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Abstract
Fuzzy soft set theory is an effective framework that is utilized to determine the uncertainty and plays a major role to identify
vague objects in a parametric manner. The existing methods to discuss the competitive relations among objects have some
limitations due to the existence of different types of uncertainties in a single mathematical structure. In this research article,
we define a novel framework of fuzzy soft hypergraphs that export the qualities of fuzzy soft sets to hypergraphs. The
effectiveness of competition methods is enhanced with the novel notion of fuzzy soft competition hypergraphs. We study
certain types of fuzzy soft competition hypergraphs to illustrate different relations in a directed fuzzy soft network using
the concepts of height, depth, union, and intersection simultaneously. We introduce the notions of fuzzy soft k-competition
hypergraphs and fuzzy soft neighborhood hypergraphs. We design certain algorithms to compute the strength of competition
in fuzzy soft directed graphs that reduce the calculation complexity of existing fuzzy-based non-parameterized models. We
analyze the significance of our proposed theory with a decision-making problem. Finally, we present graphical, numerical, as
well as theoretical comparison analysis with existing methods that endorse the applicability and advantages of our proposed
approach.

Keywords Fuzzy soft competition hypergraphs · Fuzzy soft common enemy hypergraphs · Fuzzy soft neighborhood
hypergraphs · Fuzzy soft k-competition hypergraphs · Decision-making

Introduction

Fuzzy set theory, initiated by Zadeh [1] in 1965, is a pow-
erful approach to study partial existence of objects between
absolute true and absolute false. This technique of fuzzi-
ness has numerous applications in wireless communication
for selecting appropriate network, information technology,
hydrocarbon industry for food safety and piping risk assess-
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ment, artificial neural networks, biotechnologymanagement,
social networking, decision analysis for risk assessment
caused due to accidental chemical release, economymanage-
ment, and also applicable in plenty of other research domains.
Fuzzy sets are applicable in various domains where it is diffi-
cult to study approximate and uncertain relations using crisp
set theory. Conclusively, the notion of a fuzzy set as a general-
ization of a crisp set estimates the occurrence of uncertainty
factor in real-world problems from mathematical perspec-
tive. Kaufmann [2] initiated themost implemented technique
of a fuzzy graph based on fuzzy relations.Rosenfeld [3] intro-
duced a new definition of fuzzy graph considering fuzzy
relations based on fuzzy sets. It is important to consider
that the uncertainty arising from various sources has differ-
ent nature and components which cannot be discussed using
single mathematical structure of fuzzy set theory. In recent
years, a number of theories have been proposed for dealing
with such systems in an effective way, for instance, intu-
itionistic fuzzy sets [4,5], vague sets [6], theory of interval
mathematics [5,7], rough set theory [8], etc. All these the-
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ories, however, are associated with an inherent limitation,
which is the inadequacy of the parametrization tool.

In 1999, Molodtsov [9] introduced the idea of a soft set
in which each element is connected with a parameter. Maji
et al. [10] presented a hybrid technique by integrating soft
sets with fuzzy sets, and studied the properties and applica-
tions of fuzzy soft sets. Kharal and Ahmad [11] presented
the notion of mappings on classes of fuzzy soft sets and soft
sets. Certain hybrid models including rough soft sets, soft
rough sets, and soft rough fuzzy sets by combining the theo-
ries of fuzzy sets, rough sets, and soft sets were obtained by
Feng et al. [12]. Graph theory is an active domain of research
due to its applications in engineering, communication net-
works, computer science, and biomedical sciences. Graphs
are used to paradigm any physical situation engaging the
correlation among discrete objects. Digraphs are powerful
mathematical structures to depict point-to-point relationships
among objects connected in a directed network. Some useful
results on fuzzy graphs were explored by Bhattacharya [14].
Mordeson and Nair [15] studied certain operations on fuzzy
graphs. Many researchers studied and analyzed the idea of
fuzzy graphs in recent decades [16,17]. Certain operations
and properties of soft graphs and fuzzy soft graphs were
studied by Akram and Nawaz [18].

In 1968, Cohen [19] developed a newmathematical struc-
ture of competition graphs to discuss competition among
species in ecological networks. The main advantage of this
technique is to identify the explicit behavior of objects,
especially predator–prey relations. Many researchers stud-
ied competition graphs and introduced double competition
graphs of digraphs [20], p-competition graphs [21], tolerance
competition graphs [22], andm-step competition graphs [23].
However, in all this work, the theory of competition graphs
is inadequate to handle competition or relations among three
or more objects. The idea of competition hypergraphs was
initiated by Sonntag and Teichert [24] in 2004. These are
crisp hypergraphs in which nodes and edges are explicitly
defined. However, to handle uncertainty and to describe all
real-world competitions including predator–prey relations,
powerful communities in a social network, rivalries in the
business market, and signal influence of wireless tools, the
idea of fuzzy sets is widely applied in competition graphs
and competition hypergraphs. The idea of fuzzy competi-
tion graphs was initiated by Samanta and Pal [25] with some
generalizations including fuzzy k-competition graphs and p-
competition fuzzy graphs. The researchers have extended the
notion of fuzzy competition graphs to intuitionistic fuzzy
competition graphs [26], m-step fuzzy competition graphs
[27], q-rung orthopair fuzzy competition graphs [28], and
complex fuzzy competition graphs [29]. Sarwar et al. [30]
proposed the idea of fuzzy competition hypergraphs and
discussed its certain invariants with decision-making prob-
lems. Nawaz and Akram [31] put forward a new approach

to evaluate competition in several directions using fuzzy soft
competition graphs.
The historical progress of various researchers toward the
analysis of competition graphs, fuzzy competition graphs,
and related extensions is given in Table 1.
The limitations of the existing approaches are to find the
solution in a group-wise competitive network in the presence
of parameters. Considering the advantages of extensions of
FSs and the benefits of competition hypergraphs, we pro-
pose a novel technique of FS competition hypergraphs. The
researchers are working on various parameterized models
including: decision-making based on FS sets [34], fuzzy par-
tition based on fuzzy hypergraphs [35], Hebbian structures
based on fuzzy hypergraphs [36], decision-making based on
intuitionistic FS sets [37], extensions of fuzzy hypergraphs
[38], and bipolar fuzzy competition graphs [39]. For more
terminologies and concepts, we refer the reader to [40–43].

Motivation and contribution

To increase the characterization of vagueness and to over-
come the limitations entailed in existing fuzzy competition
graphs, FS competition graphs, competition hypergraphs,
and fuzzy competition hypergraphs, we integrate the notion
of fuzzy competition hypergraphs with soft sets. This hybrid
model helps to study strength of competition in parameter-
ized directed networks having relations among two or more
objects. The proposed model is known as FS competition
hypergraph. The main motivation of this article can be sum-
marized by the following points:

1. Fuzzy hypergraph theory is one of the most emerg-
ing research areas that have frequent usage in different
domains. Due to the inadequacy of parametrization tool,
it is difficult to handle complex decision-making prob-
lems. To deal with this difficulty, soft set theory is
combined with fuzzy competition hypergraphs.

2. In fuzzy competition hypergraphs, we discuss group-
wise conflicts, relations, and influences among objects
that arise in real-world situations. However, this exist-
ing graphical model is insufficient to discuss fuzziness in
several directions. To handle this loss of data, there is a
need to interpret the existing graphical model in terms of
FS competition hypergraphs.

3. The proposed method offers a more rational and effec-
tive framework for evaluating the strength of competition
in various directions and makes an efficient use of the
given information in the presence of parameters. The
most important feature of the proposed approach is that
it generalizes all the existing techniques.

The main contribution of this article is as follows:
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Table 1 Literature review of different techniques of graphs and hypergraphs

Authors Existing approaches of hypergraphs

Cohen [19] Introduced the notion of competition graphs to study the competition

among species in ecological networks

Sonntag and Teichert [24] Presented the idea of competition hypergraphs to discuss competition among

two or more species

Samanta and Pal [25] Competition graphs and competition hypergraphs cannot deal with uncertainty among objects.

To describe all real-world competitions, fuzzy competition graphs

were introduced by integrating powerful techniques of fuzzy sets and competition graphs

Sarwar et al. [30] Suggested a powerful novel framework of fuzzy competition

hypergraphs to sort out the gaps of above-mentioned techniques

Shahzadi et al. [32] To handle positive as well as negative degrees, the idea of

BF competition hypergraphs, as a generalized form of

fuzzy competition hypergraphs was introduced

Akram and Nawaz [18] A new mathematical approach FS graphs based on parameters

was presented to define uncertainty in several directions

Sarwar et al. [33] Due to the loss of important information, e.g., given objects satisfying

identical characterization, there is a need to depict the data as a

hypergraph under bipolar FS information.

Nawaz and Akram [31] Introduced fuzzy soft competition graphs to study uncertain competitions

in a parametric manner

1. The concept of FS hypergraphs is initiated by integrating
the notion of fuzzy hypergraphs with soft set theory.

2. Two FS hypergraphs, named as FS competition hyper-
graphs and FS common enemy hypergraphs, are defined
to discuss competition in decision-making problems.

3. FS neighborhoods graphs are proposed to evaluate the
interrelations betweenFS k-competition hypergraphs and
FS neighborhood graphs.

4. The significance of our research work is studied with
an application in business marketing. An algorithm is
designed to explain the step-by-step procedure of the pro-
posed model.

Framework of the paper

The paper is organized as follows:

1. Section Motivation and contribution gives some impor-
tant preliminaries related to this study.

2. In Sect. Framework of the paper, the notion of FS hyper-
graphs and strong hyperedges is discussed with suitable
examples.

3. In Sect. Preliminaries, the notions of FS competition
hypergraphs, FS common enemy hypergraphs, and gen-
eralizations of these two types of fuzzy hypergraphs are
discussed.

4. Section Fuzzy soft hypergraphs establishes the notions
of FS open neighborhood hypergraphs, FS closed neigh-

borhood hypergraphs, FS k-neighborhood hypergraphs
of open and closed types, and FS underlying graphs.

5. In Sect. Fuzzy soft competition hypergraphs, a decision-
making method is proposed to study the importance and
significance of proposed research study.

6. Section Fuzzy soft neighborhood hypergraphs concerns
its effectiveness and provides the comparison of proposed
method with some existing techniques.

Preliminaries

In this section, we review some basic terminologies relating
to FS sets and FS graphs. Throughout the paper, we will con-
siderR as a non-empty crisp set,P as the set of all parameters
referring to the objects in R and W ⊆ P. A crisp graph G∗
on R is a pair (R, E), where R is called a vertex set and
E ⊆ R × R is the set of all edges of G∗ called edge set.

Definition 1 [40] A fuzzy digraph on R is a pair
−→J =

(A,
−→B ), where A is a fuzzy set on R and

−→B is a fuzzy
relation on R with the property that

ζ−→B (r1r2) ≤ ζA(r1) ∧ ζA(r2), for all r1, r2 ∈ R.

