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Abstract
Multi-label feature selection, a crucial preprocessing step for multi-label classification, has been widely applied to data
mining, artificial intelligence and other fields. However, most of the existing multi-label feature selection methods for dealing
with mixed data have the following problems: (1) These methods rarely consider the importance of features from multiple
perspectives, which analyzes features not comprehensive enough. (2) These methods select feature subsets according to the
positive region, while ignoring the uncertainty implied by the upper approximation. To address these problems, a multi-label
feature selection method based on fuzzy neighborhood rough set is developed in this article. First, the fuzzy neighborhood
approximation accuracy and fuzzy decision are defined in the fuzzy neighborhood rough setmodel, and a newmulti-label fuzzy
neighborhood conditional entropy is designed. Second, a mixed measure is proposed by combining the fuzzy neighborhood
conditional entropy from information view with the approximate accuracy of fuzzy neighborhood from algebra view, to
evaluate the importance of features from different views. Finally, a forward multi-label feature selection algorithm is proposed
for removing redundant features and decrease the complexity of multi-label classification. The experimental results illustrate
the validity and stability of the proposed algorithm in multi-label fuzzy neighborhood decision systems, when compared with
related methods on ten multi-label datasets.

Keywords Fuzzy neighborhood rough sets · Multi-label feature selection · Fuzzy neighborhood conditional entropy ·
Approximation accuracy · Multi-label classification

Introduction

In recent years, multi-label classification occupies a very
important position in the fields of artificial intelligence and
machine learning, which attracts the attention of more and
more scholars and a series of multi-label classification meth-
ods are proposed [1–5]. In traditional classification learning,
each sample has only one category label, namely single-label
learning [6,7]. However, in actual application, most of the
samples may belong to multiple category labels at the same
time, which named multi-label learning [8–10]. There are
a large number of features in multi-label data, but some of
whichmaybe irrelevant or redundant information,whichwill
lead to such problems such as high computational cost, over-
fitting, low classification performance ofmulti-label learning
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algorithm and long process of classification learning. There-
fore, dimension reduction of multi-label data is the focus of
current research. Feature selection is one of the most com-
mon dimensionality reduction methods for analyzing high
dimensional multi-label data, which aims to eliminate redun-
dant and irrelevant features in classification learning task, and
extract useful information [11–13].

With the increasing availability of multi-label data related
to multiple labels in an instance, a great quantity of fea-
ture selectionmethods for multi-label learning are developed
to reduce dimensions and improve learning performance
[14–17]. These methods commonly can be divided into
three categories: filter [18–20], wrapper [21,22] and embed-
ded [23] methods, where the filter method is independent
of the specific learner, and it has less computation cost
and stronger generalization ability. Therefore, our proposed
method focuses on the filter strategy. The evaluation crite-
ria commonly based on filter method include information
measure [24–32], dependency measure [33–38], distance
measure [39–42] and consistency measure [43,44].
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Rough set theory is a familiar method to deal with uncer-
tain data, which does not need any prior information except
data, so it has been widely used in feature selection of data
[45]. However, the traditional rough set theory is based on
equivalence relation, which is only suitable for discrete data.
To solve this problem, some scholars have extended the rough
set model. For example, the neighborhood rough sets model
(NRS), which is themost commonmodel to deal with numer-
ical data, and the neighborhood relation is used to replace
the equivalence relation. Duan et al. [46] defined the lower
approximation and dependency of NRS in multi-label learn-
ing, and proposed a multi-label feature selection algorithm
based on neighborhood rough sets model (MNRS). Unfortu-
nately,NRScannot dealwith the fuzziness of data effectively.
So Lin et al. [47] used different fuzzy relations to construct a
multi-label fuzzy rough setsmodel (MFRS),which estimated
the similarity between samples under different labels, and
directly evaluated the attributes of multi-label data, solved
the problem of low separability about fuzzy similarity and
defined the dependency function. But FRS is sensitive to
noise, these noisy data will affect the calculation of fuzzy
lower approximation and limit their practical application
[48]. To solve the above problems, the fuzzy neighborhood
rough sets model (FNRS) is designed. Wang et al. [49] com-
bined NRS with FRS, proposed a feature selection algorithm
based on FNRSvia dependency to select feature subset. Chen
et al. [48] designed a multi-label attribute reduction method
based on variable precision FNRS, which used parameter-
ized fuzzy neighborhood granule to define the fuzzy decision
and decision class, and calculated importance of features
using dependency measure, but the reduction based on the
positive region does not take into account the influence of
the uncertain information in the upper approximation on the
importance of the attribute. Inspired by these observations,
this paper designs a multi-label feature selection method
basedonFNRSand the approximation accuracy is introduced
into our proposed multi-label feature selection method.

In the latest decades, the multi-label feature selection
methods are classified into two kinds of views. The first
is the algebra view based on approximate accuracy, which
considers the effect of some features on the labels with the
change of approximation accuracy, while confirms whether
these features can be eliminated. For instance, Liang et
al. [17] presented the selection of the optimal number of
particles in the multi-grain and multi-label decision table,
which makes certain positive region reduction more suit-
able for multi-label datasets. Li et al. [35] designed a robust
MFRS by the kernelized information and obtained a lower
approximation. The second is the information view based on
information entropy, which considers the influence of some
features on the decision subset with the information entropy
and decides whether these features can be eliminated. For
example, Lin et al. [25] designed a multi-label feature selec-

tion based on neighborhood mutual information, extended
neighborhood information entropy to adapt to multi-label
data, and introduced three new measurement methods. Li
et al. [29] developed a multi-label feature selection based on
information gain, which measured the correlation between
features and labels. Xu et al. [24] proposed a fuzzy neigh-
borhood conditional entropy for feature selection. Inspired
by these contributions, we design a novel fuzzy neighbor-
hood conditional entropy to judge whether exclude these
features on multi-label data. However, these methods can-
not provide a more accurate and comprehensive assessment
of the importance of features from different perspectives.
Therefore, Sun et al. [39] developed a multi-label feature
selection which combined neighborhoodmutual information
with the approximate accuracy in multi-label neighborhood
decision systems, and this method of combining two views
obtained great the classification performance. Combine the
above contributions, this paper proposes amulti-label feature
selection method, which combines the fuzzy neighborhood
conditional entropy with the approximate accuracy, to eval-
uate the importance of features from two views. Thus, the
major contributions of this article can be briefly described as
follows:

– Considering that the similarity of samples is also affected
by 0-value label, the average value of decision under
different labels is calculated as fuzzy decision. The con-
cepts of fuzzy neighborhood upper approximation, lower
approximation and fuzzy neighborhood approximation
accuracy are proposed, which improves the integrity of
multi-label fuzzy neighborhood decision system.

