Sect. “Classification modes”). First, we
analyzed students’ interaction data in the course using a
proposed algorithm called the feature extraction process to
extract features matrix and then apply proposed algorithm

called the labeling function to label data according to the
identified classifications (Sect. "Dataset description"). Then,
labeled training data were fed to the GCNs’ model, which
were used as training samples to train the model to learn
the high-dimensional student interaction features based on a
heterogeneous knowledge graph and classify students accu-
rately. The trained model was applied on test data (unseen
data) to classify students’ engagement. The results show that
themethod proposed in this paper is superior to the traditional
methods.

The main contributions in this paper are:

– Constructing a heterogeneous knowledge graph to repre-
sent various complex interactions among different types
of entities (student, videos) in an MOOC course.

– We identified four engagement levels, which are High-
engagement, Normal-engagement, Potential-At-risk, and
At-risk.

– By data programming method, we propose label func-
tion for labeling dataset in different engagement levels as
ground truth.

– Formulating prediction of students’ performance as a
semi-supervised node classification on heterogeneous
knowledge graph that snapshots the underlying relation-
ship between course videos and students.

– Proposing a graph convolutional network model to clas-
sify students’ performance in the course according to their
interaction with course videos, which intrinsically work
for heterogeneous networks.

The rest of this work is organized as follows: Sect. "Clas-
sification modes" introduces a classification modes and
problem statement. The proposed model is presented in
Sect. "Classification proposed model". Section "Discussion
Results and Evaluation of the Model" discusses the experi-
ment and the results. Finally, the conclusion and suggestions
for future work are presented in Sect. "Conclusion and future
works".

Classificationmodes

Students’ engagement is a multi-faceted concept and can
be measured differently depending on learning contexts and
objectives [29]. Angrave et al. [30] referred to the identifi-
cation of reliable measures representing various aspects of
students’ participation in learning environments. In online
learning, courses are traditionally organized about video
lectures. Consequently, students’ engagement can be mea-
sured throughout their video-watching. The study of video-
watching behaviors in online learning platforms correlates
to the field of self-regulated learning. In this regard, the
researchers on online learning stated that learners have var-
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Table 1 Description classification modes

Mode Engagement activities

High-engagement Students who watched all videos and at the
same time took weekly quizzes with one
attempt

Normal-engagement Students who watched all videos but did not
watch most of the whole videos and have
worked on weekly quizzes with at least
three attempts

Potential-At-risk Students who watched most of the videos,
but at a time that does not exceed half the
video’s actual time and their performance
for weekly quizzes was not done properly,
and some students rarely did it with
attempts reaching the highest limit (five
times) to re-quiz

At-risk Students who watched some videos for a
short time and did not take weekly quizzes

ious learning patterns, and thus, individual levels should be
investigated by video-watching behaviors analyzed, assum-
ing the heterogeneity of learners [31]. Therefore, learners’
traces have been employed during video-viewing to mea-
sure learner engagement by studying explicit events on
video (i.e., play, pause, seek forward/backward, and so on).
Although far from perfect, explicit events are a good proxy
for reflecting different patterns of engagement that ana-
lyzers can employ to discover whether a student is really
engaged. To provide insights to online learning instructors
about how learners learn differently from online learning
course videos that can meet the individual needs of learn-
ers with diverse learning patterns. In that regard, we need
to identify various classification modes to classify learn-
ers according to their own learning styles. In this study, we
hypothesize four behavioral patterns that can identify stu-
dents’ interaction behavioral indications and can differentiate
them as High-engagement, Normal-engagement, Potential-
At-risk, and At-risk. The mode at which students engage
in the course can be seen by considering features involv-
ing interaction-related features (events while watching-video
such as play, pause, seek forward/backward, speed change,
move slide, change volume, and so on) and effort-related fea-
tures (performing week quizzes and a number of attempts for
each quiz) (see Table 1). Therefore, students can be classi-
fied into any of the proposed modes based on these features
inferred from their educational data collected in online learn-
ing platforms.

Thefirst column inTable 1 shows the fourmodes proposed
of engagement behaviors, while the second column shows
characteristic descriptors for each mode of engagement
behaviors. The first componentmostly includes students who
interacted with the videos and fired events while watching to
understand each part of the videos. Meanwhile, it is possi-
ble that these students were more effective in doing other

activities such as reading, tracking-related topics, and forum
discussion. Additionally, they performed the weekly tasks
and duties and passed the test on the first attempt. This assures
that theywork at a high pace throughout the course. This class
is called “High-engagement”. Similarly, the second compo-
nent involves students who watched all videos, but did not
watch most of the whole videos. It is possible that these stu-
dents were less effective in doing other activities, and the
main factor for gaining information was watching the video
without delving into the relevant topic, which indicates that
their performance in the weekly tests was done in more than
one attempt (at least three); this class falls under “Normal-
engagement”.

In the Potential-At-Risk mode of engagement, students
receive informationwhile video-viewing, without doing any-
thing else related to learning. We conceptualize that these
students may aim to search for information by watching cer-
tain parts of the video, but at a time that does not exceed half
the video’s actual time. Therefore, they do not like to con-
tinue watching the educational videos. In addition, they may
focus their attention on a particular part to pass the exam and
do the weekly tasks, but they fail in the first attempts as a
result of not having acquired the required information.