Definition 2 [10] Let P(R) represents the power sets of R.
A pair (φ,W) is called a soft set on R, where φ : W −→
P(R) is a mapping called approximate function of the soft
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set (φ,W). In a set of ordered pairs, it is represented as
(φ,W) = {(q, φ(w)) | w ∈ W, φ(w) ⊆ R}.
Definition 3 [10] Let Pf (R) denotes the collection of all
fuzzy subsets of R. A pair (X ,W) is called an FS set on
R, where X : W −→ Pf (R) is a mapping called fuzzy
approximate function of the FS set (X ,W). In a set form, it
is represented as

(X ,W) = {X (w) ∈ Pf (R)| w ∈ W, X (w) = φ i f w /∈ W}.

It is also represented as a set of ordered pairs (X ,W) =
{(w, X (w)) | w ∈ W}, whereX (w) = {r , ζX (w)(r) | r ∈ R}
is a fuzzy set corresponding to parameter w.

Definition 4 [18] An FS graph on R is a 3-tuple G =
(X ,K,W), where

(i) (X ,W) is an FS set on R.

(ii) (K,W) is an FS relation on R, i.e., K : W −→
Pf (R×R),where Pf (R×R) is a fuzzy power set on
R × R.

(iii) For each w ∈ W , (X (w),K(w)) is a fuzzy graph. That
is

ζK(w)(r1r2) ≤ ζX (w)(r1) ∧ ζX (w)(r2), for all r1, r2 ∈ R.

It is denoted as G(w) = (X (w),K(w)), where w ∈ W.

Hence, the set of all fuzzy graphs corresponding to parame-
ters w ∈ W is called an FS graph G = {G(w) : w ∈ W}.

Definition 5 [41] An FS digraph on R is a 3-tuple
−→G =

(X ,
−→K ,W), where

(i) (X ,W) is an FS set on R.

(ii) (
−→K ,W) is a FS relation on R, i.e.,

−→K : W −→
Pf (R×R),where Pf (R×R) is a fuzzy power set on
R × R.

(iii) For each w ∈ W , (X (w),
−→K (w)) is a fuzzy digraph.

That is

ζ−→K (w)
(r1r2) ≤ ζX (w)(r1) ∧ ζX (w)(r2), for all r1, r2 ∈ R.

It is denoted as
−→G (w) = (X (w),

−→K (w)), where w ∈ W .
Hence, the set of all fuzzy digraphs corresponding to param-

etersw ∈ W is called an FS digraph
−→G = {−→G (w) : w ∈ W}.

Definition 6 [31] An FS out neighborhood of a vertex r of

an FS digraph
−→G = (X ,

−→K ,W) is an FS set

(N+(r),W) = {(w,N+(r)(w))| w ∈ W},

where

N+(r)(w) = {r ′, ζ−→K (w)
(rr ′)| ζ−→K (w)

(rr ′) > 0, w ∈ W}.

Definition 7 [31] An FS in neighborhood of a vertex r of an

FS digraph
−→G = (X ,

−→K ,W) is an FS set

(N−(r),W) = {(w,N−(r)(w))| w ∈ W},
where

N−(r)(w) = {r ′, ζ−→K (w)
(r ′r)| ζ−→K (w)

(r ′r) > 0, w ∈ W}.

Definition 8 [42] The cardinality of an FS set (X ,W) is
defined as follows:

|(X ,W)| =
∑

w∈W
|X (w)|,

where |X (w)| = ∑
r∈R ζX (w)(r) for each w ∈ W.

Definition 9 [31] The support of a FS set (X ,W) is defined
as follows:

supp(X ,W) = {(q, supp(X (w)))| w ∈ W},
where supp(X (w)) = {r ∈ R| ζX (w)(r) > 0} for each w ∈
W.

Definition 10 [31] The height of an FS set (X ,W) is defined
as follows:

h(X ,W) = max
w∈W

h(X (w)),

where h(X (w)) = maxr∈R(ζX (w)(r)) for each w ∈ W.

Fuzzy soft hypergraphs

In this section, we define an FS hypergraph technique for FS
competition and common enemy hypergraphs. Strong hyper-
edges are evaluated with numerical examples which are also
discussed. These terms are defined as follows:

Definition 11 Let (X ,W) be an FS set on R and (K,W) is
an FS relation on R. We say (K,W) is an FS relation on
(X ,W) if it satisfies the following condition:

ζK(w)(r1r2) ≤ ζX (w)(r1) ∧ ζX (w)(r2),

for all r1, r2 ∈ R and w ∈ W .

Definition 12 An FS hypergraph on R is a 3-tuple D =
(U ,V,W),whereU = {(U1,W), (U2,W) · · · , (Us,W)} is a
collection ofFS subsets onR, such that

⋃
w∈W

⋃
1≤i≤s supp
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Table 2 FS subsets corresponding to w1

r ∈ R U1(w1) U2(w1) U3(w1) U4(w1) U5(w1)

r1 0.2 0 0 0 0

r2 0.3 0 0 0 0

r3 0.3 0.3 0 0 0

r4 0 0.1 0 0 0

r5 0 0.3 0.3 0 0

r6 0.9 0 0.9 0.9 0

r7 0 0 0 0.2 0.2

Table 3 FS subsets corresponding to w2

r ∈ R U1(w2) U2(w2) U3(w2) U4(w2) U5(w2)

r1 0.2 0 0 0 0

r2 0.3 0 0 0 0

r3 0.3 0.3 0 0 0

r4 0 0.2 0 0 0

r5 0 0.3 0.3 0.3 0

r6 0.6 0 0.6 0 0

r7 0 0 0 0.2 0.2

(Ui (w)) = R. (V,W) is a, FS relation on FS subsets
(Ui ,W), such that

ζV(w)(Ei ) = ζV(w)(r1, r2, · · · , rp)

≤ min{ζUi (w)(r1), ζUi (w)(r2), · · · , ζUi (w)(rp)},

for all r1, r2, · · · , rp ∈ R and w ∈ W .

Example 1 Let R = {r1, r2, r3, r4, r5, r6, r7} be a crisp set
and W = {w1, w2} is a set of parameter. Suppose {(U1,W),

(U2,W), (U3,W), (U4,W), (U5,W)} be the collection of
FS sets on R as specified in Tables 2 and 3.

Let (V,W) be an FS relation on (Ui ,W), 1 ≤ i ≤ 5,
given as ζV(w1)({r1, r2, r3, r6}) = 0.2, ζV(w1)({r3, r4, r5}) =
0.1, ζV(w1)({r5, r6})=0.3, ζV(w1)({r6, r7})=0.2, ζV(w1)({r7})
= 0.2, ζV(w2)({r1, r2, r3, r6}) = 0.2, ζV(w2)({r3, r4, r5}) = 0.2,
ζV(w2)({r5, r6})=0.2, ζV(w2)({r5, r7})=0.2, and ζV(w2)({r7})
= 0.2. The FS hypergraphD = {D(w1),D(w2)} is shown in
Fig. 1. Here, D(w1) is a fuzzy hypergraph corresponding to
parameter w1 and D(w2) is a fuzzy hypergraph correspond-
ing to parameter w2.

Definition 13 Let D = (U ,V,W) be an FS hypergraph on
R. A hyperedge Ei={r1, r2, · · · , rp} ⊆ R of an FS hyper-
graph D is called strong if ζV(w)(Ei ) ≥ 1

2

∧p
k=1 ζUi (w)(rk)

for all w ∈ W .

Fig. 1 FS hypergraph D = {D(w1),D(w2)}

Example 2 Consider an FS hypergraphD as specified in Fig.
1. Since E1 = {r1, r2, r3, r6} is a hyperedge of a FS hyper-
graph D

ζV(w1)(E1) = ζV(w1)({r1, r2, r3, r6}) = 0.2,

ζU1(w1)(r1) ∧ ζU1(w1)(r2) ∧ ζU1(w1)(r3) ∧ ζU1(w1)(r6)

= 0.2, 0.2 > 0.1.

ζV(w2)(E1) = ζV(w2)({r1, r2, r3, r6}) = 0.2,

ζU1(w2)(r1) ∧ ζU1(w2)(r2) ∧ ζU1(w2)(r3) ∧ ζU1(w2)(r6) = 0.2,

0.2 > 0.1.

Therefore, the hyperedge E1 = {r1, r2, r3, r6} is strong in an
FS hypergraphD. Similarly, {r3, r4, r5}, {r5, r6}, and {r7} are
strong hyperedges in an FS hypergraph D.

Fuzzy soft competition hypergraphs

To resolve competition difficulties in several directions, FS
competition hypergraphs and FS common enemy hyper-
graphs are discussed in this section. Different consequences
of strong hyperedges are evaluated by utilizing the defini-
tion of FS strong hyperedges. Two generalizations of FS
hypergraphs are discussed to investigate the strength of com-
petition using crisp values.

Definition 14 Let
−→G = (X ,

−→K ,W) be an FS digraph on

R. The FS competition hypergraph CH(
−→G ) = (X ,J ,W)

corresponding to
−→G containing the FS vertex set same as in

FS digraph
−→G and for eachw ∈ W , E = {r1, r2, · · · , rp} ⊆

R is a hyperedge of CH(
−→G (w)) = (X (w),J (w)) if

N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩ N+(rp)(w) �= φ. The
membership grade of the hyperedge E = {r1, r2, · · · , rp}
for each parameter w is defined as

ζJ (w)(E)=[ζX (w)(r1)∧ζX (w)(r2)∧· · ·∧ζX (w)(rp)]
×h(N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩ N+(rp)(w)).
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The method for the formation of FS competition hypergraph

CH(
−→G ) of an FS digraph

−→G is explained in Algorithm 4.

Method for construction of FS competition hypergraph

1. Input the FS set (X ,W) on set of vertices R =
{r1, r2, · · · , rn}.

2. For each w ∈ W , the adjacency matrix A(w) = [ri j ]n×n

of
−→G (w) = (X (w),

−→K (w)) such that ζ−→K (w)
(rir j ) = ri j

as shown in Table 4.
3. For each w ∈ W , define a relation such that f (w) :

R −→ R by f (w)(ri )=r j if ri j > 0.
4. If ri j > 0 then (r j , ri j ) belongs to the FS out neighbor-

hood N+(ri )(w) corresponding to parameter w.
5. For each w ∈ W , determine the family of sets such that

Z = {Ei = f −1(w)(ri ) : | f −1(w)(ri )| ≥ 2, ri ∈
R}, where Ei = {ri1, ri2 , · · · , rir } is a hyperedge of

CH(
−→G (w)).

6. Compute the grade of membership of each hyperedge
corresponding to parameter w by using Definition 14.

Example 3 LetR = {r1, r2, r3, r4, r5} is a crisp set andW =
{w1, w2} is a set of parameter. Suppose (X ,W) is an FS set

on R and (
−→K ,W) is an FS relation on R as specified in

Tables 5 and 6, respectively.

The FS digraph
−→G = {−→G (w1),

−→G (w2)} is given in Fig. 2.

Here,
−→G (w1) = (X (w1),

−→K (w1)) and
−→G (w2) = (X (w2),−→K (w2)) are fuzzy digraphs corresponding to parameters w1

and w2, respectively.

The FS out neighborhood of all vertices of
−→G are specified

in Table 7.

Table 4 Adjacency matrix A(w) r1 r2 ... rn

r1 r11 r12 ... r1n

r2 r21 r22 ... r2n

. . . ... .

. . . ... .