– This work proposed the definitions of fuzzy neigh-
borhood information entropy, fuzzy neighborhood joint
entropy and fuzzy neighborhood conditional entropy for
multi-label data, and their related properties and proofs
are discussed, by improving the single-label fuzzy neigh-
borhood entropy.

– Combining the approximate accuracy of fuzzy neighbor-
hood under the view of algebra with the fuzzy neighbor-
hood conditional entropy under the view of information
theory, a mixed measure method is proposed to evalu-
ate the correlation between feature subset and label set
in the multi-label fuzzy neighborhood decision system.
Finally, a forward multi-label feature selection algorithm
based on fuzzy neighborhood rough sets is designed for
multi-label classification.

The remainder of this paper is structured as follows. The
next section briefly introduces the related knowledge ofNRS,
MNRSandFNRS. In the subsequent section, the fuzzyneigh-
borhood rough set model, fuzzy neighborhood conditional
entropy and hybrid measure are introduced. The multi-label
feature selection algorithm is designed in the next section.
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Then the experimental results are provided. Finally, the con-
clusions of our research are provided in the last section.

Related knowledge

Classical neighborhood rough sets

Suppose there exists a neighborhood decision system which
can be simplified as NDS =< U , A

⋃
D, V ,Δ, δ >, where

U = {x1, x2, . . . , xn} is a nonempty samples set; A =
{a1, a2, . . . , am} is a features set; D is decision class of sam-
ples; V = ⋃

a∈A Va , where Va is the value of feature a; Δ

indicates distance function; and δ(0 ≤ δ ≤ 1) is a neigh-
borhood radius. If Δ satisfy the following properties [50]
as

(1) ∀x1, x2 ∈ U ,Δ(x1, x2) ≥ 0,where Δ(x1, x2) = 0 if and
only if x1 = x2;

(2) ∀x1, x2 ∈ U ,Δ(x1, x2) = Δ(x2, x1);
(3) ∀x1, x2, x3 ∈ U ,Δ(x1, x3) ≤ Δ(x1, x2) + Δ(x2, x3).

Then 〈U ,Δ〉 is called metric space, in general, the distance
in the metric space can be expressed as

Δ(xi , x j ) =
(

m∑

a=1

∣
∣xia − x ja

∣
∣p

)1/p

,

when p = 1,Δ represents Manhattan distance; when p = 2,
Δ representsEuclidean distance;when p → ∞,Δ(xi , x j ) =
maxa

∣
∣xia, x ja

∣
∣.

Suppose the nonempty metric space < U ,Δ >, for
∀B ⊆ A, δB(x) = {y |x, y ∈ U ,Δ(x, y) ≤ δ, δ ≥ 0} [46].
Δ(x, y) is a function to measure the distance between x and
y, δB(x) can also be called the neighborhood granularity of
x under B.

Multi-label neighborhood rough sets

Suppose there exists a multi-label neighborhood decision
system which can be abbreviated to MNDS =< U , A

⋃
D,

δ >, for ∀B ⊆ A, D = {d1, d2, . . . , dt }, Di = {d j |d j (xi ) =
1, d j ∈ D} represents the related label set of xi , and Dj =
{xi |d j (xi ) = 1, xi ∈ U } denotes a set of samples with the
label d j . Then the upper approximation and lower approxi-
mation of the neighborhood rough sets of D with respect to
B are defined [46], respectively, as

NBD =
{
xi

∣
∣∀d j ∈ Di , δB(xi )

⋂
D j �= ∅, xi ∈ U

}
, (1)

NBD = {xi
∣
∣∀d j ∈ Di , δB (xi ) ⊆ D j , xi ∈ U }. (2)

Then, for ∀B ⊆ A, the neighborhood entropy of xi ∈ U is
expressed [25] as

NE(B) = − log
|δB(xi )|

|U | . (3)

Fuzzy neighborhood rough sets

Suppose there exists a fuzzy neighborhood decision system
which can be short for FNDS =< U , A

⋃
D, δ >, where

U = {x1, x2, . . . , xn} is the nonempty set of samples, and A
is the set of features for ∀B ⊆ A. The fuzzy binary relation
RB is derived from B [49]. For ∀x, y ∈ U , RB(x, y) is called
fuzzy similarity relation between samples x and y under fea-
tures set B when it satisfies the following conditions:

(1) Reflexivity: RB(x, x) = 1,∀x ∈ U ;
(2) Symmetry: RB(x, y) = RB(y, x),∀x, y ∈ U .

Then RB is also known as the fuzzy similarity relation.
Suppose there exists FNDS =< U , A

⋃
D, δ > with for

∀B ⊆ A, ∀a ∈ B, ∀x, y ∈ U , the fuzzy similarity matrix
is [x]a(y) = Ra(x, y), Ra is a fuzzy similarity relation for
∀a ∈ B, thenwe can express RB = ⋂

a∈B Ra . Then the fuzzy
similaritymatrix of x with respect to B overU is defined [24]
as

[x]B(y) = min
a∈B ([x]a(y)), y ∈ U .

Given FNDS =< U , A
⋃

D, δ > with ∀B ⊆ A, U/D =
{D1, D2, . . . Dr}, for ∀x, y ∈ U , the parameterized fuzzy
neighborhood information granule is constructed as follows:

FNB(x) = [x]δB (y) =
{
RB(x, y), RB(x, y) ≥ δ

0, RB(x, y) < δ
, (4)

where δ is called the fuzzy neighborhood radius and satis-
fies 0 ≤ δ ≤ 1. The fuzzy neighborhood of ∀x ∈ U can
be determined by fuzzy similarity relation RB and neighbor-
hood radius δ.