From an At-risk of dropout mode perspective, students
may view some videos from the first week that highlight
the goals of the course, and then decide whether to continue
learning or not. In fact, during the first half of the course,
vulnerable students often tend to decrease their interactions
with the course activities, or they even might leave it com-
pletely. Therefore, these changes in behavior or interaction
are considered as alerts that show early signs of failure.

To formulate these hypotheses practically, we proposed a
data programming-based algorithm, called the labeling func-
tion, which can label the data to the identified classifications
that canbe adopted as ground truth to be compared to the class
label that the model predicted (more details are presented in
Sect. "Dataset description"). The algorithm was applied to
the data to build ground truth before it was considered as
input data of the proposed model and to provide a learning
foundation for future data processing.

Classification proposedmodel

In this section, the proposed framework of our approach
is explained. It consists of three main modules, which are
feature extraction, heterogeneous knowledge graph represen-
tation, and application of GCN on semi-supervised learning
tasks, as shown in Fig. 1. We explained all the notations used
in this work in Table 2.

We seek to build a model to classify students’ level of
engagement in a course in the current week, given their inter-
action data with course videos in previous weeks. One stage
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Fig. 1 Diagram of proposed Model structure

is to construct students’ interactions with course videos as
a heterogeneous graph with representing features related to
each student and video (clickstream data). Then, the adja-
cency matrix Ai, j ∈ R

k×k from a graph is extracted beside
the features matrix for students as input fed to classification
model. In this respect, we consider the problem of classifying
students as a semi-supervised node classification problem on
a graph where labels are only available for a small subset in
graphs to unknown class labels.

Formally, we can define this problem as follows. Given
students, videos in graph G � (X , E, S, V ) and sxi is the
attribute vector associated with the vertexSi ∈ X , where
X is a finite set of vertices in the given graph G. Let Y �
{y1; y2; y3; . . . .; yl} be the set of l labels. The training dataset
is defined byDt � {(G1; y1); (G2; y2); . . . .; (Gt ; yt )}, where
t is the total number of training samples.

More formally, considering the target student S with his
corresponding interactive data in the course and his corre-
lation with peers Pr in graph, the goal is to calculate the

student’s engaged level. Therefore, the classifying function f
is learned and used to generate a classification list of engage-
ment levels C , such that

f : (S, Pr) → {yi |yi ∈ C, i < C}.

Feature extraction

Based on the historical data of the MOOC course, we extract
features of entities and analyze the different relationships
(e.g., student: S1 and S2 watched video: V1 and video:V2; or
student S1 watched two videos. This first behavior implies a
relation between two students, and the other behavior denotes
a relation between two videos in the same knowledge con-
cept). Therefore, to model MOOC course data structure as
graph for each an online course, we have a set of m videos
nodes denoted as V � {v1, v2, . . . ., vm}. For each videoVv ,
we presume some related features such as name of knowl-
edge concept and events (e.g., play, pause, stop, forward,
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Table 2 Notations and
explanations Notation Explanation

Symbols of the constructed structured heterogeneous knowledge graph

S The set of nodes of students’ indexing by s � {1, 2, 3, …., K}

Xs Matrix of students’ interaction data with the course

V The set of videos nodes indexing by v � {1, 2, 3, …, m}

Xv Matrix of videos features

dv The dimension size of video feature vector

ds The dimension size of students’ feature vector

G A heterogeneous knowledge graph

E Set of edges in G network

Symbols of graph convolutional network model

Ai, j Adjacency matrix where i is node number, j is Node i’s neighbor

N Number of nodes in G network

X Features’ matrix in G network

Nu Set of unlabeled nodes

d The dimension size of each node’s feature

Y Number of classes in output layer
∼
D Degree matrix based on G network structure

In The identity matrix

H (l) Feature matrix given by lth layer in GCN

W (l) Weights of lth GCN layer

σ ReLU (a) � max(0, a) function

gθ � diag(θ) A filter on spectral domain

θ Parameter ∈ RN in the Fourier domain

U The eigenvectors matrix

fsoftmax SoftMax function

Zn
k The GCN output layer that indicates label prediction

Table 3 The basic information
of datasets Name of course Mining of massive datasets Automata theory

Time frame 7 weeks 6 weeks

Modules lectures 15 6

Videos 94 22

Students 6711 6390

Clickstream 1,821,041 675,706

Quizzes 15 6

and backward) that can be transformed as the vector XvεR
dv

with dv being the dimension size after encoding the video fea-
tures. In a likely manner, there are K students enrolled in this
course, which we point out as nodes S � {s1, s2, . . . ., sK }.
Each student Ss has his/her interaction data with video trans-
formed into the vector XsεR

ds with ds is the dimension
size of the vector resulted from encoding students’ inter-
action data with video. Moreover, the behavioral data for

each student si whowatched course videos are represented as
Xi � [X1

i , X
2
i , . . . .X

m
i ] where X

m
i εRds represents encoding

of the behavior for student si during the video vm , m repre-
sents the number of videos for which behavioral data were
collected, and Rds is the dimension of the encoded student’s
behavior per video. The pseudo-code of the feature extraction
process is shown in Algorithm 1 (Table 3).
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ALGORITHM 1: Feature Extraction Process.