. . . ... .

rn rn1 rn2 ... rnn

Table 5 FS set on R r X (w1) r X (w2)

r1 0.8 r1 0.4

r2 0.4 r2 0.6

r3 0.6 r3 0.9

r4 0.3 r4 0.2

r5 1.0 r5 0.8

Table 6 FS relation on R
r

−→K (w1) r
−→K (w2)

r1r3 0.6 r1r3 0.2

r2r1 0.4 r2r3 0.5

r2r5 0.3 r3r4 0.1

r3r4 0.2 r5r1 0.3

r4r5 0.1 r5r2 0.6

r5r1 0.7 r5r3 0.6

r5r3 0.5

Fig. 2 FS digraph
−→G = {−→G1(w1),

−→G1(w2)}

The adjacency matrices A(w1) and A(w2) corresponding to

fuzzy digraphs
−→G (w1) and

−→G (w2) are specified in Table 8
and 9, respectively. Hence, A = {A(w1), A(w2)} is a adja-

cency matrix of FS digraph
−→G .

Using Algorithm 4, the relations f (w1) : R −→ R and
f (w2) : R −→ R are given in Fig. 3.

Using fuzzy relation in
−→G (w1), there are three hyperedges

f −1(w1)(r1) = E1 = {r2, r5}, f −1(w1)(r3) = E3 =
{r1, r5}, and f −1(w1)(r5) = E5 = {r2, r4} of CH(

−→G (w1))=
(X (w1),J (w1)). Now, we calculate the membership grade
of each hyperedge corresponding to parameter w1

ζJ (w1)(E1) = ζX (w1)(r2) ∧ ζX (w1)(r5)

×h(N+(r2)(w1) ∩ N+(r5)(w1)) = 0.4 × 0.4 = 0.16.

ζJ (w1)(E3) = ζX (w1)(r1) ∧ ζX (w1)(r5)

×h(N+(r1)(w1) ∩ N+(r5)(w1)) = 0.8 × 0.5 = 0.4.

ζJ (w1)(E5) = ζX (w1)(r2) ∧ ζX (w1)(r4)

×h(N+(r2)(w1) ∩ N+(r4)(w1)) = 0.3 × 0.1 = 0.03.

Using fuzzy relation in
−→G (w2), there is only one hyper-

edge f −1(w2)(r3) = E3 = {r1, r2, r5} of CH(
−→G (w2)) =

(X (w2),J (w2)). Now, we calculate the membership grade
of hyperedge E3 corresponding to parameter w2

ζJ (w2)(E3) = ζX (w2)(r1) ∧ ζX (w2)(r2) ∧ ζX (w2)(r5)

×h(N+(r1)(w2)
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Table 7 FS out neighborhood
of vertices in

−→G r ∈ R N+(r)(w1) N+(r)(w2) (N+(r),W)

r1 {(r3, 0.6)} {(r3, 0.2)} { (r3,0.6)
w1

,
(r3,0.2)

w2
}

r2 {(r1, 0.4), (r5, 0.3)} {(r3, 0.5)} { (r1,0.4),(r5,0.3)
w1

,
(r3,0.5)

w2
}

r3 {(r4, 0.2)} {(r4, 0.1)} { (r4,0.2)
w1

,
(r4,0.1)

w2
}

r4 {(r5, 0.1)} {} { (r5,0.1)
w1

,
{}
w2

}
r5 {(r1, 0.7), (r3, 0.5)} {(r1, 0.3), (r2, 0.6), (r3, 0.6)} { (r1,0.7),(r3,0.5)

w1
,

(r1,0.3),(r2,0.6),(r3,0.6)
w2

}

Table 8 Adjacency matrix of
−→G (w1)

A(w1) r1 r2 r3 r4 r5

r1 0 0 0.6 0 0

r2 0.4 0 0 0 0.3

r3 0 0 0 0.2 0

r4 0 0 0 0 0.1

r5 0.7 0 0.5 0 0

Table 9 Adjacency matrix of
−→G (w2)

A(w2) r1 r2 r3 r4 r5

r1 0 0 0.2 0 0

r2 0 0 0.5 0 0

r3 0 0 0 0.1 0

r4 0 0 0 0 0

r5 0.3 0.6 0.6 0 0

∩N+(r2)(w2) ∩ N+(r5)(w2))

= 0.4 × 0.2 = 0.08.

The FS competition hypergraph CH(
−→G ) = (CH(

−→G (w1)),

CH(
−→G (w2))) is given in Fig. 4.

Definition 15 Let
−→G = (X ,

−→K ,W) be an FS digraph onR.

The FS common enemy hypergraph CEH(
−→G ) = (X ,A,W)

corresponding to
−→G containing the FS vertex set same as in

FS digraph
−→G and for each w ∈ W , E = {r1, r2, · · · , rp} ⊆

R is a hyperedge of CEH(
−→G (w)) = (X (w),A(w)) if

N−(r1)(w) ∩ N−(r2)(w) ∩ · · · ∩ N−(rp)(w) �= φ. The
membership grade of the hyperedge E = {r1, r2, · · · , rp}
corresponding to parameter w is defined as

ζA(w)(E) = [ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · · ∧ ζX (w)(rp)]
×h(N−(r1)(w) ∩ N−(r2)(w) ∩ · · · ∩ N−(rp)(w)).

Themethod for the construction of FS commonenemyhyper-

graph CEH(
−→G ) of a FS digraph

−→G is given in Algorithm 4.

Method for construction of FS common enemy hypergraph

1. Follow first two steps of Algorithm 4.
2. For each w ∈ W , define a relation such that f (w) :

R −→ R by f (w)(ri )=r j if ri j > 0.
3. If ri j > 0 then (ri , ri j ) belongs to the FS in neighborhood

N−(r j )(w) corresponding to parameter w.
4. For each w ∈ W , determine the family of sets such that

Z = {Ei = f (w)(ri ) : | f (w)(ri )| ≥ 2, ri ∈ R}, where
Ei = {ri1, ri2 , · · · , rir } is a hyperedge of CEH(

−→G (w)).
5. Compute the grade of membership of each hyperedge

corresponding to parameter w using Definition 15.

Example 4 Consider an FS digraph
−→G = (X ,

−→K ,W) as
given in Fig. 2. The FS in neighborhood of all vertices of−→G are specified in Table 10.

Using Algorithm 4, we compute the hyperedges of

CEH(
−→G ). Using fuzzy relation in

−→G (w1), there are two
hyperedges f (w1)(r2) = E2 = {r1, r5} and f (w1)(r5) =
E5 = {r1, r3} of CEH(

−→G (w1)). Now, we compute the mem-
bership grades of these two hyperedges corresponding to
parameter w1

ζA(w1)(E2) = ζX (w1)(r1) ∧ ζX (w1)(r5)

×h(N−(r1)(w1) ∩ N−(r5)(w1)) = 0.8 × 0.3 = 0.24.

ζA(w1)(E5) = ζX (w1)(r1) ∧ ζX (w1)(r3)

×h(N−(r1)(w1) ∩ N−(r3)(w1)) = 0.6 × 0.5 = 0.3.

Using fuzzy relation in
−→G (w2), there is only one hyper-

edge f (w2)(r5) = E5 = {r1, r2, r3} of CEH(
−→G (w2)). Now,

we compute the membership grade of this hyperedge corre-
sponding to parameter w2

ζA(w2)(E5)= ζX (w2)(r1) ∧ ζX (w2)(r2) ∧ ζX (w2)(r3)

×h(N−(r1)(w2)

∩N−(r2)(w2) ∩ N−(r3)(w2))

= 0.4 × 0.3 = 0.12.

The FS common enemy hypergraph CEH(
−→G ) = (CEH

(
−→G (w1)), CEH(

−→G (w2))) is given in Fig. 5.
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Fig. 3 Representation of FS
relation in

−→G

Fig. 4 FS competition hypergraph CH(
−→G )

Fig. 5 FS common enemy hypergraph CEH(
−→G )

Theorem 1 Let
−→G = (X ,

−→K ,W) be an FS digraph onR.

(1) If for each w ∈ W , N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩
N+(rp)(w) contains only one vertex. Then, the hyper-
edge E={r1, r2, · · · , rp} of an FS competition hyper-

graph CH(
−→G ) is strong iff |N+(r1)(w)∩N+(r2)(w)∩

· · · ∩ N (rp)+(w)| > 1
2 for all w ∈ W.

(2) If for each w ∈ W , N−(r1)(w) ∩ N−(r2)(w) ∩
· · · ∩ N−(rp)(w) contains only one vertex. Then,
the hyperedge E={r1, r2, · · · , rp} of an FS common

enemy hypergraph CEH(
−→G ) is strong iff |N−(r1)(w)∩

N−(r2)(w) ∩ · · · ∩ N (rp)−(w)| > 1
2 for all w ∈ W.

Proof (1) LetN+(r1)(w)∩N+(r2)(w)∩· · ·∩N+(rp)(w) =
{r , ζX (w)(r)} for all w ∈ W . For each w ∈ W ,
|N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩ N+(rp)(w)| =
{ζX (w)(r)}. Since h(N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩

Fig. 6 FS digraph
−→G = {−→G (w1),

−→G (w2)}

N+(rp)(w)) = ζX (w)(r) for all w ∈ W . Therefore

ζJ (w)(E) = ζX (w)(r) × [ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · ·
∧ζX (w)(rp)],

for all w ∈ W. Hence, the hyperedge E = {r1, r2, · · · ,

rp} inCH(
−→G ) is strong iff ζX (w)(r) > 0.5 for allw ∈ W.

(2) Let N−(r1)(w) ∩ N−(r2)(w) ∩ · · · ∩ N−(rp)(w) =
{r , ζX (w)(r)} for all w ∈ W . For each w ∈ W ,
|N−(r1)(w) ∩ N−(r2)(w) ∩ · · · ∩ N−(rp)(w)| =
{ζX (w)(r)}. Since h(N−(r1)(w) ∩ N−(r2)(w) ∩ · · · ∩
N−(rp)(w)) = ζX (w)(r) for all w ∈ W . Therefore

ζA(w)(E) = ζX (w)(r) × [ζX (w)(r1) ∧ ζX (w)(r2)

∧ · · · ∧ ζX (w)(rp)],

for all w ∈ W. Hence, the hyperedge E = {r1, r2, · · · ,

rp} in CEH(
−→G ) is strong iff ζX (w)(r) > 0.5 for all w ∈

W.

�

We now discuss an example that if all the edges of an FS
digraph are strong, then it is not necessary the hyperedges of
an FS competition hypergraph are strong.

Example 5 Consider
−→G = (X ,

−→K ,W) be an FS digraph as
given in Fig. 6.
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Clearly, all edges of FS digraph are strong. The FS

competition hypergraph corresponding to
−→G is depicted in

Fig. 5.

FS competition hypergraph CH(
−→G )

The hyperedge {r2, r3, r4} of FS competition hypergraph is
not strong, because 0.06 � 0.15 and 0.045 � 0.15.

Theorem 2 If
−→G = (X ,

−→K ,W) be a complete FS digraph,
then the FS competition hypergraph and FS common enemy

hypergraph corresponding to
−→G are same.