Let FNDS =< U , A
⋃

D, δ > be a fuzzy neighborhood
decision system, U/D = {D1, D2, · · · Dr}, for ∀B ⊆ A, the
upper and lower approximations of D with respect to B are
expressed, respectively, as

FN δ
B(Dj ) =

{
x ∈ U |FNB (x)

⋂
Dj �= ∅

}
, (5)

FN δ
B(Dj ) = {x ∈ U |FNB(x) ⊆ Dj }. (6)
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For ∀B ⊆ C , the fuzzy neighborhood approximation accu-
racy of D with respect to B is described as

APδ
B =

∣
∣
∣FN δ

B(Dj )

∣
∣
∣

∣
∣
∣FN δ

B(Dj )

∣
∣
∣
. (7)

Proposedmethod

In this section, we improve the multi-label fuzzy neighbor-
hood rough set model based on the relevant basic knowledge
introduced in the previous section. First, the parameterized
fuzzy similarity relation is used to calculate the fuzzy neigh-
borhood granule. Because a sample in multi-label data may
belong to multiple labels at the same time, the multi-label
fuzzy decision is obtained by averaging values in multi-
ple labels, which is different from the single-label fuzzy
decision. Secondly, the fuzzy neighborhood approximation
accuracy is introduced to consider the uncertain informa-
tion of upper approximation. Then the fuzzy neighborhood
conditional entropy for multi-label data is proposed. Finally,
the fuzzy neighborhood approximation accuracy and fuzzy
neighborhood conditional entropy are combined to form a
mixed measure, and the relevant proof process is given.

Multi-label fuzzy neighborhood approximation
accuracy and fuzzy decision

Definition 1 Amulti-label fuzzy neighborhood decision sys-
tem can be denoted as MFNDS =< U , A

⋃
D, T , δ >.

U = {x1, x2, . . . , xn} is a nonempty finite set of sam-
ples; A = {a1, a2, . . . am} indicates a set of features;
D = {d1, d2, . . . , dt } represents a set of labels; T =
{(xi , A(xi ), D(xi ))|xi ∈ U }, ∀xi ∈ U , it allows A(xi ) =
(a1(xi ), a2(xi ), . . . , am(xi )), where am(xi ) is the value of
the sample xi in the featuream , D(xi ) = (d1(xi ), d2(xi ), . . . ,
dt (xi )), where d j (xi ) = {0, 1}, d j (xi ) indicates whether the
sample xi contains label d j , if xi contains label d j , then
d j (xi ) = 1; otherwise, d j (xi ) = 0.

Definition 2 Given MFNDS =< U , A
⋃

D, T , δ >, let
{D1

0, D
1
1, D

2
0, D

2
1, . . . , D

t
1} denote a label determined cover-

ageofU, then theparameterized fuzzydecision is constructed
as follows:

D̃j
p(x) =

∣
∣
∣[x]A(y)

⋂
D j

p

∣
∣
∣

|[x]A(y)| , (8)

where D j
p represents a sample set which is p in the column

of the label d j , j = 1, 2, . . . , t , p = 0, 1.

D̃ j
p = {D̃ j

p(x1), D̃
j
p(x2), . . . , D̃

j
p(xn)}, (9)

where D̃ j
p (xi ) is the fuzzy membership degree of xi with

respect to D j
p ; D̃

j
p is the fuzzy set of the equivalence decision

class of the samples.

D̃p(xi ) = 1

t

t∑

j=1

D̃ j
p(xi ), (10)

D̃p = {D̃p(x1), D̃p(x2), · · · , D̃p(xn)}, (11)

where D̃p(xi ) is the fuzzy set of the sample xi which belongs
label p.

D̃ = {D̃T
0 , D̃T

1 }, (12)

where {D̃0, D̃1} is the fuzzy decision of the samples induced
by D.

Definition 3 [49] Let F ′ and R′ are the two fuzzy sets, the
inclusion degree between F ′ and R′ can be defined as

P(F ′, R′) =
∣
∣F ′ ⋂ R′∣∣

|U | , (13)

where P(F ′, R′) represents the inclusion degree of fuzzy
set F ′ in fuzzy set R′,

∣
∣F ′ ⋂ R′∣∣ represents the number of

samples whose membership degree of fuzzy set F ′ is not
greater than that of fuzzy set R′.

Example 1 Given a set U = {x1, x2, . . . , x6}, F ′ and R′ are
two fuzzy sets defined onU , which represent themembership
degree of samples separately, as follows:

F ′ =
{
0.7

x1
,
0.9

x2
,
0.4

x3
,
0.3

x4
,
0.6

x5
,
0.5

x6

}

,

R′ =
{
0.5

x1
,
0.9

x2
,
0.7

x3
,
0.6

x4
,
0.3

x5
,
0.4

x6

}

.

So, we can get

∣
∣
∣F ′ ⋂ R′

∣
∣
∣ = |x2, x3, x4| = 3,

∣
∣
∣R′ ⋂ F ′

∣
∣
∣ = |x1, x2, x5, x6| = 4.

Definition 4 GivenMFNDS=< U , A
⋃

D, δ >with ∀B ⊆
A, D = {d1, d2, . . . , dt } represents a set of labels; δ is called
the fuzzy neighborhood radius and satisfies 0 ≤ δ ≤ 1. For
∀x, y ∈ U , the parameterized fuzzy neighborhood informa-
tion granule is constructed as follows:

δB(x) = [x]δB (y) =
{
RB(x, y), RB(x, y) ≥ 1 − δ

0, RB(x, y) < 1 − δ,
, (14)

where RB is the fuzzy similarity relation induced by B on
U , when B1 ⊆ B2, RB2 ⊆ RB1 ; when δ1 ≤ δ2, for ∀x ∈ U ,
[x]δ1B ⊆ [x]δ2B .
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Definition 5 Given MFNDS =< U , A
⋃

D, δ > with
∀B ⊆ A, δ is called the fuzzy neighborhood radius;{
D̃0, D̃1

}
is the fuzzy decision of samples induced by D.

The upper and lower approximations of the fuzzy neighbor-
hood of D is relative to B are defined, separately, as

Rδ
B(D) =

{
Rδ
B(D̃1), Rδ

B(D̃2), . . . Rδ
B(D̃p)

}
, (15)

Rδ
B(D) =

{
Rδ
B(D̃1), R

δ
B(D̃2), . . . R

δ
B(D̃p)

}
, (16)

where

Rδ
B(D̃p) =

{
x ∈ U

∣
∣
∣P(δB(x), D̃p) > β

}
, 0 ≤ β < 0.5,

(17)

Rδ
B(D̃p) =

{
x ∈ U

∣
∣
∣P(δB(x), D̃p) ≥ α

}
, 0.5 ≤ α ≤ 1.