Input: 

 S: the set of students.

V: The set of videos.

  F: Number of behavior features.

Output: 

: feature matrix with the size of ×

foreach student ∈ S do

Get interaction features set F .

foreach video v ∈  do

                         foreach event ∈ F  do

        If this event related to video 

                                              Set  += 1

            End

                       The interaction feature of the video v  by student 

v = [ ,v , v ,…..,v ]

                   End

= [ 1, 2,…, ]

  End

       Set the feature matrix  X = [ 1, 2,…. ]

       End

Heterogeneous knowledge graph (HKG)
representation

Based on the historical online course data, a heterogeneous
knowledge graph structurewas constructed tomodel the rela-
tion among different entities (students, videos, knowledge
concept) as G � {V , S, Xv, Xs, E} represents a knowledge
graph G comprising the set of m video nodes V , set of K
student nodes S, video features XvεR

dv , and student inter-
action features XsεR

ds . Since the main goal is to students
classify, E represents relationship between students as edge,
which can be extracted as the adjacency matrix Ai, j ∈ R

k×k ,

where k is the number of the student nodes. ai, j is equal to
1. If there are links between student nodes, otherwise, ai, j
is equal to 0. Furthermore, to link students who have sim-
ilar learning behavioral patterns and knowledge concepts,
first, a G-graph was built with each student and video as
nodes. Thus, we formed different types of links between
student nodes based on the video which they watched as
edges. Besides, video nodes were connected in the graph
based on the knowledge concept between them. Thus, the
main knowledge concept related to the videos was identified
as a self-supervisory signal and employed it as a link (edge)
between students. It can be noted that these concepts are rel-
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evant implicit knowledge in the videos which do not need
prior-labels and costs. As long as the graph is constructed,
the hidden features are iteratively transformed and propagate
information across neighbors to capture k-hops away from
structures in the graph for each student. Thus, we employ
a relational graph convolution network as a representation
learning model to learn the low-dimensional representations
of the entities in a heterogeneous view, as shown in Fig. 1,
which can use the representations of the relationship between
students to classify them.

Graph convolutional networks for HKG
representation learning

According to the definition of heterogeneous information
network (HIN) [32], heterogeneous knowledge graph (HGK)
is denoted as G � (N , E,X) which consists of node set N ,
edge set E between nodes, and X is the feature matrix of
all student nodes. To classify student nodes in graph G, we
feed featurematrix of student nodeswithX ∈ R

k×d and adja-
cencymatrix A ∈ R

k×k that denotes the topological structure
of graph G of students to the graph convolutional networks
(GCN) as the input. The propagation rule between layers is
applied as

H (l+1) � f
(
H (l), A

)
� σ

(
D̃− 1

2
∨
A D̃− 1

2 H (l)W (l)
)

, (1)

where Ã � A + In indicates adjacency matrix correspond-
ing to nodes relation with self-connections, In is the identity
matrix. D̃ � ∑

j Ã j is the degreematrix of graphG, andW (l)

is a layer-certain l trainableweightmatrix. H (l) represents the
feature matrix given by lth layer; and the H (0) � X f where
X f represents feature matrix input into the first GCN layer.
Here, σ(.) is an element-wise non-linear activation function
such as ReLU (a) � max(0, a) and H (l+1) � Zn

y the output
of the last GCN layer that indicates the label prediction for
all nth node, and y is classes number.

InGNNs, the convolutional layer aggregates a node neigh-
boring nodes information and creates a higher level of node
embedding vector by Eq. 2:

hi � σ

⎛
⎝∑

j

1

vi j
h jW

⎞
⎠, (2)

where node j is node i’s neighbor.

The proposed model is graph-based semi-supervised
learning of node classification task by GCN [i.e., the graph
structure (edges of the graph) enables the GCN model to use
a set of static training nodes to predict unlabeled nodes]. On
the basis of that, the problem of student’s performance clas-
sification can be formatted in graph-based semi-supervised
learning as a node classification task, where label informa-
tion is smoothed over the graph via some form of explicit
graph-based regularization. Therefore, the proposed model
adopts a multiple-layer graph convolutional network which
was presented in [33] because of its capability to employ deep
learning on structure data of graphs by relying on an effec-
tive variant of CNNwhich performs directly on graphs.More
specifically, it should be noted that a GCN cannot propagate
the label information adequately into the whole graph with
only a few labels, because refined employment of Laplacian
smoothing may mix vertical features of various categories
and render them unknown while training [34]. Therefore,
GCN requires a considerable quantity of labeled data. The
most stable nodes for each class are selected and then added
to the training set. Increasing the number of static training
nodes improves accuracy of predictions.

Furthermore, the main idea of the proposed model is that
we want to learn a better set of latent features to understand
students’ performance and to better classify them, rather than
only using his features alone. The GCN model has two used
layers. The first layer is employed to consolidate the features
extracted of all the student (i.e., the 1-hop neighbors for a
student Si that takes into account all videos watched). Then,
using the second layer would furthermore incorporate the 2-
hop neighbors which would involve information from all the
neighbors of Si who have the same knowledge concepts, and
consequently provide an additional context to learn a more
comprehensive embedding for student.