Proof Let
−→G = (X ,

−→K ,W) be a complete FS digraph
on R. Now, we want to proof that FS competition hyper-

graph CH(
−→G ) = (X ,J ,W) and FS common enemy hyper-

graph CEH(
−→G ) = (X ,A,W) are same. Since N+(r)(w) =

N−(r)(w) for all r ∈ R andw ∈ W . Then, for eachw ∈ W
and r1, r2, · · · , rp ∈ R, N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩
N+(rp)(w) =N−(r1)(w)∩N−(r2)(w)∩· · ·∩N−(rp)(w).
Therefore

[ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · · ∧ ζX (w)(rp)]
×h(N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩ N+(rp)(w))

= [ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · · ∧ ζX (w)(rp)]
×h(N−(r1)(w) ∩ N−(r2)(w) ∩ · · · ∩ N−(rp)(w)).

This shows that ζJ (w)(E) = ζA(w)(E) for all r1, r2, · · · ,

rp ∈ R and w ∈ W . Hence, it follows that CH(
−→G ) =

CEH(
−→G ).

�
The extensions of FS competition hypergraphs and FS
common enemy hypergraphs named as FS k-competition
hypergraphs and FS k-common enemyhypergraphs are given
in Definition 16 and 17.

Definition 16 Let
−→G = (X ,

−→K ,W) be an FS digraph
on R and suppose k be a non-negative number. The FS

k-competition hypergraphs Ck(
−→G ) = (X ,M,W) of

−→G con-

taining the FS vertex set same as in FS digraph
−→G and for

each w ∈ W , E = {r1, r2, · · · , rp} ⊆ R is the hyperedge of

Ck(
−→G (w)) = (X (w),M(w)) if |N+(r1)(w)∩N+(r2)(w)∩

· · · ∩N+(rp)(w)| > k. The membership grade of the hyper-
edge E = {r1, r2, · · · , rp} for each parameter w is defined
as

ζM(w)(E)= k1 − k

k1
[ζX (w)(r1)∧ζX (w)(r2)∧· · · ∧ ζX (w)(rp)]

×h(N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩ N+(rp)(w)),

where |N+(r1)(w)∩N+(r2)(w)∩· · ·∩N+(rp)(w)| = k1.

Example 6 Consider
−→G = (X ,

−→K ,W) be an FS digraph
as given in Fig. 2. Since we know that E1 = {r2, r5},
E3 = {r1, r5}, and E5 = {r2, r4} (see Example 3). Now,

we check whether these are hyperedges of C0.1(
−→G (w1)) =

(X (w1),M(w1)) or not. Here

N+(r2)(w1) ∩ N+(r5)(w1) = {(r1, 0.4)},
|N+(r2)(w1) ∩ N+(r5)(w1)| = k1 = 0.4.

Therefore, |N+(r2)(w1) ∩ N+(r5)(w1)| = 0.4 > 0.1, and
by Definition 16, E1 is the hyperedge of C0.1(

−→G (w1)). Now,
we calculate the grade of membership of this hyperedge cor-
responding to parameter w1

ζM(w1)(E1) = 0.4 − 0.1

0.4
(ζX (w1)(r2) ∧ ζX (w1)(r5))

×h(N+(r2)(w1) ∩ N+(r5)(w1)) = 0.12.

Similarly, E3 = {r1, r5} is the hyperedge of C0.1(
−→G (w1))

and membership grade of E3 is ζM(w1)(E3) = 0.32. E5 is

not the hyperedge of C0.1(
−→G (w1)), because |N+(r2)(w1) ∩

N+(r4)(w1)| = 0.1 ≯ 0.1.
Since E3 = {r1, r2, r5} (see Example 3). Here

N+(r1)(w2) ∩ N+(r2)(w2) ∩ N+(r5)(w2) = {(r3, 0.2)},
|N+(r1)(w2) ∩ N+(r2)(w2) ∩ N+(r5)(w2)| = k1 = 0.2.

Therefore, |N+(r1)(w2) ∩ N+(r2)(w2) ∩ N+(r5)(w2)| =
0.2 > 0.1, and by Definition 16, E3 is the hyperedge of

C0.1(
−→G (w2)) = (X (w2),M(w2)). Now, we calculate the

Table 10 FS in neighborhood
of vertices in

−→G r ∈ R N−(r)(w1) N−(r)(w2) (N−(r),W)

r1 {(r2, 0.4), (r5, 0.7)} {(r5, 0.3)} { (r2,0.4),(r5,0.7)
w1

,
(r5,0.3)

w2
}

r2 {} {(r5, 0.6)} { {}
w1

,
(r5,0.6)

w2
}

r3 {(r1, 0.6), (r5, 0.5)} {(r1, 0.2), (r2, 0.5), (r5, 0.6)} { (r1,0.6),(r5,0.5)
w1

,
(r1,0.2),(r2,0.5),(r5,0.6)

w2
}

r4 {(r3, 0.2)} {(r3, 0.1)} { (r3,0.2)
w1

,
{(r3,0.1)}

w2
}

r5 {(r2, 0.3), (r4, 0.1)} {} { (r2,0.3),(r4,0.1)
w1

,
{}
w2

}
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Fig. 7 FS competition hypergraph CH(
−→G )

grade of membership of this hyperedge corresponding to
parameter w2

ζM(w2)(E3)=
0.2 − 0.1

0.2
(ζX (w2)(r1)∧ζX (w2)(r2)∧ζX (w2)(r5))

×h(N+(r1)(w2) ∩ N+(r2)(w2) ∩ N+(r5)(w2)) = 0.04.

The FS 0.1-competition hypergraph C0.1(
−→G ) = (C0.1

(
−→G (w1)), C0.1(

−→G (w2))) of
−→G is given in Fig. 7.

Definition 17 Let
−→G = (X ,

−→K ,W) be an FS digraph on R
and suppose k be a non-negative number. The FS k-common

enemy hypergraph CkE(
−→G ) = (X ,N ,W) of

−→G containing

the FS vertex set same as in FS digraph
−→G and for each

w ∈ W , E = {r1, r2, · · · , rp} ⊆ R is the hyperedge of

CkE(
−→G (w))= (X (w),N (w)) if |N−(r1)(w)∩N−(r2)(w)∩

· · · ∩N−(rp)(w)| > k. The membership grade of the hyper-
edge E = {r1, r2, · · · , rp} for each parameter w is defined
as

ζN (w)(E)= k1−k

k1
[ζX (w)(r1) ∧ ζX (w)(r2)∧· · · ∧ ζX (w)(rp)]

×h(N−(r1)(w) ∩ N−(r2)(w) ∩ · · · ∩ N−(rp)(w)),

where |N−(r1)(w)∩N−(r2)(w)∩· · ·∩N−(rp)(w)| = k1.

Remark 1 At k = 0, the FS k-competition hypergraphs

Ck(
−→G ) and FS k-common enemy hypergraphs CkE(

−→G ) are

FS competition hypergraphsCH(
−→G ) andFS common enemy

hypergraphs CEH(
−→G ), respectively.

Theorem 3 Let
−→G = (X ,

−→K ,W) be an FS digraph onR.

(1) If for each w ∈ W , h(N+(r1)(w) ∩ N+(r2)(w) ∩
· · ·N+(rp)(w)) = 1 and |N+(r1)(w) ∩ N+(r2)(w) ∩
· · ·N+(yp)(w)|>2k for somer1, r2, · · · , rp ∈ R, then

the hyperedge E = {r1, r2, · · · , rp} is strong in Ck(−→G ).
(2) If for each w ∈ W , h(N−(r1)(w) ∩ N−(r2)(w) ∩

· · ·N−(rp)(w)) = 1 and |N−(r1)(w) ∩ N−(r2)(w) ∩
· · ·N−(yp)(w)| > 2k for some r1, r2, · · · , rp ∈ R,
then the hyperedge E = {r1, r2, · · · , rp} is strong in

CkE(
−→G ).

Proof (1) Let Ck(
−→G ) = (X ,M,W) be an FS k-competition

hypergraph corresponding to the
−→G = (X ,

−→K ,W). Sup-
pose for each w ∈ W , h(N+(r1)(w) ∩ N+(r2)(w) ∩
· · ·N+(yp)(w)) = 1 and |N+(r1)(w) ∩ N+(r2)(w) ∩
· · ·N+(yp)(w)| > 2k for some r1, r2, · · · , rp. Also, let

E = {r1, r2, · · · , rp} is any hyperedge of Ck(
−→G ). Now

ζM(w)(E) = k1−k

k1
[ζX (w)(r1)∧ζX (w)(r2)∧· · ·

∧ζX (w)(rp)]
×h(N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩ N+(rp)(w)),

for all w ∈ W . Here, |N+(r1)(w) ∩ N+(r2)(w) ∩
· · ·N+(yp)(w)| = k1 and h(N+(r1)(w)∩N+(r2)(w)∩
· · ·N+(rp)(w)) = 1 for all w ∈ W

ζM(w)(E) = k1−k

k1
(ζX (w)(r1) ∧ ζX (w)(r2)∧· · ·∧ζX (w)(rp)),

ζM(w)(E) >
1

2
(ζX (w)(r1) ∧ ζX (w)(r2)∧· · ·∧ζX (w)(rp)),

for all w ∈ W. Hence, the hyperedge E of Ck(
−→G ) is

strong.

(2) Let CkE(
−→G ) = (X ,N ,W) be a FS k-common enemy

hypergraph corresponding to the
−→G = (X ,

−→K ,W). Sup-
pose for each w ∈ W , h(N−(r1)(w) ∩ N−(r2)(w) ∩
· · ·N−(rp)(w)) = 1 and |N−(r1)(w) ∩ N−(r2)(w) ∩
· · ·N−(rp)(w)| > 2k for some r1, r2, · · · , rp. Also, let

E = {r1, r2, · · · , rp} is any hyperedge of CkE(
−→G ). Now

ζN (w)(E) = k1 − k

k1
[ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · · ∧ ζX (w)(rp)]

×h(N−(r1)(w) ∩ N−(r2)(w) ∩ · · · ∩ N−(rp)(w)),

for all w ∈ W . Here, |N−(r1)(w) ∩ N−(r2)(w) ∩
· · ·N−(yp)(w)| = k1 and h(N−(r1)(w)∩N−(r2)(w)∩
· · ·N−(rp)(w)) = 1 for all w ∈ W

ζN (w)(E) = k1 − k

k1
(ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · · ∧ ζX (w)(rp)),

ζN (w)(E) >
1

2
(ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · · ∧ ζX (w)(rp)),

for all w ∈ W. Hence, the hyperedge E of CkE(
−→G ) is

strong.
�

Now,we define the notions of p-competition FS hypergraphs
and p-common enemy FS hypergraphs, where p be any pos-
itive integer.

Definition 18 Let
−→G = (X ,

−→K ,W) be an FS digraph onR
and suppose p be a positive integer. The p-competition FS

hypergraph C p(
−→G ) = (X ,D,W) of

−→G containing the FS

vertex set same as in FS digraph
−→G and for each w ∈ W ,
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Fig. 8 FS 0.1-competition hypergraph C0.1(
−→G )

E = {r1, r2, · · · , rp} ⊆ R is the hyperedge of C p(
−→G (w))

= (X (w),D(w)) if |supp(N+(r1)(w)∩N+(r2)(w)∩ · · · ∩
N+(rp)(w))| ≥ p. The membership grade of the hyperedge
E = {r1, r2, · · · , rp} for each parameter w is defined as

ζD(w)(E) = (n − p) + 1

n
[ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · ·

∧ζX (w)(rp)]
×h(N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩ N+(rp)(w)),

where |supp(N+(r1)(w)∩N+(r2)(w)∩· · ·∩N+(rp)(w))|
= n.