(18)

Definition 6 GivenMFNDS=< U , A
⋃

D, δ >with ∀B ⊆
A, δ is called the fuzzy neighborhood radius;

{
D̃0, D̃1

}
is the

fuzzy decision of samples induced by D; RB is the fuzzy sim-
ilarity relation induced by B on U . The fuzzy neighborhood
approximation accuracy is defined as

αδ
B(D) =

∑r
p=1

∣
∣
∣Rδ

B(D̃p)

∣
∣
∣

∑r
p=1

∣
∣
∣Rδ

B(D̃p)

∣
∣
∣
, (19)

where |�| represents the cardinality of the set.
∣
∣
∣Rδ

B(D̃p)

∣
∣
∣ ≤

∣
∣
∣Rδ

B(D̃p)

∣
∣
∣, so 0 ≤ αδ

B(D) ≤ 1.

Property 1 Given MFNDS =< U , A
⋃

D, δ > with ∀B ⊆
A, δ1 and δ2 are two fuzzy neighborhood radii, if δ1 ≤ δ2,
then α

δ2
B (D) ≤ α

δ1
B (D).

Proof For ∀x ∈ U , according to Definition 4, the fuzzy
neighborhood information granule satisfies the relation is
obtained [x]δ1B ⊆ [x]δ2B , then Rδ2

B (D̃p) ⊆ Rδ1
B (D̃p),

Rδ1
B (D̃p) ⊆ Rδ2

B (D̃p), so there is α
δ2
B (D) ≤ α

δ1
B (D). �

Property 2 Given MFNDS =< U , A
⋃

D, δ > with ∀B ⊆
A, δ is a fuzzy neighborhood radius, if B1 ⊆ B2, we can get
the property: αδ

B1
(D) ≤ αδ

B2
(D).

Proof Since B1 ⊆ B2, according to the fuzzy neighbor-
hood granule satisfies the relation is obtained [x]δB2 ⊆ [x]δB1 ,

then according to Definitions 5 and 6, we have Rδ
B1

(D̃p) ⊆
Rδ
B2

(D̃p), Rδ
B2

(D̃p) ⊆ Rδ
B1

(D̃p). Then, αδ
B1

(D) ≤ αδ
B2

(D)

holds. �
Example 2 Given a multi-label decision table MDT=< U , A
⋃

D > to display in Table 1, U = {x1, x2, x3, x4, x5, x6}

Table 1 A multi-label decision table

U a1 a2 a3 d1 d2 d3

x1 6.2 0.6 2 0 1 0

x2 11.2 1.3 1 1 0 1

x3 4.3 1.3 0.6 0 0 1

x4 5.8 0.3 2 1 1 0

x5 0.7 1.3 1 1 1 0

x6 2.9 0.4 1 0 1 1

represents a sample set, A = {a1, a2, a3} means a feature
set, D = {d1, d2, d3} indicates a label set, RA is based on the
fuzzy similarity relation induced by A, let the value of fuzzy
neighborhood radius be 0.

Thedata inTable 1were normalized according to literature
[24], so that the numerical valuewaswithin the range of [0,1].
The fuzzy similarity relationship Rak between the samples
xi and x j relative to the attribute ak is calculated by

Rak = 1 − ∣
∣xik − x jk

∣
∣ , (20)

where ak ∈ A, k = 1, 2, 3, xi , x j ∈ U , i = 1, 2, 3, 4, 5, 6,
j = 1, 2, 3, 4, 5, 6. So, we can obtain the fuzzy similar-
ity matrix [x]ak (y) about the attribute ak , and [x]A(y) =
minak∈A

(
[x]ak (y)

)
. Because the fuzzy similarity relation

Rak satisfies the reflexivity, Rak = 1 when i = j , then we
can get

[x]A(y)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.2857 0 0.7 0.2857 0.2857
0.2857 1 0.3429 0 0 0.1

0 0.3429 1 0 0.6571 0.1
0.7 0 0 1 0 0.2857

0.2857 0 0.6571 0 1 0.1
0.2857 0.1 0.1 0.2857 0.1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The fuzzy decision under the labels d1, d2, d3 are calculated
as follows:

D1
1 = {x2, x4, x5}, D1

0 = {x1, x3, x6};
D2
1 = {x1, x4, x5, x6}, D2

0 = {x2, x3};
D3
1 = {x2, x3, x6}, D3

0 = {x1, x4, x5};

where D j
r represents the sample set of the value is p under

the label d j , where j = 1, 2, 3, p = 0, 1. According to
Definition 2, we can obtain
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D̃1
0 = {D̃1

0(x1), D̃
1
0(x2), D̃

1
0(x3), D̃

1
0(x4), D̃

1
0(x5), D̃

1
0(x6)}

= {0.5028, 0.4215, 0.5238, 0.4964, 0.5105, 0.7405},
D̃1
1 = {D̃1

1(x1), D̃
1
1(x2), D̃

1
1(x3), D̃

1
1(x4), D̃

1
1(x5), D̃

1
1(x6)}

= {0.4972, 0.5785, 0.4762, 0.5036, 0.4895, 0.2595};
D̃2
0 = {D̃2

0(x1), D̃
2
0(x2), D̃

2
0(x3), D̃

2
0(x4), D̃

2
0(x5), D̃

2
0(x6)}

= {0.1117, 0.7769, 0.6395, 0, 0.3217, 0.1069},
D̃2
1 = {D̃2

1(x1), D̃
2
1(x2), D̃

2
1(x3), D̃

2
1(x4), D̃

2
1(x5), D̃

2
1(x6)}

= {0.8883, 0.2231, 0.3605, 1, 0.6783, 0.8931};
D̃3
0 = {D̃3

0(x1), D̃
3
0(x2), D̃

3
0(x3), D̃

3
0(x4), D̃

3
0(x5), D̃

3
0(x6)}

= {0.7765, 0.1653, 0.3129, 0.8561, 0.6294, 0.3588},
D̃3
1 = {D̃3

1(x1), D̃
3
1(x2), D̃

3
1(x3), D̃

3
1(x4), D̃

3
1(x5), D̃

3
1(x6)}

= {0.2235, 0.8347, 0.6871, 0.1439, 0.3706, 0.6412}.