Thus, to boost the performance of GCN more accurately
and apply semi-supervised learning, the spectral convolution
on the graph is employed [35] as

gθ × x � UgθU
T x, (3)

where gθ � diag(θ ) indicates a filter on spectral domain, U
is an eigenvector matrix of the normalized graph Laplacian
L � U�UT with � is eigenvalue matrix of L . Equation 3 is
a complex computation in this type of spectral convolution.
Therefore, to reduce that, the Chebyshev polynomials [36]
are applied
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gθ × x ≈ U
k∑

k�0

θ̀kTk
(∼
�

)
UT x �

k∑
k�0

θ̀kTk
(∼
L
)
x, (4)

where Tk(•) indicates Chebyshev polynomial of kth order.

With rescaled � by
∼
�� 2�

λmax
− IN , λmax represents the

largest eigenvalue of L . Thus, the
∼
L� 2L

λmax
− IN . The expres-

sion in Eq. 4 depends only on nodes that are maximum at K
steps away from the central node (Kth-order neighborhood,
[36] employ this K-localized convolution to define a convo-
lutional neural network on graphs). According to [33], the
linear formulation of a GCN approximates λmax � 2 and k
� 2, and under these approximations, Eq. 4 is simplified into
Eqs. 5, 6, and 7

gθ × x ≈ θ̀
0
x − θ̀

1
D− 1

2 AD− 1
2 x, (5)

with parameters
‘
θ
0
and θ̀1 can be further simplified by

‘
θ
0

�
θ̀1 � θ

gθ × x ≈ θ
(
IN + D− 1

2 AD− 1
2

)
x . (6)

The IN + D− 1
2 AD− 1

2 normalized to [0,1]

gθ × x ≈ θD− 1
2 AD− 1

2 x . (7)

In this way, nodes can be selected more accurately and
possible error classification is reduced. Thus, the forwarded
proposed model takes the simple form of

Zn
k � f (X , A) � fsoftmax

(
Ã fReLU

(
ÃXW 0

)
W 1

)
, (8)

where W 0 is weight matrix of input-to-hidden for a hidden
layer, W 1 is weight matrix of hidden-to-output. X is feature
matrix for all nodes, and Ã is normalizedmatrix calculated by

Ã � D̃− 1
2

∨
A D̃− 1

2 , and Zn
k is the final output for output layer

with the SoftMax function that indicates the label prediction
for the ith node belonging to the class yi ∈ |Y |.

To train the proposed model to classify, loss function as
the cross-entropywas employed to evaluate error over limited
labeled instances as

Lsemi �
∑
i∈Dl

∑F

f �1
Yl f lnZl f , (9)

where Dl is a set of labeled nodes, and F is the output feature
dimension, which indicates class counts, and Yl f is ground
truth.

In the context of semi-supervised node classification tasks,
a classifier targets to learn samples D from a set of N
training. These samples are separated into an unlabeled set
Du � {ni } Nu

i and a labeled set Dp � {
(ni , yi )} pl

i , where
yi is one label for C classes. The prediction for unlabeled
Nodes is unsupervised learning that we aim to perform semi-
supervised for these Nu unlabeled samples, assuming that a
label y is available for these samples. The pseudo-code of
proposed model during training and optimizing is shown in
algorithm 2.
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Algorithm 2: The proposed model during training

Input: 

X ∈ ×  : the matrix of data feature.

C ∈ × : the masked ground truth label matrix.

 : the indices set of training data.

A : the adjacency matrix.

n_epoch: the number of training epochs.

output: node representation κ

Randomly initialize 0 and 1 

foreach t in range (0, n_epoch) do

          = softmax  0 1            →(8)

          

         ℒ =
∈

=1
            →  (9)

      Updating 0 and 1 using ∂ℒ

∂ 0 
 and ∂ℒ

∂ 1 

End for

Experiments and performance evaluation

In this section, the experiments are conducted on two differ-
ent datasets to evaluate prediction accuracy and weighted-F1
score of students’ performances on each class (4 class levels)
and semi-supervised node classification.

Dataset description

The datasets employed in this study were collected by the
Center for Advanced Research Through Online Learning
(CAROL) [37] at the University of Stanford, which were
offered over the SELF-PACED and Fall 2016. Each of these
two courses falls under computer Science topics. The first
course is “Mining Massive datasets”, and the second one is
“Automata Theory”. Each course includes a mixture of top-
ics which are divided into multi-modules of videos related

to the specific concept of knowledge and homework on
sequence weeks and a final exam. Table schema for each
course includes three tables which are “events Extract”,
“video Interaction”, and “activityGrade”. In the video inter-
action table, each record represents students’ behavioral data
with any events of video such as (play, pause, speed change,
and so on.), student/video identification information, and the
course. Homework assessment grades are recorded in “ac-
tivity grade” table, and the other events related to the course
are stored in “eventsExtract” table (e.g., click on website,
problem, go to the discussion, and extra events). Table 2
exhibits a summary of the basic information about the data
of the two courses after pre-processing. This is done by pre-
processing the dataset and relevant features extraction for
students (behavioral data selected), video events (e.g., play,
pause, seek fore/backward, stop, load), and related knowl-
edge concept. We noticed that most of the students did not
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interact with all the videos sequentially for all weeks. They
sought to understand or absorb specific knowledge through
their engagement of some concepts of related videos.