Example 7 Consider an FS digraph
−→G , as shown in Fig. 8.

Using Algorithm 4, E3 = {r1, r2, r4}. Here, N+(r1)(w1)

= {(r2, 0.1), (r3, 0.1), (r5, 0.2)}, N+(r2)(w1) = {(r3, 0.3),
(r5, 0.3)}, and N+(r4)(w1) = {(r3, 0.2), (r5, 0.4)}. Hence,
N+(r1)(w1) ∩ N+(r2)(w1) ∩ N+(r4)(w1) = {(r3, 0.1),
(r5, 0.2)}. Now, n = |supp(N+(r1)(w1) ∩ N+(r2)(w1) ∩
N+(r4)(w1))| = 2. Therefore, by Definition 18, E3 =

{r1, r2, r4} is the hyperedgeofC2(−→G (w1))= (X (w1),D(w1)).
Now, we calculate the membership grade of this hyperedge
corresponding to parameter w1

ζD(w1)(E) = (2 − 2) + 1

2
[ζX (w1)(r1) ∧ ζX (w1)(r2) ∧ ζX (w1)(r4)]

×h(N+(r1)(w1) ∩ N+(r2)(w1) ∩ N+(r4)(w1)) = 0.02.

Using Algorithm 4, E3 = {r1, r2}. Here, N+(r1)(w2) =
{(r3, 0.7), (r4, 0.7)} and N+(r2)(w2) = {(r3, 0.6), (r4, 0.8),
(r5, 0.8)}.Hence,N+(r1)(w2)∩N+(r2)(w2)= {(r3, 0.6), (r4,
0.7)}. Since we know that n = |supp(N+(r1)(w2) ∩
N+(r2)(w2))|, so n = 2. By Definition 18, E3 = {r1, r2}
is the hyperedge of C2(−→G (w2)) = (X (w2),D(w2)). Now,
we calculate the membership grade of this hyperedge corre-
sponding to parameter w2

ζD(w2)(E) = (2 − 2) + 1

2
[ζX (w2)(r1) ∧ ζX (w2)(r2)]

×h(N+(r1)(w2) ∩ N+(r2)(w2)) = 0.245.

The 2-competition FS hypergraph C2(−→G ) = (C2(−→G (w1)),

C2(−→G (w2))) is given in Fig. 9.

Fig. 9 FS digraph
−→G = {−→G (w1),

−→G (w2)}

Definition 19 Let
−→G = (X ,

−→K ,W) be an FS digraph onR
and suppose p be a positive integer. The p-common enemy

FS hypergraph C pE(
−→G ) = (X , T ,W) of

−→G containing the

FS vertex set same as in FS digraph
−→G and for each w ∈ W ,

E = {r1, r2, · · · , rp} ⊆ R is the hyperedge of C pE(
−→G (w))

= (X (w), T (w)) if |supp(N−(r1)(w)∩N−(r2)(w)∩ · · · ∩
N−(rp)(w))| ≥ p. The membership grade of the hyperedge
E = {r1, r2, · · · , rp} corresponding to the parameter w is
defined as

ζT (w)(E) = (n − p) + 1

n
[ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · ·

∧ζX (w)(rp)]
×h(N−(r1)(w) ∩ N−(r2)(w) ∩ · · · ∩ N−(rp)(w)),

where |supp(N−(r1)(w)∩N−(r2)(w)∩· · ·∩N−(rp)(w))|
= n.

Remark 2 At p = 1, the p-competition FS hypergraphs

C p(
−→G ) and p-common enemy FS hypergraphs C pE(

−→G ) are

FS competition hypergraphsCH(
−→G ) andFS common enemy

hypergraphs CEH(
−→G ), respectively.

Theorem 4 Let
−→G = (X ,

−→K ,W) be an FS digraph on R.

(1) If for each w ∈ W , h(N+(r1)(w) ∩ N+(r2)(w) ∩
· · · ∩ N+(rp)(w)) = 1 in C[ n2 ](−→G (w)), where n =
|supp(N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩ N+(rp)(w))|,
then the hyperedge {r1, r2, · · · , rp} is strong in C[ n2 ](−→G ).
(Note that r be any real number, [r ] = greatest integer
not greater than r.)

(2) If for each w ∈ W , h(N−(r1)(w) ∩ N−(r2)(w) ∩
· · · ∩ N−(rp)(w)) = 1 in C[ n2 ]E(

−→G (w)), where n =
|supp(N−(r1)(w) ∩ N−(r2)(w) ∩ · · · ∩ N−(rp)(w))|,
then thehyperedge {r1, r2, · · · , rp} is strong inC[ n2 ]E(

−→G ).

Proof (1) Here,
−→G = (X ,

−→K ,W) be an FS digraph onR. Let
for each w ∈ W , h(N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩
N+(rp)(w))=1 inC[ n2 ](−→G (w)) corresponding to param-
eter w, where n = |supp(N+(r1)(w) ∩ N+(r2)(w) ∩
· · · ∩ N+(rp)(w))|. Now, for each w ∈ W
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ζD(w)({r1, r2, · · · , rp})
= n − [ n2 ] + 1

n
ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · ·

∧ζX (w)(rp),
ζD(w)({r1, r2, · · · , rp})

ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · · ∧ ζX (w)(rp)

= n − [ n2 ] + 1

n
> 0.5.

Hence, the hyperedge {r1, r2, · · · , rp} is strong inC[ n2 ](−→G ).

(2) Here
−→G = (X ,

−→K ,W) be anFSdigraph. Let for eachw ∈
W ,h(N−(r1)(w)∩N−(r2)(w)∩· · ·∩N−(rp)(w))=1 in

C[ n2 ]E(
−→G (w)) corresponding to parameterw, where n =

|supp(N−(r1)(w) ∩ N−(r2)(w) ∩ · · · ∩ N−(rp)(w))|.
Now, for each w ∈ W

ζT (w)({r1, r2, · · · , rp}) = n − [ n2 ] + 1

n
ζX (w)(r1)

∧ζX (w)(r2) ∧ · · · ∧ ζX (w)(rp),

ζT (w)({r1, r2, · · · , rp})
ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · · ∧ ζX (w)(rp)

= n − [ n2 ] + 1

n
> 0.5.

Hence, the hyperedge {r1, r2, · · · , rp} is strong in C[ n2 ]

E(
−→G ).

�

The Venn diagram Fig.10 shows the similarities and differ-

ences between FS k-competition hypergraphs Ck(
−→G ) and

p-competition FS hypergraph C p(
−→G ).

Both FS k-competition hypergraphs and p-competition FS
hypergraphs are generalizations of FS competition hyper-
graphs. The positive real number k in FS k-competition
hypergraphs and the positive integer p in p-competition
FS hypergraphs measure the strength of competitions of
corresponding FS competition hypergraphs. A real positive
number k is related to the cardinality of an FS set and p is
related to the cardinality of a soft set. FS k-competition hyper-
graph is an intersection hypergraph of FS out neighborhood
of vertices in an FS digraph. The other is p-competition FS
hypergraph and is also an intersection hypergraph of supports
of FS out neighborhood of vertices in an FS digraph.

Fig. 10 2-Competition FS hypergraph C2(−→G )

Table 11 FS set (X ,W) R X (w1) R X (w2)

r1 0.4 r1 0.4

r2 0.5 r2 0.6

r3 0.6 r3 0.7

r4 0.3 r4 0.2

Fuzzy soft neighborhood hypergraphs

The notions of FS open neighborhood and FS closed neigh-
borhood of a vertex in the FS graph are illustrated in this
section. The concepts of FS open neighborhood hypergraphs
and FS closed neighborhood hypergraphs are given.

Definition 20 An FS open neighborhood of a vertex r in an
FS graph G = (X ,K,W) is an FS set

(N (r),W) = {(w,N (r)(w))| w ∈ W},

where N (r)(w) is a fuzzy set defined as

N (r)(w) = {r ′, ζK(w)(rr
′)| ζK(w)(rr

′) > 0, w ∈ W}, for eachw ∈ W.

Definition 21 An FS closed neighborhood of a vertex r in an
FS graph G = (X ,K,W) is an FS set

(N [r ],W) = {(w,N [r ](w))| w ∈ W},

where N [r ](w) is defined as

N [r ](w) = N (r)(w) ∪ {r , ζX (w)(r)},
for eachw ∈ W.

Example 8 Let (X ,W) be an FS set on R = {r1, r2, r3, r4}
and (K,W) is an FS relation onR, as shown in Table 11 and
12, respectively. Here, W = {w1, w2} is a parameter set.
The FS graph G = {G(w1),G(w2)} is given in Fig. 11.

The FS open neighborhood of all vertices in FS graph G is
given in Table 13.

123



Complex & Intelligent Systems (2022) 8:2325–2348 2337

Table 12 FS relation (K,W)

R K(w1) R K(w2)

r1r2 0.3 r1r2 0.3

r1r3 0.2 r2r3 0.5

r2r3 0.5 r2r4 0.1

r3r4 0.1 r3r4 0.2

Fig. 11 Ck(
−→G ) vs C p(

−→G )

The FS closed neighborhood of all vertices in G(w1) and
G(w2) is given in Table 14.
The FS closed neighborhood of all vertices in G is the fol-
lowing:

(N [r1],W)

=
{

(r1, 0.4), (r2, 0.3), (r3, 0.2)

w1
,
(r1, 0.4), (r2, 0.3)

w2

}
,

(N [r2],W)

=
{

(r1, 0.3), (r2, 0.5), (r3, 0.5)

w1
,
(r1, 0.3), (r2, 0.6), (r3, 0.5), (r4, 0.1)

w2

}
,

(N [r3],W)

=
{

(r1, 0.2), (r2, 0.5), (r3, 0.6), (r4, 0.1)

w1
,
(r2, 0.5), (r3, 0.7), (r4, 0.2)

w2

}
,

(N [r4],W)

=
{

(r3, 0.1), (r4, 0.3)

w1
,
(r2, 0.1), (r3, 0.2), (r4, 0.2)

w2

}
.

Definition 22 Let G = (X ,K,W) be an FS graph onR. The
FS open neighborhood hypergraphN (G) = (X , E,W) of G
containing the FS vertex set same as in FS graph G and for
each w ∈ W , E = {r1, r2, · · · , rp} ⊆ R is the hyperedge
of N (G(w)) = (X (w), E(w)) if N (r1)(w) ∩ N (r2)(w) ∩
· · · ∩ N (rp)(w) �= ∅. The membership grade of the hyper-
edge E = {r1, r2, · · · , rp} corresponding to parameter w is
defined as

ζE(w)(E) = [ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · · ∧ ζX (w)(rp)]
×h(N (r1)(w) ∩ N (r2)(w) ∩ · · · ∩ N (rp)(w)).

The technique is given in Algorithm 5 for proceeding FS
open neighborhood hypergraph of an FS graph G.