Then we can get

D̃0 = 1

3

3∑

j=1

D̃ j
0

= {0.4637, 0.4546, 0.4921, 0.4508, 0.4872, 0.4021};

D̃1 = 1

3

3∑

j=1

D̃ j
1

= {0.5363, 0.5454, 0.5079, 0.5492, 0.5128, 0.5979}.

From the above, we can derive that D̃0(x) + D̃1(x) = 1, so
the eventual fuzzy decision of entire label space is

D̃ = {D̃T
0 , D̃T

1 } =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.4637 0.5363
0.4546 0.5454
0.4921 0.5079
0.4508 0.5492
0.4872 0.5128
0.4021 0.5979

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Multi-label fuzzy neighborhood conditional entropy

Definition 7 Suppose there exists MFNDS =< U , A
⋃

D,

δ > with ∀B ⊆ A, δ is the neighborhood radius, then fuzzy
neighborhood entropy of B is defined as

E f n(B) = − 1

|U |
|U |∑

i=1

log2
|δB(xi )|

|U | , (21)

where |δB(xi )| represents the number of nonzero values in
the fuzzy neighborhood particle of an object xi , then

|δB (xi )||U |
represents the probability of the number of nonzero values
in fuzzy neighborhood granule |δB(xi )| in U .

Definition 8 Suppose there exists MFNDS =< U , A
⋃

D,

δ > with ∀B1, B2 ⊆ A, δB1(x) and δB2(x) are fuzzy neigh-
borhood granules, then the fuzzy neighborhood joint entropy
of B1 and B2 is defined as

E f n(B1, B2) = − 1

|U |
|U |∑

i=1

log2

∣
∣δB1

⋃
B2(xi )

∣
∣

|U | . (22)

Definition 9 Suppose there exists MFNDS =< U , A
⋃

D,

δ > with ∀B1, B2 ⊆ A, δB1(x) and δB2(x) are fuzzy neigh-
borhood granules, then the fuzzy neighborhood conditional
entropy of B1 and B2 is defined as

E f n(B1 |B2 ) = − 1

|U |
|U |∑

i=1

log2

∣
∣δB1

⋃
B2(xi )

∣
∣

∣
∣δB2(xi )

∣
∣

. (23)

Property 3 Suppose there exists MFNDS =< U , A
⋃

D,

δ > with ∀B1, B2 ⊆ A, δB1(x) and δB2(x) are fuzzy neigh-
borhood granules, for ∀B1, B2 ⊆ A. The property is as
follows:

E f n(B1 |B2 ) = E f n(B1, B2) − E f n(B2).

Proof According to Definitions 6 and 7, it can be proved

E f n(B1, B2) − E f n(B2)

= − 1

|U |
|U |∑

i=1

log2

∣
∣δB1

⋃
B2(xi )

∣
∣

|U | + 1

|U |
|U |∑

i=1

log2

∣
∣δB2(xi )

∣
∣

|U |

= − 1

|U |
|U |∑

i=1

log2

(∣
∣δB1

⋃
B2(xi )

∣
∣

|U | · |U |
∣
∣δB2(xi )

∣
∣

)

= − 1

|U |
|U |∑

i=1

log2

∣
∣δB1

⋃
B2(xi )

∣
∣

∣
∣δB2(xi )

∣
∣

.

Then, from Definition 8, it follows that E f n(B1 |B2 ) =
E f n(B1, B2) − E f n(B2). �
Definition 10 Suppose there exists MFNDS=< U , A

⋃
D,

δ > with ∀B ⊆ A, δB(x) is the fuzzy neighborhood gran-
ule, D̃ = {D̃0, D̃1} is a fuzzy decision, then the conditional
entropy of decision attribute set D on feature subset B is
defined as

E f n(D |B )

= − 1

|U |
|U |∑

i=1

1∑

p=0

∣
∣
∣δB

⋃
D̃p

(xi )
∣
∣
∣

|δB(xi )|

= − 1

|U |
|U |∑

i=1

1∑

p=0

log2

∣
∣
∣δB(xi )

⋂
D̃p(xi )

∣
∣
∣

|δB(xi )| , (24)
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where |δB(xi )| represents the number of nonzero values
in the fuzzy neighborhood particle of an object xi , then∣
∣
∣δB(xi )

⋂
D̃p

∣
∣
∣ represents the number of nonzero values of

samples whose membership degree of δB(xi ) is not greater
than D̃p.

The feature selection only from the algebraic or infor-
mation viewpoint is limited. For the algebraic viewpoint,
feature selection under the definition of information theory
may also exist redundancy features, for information theory,
feature selection under definitions of algebraic viewpoint,
conditional entropy may have changed. So we combine the
approximate precision from the algebraic viewpoint with the
measurement method of conditional entropy from informa-
tion theory to calculate the importance degree of candidate
features.

Definition 11 Given MFNDS =< U , A
⋃

D, δ > with
∀B ⊆ A, δB(x) is the fuzzy neighborhood granule, D̃ =
{D̃0, D̃1} is a fuzzy decision, then the mixed measure based
on the approximate accuracy of the fuzzy neighborhood and
the conditional entropy of the fuzzy neighborhood is defined
as

EM f n(D |B )

= αδ
B(D) · E f n(D |B )

= −αδ
B(D)

|U |
|U |∑

i=1

1∑

p=0

log2

∣
∣
∣δB(xi )

⋂
D̃p(xi )

∣
∣
∣

|δB(xi )| . (25)

Property 4 Given MFNDS =< U , A
⋃

D, δ > with ∀B ⊆
A, δB(x) is the fuzzy neighborhood granule, D̃ = {D̃0, D̃1}
is a fuzzy decision, then EM f n(D |B ) ≥ 0.