Data pre-processing

Before the data become fit to be analyzed, additional data
preparation techniqueswere conducted, such as removing the
empty rows (rows with null values), labeling, and encoding.
The error-free data were obtained. We also converted the
string variable to be assigned as a numeric variable to fit
analysis processes.

Since, the scenario followed is to classify students into
four different levels (not only pass and drop out) according
to their interaction with course videos of the previous weeks
and their correlationwith peers in the same concept of knowl-
edge. Therefore, when the proposed model is trained on the
current data, there is no consistency between ground truth
and the class label that themodel has predicted (four classes),
because the real data typically contain the final score of the
student (1 is pass, or 0 is failure). Besides, when evaluating
the student’s performance in a specific week, it also lacks
the result of the student’s performance. Accordingly, one of
the requirements is data labeling to different classes that can
be adopted as ground truth to be compared with the class
label that the model predicted. Data labeling is an important
manner of data pre-processing for machine learning tech-
niques, in which both input and output data are labeled for
classification to provide a learning foundation for future data
processing.

As part of this work, we have used data programming
[38], a model for programmatic creation and dataset training,
which enables experts of the domain to more rapidly train
machine learning systems. In data programming, instead of
hand-labeling each instance, users provide a set of heuristic
rules called labeling function that provides a label for each
point group of the training data.

A labeling function draws a pattern which users enable
to present to their model, which is simpler to encode than
as a set of hand-labeled instances. Labeling functions do not
require to have perfect accuracy or recall; thus, the effect
of a feature at the end of the performance is based on the
training set and on statistical attributes of the model [39].
The labeling functions require to set certain conditions and
rules that can seamlessly synthesize labeling functions. To
achieve this, we investigated some of the features that involve
video-related features and the effort-related feature (perform-
ing week exams and a number of attempts for each exam) to
conclude whether the student is engaged or not.

Many previous studies have proposed different engage-
ment metrics. Koster et al. (2016) proposed employing
interaction frequency with a tablet-installed app (opening,
closing application, accessing the material, and browsing a

questionnaire) to identify students’ engagement. Similarly,
Ramesh et al. (2013) employed three key interaction-related
features to investigate students’ engagement level inMOOCs
setting. They considered the number of posts in forums, a
number of content views, and binary indicators of assignment
completion as metrics to determine the engagement level of
students in a three-level model. In a similar way, several met-
rics were presented by Kim et al. (2016), such as the number
of visits and the total time spent in LMS as proxy features as
indicators for academic performance in asynchronous online
discussion. The metrics of engagement employed in the lit-
erature provide an inspiration to the type of metrics that can
represent the engagement of students in an online learning
environment. In linewith that, we propose interaction-related
features and effort-related features as proxy metrics for data
labeling based on the engagement level of students.

Interaction-related features are defined as a sum of aver-
ages of video-viewing time relative to the actual video time,
whereas effort-related features represent the effort commit-
ted by the student to perform the week exam and the count of
attempts times for taking the exam. For interaction-related
feature (watching videos rate), watching rate (WRV ) was
employed for each video watched by student S, which was
calculated based on the watched event on its time duration
as follows:

WRV � Wt

vt
, (10)

where Wt is the spent time of student S to viewed video
V and vt is time duration of video. Second, WRs equation
mathematically quantizes videos viewing. Furthermore, it
can estimate an average of the viewed videos for a single
student as follows:

WRS �
∑m

i�1 WRv

m
, (11)

where
∑m

i�1 WRv is sum of the averages of the viewing of
student S of all course videos, and m is the number of the
course videos. Based on the WRS values, it is possible to
know the average of watching the videos of the entire course
for each student.

Based on these two metrics and the formulation of the
classification modes mentioned in the second section (Table
1), we construct the label function. The pseudo-code of label
function is shown in algorithm 3. The label function was
implemented on the dataset to automatically label data.
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Algorithm 3: The label function.

Input: X ∈ ×  : the matrix of videos for students, quizzes degrees and number of 
attempts.

Output: Z ∈ × : labeled data, k is number of labels.

foreach S ∈ X do

foreach v ∈ X do

= Calculate the rate of the average of the time a student spent 
watching a video relative to the video's duration (according to equation 10).

= Calculate rate of sum of the averages on videos number according to 
equation 11.

     R=Check result’s quizzes(qz) and the number of attempts(T) for every quiz.

=

1             ≥ 50 ∧ = 1,
2             ≥ 50 ∧ = 2,

 3             ≥ 40 ∧ ≥ 3,
 4             ≤ 39 ∧ ≤ 5

     Define the Label function as: 

=

― ≥ 80 ∧ = 1,
≥ 60 ∧ = 2,
≥ 45 ∧ = 3,

― ≤ 44 ∧ = 4

According to the outcomesof themetrics proposed.There-
fore, each student was marked by a label indicating the level
of his engagement. For example, students who had the high-
est participation level were labeled in the high-engage class.
Likewise, the least participating students were labeled in the
likely dropout class. The data labeled column will be used
as ground truth to evaluate the class label that the model pre-
dicted (four classes) during application on the testing data
and the new data.