Method for construction of FS open neighborhood hypergraph

1. Input the FS set on set of vertices R = {r1, r2, · · · , rn}.
2. Compute the FS open neighborhood of each vertex in FS

graph G = (X ,K,W).
3. For each w ∈ W , define a relation in such a way

that f (w) : R −→ R by f (w)(ri )=r j if r j ∈
supp(N (ri )(w)).

4. Determine the category of sets for each w ∈ W , Z =
{Ei = f −1(w)(ri ) : | f −1(w)(ri )| ≥ 2, ri ∈ R}, where
Ei = {ri1, ri2 , · · · , rir } is a hyperedge of N (G(w)).

5. Compute the grade of membership of each hyperedge
corresponding to parameter w by using Definition 5.4.

Table 13 FS open neighborhood of vertices in G

r ∈ R N (r)(w1) N (r)(w2) (N (r),W)

r1 {(r2, 0.3), (r3, 0.2)} {(r2, 0.3)} { (r2,0.3),(r3,0.2)
w1

,
(r2,0.3)

w2
}

r2 {(r1, 0.3), (r3, 0.5)} {(r1, 0.3), (r3, 0.5), (r4, 0.1)} { (r1,0.3),(r3,0.5)
w1

,
(r1,0.3),(r3,0.5),(r4,0.1)

w2
}

r3 {(r1, 0.2), (r2, 0.5), (r4, 0.1)} {(r2, 0.5), (r4, 0.2)} { (r1,0.2),(r2,0.5),(r4,0.1)
w1

,
(r2,0.5),(r4,0.2)

w2
}

r4 {(r3, 0.1)} {(r2, 0.1), (r3, 0.2)} { (r3,0.1)
w1

,
{(r2,0.1),(r3,0.2)}

w2
}

Table 14 FS closed
neighborhood of vertices in
G(w1) and G(w2)

r ∈ R N [r ](w1) N [r ](w2)

r1 {(r1, 0.4), (r2, 0.3), (r3, 0.2)} {(r1, 0.4), (r2, 0.3)}
r2 {(r1, 0.3), (r2, 0.5), (r3, 0.5)} {(r1, 0.3), (r2, 0.6), (r3, 0.5), (r4, 0.1)}
r3 {(r1, 0.2), (r2, 0.5), (r3, 0.6), (r4, 0.1)} {(r2, 0.5), (r3, 0.7), (r4, 0.2)}
r4 {(r3, 0.1), (r4, 0.3)} {(r2, 0.1), (r3, 0.2), (r4, 0.2)}
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Fig. 12 FS graph G = ({G(w1),G(w2)}

Example 9 Consider an FS graph G = (X ,K,W), as shown
in Fig. 11. The FS open neighborhood of all vertices in G
is given in Table 13. The support of (N (r),W) is given in
Table 15.
The relations f (w1) : R −→ R and f (w2) : R −→ R are
given in Fig. 12.
Using fuzzy relation in G(w1), there are three hyperedges
f −1(r1)(w1) = E1 = {r2, r3}, f −1(r2)(w1) = E2 =
{r1, r3}, and f −1(r3)(w1) = E3 = {r1, r2, r4} ofN (G(w1))

= (X (w1), E(w1)). Membership grades of these hyperedges
are computed as follows:

ζE(w1)(E1) = ζX (w1)(r2) ∧ ζX (w1)(r3)

×h(N (r2)(w1) ∩ N (r3)(w1))

= 0.5 × 0.2 = 0.1.

ζE(w1)(E2) = ζX (w1)(r1) ∧ ζX (w1)(r3)

×h(N (r1)(w1) ∩ N (r3)(w1))

= 0.4 × 0.3 = 0.12.

ζE(w1)(E3) = ζX (w1)(r1) ∧ ζX (w1)(r2) ∧ ζX (w1)(r4)

×h(N (r1)(w1) ∩ N (r2)(w1) ∩ N (r4)(w1))

= 0.3 × 0.1 = 0.03.

Using fuzzy relation in G(w2), there are three hyperedges
f −1(r2)(w2) = E2 = {r1, r3, r4}, f −1(r3)(w2) = E3 =
{r2, r4}, and f −1(r4)(w2) = E4 = {r2, r3} of N (G(w2))

= (X (w2), E(w2)). Membership grades of these hyperedges
are the following:

ζE(w2)(E2) = ζX (w2)(r1) ∧ ζX (w2)(r3) ∧ ζX (w2)(r4)

×h(N (r1)(w2) ∩ N (r3)(w2) ∩ N (r4)(w2))

= 0.2 × 0.1 = 0.02.

ζE(w2)(E3) = ζX (w2)(r2) ∧ ζX (w2)(r4)

×h(N (r2)(w2) ∩ N (r4)(w2)) = 0.2 × 0.2 = 0.04.

ζE(w2)(E4) = ζX (w2)(r2) ∧ ζX (w2)(r3)

×h(N (r2)(w2) ∩ N (r3)(w2)) = 0.6 × 0.1 = 0.06.

The FS open neighborhood hypergraphN (G) = (N (G(w1)),

N (G(w2))) is given in Fig. 13.

Definition 23 Let G = (X ,K,W) be an FS graph onR. The
FS closed neighborhood hypergraphN [G] = (X ,O,W) of
G containing the FS vertex set same as in FS graph G and for
each w ∈ W , E = {r1, r2, · · · , rp} ⊆ R is the hyperedge of
N [G(w)] = (X (w),O(w)) ifN [r1](w) ∩N [r2](w) ∩ · · · ∩
N [rp](w) �= ∅. The grade of membership of the hyperedge
E = {r1, r2, · · · , rp} for each parameter w is defined as

ζO(w)(E) = [ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · · ∧ ζX (w)(rp)]
×h(N [r1](w) ∩ N [r2](w) ∩ · · · ∩ N [rp](w)).

Definition 24 Let G = (X ,K,W) be an FS graph on
R and k be a non-negative real number. The FS (k)-
competition hypergraphNk(G) = (X ,S,W) of G containing
the FS vertex set same as in FS graph G and for each
w ∈ W , E = {r1, r2, · · · , rp} ⊆ R is the hyperedge of
Nk(G(w)) = (X (w),S(w)) if |N (r1)(w)∩N (r2)(w)∩· · ·∩
N (rp)(w)| > k. The membership grade of the hyperedge
E = {r1, r2, · · · , rp} for each parameter w is defined as

ζS(w)(E) = k2 − k

k2
[ζX (w)(r1) ∧ ζX (w)(r2)

∧ · · · ∧ ζX (w)(rp)]
×h(N (r1)(w) ∩ N (r2)(w) ∩ · · · ∩ N (rp)(w)),

where |N (r1)(w) ∩ N (r2)(w) ∩ · · · ∩ N (rp)(w)| = k2.

Definition 25 Let G = (X ,K,W) be an FS graph on
R and k be a non-negative real number. The FS [k]-
competition hypergraphNk[G] = (X ,B,W) of G containing
the FS vertex set same as in FS graph G and for each
w ∈ W , E = {r1, r2, · · · , rp} ⊆ R is the hyperedge of
Nk[G(w)] = (X (w),B(w)) if |N [r1](w)∩N [r2](w)∩· · ·∩
N [rp](w)| > k. The membership grade of the hyperedge
E = {r1, r2, · · · , rp} for each parameter w is defined as

ζB(w)(E) = k2 − k

k2
[ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · · ∧ ζX (w)(rp)]h(N [r1](w) ∩ N [r2](w) ∩ · · · ∩ N [rp](w)),
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Table 15 Support of (N (r),W) r ∈ R supp(N (r)(w1)) supp(N (r)(w2)) supp(N (r),W)

r1 {r2, r3} {r2} { {r2,r3}
w1

,
{r2}
w2

}
r2 {r1, r3} {r1, r3, r4} { {r1,r3}

w1
,

{r1,r3,r4}
w2

}
r3 {r1, r2, r4} {r2, r4} { {r1,r2,r4}

w1
,

{r2,r4}
w2

}
r4 {r3} {r2, r3} { {r3}

w1
,

{r2,r3}
w2

}

Fig. 13 Representation of FS
relation in G

where |N [r1](w) ∩ N [r2](w) ∩ · · · ∩ N [rp](w)| = k2.

Definition 26 Let
−→G = (X ,

−→K ,W) be an FS digraph on

R. The underlying FS graph of
−→G is an FS graph U(

−→G )

= (X ,K,W), such that for each w ∈ W

ζK(w)(r1r2) =

⎧
⎪⎪⎨

⎪⎪⎩

ζ−→K (w)
(r1r2), if−→r2r1 /∈ −→

E

ζ−→K (w)
(r2r1), if−→r1r2 /∈ −→

E

ζ−→K (r1r2) ∧ ζ−→K (r2r1), if
−→r1r2,−→r2r1 ∈ −→

E ,

where
−→
E = supp(

−→K (w)).

Example 10 Consider an FS digraph on R, as shown in Fig.

2. The support of (
−→K ,W) is the following:

supp(
−→K (w1)) = {r1r3, r2r1, r2r5, r3r4, r4r5, r5r1, r5r3},

supp(
−→K (w2)) = {r1r3, r2r3, r3r4, r5r1, r5r2, r5r3},

supp(
−→K ,W) =

{ {r1r3, r2r1, r2r5, r3r4, r4r5, r5r1, r5r3}
w1

,

{r1r3, r2r3, r3r4, r5r1, r5r2, r5r3}
w2

}
.

The underlying FS graph U(
−→G ) of FS digraph

−→G 2 is given
in Fig. 14.

We now study the relationship between FS open neighbor-
hood hypergraphsNk(G) and FS k-competition hypergraphs

Ck(
−→G ).

Theorem 5 Let
−→G = (X ,

−→K ,W) be a symmetric FS

digraph having no loops, then Ck(
−→G ) = Nk(U(

−→G )).

Fig. 14 FS open neighborhood hypergraph N (G)

Proof Let U(
−→G ) = (X ,K,W) be an underlying FS

graph of an FS digraph
−→G = (X ,

−→K ,W). Also, let

Nk(U(
−→G )) = (X ,S,W) and Ck(

−→G ) = (X ,M,W). The
FS k-competition hypergraph Ck(

−→G ) and the underlying

FS graph U(
−→G ) have the same vertex set as in

−→G. Hence,

Nk(U(
−→G )) has the same vertex set as in

−→G. Now, we want to
show that ζM(w)({r1, r2, · · · , rp}) = ζS(w)({r1, r2, · · · , rp})
for all w ∈ W and r1, r2, · · · , rp ∈ R.