Proof Assume EM f n(D |B ) < 0, then log2

∣
∣
∣δB (xi )

⋂
D̃p(xi )

∣
∣
∣

|δB (xi )|

> 0, then

∣
∣
∣δB (xi )

⋂
D̃p(xi )

∣
∣
∣

|δB (xi )| > 1; therefore, |δB(xi )| < |δB(xi )
⋂

D̃p(xi )
∣
∣
∣, but this is obviously not established. So,

∣
∣
∣δB (xi )

⋂
D̃p(xi )

∣
∣
∣

|δB (xi )| ≤ 1, that is, log2

∣
∣
∣δB (xi )

⋂
D̃p(xi )

∣
∣
∣

|δB (xi )| ≤ 0. There-
fore, EM f n(D| B) ≥ 0. �
Property 5 Let MFNDS =< U , A

⋃
D, δ > be a multi-

label fuzzy neighborhood decision system, for ∀B1, B2 ⊆ A,
if B1 ⊆ B2, according to Property 2, δB2(x) ⊆ δB1(x), then
EM f n(D |B1 ) ≥ EM f n(D |B2 ), if and only if δB1(x) =
δB2(x), then the equal sign is true.

Proof According to Eq. (26), EM f n(D |B1 ) ≥ EM f n

(D |B2 ) holds.

EM f n(D |B1 ) − EM f n(D |B2 )

=
⎛

⎝−
αδ
B1

(D)

|U |
|U |∑

i=1

1∑

p=0

log2

∣
∣
∣δB1 (xi )

⋂
D̃p(xi )

∣
∣
∣

∣
∣δB1 (xi )

∣
∣

⎞

⎠

−
⎛

⎝−
αδ
B2

(D)

|U |
|U |∑

i=1

1∑

p=0

log2

∣
∣
∣δB2 (xi )

⋂
D̃p(xi )

∣
∣
∣

∣
∣δB2 (xi )

∣
∣

⎞

⎠

= − 1

|U |
|U |∑

i=1

1∑

p=0

⎛

⎝αδ
B1

(D)log2

⎛

⎝

∣
∣
∣δB1 (xi )

⋂
D̃p(xi )

∣
∣
∣

∣
∣δB1 (xi )

∣
∣

⎞

⎠

−αδ
B2

(D)log2

⎛

⎝

∣
∣
∣δB2 (xi )

⋂
D̃p(xi )

∣
∣
∣

∣
∣δB2 (xi )

∣
∣

⎞

⎠

⎞

⎠

= − 1

|U |
|U |∑

i=1

1∑

p=0

⎛

⎜
⎜
⎝log2

⎛

⎝

∣
∣
∣δB1 (xi )

⋂
D̃p(xi )

∣
∣
∣

∣
∣δB1 (xi )

∣
∣

⎞

⎠

αδ
B1

(D)

+log2

⎛

⎝

∣
∣δB2 (xi )

∣
∣

∣
∣
∣δB2 (xi )

⋂
D̃p(xi )

∣
∣
∣

⎞

⎠

αδ
B2

(D)
⎞

⎟
⎠

= − 1

|U |
|U |∑

i=1

1∑

p=0

log2

×

⎛

⎜
⎜
⎝

∣
∣
∣δB1 (xi )

⋂
D̃p(xi )

∣
∣
∣
αδ
B1

(D)

∣
∣δB1 (xi )

∣
∣α

δ
B1

(D)
·

∣
∣δB2 (xi )

∣
∣α

δ
B2

(D)

∣
∣
∣δB2 (xi )

⋂
D̃p(xi )

∣
∣
∣
αδ
B2

(D)

⎞

⎟
⎟
⎠

= − 1

|U |
|U |∑

i=1

1∑

p=0

log2

∣
∣
∣δB1 (xi )

⋂
D̃p(xi )

∣
∣
∣
αδ
B1

(D) · ∣
∣δB2 (xi )

∣
∣α

δ
B2

(D)

∣
∣δB1 (xi )

∣
∣α

δ
B1

(D) ·
∣
∣
∣δB2 (xi )

⋂
D̃p(xi )

∣
∣
∣
αδ
B2

(D)

≥ − 1

|U |
|U |∑

i=1

1∑

p=0

log2

∣
∣
∣δB1 (xi )

⋂
D̃p(xi )

∣
∣
∣
αδ
B1

(D) · ∣
∣δB2 (xi )

∣
∣α

δ
B2

(D)

∣
∣δB2 (xi )

∣
∣α

δ
B2

(D) ·
∣
∣
∣δB2 (xi )

⋂
D̃p(xi )

∣
∣
∣
αδ
B2

(D)

≥ 0. (26)

�
Property 6 Given MFNDS =< U , A

⋃
D, δ > with ∀B ⊆

A, ∀a ∈ B, if EM f n(D |B −{a}) = EM f n(D |B ), then the
feature a is unnecessary.

Proof Assume there exists a ∈ B satisfies EM f n(D |B −
{a}) = EM f n(D |B ) and the feature a is necessary. We
can see from previous knowledge that δB−{a}(x) �= δB(x),
and B − {a} ⊆ B, according to Property 5, we know that
EM f n(D |B − {a}) > EM f n(D |B ), this contradicts the
hypothesis. So, for ∀a ∈ B, if EM f n(D | B − {a}) =
EM f n(D |B ), then the feature a is unnecessary. �
Definition 12 Given MFNDS =< U , A

⋃
D, δ >with

∀B ⊆ A,we call B a reduction of A in the fuzzy neighbor-
hood decision information system, relative to decision class
D when it satisfies that

(1) EM f n(D |B ) = EM f n(D |A );
(2) ∀a ∈ B, EM f n(D |B − {a}) > EM f n(D |B ).

Definition 13 Given MFNDS =< U , A
⋃

D, δ > with
∀B ⊆ A, the importance of feature for a ∈ B relative to
D is expressed as
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SIG(a, B, D) = EM f n(D |B − {a} ) − EM f n(D |B ).

(27)

To get a reduced subset, two preconditions from the Def-
inition 12 must be met. However, there are many redundant
and unrelated features in themulti-label datasets, and search-
ing for the minimum reduced subset is an NP-complete
problem. Therefore, we set a threshold value λ to control
subset selection before selecting the final feature subset. If
the difference of the mixing measure between the current
feature subset and the original feature subset is less than λ,
then a relatively approximate reduced subset Red is selected,
which shall meet the following requirements:

EM f n(D |Red ) − EM f n(D |A ) ≤ λ. (28)

Then the importance of feature for R ∈ A − Red relative to
D is expressed as

SIG (R, Red, D)

= EM f n(D |Red ) − EM f n(D |Red
⋃

{R}). (29)

Remark 1 Sun et al. [51] considered that the upper and lower
approximations of rough set belong to the viewpoint of
algebraic theory, and information entropy and its extension
belong to the viewpoint of information theory. Then Defini-
tion 6 shows the fuzzy neighborhood approximate accuracy
αδ
B(D) from the algebraic point of view, and Definition 10

shows the conditional entropy E f n(D |B ) of the feature sub-
set B of the fuzzy information decision set D̃ from the
information theory. Therefore, Definition 11 measures the
uncertainty of the multi-label fuzzy neighborhood decision
systems from both the algebraic view and information view.