Experimental settings

By the heterogeneous knowledge graph constructed tomodel
the relation of course videos, students, and knowledge con-
cept, the symmetric adjacency matrix A was extracted using
edges between the nodes and is fed into GNNmodels along-
side node featuresmatrix. The proposedmodelwas evaluated
for semi-supervised node classification tasks. Therefore, the
labels are encoded and converted to a one-hot encoding.
The spektral package [40] was used to implement the model

and was applied with TensorFlow and Keras packages. The
hyper-parameters of the model are tuned according to [33],
where the same dataset splits are chosen with the validation
set of 500 labeled examples for hyperparameter optimization
(dropout rate for all layers, L2 regularization factor for the
first layer, and the number of hidden units). The grid search
method is used for hyperparameter tuning where we built a
model for each possible combination of all of the hyperpa-
rameter values given, assessing eachmodel, and deciding the
structure which produces the best results. Many parameters
were deployed to optimize performance of model output and
employ the hyperparameter optimization approach to find the
best model. The proposed model ran with 200 epochs with
a learning rate set to 0.001 with Adam optimizer and the
batch size adapted with the whole graph size. Otherwise, the
graph would be shuffled. Weight regularization and dropout
techniques were adopted to avoid over-fitting and to regular-
ize the network. Besides, the TensorBoard in the callbacks
called to monitor training and validation accuracy and loss.
The hyper-parameterswere optimized on the dataset “Mining
of Massive Datasets” only and used the same set of param-
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Fig. 2 Diagram of GCN trainable model

Table 4 Summary of datasets statistics used in experiments.

Name of course Mining of massive datasets Automata theory

Nodes 6805 6412

Edges 22,159 11,076

Classes 4 4

Features 202 152

Training nodes 80 80

Validation nodes 500 500

Testing nodes 1000 1000

Label rate 0.011 0.012

eters for the dataset “Automata Theory”. Figure 2 shows the
structure of the GCN model which was used as trainable for
both datasets. During training the model on both datasets, 20
labeled nodes per class were employed for training, and 500
labeled samples were randomly selected for the validation
set, and 1000 labeled samples were selected as test nodes to
evaluate the model, as shown in Table 4. The label rate refers
to the ratio of labeled nodes to the total number of nodes. The
transductive setting was implemented, which means that the
whole graphwas fed to themodel during training and testing.
Bool masks were employed to split training, validation, and
testing of data, and were set to sample weight argument.

During training, the proposed model was performed on
200 epochs due to the Early Stopping function implemented
with patience of 20. This means that training will stop once
validation loss stops at a decrease of 20 sequential epochs.
The history object was employed from the fit function, which
can store history values of accuracy and loss to plots between
training and validation, which can enable us visualize per-
formance of model. At the end of training the model, we
obtained the suitable model, because accuracy of training
was 84%, and loss score was 26% in dataset 1, while the rate
of accuracy was 82% and loss score was 29% in dataset 2,
as shown in Fig. 3.

Discussion results and evaluation
of themodel

To verify efficiency and accuracy of the proposed model
on semi-supervised learning tasks for prediction of stu-
dents’ performance, the weighted-F1 score which is the
harmonic mean of recall and precision was used. As men-
tioned before, the dataset involves four different labels
to detect the level of students’ performance through their
engagement with the course, namely “High_engagement”,
“Normal_engagement”, “At-risk”, and “Potential_At-risk”.
According to the classification report, Table 5 shows classi-
fication metrics precision, recall, and f1-score, which were
calculated by true and false positives, and true and false nega-
tives on a per-class basis. Themacro average of F1-score was
80%, and accuracy rate was 84% and 82% in both datasets,
respectively. Therefore, the model can classify students into
different levels based on their learning styles. The t-SNE
algorithm [41] was employed to visualize the first hidden
layer representations as 2D during training themodel on both
datasets.

Each node (or student) was represented as a point in the
plot, while each type of class wasmarked by a different color.
It can be noted form Fig. 4 that the data of each class were
distributed and allocated more clearly, which illustrates the
discriminative ability of the proposedmodel to conduct graph
node representation and semi-supervised classification tasks.

To further evaluate efficiency and generalizability of the
proposed model, performance of the model was compared
to machine learning methods as the semi-supervised node
classification task for student performance classification on
the test data. In baselinemethods,we concatenated the course
video features and students’ features (i.e., behavioral data)
and normalized them by min–max scaling to the 0–1 range
and transferred them into a single vector, which was fed for
training and prediction of baseline methods. These baselines
are as follows:

• In DNN, two layers were used in the training each of
which had 128 units and ReLU function, and some param-
eters, such as learning rate at 0.001 with Adam optimizer.
Dropout layer and the output layer with SoftMax function
were set.

• A support vector machine (SVM) [42] with radial basis
function kernel (RBF) was set to regularize the parame-
ter set to 1 with parameter cost and gamma. Therefore, a
model constructed a hyperplane to distinguish samples.