Case 1: If for each w ∈ W and r1, r2, · · · , rp ∈ R,
ζM(w)({r1, r2, · · · , rp}) = 0 in a FS k-competition hyper-

graph Ck(
−→G ). Then, for each w ∈ W , |N+(r1)(w) ∩

N+(r2)(w)∩· · ·∩N+(rp)(w)| ≯ k. Since
−→G is symmetric,

then |N (r1)(w) ∩ N (r2)(w) ∩ · · · ∩ N (rp)(w)| ≯ k for all

w ∈ W in U(
−→G ). Consequently, ζS(w)({r1, r2, · · · , rp})= 0

for all w ∈ W in Nk(U(
−→G )).
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Case2: If for some r1, r2, · · · , rp ∈R, ζM(w)({r1, r2, · · · ,

rp}) �= 0 for all w ∈ W in an FS k-competition hyper-

graph Ck(
−→G ), then |N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩

N+(rp)(w)| > k for all w ∈ W . Since
−→G is symmetric FS

digraph, then h(N (r1)(w)∩N (r2)(w)∩· · ·∩N (rp)(w)) =
h(N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩ N+(rp)(w)) for all
w ∈ W . Therefore

ζM(w)({r1, r2, · · · , rp})
= k1 − k

k1
(ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · · ∧ ζX (w)(rP ))

×h(N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩ N+(rp)(w))

= ζS(w)({r1, r2, · · · , rp}),

for allw ∈ W .Hence, ζM(w)({r1, r2, · · · , rp}) = ζS(w)({r1,
r2, · · · , rp}) for all w ∈ W and r1, r2, · · · , rp. �
Similarly, a relationship between FS closed neighborhood

hypergraphsNk[G] andFS k-competitionhypergraphsCk(
−→G )

is given as follows.

Theorem 6 Let
−→G = (X ,

−→K ,W) be a symmetric FS

digraph with loops at every vertex, and then, Ck(
−→G ) =

Nk[U(
−→G )].

Proof Let U(
−→G ) = (X ,K,W) be an underlying FS

graph of an FS digraph
−→G = (X ,

−→K ,W). Also, let

Nk[U(
−→G )] = (X ,B,W) and Ck(

−→G ) = (X ,M,W). The
FS k-competition hypergraph Ck(

−→G ) and the underlying

FS graph U(
−→G ) have the same vertex set as in

−→G. Hence,

Nk[U(
−→G )] has the same vertex set as in

−→G. Now, we want to
show that ζM(w)({r1, r2, · · · , rp}) = ζB(w)({r1, r2, · · · , rp})
for all w ∈ W and r1, r2, · · · , rp ∈ R. As the FS digraph
has a loop at every vertex, the FS out neighborhood contains
the vertex itself. There are two cases.

Case 1: If for each w ∈ W and r1, r2, · · · , rp ∈ R,
ζM(w)({r1, r2, · · · , rp}) = 0 in an FS k-competition hyper-

graph Ck(
−→G ). Then, for each w ∈ W , |N+(r1)(w) ∩

N+(r2)(w)∩· · ·∩N+(rp)(w)| ≯ k. Since
−→G is symmetric,

then |N [r1](w) ∩ N [r2](w) ∩ · · · ∩ N [rp](w)| ≯ k for all

w ∈ W in U(
−→G ). Consequently, ζB(w)({r1, r2, · · · , rp})= 0

for all w ∈ W in Nk[U(
−→G )].

Case2: If for some r1, r2, · · · , rp ∈R, ζM(w)({r1, r2, · · · ,

rp}) �= 0 for all w ∈ W in an FS k-competition

hypergraph Ck(
−→G ) then |N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩

N+(rp)(w)| > k for all w ∈ W . Since
−→G is symmetric FS

digraph, then h(N [r1](w)∩N [r2](w)∩ · · · ∩N [rp](w)) =
h(N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩ N+(rp)(w)) for all
w ∈ W . Therefore

ζM(w)({r1, r2, · · · , rp})

= k1 − k

k1
(ζX (w)(r1) ∧ ζX (w)(r2) ∧ · · · ∧ ζX (w)(rP ))

×h(N+(r1)(w) ∩ N+(r2)(w) ∩ · · · ∩ N+(rp)(w))

= ζB(w)({r1, r2, · · · , rp}),

for allw ∈ W .Hence, ζM(w)({r1, r2, · · · , rp}) = ζB(w)({r1,
r2, · · · , rp}) for all w ∈ W and r1, r2, · · · , rp. �

Application to decision-making

Artificial intelligence (AI) is the core of active research that
has embraced new developments in information technology.
Although AI has roots which trace back to several years ago,
it has endowed automatic intelligent machines with learning,
reasoning, and adaptable capabilities. Explainable AI (XAI)
refers to techniques and models to produce explainable and
accurate approaches to show how a machine learning algo-
rithm reaches a decision which is understandable by humans.
XAI helps to understand transparency, fairness, model accu-
racy, and outcomes occurred in AI decision-making. With
the advancement of AI models, it has become a challenge
for humans to comprehend how an algorithm approaches an
accurate result. XAI helps decision-makers and developers
to ensure that a system is working properly to meet the the
basic standards. News channels play a vital role in any field
as they make us aware of latest trends, changes, and the cir-
cumstances of the world. News channels can be beneficial
for every class person in their own way. For instance, Stu-
dents get the latest knowledge concerning current affairs of
the nation and the world, Businessmen watch the news to
check the current status of market all over the world, and so
on. Each news channel has a competitive interrelationship
and entanglement among themselves on the basis of their
superior content including news headlines and multifarious
informative discussion programs. Following we discuss an
application of FS common enemy hypergraph (which is a
type of FS competition hypergraph) in news channels and
study how to apply the notion of FS common enemy hyper-
graphs in the competitive domain. The strength of power
of each news channels in different cities in an FS common
enemy hypergraph can be computed by Algorithm 6.

Method to evaluate the strength of power of each news channel in dif-
ferent cities

1. Input the most suitable set of parameters W on n news
channels r1, r2, · · · , rn .

2. Define the FS set (X ,W) on n news channels and cities
and FS relation (K,W) between n news channels and
cities.

3. Calculate the FS in neighborhood of each news channel.
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4. Construct theFScommonenemyhypergraphCEH(
−→G ) =

(X ,A,W) by using Algorithm 4, where
−→G is a FS

digraph.
5. The strength of each news channel can be computed by

following formula:

(S(ri ),W) =
∑

w∈W
(S(ri )(w)),

where S(ri )(w) = ∑
ri∈E

ζA(w)(E), E is a hyperedge

of fuzzy common enemy hypergraph corresponding to
parameter w.

6. The decision is S(ri ) if S(ri ) has highest value among all
other news channels, 1 ≤ i ≤ n.

Consider the top 5 most popular news channels of the world
BBCWorld News, Fox News, Cable News Network (CNN),
Sky News, and MSNBC. In a set form, these news channels
can be represented as

R = {(r1 = BBC World News), (r2 = Fox News),

(r3 = CNN), (r4 = Sky News), (r5 = MSNBC)}.

Every news channel competes with another for the param-
eters {w1, w2, w3, w4}, where w1 symbolizes current affairs
talk shows’ every news channelwant tomake their talk shows
best to aware the audience for all the government exams. w2

symbolizes ‘news programs’ the news keeps you updated and
provides every type of important information, so that every
news channel makes an effort to give accurate news to the
audience.w3 symbolizes ‘interview programs’ these types of
shows are an excellent format for discussing different topics,
so every news channel wants to invite whose guests which
give valid information to viewers. w4 symbolizes ‘politi-
cal news & discussion programs’ every news channel try
to give exact report of politicians and make authentic discus-
sion programs for public. The membership degree of every
news channel corresponding to parameters w1, w2, w3, and
w4 is given in Table 16 which indicates the degree of trp of
different programs including current affairs talk shows, news
programs, interview programs, and political news & discus-
sion programs that airing every day or once in a weak on
these considered news channels.
The maximum membership value of Sky News correspond-
ing to parameter w1 indicates that current affairs talk show
of Sky News has the highest trp as compared to other news
channels. Also, consider a set

{London, New York, Paris, Moscow, Tokyo,

Singapore, Barcelona, LosAngeles},

Fig. 15 Underlying FS graph U(
−→G ) = {U(

−→G (w1)), U(
−→G (w2))}

of cities that are availing from these considered news chan-
nels. The membership grades of all cities are given in Table
17which tell us about the interest or requirement of audiences
for the above-mentioned parameters of the news channels.
The membership value of London corresponding to param-
eter w1 is 0.95 means that 95% people who are living in
London want to watch current affairs talk shows on news
channels. Furthermore, let

{(A1 = London), (A2 = New York City), (A3 = Paris),

(A4 = Mascow), (A5 = Tokyo), (A6 = Singapore),

(A7 = Barcelona), (A8 = Los Angeles)}.

The relationship between cities and news channels relative to
above given four parameters is presented graphically in Fig.
15. This is the FS digraph and the directed edges between
cities and news channels show the influences of audiences
toward news channels. For example, the membership grade

of London and Fox News is 0.75 in
−→G (w1)means the people

who are living in London only 75% like current affairs talk
show of Fox News.
TheFS in neighborhood of FSdigraph 15 is given inTable 18.
Using Algorithm 4, compute the hyperedges of FS common
enemy hypergraph of FS digraph 15. By direct calculation,
it is easy to check that

1. {BBC World News, CNN}, {BBC World News, Fox
News}, and {Fox News, Sky News, MSNBC} are hyper-

edges of CEH(
−→G (w1)).

2. {BBC World News, MSNBC}, {BBC World News, Fox
News}, and {BBC World News, CNN, Sky News} are

hyperedges of CEH(
−→G (w2)).

3. {Fox News, MSNBC}, {BBC World News, Fox News,
CNN}, {CNN, Sky News}, and {BBCWorld News, Sky

News} are hyperedges of CEH(
−→G (w3)).

4. {BBC World News, MSNBC}, {BBC World News, Fox
News, CNN}, and {CNN, Sky News} are hyperedges of

CEH(
−→G (w4)).

Calculate the membership grades of these hyperedges
using Definition 4.3. The FS common enemy hypergraph
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Table 16 Membership grades of
news channels corresponding to
parameters

News Channels Degrees of w1 Degrees of w2 Degrees of w3 Degrees of w4

BBC World News 0.68 0.86 0.51 0.68

Fox News 0.79 0.70 0.48 0.79

CNN 0.74 0.64 0.57 0.74

Sky News 0.83 0.93 0.66 0.83

MSNBC 0.82 0.72 0.21 0.82

Table 17 Membership values of
cities corresponding to
parameters

Cities Degrees of w1 Degrees of w2 Degrees of w3 Degrees of w4

London 0.95 0.56 0.60 0.65

New York 0.76 0.56 0.72 0.99

Paris 0.81 0.71 0.43 0.71

Mascow 0.78 0.80 0.54 0.81

Tokyo 0.37 0.77 0.31 0.57

Singapore 0.87 0.77 0.85 0.77

Barcelona 0.54 0.50 0.79 0.32

Los Angeles 0.42 0.62 0.28 0.47

CEH(G) is given in Fig. 16. The hyperedge {BBC World

News, CNN} of CEH−→G (w1) show that there are common
cities A2 and A8 between BBC World News and CNN,
and both these channels compete for cities A2 and A8. The
membership grade of each hyperedge between news chan-
nels indicates the influences of audiences of common cities
toward news channels.
Now, we evaluate the strength of power of each news channel
using FS common enemy hypergraph. The strength of power
of each news channel is computed inTable 19which indicates
the dominant worth of each news channel in different cities.
However, Table 15 indicates that BBC World News is the
most powerful/dominant news channel than others. In other
words, it is the most watchable news channel in different
cities.

Discussion and comparison analysis

In this section, we discuss the comparison of proposed FS
competition hypergraphs with FS competition graphs and
fuzzy competition hypergraphs.