Multi-label feature selection algorithmbased
on fuzzy neighborhood rough sets

According to the relevant definitions in the third section,
this paper constructs amulti-label feature selection algorithm
based on fuzzy neighborhood rough sets. To clearly under-
stand our proposed algorithm, the process of feature selection
for multi-label classification is described by the framework
is shown in Fig. 1.

In Algorithm 1, a multi-label feature selection algorithm
(MFSFN) is proposed based on fuzzy neighborhood rough
sets, assume that themulti-label fuzzyneighborhooddecision
system contains n is the size of samples, m is the number of
features and t is the number of labels which have |D| deci-
sion classes. The time complexity on the calculation of the
fuzzy similarity relation is O( 12n

2m), which is the basis for
the calculation of the fuzzy decision is O(tn |D|) in Steps

Algorithm1MFSFN
Require: MFNDS < U , A

⋃
D >:amulti-label fuzzy neighborhood

decision system; δ: a fuzzy neighborhood radius; λ: a parameter to
control the selection of feature subset.

Ensure: Red: the reduced subset.
1: Initialize red = ∅, B = A − red
2: for ∀a ∈ B do
3: Compute the fuzzy similarity relation Ra
4: for ∀d j ∈ D do
5: Compute the fuzzy decision D̃
6: end for
7: Compute the accuracy of fuzzy neighborhood approximation

αδ
B(D)

8: Compute the fuzzy neighborhood conditional entropy E f n(D |B )

9: Compute the mixed metricEM f n(D |B )

10: end for
11: while EM f n(D |Red ) �= EM f n(D |A ) do
12: for ∀a ∈ B do
13: Compute SIG(a, B, D)

14: Find SIG(a, B, D)=max{a |SIG(a, B, D) }
15: if SIG(a, B, D) > 0 then
16: Let Red = Red

⋃{a}, and compute EM f n(D |Red )

17: if EM f n(D |Red ) − EM f n(D |A ) ≤ λ then
18: Return Red
19: end if
20: end if
21: B = B − Red
22: end for
23: end while
24: return Red

4–6, the time complexity on calculation of the approximation
accuracy is O(nm |D|) in Step 7 and the time complexity on
calculation of the fuzzy neighborhood conditional entropy is
O(nm |D|) in Steps 8–9. In Steps 11–24, assume the size of
selected subset is r , its time complexity is O(mr |D|). There-
fore, the worst time complexity of MFSFN is approximately
O( 12n

2m+tn |D| + nm |D| + mr |D|). Since the decision
classes in the proposed algorithm is constant and that is
|D| = 2, the total computational time complexity of Algo-
rithm 1 is O( 12n

2m).

Experimental results and analysis

Experimental preparation

The main goal of feature selection is to select fewer fea-
ture subsets and achieve higher classification performance.
To prove the validity and classification performance of
our method, we select ten multi-label datasets of four dif-
ferent fields from http://mulan.sourceforge.net/datasets.html
and http://www.uco.es/kdis/mllresources/. The Flags dataset
contains details of some countries and their flags; Cal500 is
a music dataset, composed of 502 songs; Emotions is about
the music fragments that can cause emotions; Scene stores
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Fig. 1 The framework of proposed multi-label feature selection algo-
rithm

pattern information for a series of scenes; Yeast contains the
biological information about gene microarray data and phy-
logenetic spectrum; the BBC and Guardian datasets include
654 news articles covering 416 distinct news stories; the
Gnegative, Plant and Virus datasets are used to predict the
subcellular locations of proteins according to their sequences,
where Gnegative stores 1392 sequences for Gram-negative

bacterial species, Plant contains 978 sequences for plant
species, Virus contains 207 sequences for virus species. The
basic information description of these datasets, including
the size of samples set, the dimensionality of attributes set,
the cardinality of the labels set, the domains of ten multi-
label datasets, which are demonstrated in Table 2, where LC
(D) = 1

n

∑n
i=1

∑t
j=1

[
d j (xi ) = + 1] is cardinality of the

labels; LD(D) = 1
nt

∑n
i=1

∑t
j=1 [di (xi ) = +1] is density

of the labels; [d j (xi ) = +1] denotes that the sample xi is
associated with the label d j . When

[
d j (xi ) = +1

]
holds, [·]

equal to 1, otherwise it is 0 [52].
The following all experiments were performed using

MATLAB R2016b on Windows10 with the experimental
platform of Inter(R) Core(TM) i5-8500 CPU at 3.00 GHz,
memory 16.00 GB. Two classifiers MLKNN [52] andMLFE
[53], which are used to prove the classification performance
of MFSFN. The smoothing factor is equal to 1, and the size
of nearest neighbor K is equal to 10 in MLKNN and MLFE
[54]. We select several the common evaluation indexes of
multi-label classification to evaluate the classification perfor-
mance based on our proposedmethod inmulti-label learning,
including the number of selected features (N), average pre-
cision (AP), coverage (CV), Hamming loss (HL), one error
(OE), ranking loss (RL), macro-averaging F1 (MacF1) and
micro-averaging F1 (MicF1) [25,36,40,54], each of these
indexes measures different aspects of the classification per-
formance. The higher the value of AP, CV,MacF1 andMicF1
are, the better the classification performance is, and the lower
the CV, OE, RL and HL are, the better the classification
performance is. In the following experimental results, “↑”
represents “the larger the better”, and “↓” represents “the
smaller the better”. The number in bold indicates that this
algorithm is better than other algorithms in the correspond-
ing index.