• Random Forest [43] is an ensemble learning method of
classification and regression which suits many decision
trees on different sub-samples of training data and uses
themean to improve prediction accuracy and prevent over-
fitting.
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Table 5 Classification results of the proposed model for both datasets

Course name/classes and avg Mining of massive datasets Automata theory

Precision Recall F1-score Support Precision Recall F1-score Support

At-risk 0.96 0.98 0.97 705 0.97 0.93 0.95 594

Normal-engagement 0.76 0.72 0.74 62 0.74 0.7 0.71 79

High-engagement 0.83 0.78 0.81 149 0.78 0.91 0.84 192

Potential-At-Risk 0.75 0.66 0.7 84 0.73 0.72 0.72 135

Accuracy 0.84 0.82

Macro avg 0.82 0.78 0.80 1000 0.80 0.81 0.80 1000

Weighted avg 0.91 0.90 0.90 1000 0.88 0.87 0.87 1000

Table 6 Comparison results of proposed model and baseline models

Course name Mining of massive datasets Automata theory

Methods Classes and avg Precision Recall F1-score Support Precision Recall F1-score Support

The proposed model At-risk 0.96 0.98 0.97 705 0.97 0.93 0.95 594

Normal-engagement 0.76 0.72 0.74 62 0.74 0.7 0.71 79

High-engagement 0.83 0.78 0.81 149 0.78 0.91 0.84 192

Potential-At-Risk 0.75 0.66 0.7 84 0.73 0.72 0.72 135

Accuracy 0.84 0.82

Macro avg 0.82 0.78 0.80 1000 0.80 0.81 0.80 1000

Weighted avg 0.91 0.90 0.90 1000 0.88 0.87 0.87 1000

DNN At-risk 0.9 0.92 0.91 705 0.9 0.94 0.92 594

Normal-engagement 0.74 0.72 0.73 62 0.78 0.76 0.77 79

High-engagement 0.89 0.73 0.8 149 0.75 0.78 0.75 192

Potential-At-Risk 0.61 0.73 0.66 84 0.62 0.74 0.67 135

accuracy 0.82 1000 0.81 1000

Macro avg 0.78 0.77 0.77 1000 0.76 0.80 0.77 1000

Weighted avg 0.86 0.86 0.86 1000 0.82 0.86 0.84 1000

SVM At-risk 0.89 0.85 0.86 705 0.87 0.85 0.86 594

Normal-engagement 0.67 0.64 0.66 62 0.51 0.67 0.58 79

High-engagement 0.76 0.74 0.75 149 0.76 0.79 0.77 192

Potential-At-Risk 0.69 0.7 0.7 84 0.67 0.69 0.68 135

accuracy 0.79 1000 0.77 1000

Macro avg 0.75 0.73 0.74 1000 0.70 0.75 0.72 1000

Weighted avg 0.84 0.80 0.82 1000 0.79 0.80 0.79 1000

Random Forest At-risk 0.88 0.87 0.88 705 0.87 0.93 0.9 594

Normal-engagement 0.67 0.74 0.71 62 0.51 0.67 0.58 79

High-engagement 0.86 0.8 0.83 149 0.71 0.79 0.75 192

Potential-At-Risk 0.67 0.73 0.7 84 0.7 0.79 0.74 135

accuracy 0.79 1000 0.78 1000

Macro avg 0.77 0.78 0.78 1000 0.69 0.79 0.74 1000

Weighted avg 0.84 0.83 0.85 1000 0.78 0.86 0.82 1000
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Fig. 3 Accuracy and loss plots visualization during training the proposed model by validation and train dataset.

Fig. 4 T-SNE visualization of hidden features for a proposed model on both datasets to classification the students’ performance with different
clusters

These methods were employed in previous studies [44,
45]. They achieved excellent performance to predict stu-
dents’ performance in various perspectives. In previous
studies, SVM achieved an accuracy rate of 79.95–89.14%
in [46], and Random Forest achieved 81.25–96.01% in [44,
45], while in [47], DNN outperformed SVM and Random
Forest. Our finding is compared to the results of baseline
methods in terms of accuracy and f1-score as exhibited in
Table 6. Our proposed model has higher accuracy of pre-
diction of students’ performance, whereas baseline methods
did not achieve good prediction in terms of accuracy and f1-
score of 76.9–82%, whereas RF achieved an accuracy rate
of 79.3–78.3% and an f1-score of 74–78%. DNN outperfor-

mance rate was 82–81.9% in accuracy and 77% in f1-score
for both datasets’ score. SVM achieved an accuracy and fl-
score of 78.6–74%, respectively. According to Table 6, the
proposedmodel has an average accuracy of 3.5% higher than
DNN, and 6% higher than Random Forest. The best results
are marked as bold. In addition, the t-SNE algorithm was
employed for baseline model outcomes to visualize the sim-
ilar student nodes clustered together in the graph on “Mining
of Massive Datasets” dataset, as shown in Fig. 5. The t-
SNE algorithm explores patterns in the data by identifying
observed clusters to group local data points closer to each
other based on the similarity of data points with multiple
features. Figure 5 generated by t-SNE contains some points
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that are clustered with the incorrect class; however, most of
these points correspond to distorted digits, many of which
are difficult to identify.

Figure 4 constructed based on the proposed model is sig-
nificantly better, since it models many of the nodes of each
class fairly close together, but none of the classes are clearly
separated. In contrast, the t-SNE in Fig. 5 shows much dis-
tribution of data points. Moreover, data in Fig. 5 are not
distributedor allocatedmore clearly for each classwhencom-
pared to Fig. 4, which explains the discriminative capability
of the proposed model to conduct graph node representation
and semi-supervised classification tasks.