Comparison with fuzzy soft common enemy graphs

FS common enemy graphs [31] deal with real-world situ-
ations in the presence of parameters and it is successfully
manipulated in different research domains. The decision-
making problem that we presented in Sect. Fuzzy soft
hypergraphs can also be discussed using FS common enemy
graphs. Now, we study the above news channels problem by

applying the framework of FS common enemy graph. The
FS common enemy graph of FS digraph 15 is specified in
Fig. 17.

The edge {Fox News, Sky News} of CE(
−→G (w1)) states that

there is a common city A6 between FoxNews and SkyNews,
and both these channels compete for A6. Moreover, Fox
News and MSNBC, and Sky News and MSNBC also com-
pete for common city A6. However, if we see in FS common
enemy hypergraph 16, there is a hyperedge {Fox News, Sky

News,MSNBC} in CEH(
−→G (w1))which indicates that these

are the only channels which compete for A6. Therefore, we
concluded two consequences from this example which are
the following:

� FS common enemy graphs produce pair-wise relations,
conflicts, and influences among objects. This model fails
to tell whether there is a correspondence or rivalry among
more than two objects.

� FS common enemy hypergraphs give information not
merely as a couple but also provide group-wise relation-
ships between objects. Therefore, our proposed model
generalizes the existing model.

Now, we evaluate the strength of power of each news channel
by utilizing the above-stated technique 17.UsingFS common
enemy graph 17, the strength of power of each news channel
is given in Table 20. Meanwhile, Table 20 specifies that BBC
World News is the most powerful/dominant news channel
among other channels. In short, it is the most watchable news
channel in different cities.
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Table 18 FS in neighborhood
of news channels

News channels N−(News channels)

BBC World News { (A2,0.26),(A5,0.19),(A8,0.31)
w1

,
(A1,0.46),(A2,0.35),(A5,0.19),(A8,0.31)

w2
,

(A1,0.47),(A2,0.49),(A5,0.20),(A7,0.45)
w3

,
(A2,0.65),(A4,0.56),(A5,0.39)

w4
}

Fox News { (A1,0.75),(A5,0.33),(A6,0.59)
w1

,
(A5,0.63),(A7,0.48)

w2
,

(A3,0.26),(A5,0.18)
w3

,
(A1,0.49),(A2,0.38),(A4,0.52)

w4
}

CNN { (A2,0.29),(A8,0.36)
w1

,
(A2,0.40),(A4,0.55),(A8,0.60)

w2
,

(A4,0.41),(A5,0.28),(A6,0.55)
w3

,
(A2,0.69),(A4,0.71),(A6,0.60)

w4
}

Sky News { (A3,0.79),(A4,0.74),(A6,0.77)
w1

,
(A2,0.50),(A8,0.60)

w2
,

(A6,0.65),(A7,0.61)
w3

,
(A3,0.38),(A6,0.75),(A8,0.34)

w4
}

MSNBC { (A6,0.62),(A7,0.43)
w1

,
(A1,0.40),(A3,0.70),(A6,0.62)

w2
,

(A3,0.14),(A8,0.07)
w3

,
(A5,0.32),(A7,0.21)

w4
}

Fig. 16 FS digraph representing the interaction among cities and news channels

Table 19 Strength of power of
each news channel

News channels S(ri )(w1) S(ri )(w2) S(ri )(w3) S(ri )(w4) (S(ri ),W)

BBC World News 0.34 0.645 0.3159 0.5712 1.8721

Fox News 0.5953 0.133 0.1158 0.3536 1.1977

CNN 0.2108 0.224 0.3999 0.7976 1.6323

Sky News 0.4661 0.224 0.543 0.444 1.6771

MSNBC 0.4661 0.288 0.0294 0.2176 1.0011

123



2344 Complex & Intelligent Systems (2022) 8:2325–2348

Fig. 17 FS common enemy hypergraph CEH(
−→G )

Table 20 Strength of power of
each news channel

News channels S(ri )(w1) S(ri )(w2) S(ri )(w3) S(ri )(w4) (S(ri ),W)

BBC World News 0.34 0.946 0.4179 1.0132 2.7171

Fox News 1.0614 0.133 0.2022 0.7384 2.135

CNN 0.2108 0.608 0.5019 1.2708 2.5915

Sky News 0.9745 0.685 0.543 0.444 2.6465

MSNBC 0.9745 0.288 0.0294 0.2176 1.5095

These calculations and conclusion lead us to the following
two questions. If the consequence of existing technique and proposedmodel

are analogous then

(i) Why we choose and support the proposed technique
in decision making queries rather than this existing
approach?

(ii) Which type of piece of information we acquired from
proposed model?
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Table 22 Strength of news
channel

News channels S(ri )

BBC World News 0.34

Fox News 0.5953

CNN 0.2108

Sky News 0.4661

MSNBC 0.4661

The following illustration will provide the answers. The
strength of power of each news channel which is obtained
from proposed and existing technique is given in Table 21.
It is observed fromTable 21 that the consequences of FS com-
mon enemy graph and FS common enemy hypergraph are
similar. However, the divergence in significant values gives
distinct and unique information in both cases. For instance,
in fuzzy common enemy graph, the significant values of each
news channel tell us the strength of power of news channels
just in pair-wise and fail to tell the strength of power of each
news channel in group-wise conflicts.However, our proposed
model is a key approach to handle this loss of information
and give more accurate, precise, and flexibility to the system
as compared to the existing methods discussed in literature.
Additionally, the final evaluation of our proposed model is
that it generalizes the existing model and provides a better
illustration of real-world phenomenon regarding fuzziness.
This discussion manifests the effectiveness of our proposed
model and yields a reason to prefer the proposed model in
such decision-making problems.

Comparisonwith fuzzy common enemy hypergraphs

Fuzzy common enemy hypergraphs [30] play a key role in
different domains of technology, social networking, and bio-
logical sciences for demonstrating real-world problems using
fuzzy models. However, in all these problems, the relations
among objects were considered only in one direction. For
instance, in Sect. 4, the decision-making problem tackles four
parameters at a time, but in fuzzy common enemy hyper-
graphs, we can deal with only one parameter in a context.
Either, we can examine the connection between news chan-
nels and different cities for ‘current affairs talk shows’ or
‘newsprograms’ or ‘interviewprograms’ or ‘political news&
discussion programs’. Now,we check the relationship among
news channels and different cities for ‘current affairs talk
shows’ and evaluate the conclusions. The fuzzy common
enemy hypergraph corresponding to fuzzy ‘current affairs
talk shows’ digraph is shown in Fig. 19.
The hyperedge {Fox News, Sky News, MSNBC} of fuzzy

common enemy hypergraph CEH(
−→G ) express that Fox

News, Sky News, and MSNBC compete for common city

Table 23 Strength of news
channel

News Channels S(ri )

BBC World News 0.34

Fox News 1.0614

CNN 0.2108

Sky News 0.9745

MSNBC 0.9745

A6. The membership grade of each hyperedge points out the
influences of audiences of common cities toward news chan-
nels. For example, the membership grade of hyperedge {Fox
News, SkyNews,MSNBC} is 0.4661 asserts that almost 46%
residential people of cityA6which like the current affairs talk
shows of given news channels. However, FS common enemy
hypergraph 16 shows the multiple interest of people includ-
ing ‘current affairs talk shows’, ‘news programs’, ‘interview
programs’, and ‘political news & discussion programs’ in
one frame. This technique is incapable to deal with the con-
flicts, correlations, or communications among objects in the
proximity of parameters.
Using fuzzy common enemy hypergraph 18, the strength
of power of each news channel is given in Table 22.
Moreover, Table 22 indicates that Fox News is the most pow-
erful/dominant news channel among other channels. In other
terms, it is the most watchable news channel in different
cities.

Comparison with fuzzy common enemy graphs

The existing fuzzy common enemygraph technique is benefi-
cial to evaluate the strength of competition interrelationships
among objects. This technique also resolved various prob-
lems emerging in crispmethods of evaluation. In thismethod,
the fuzziness was studied only in one direction. Now, we
discuss the above-stated application with this technique by
taking one parameter ‘current affairs talk shows’ and eval-
uate the strength of power and observe the divergence in
conclusions. The fuzzy common enemy graph correspond-
ing to fuzzy ‘current affairs talk shows’ digraph is shown in
Fig. 20.

Now, we calculate the strength of power of each news
channel by utilizing this technique. Table 23, depicts that the
most powerful/dominant news channel amongother channels
is Fox News.

The main disadvantages of this technique are:

� The relative attributes of above-stated problem cannot be
taken under consideration in this technique.

� The consequences that we attain from this technique only
describe competition or conflicts between two objects or
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Table 21 Strength of power of
news channels using different
techniques

News channels Proposed model FS common enemy graph

BBC World News 1.8721 2.7171

Fox News 1.1977 2.135

CNN 1.6323 2.5915

Sky News 1.6771 2.6465

MSNBC 1.0011 1.5095

Fig. 18 FS common enemy graph CE(
−→G )

entities. These shortcoming flaws can be handled through
FS common enemy hypergraph, i.e., our proposedmodel.

Comparison of strength of powers by applying the pro-
posed technique and existing methods, i.e., FS common
enemy hypergraph, fuzzy common enemy hypergraph, and
fuzzy common enemy graph, is given in Fig. 21.

The conclusions that we attain through fuzzy common
enemy hypergraph and fuzzy common enemy graph exhibit
the strength of power relative to ‘current affairs talk shows’
and ignoring the other parameters, because in these existing
techniques,we tacklewith only one parameter at a time. From
above discussion and analysis, we observed that present the-
ories concerning competition lack a lot of crucial facts and
hides many errors and flaws. However, our proposed tech-
nique has overcome these limitations, permits to handling

this diversity, and assists to approach such decision-making
problems not only pair-wise but also in group-wise rivalries
and relations. These discussions show the validity of our pro-
posed technique.

Conclusion and future directions

In most of the real-world problems, data have uncertain
behavior and changes its nature with respect to different
parameters which motivates the necessity of fuzzy soft mod-
eling techniques. Fuzzy soft models play a vital in various
domains of science and technology and give more accu-
racy, precision, and flexibility to the system as compared
to crisp, fuzzy, and soft models. In this research article, we
have introduced a novel framework as extension of compe-
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Fig. 19 Example of fuzzy common enemy hypergraph

Fig. 20 Example of fuzzy common enemy graph

tition hypergraphs and fuzzy soft competition hypergraphs
by integrating fuzzy soft sets with competition hypergraphs.
We have discussed certain types of fuzzy competition hyper-
graphs to illustrate different competitions in directed fuzzy
soft networks. We have also introduced the notions of fuzzy
soft k-competition hypergraphs and fuzzy soft neighborhood
hypergraphs. We have designed certain algorithms to reduce
the calculation procedure while computing these mathe-
matical structures. We have studied the importance of our
proposed theory with an application. The proposed model is
more effective as it discussed two types of uncertainties in
competition networks. On the other hand, it also has some
limitations as it increases the calculation complexity with the
increase of parameters. This research work can be further
extended to 1) neutrosophic soft competition hypergraphs
and 2) bipolar fuzzy soft competition hypergraphs.

Fig. 21 Graphical representation of proposed model and existing tech-
niques
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