For further investigation about the effectiveness of the pro-
posed model, below is an extensive comparison between our
results and results of the previous studies which used GCN to
analyze MOOCS data in terms of accuracy and F1-score. In
[48], attention-based graph convolutional networks model
is used to predict students’ performance and detect at-risk
students by analyzing students’ data from previous courses.
That model achieved a percentage of F1 scoring 70–78% for
detecting at-risk students based on data of the whole courses
and prior courses. In the same way, the paper [49] employed
GCNs as an approach to predict students’ performance in
the next semester based on their previous final exam results.
The model was able to predict an average accuracy of 81.5%.
Similarly, [50] proposed a model based on GNNs to predict
students’ score level on each question in interactive online
question pools. Theymodeled students’ performance in inter-
active online question pools as a node classification problem
on a heterogeneous network (questions, students). Themodel
achieved a relative prediction accuracy of 66%.

In the same context, [51] is the most similar work to our
work. Authors studied the impact of video-viewing behav-
ior on learners’ performance to predict whether or not a
learner will succeed. They did not focus on clickstreams
learners made, but they studied the pedagogical sequences in
which those clicks were made. Thus, the text GCNs’ model
to predict learners’ performance is used. Text GCN results
achieved an average accuracy of 67.23%, while our model
achieved better results in accuracy matrices, which ranged
from 82 to 84%.

Furthermore, the most important advantage of our model
is its ability to predict student’s performance based on the
weekly or the entire course data, in addition to classifying stu-
dents according to their level of engagement, which enables
those in charge of the course to perform a timely intervention.

In general, detecting at-risk students of dropout and pre-
dicting their performance are the primary tasks for early
prediction and recommendation systems. The ability of a
model to provide feedback for its predictions can increase
its reliability.

Besides, the graph-based prediction model can visualize
students’ behavior changes over the course and give the inter-

pretability of the prediction. Moreover, in learning-based
models, the model learns the graph structure that helps to
predict students’ performance. Thus, graph representations
for the model output show high prediction performance that
can provide insight regarding students’ status. For decision-
makers, understanding the reasons behind predictions can
help to reveal students’ knowledge status efficiently and log-
ically.

In this respect, our proposed model was performed as
learning-based through semi-supervised tasks. Students’ per-
formance was analyzed in two steps. In the first step, based
on students’ association with the course videos, a knowl-
edge graph was built between the students and the videos
that were viewed by them as graph-structure data along with
topology of graph which links the students who share the
same concept of knowledge besides extracting important fea-
tures of students’ interaction with concepts of knowledge
of the course-related content. Accordingly, the model can
update students’ status. In the second step, the performance
of students was assessed. In this study, students’ engage-
ment level was classified into four levels. The GCN model
was used, which showed its efficiency better than baseline
methods which do not take into account the structure of
the knowledge graph. Wherever there is an update of the
knowledge graph structure, students’ performance is evalu-
ated. Therefore, using a heterogeneous graph representation,
this proposed model will improve students’ acquisition of
learning if compared to any statistical method relying solely
on a static graph snapshot. More specifically, the proposed
model can track students’ knowledge status better than the
previous models, which do not consider knowledge graph
structure.

The proposedmodelwas applied on twodifferent datasets.
The second dataset was used as testing data. This indicates
the generalizability of the model to other online courses data.

Overall, such a model could be employed during learning
the online course to capture students’ interaction data aggre-
gated from previous weeks to classify students’ engagement
level and predict their performance in the next week. Instruc-
tors can know students who are likely to perform poorly and
thus provide some intervention to themwith the limited inher-
ent resources in online systems.

Conclusion and future works

Predicting students’ performance and retention is vital in
learning analysis field in MOOCs courses. In this paper, we
proposed a model to predict students’ performance based on
their engagement with course videos and their performance
on the assessments/quizzes conducted after. The Graph Con-
volutional Network (GCN) was adopted in model structure
for semi-supervised learning tasks to formalize students’
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Fig. 5 T-SNE representation of baseline models outputs to classification the students’ performance into different clusters on “mining of massive
datasets” course.

behavioral data in a more natural and intuitive way as a
node classification problem. Students, course videos, and the
interaction between them are represented as a heterogeneous
knowledge graph. The proposed model utilizes the input of
each layer data of vector representations and the adjacency
matrix of the corresponding graph structure. Many extensive
experimentswere performed to assess the proposedmodel on
different datasets. Results of the experiments showed that the
proposed model outperformed baselines approach in terms
of accuracy and f1-score. In addition, it is more efficient and
feasible in classifying representation of students and in iden-
tifying students who are at-risk.

Overall, the proposed model can be applied to track stu-
dents’ performance. This may provide decision-makers and
instructors with feedback about students who are at-risk of
failing a course, which can help stakeholders to decide the
right response/s that may augment the final outcomes of the
course.

In futurework,wewill extend a heterogeneous knowledge
graph by including other students’ interactions or by link-
ing students’ behavior data from a social network for better
predictions in online education, taking into account other fac-
tors such as assessment types. In addition, we seek to identify
similarities between knowledge concepts of different courses
and predict related courses for the future using hybrid meth-
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ods based on Machine Learning Methods. We assume that
this will be highly important in improving online learning
systems.
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