Parameter discussion

Since parameters δ and λ will impact the classification per-
formance of the MFSFN, to obtain the best classification
results, in this subsection we will demonstrate the influence
of parameters on the feature selection results. The parameter
δ represents the fuzzy neighborhood radius, and the param-
eter λ is threshold to control the selection of feature subset.
In this paper, we set the variation range of δ be [0,0.5] with
step size of 0.05, and the variation range of λ is [0,1] with the
step size of 0.05. As shown in Figs. 2 and 3, where the X-axis
refers to the neighborhood radius δ, the Y -axis refers to λ that
controls the selection of feature subset. We select the Scene
dataset by our proposed algorithm MFSFN to demonstrate
the training process that is the selection of parameters δ and λ

under two classifiers MLKNN and MLFE. Finally, we select
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Table 2 Description of the ten
multi-label datasets

No. Datasets Samples Features Lables LC LD Domain

1 Flags 194 19 7 3.392 0.485 Images

2 Cal500 502 68 174 26.044 0.150 Music

3 Emotions 593 72 6 1.868 0.311 Music

4 Scene 2407 294 6 1.074 0.179 Images

5 Yeast 2417 103 14 4.237 0.303 Biology

6 BBC 352 1000 6 1.125 0.188 Text

7 Gnegative 1392 440 8 1.046 0.131 Biology

8 Virus 207 440 6 1.217 0.203 Biology

9 Plant 978 440 12 1.069 0.089 Biology

10 Guardian 302 1000 6 1.126 0.188 Text

the most appropriate parameters for each multi-label dataset
are shown in Tables 3 and 4.

The purpose of first portion is to analysis the change of
evaluation indexeswith parameters under classifierMLKNN.
Figure 2 illustrates the change of each evaluation index with
the parameters on the Scene dataset. For the Scene dataset,
when δ = 0.15, λ = 0.65, the five evaluation indexes AP,
CV, RL, OE and N are the most appropriate. Therefore, the
following will take δ = 0.15, λ = 0.65 as the best parameter
on the Scene dataset. Using the same process to obtain the
best parameters of the other nine datasets from Table 2. The
parameter values and evaluation index values are displayed
in Table 3.

The second portion of this subsection is to analysis change
of evaluation indexeswith parameters under classifierMLFE.
Figure 3 demonstrates the change of each evaluation index
with parameters on the Scene dataset. For the Scene dataset,
when δ = 0.05, λ = 1, the eight evaluation indexes N, AP,
HL, CV, OE, RL, MacF1 and MicF1 are the optimal value.
Therefore, the followingwill take δ = 0.05, λ = 1 as the best
parameters on the Scene dataset, use the same procedure to
get the best parameters of the other nine datasets fromTable 2.
The parameter values and each evaluation index value are
shown in Table 4.

Comparison results of methods under MLKNN

This subsection exhibitions the comparison results of our pro-
posed method with other related algorithms under MLKNN.
First, our improved algorithm is compared with eight most
advanced multi-label feature selection algorithms on the
Scene dataset, including MLNB [55], MDDMspc [56],
MDDMproj [56], PMU [57], RF-ML [58], MFNMIopt [25],
MFNMIneu [25], MFNMIpes [25] were tested in aspects of
AP, CV, HL and RL. Using the experimental techniques and
results provided in [25], where μ is set as 0.5 in MDDM-
spc. The parameters δ and λ of MFSFN in the experiment
select the optimal parameter values in Table 3. As shown in

Table 5, it is the experimental result of comparing MFSFN
on the Scene dataset with the other eight algorithms. The
AP value of MFSFN is optimal, which is 0.0117 higher than
MFNMIopt. On the CV index, MFSFN achieves lowest on
the eight algorithms, which is 0.0292 lower than MDDM-
spc. The RL value of MFSFN is lower than other seven
algorithms, where MFSFN is 0.0043 lower than MLNB. In
terms of HL, MFSFN is compared with the other eight algo-
rithms on the Scene dataset is ranked 2nd, and MFSFN is
only 0.0002 higher than MFNMIopt, but MFSFN has obvi-
ous advantages over MFNMIopt for indexes AP, CV and
RL. Obviously, for the Scene dataset, MFSFN achieves bet-
ter results in each evaluation indications comparedwith other
eight algorithms, and the validity of the selected parameters
δ and λ is proved.

This part of the subsection adopts the classifier MLKNN
and proves the validity ofMFSFN in the aspects ofN,AP,OE,
CV and HL. Our method is compared with ParetoFS [59],
ELA-CHI [60], PPT-CHI [61], andMUCO [62] on the Scene
and Yeast datasets, the experimental techniques and results
in reference [59] are used, as shown in Tables 6 and 7.

According to the experimental results in Table 6, the AP
index of the proposed algorithm yields the most competitive
performance on five algorithms. On the CV index, MFSFN
has obvious advantages over other algorithms, MFSFN is
0.6526 lower than ELA-CHI. On the OE index, the proposed
method achieves higher performance than other algorithms,
which is 0.2649 lower than the algorithm ELA-CHI. On the
HL index, the proposed algorithm obtains better results than
other algorithms, and MFSFN is 0.0934 lower than MUCO.
The number of selected features obtains fewest by algo-
rithm ParetoFS, but our proposed method performs fairly
better than ParetoFS in the aspects of AP, CV, HL and OE.
In Table 7, we can observe that AP of the proposed algo-
rithm has obvious advantages over other algorithms on the
Yeast dataset, MFSFN is at least 0.0023 and at most 0.0248
larger than other algorithms. For CV,MFSFN achieves supe-
rior performance than other algorithms except for algorithm
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Fig. 2 Variation of each evaluation index with parameters δ and λ on Scene dataset

ParetoFS, and ranks 2nd, but MFSFN performs better than
ParetoFS in aspects of AP, OE and HL. As a whole, our
proposed algorithm MFSFN has better classification perfor-
mance than other algorithms on the Scene andYeast datasets,
the validity of the selected parameters δ and λ is proved.

Then sevenmulti-label datasets: Flags,Yeast, Plant,Gneg-
ative, Virus, BBC and Guardian are selected from Table 2,
carry out a series of experimentswhich compare the proposed
algorithm MFSFN with the six advanced related algorithms,
including RF-ML, PMU, MDDMproj, MDDMspc, FSRD
[63] and MFSMR [20], the experimental techniques and
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Fig. 3 Variation of each evaluation index with parameters δ and λ on Scene dataset
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Table 3 The evaluation results
of the ten datasets under classi-
fier MLKNN

Datasets (δ, λ) N AP (↑) CV (↓) RL (↓) OE (↓)
Scene (0.15,0.65) 197 0.8513 0.5711 0.0933 0.2383

Emations (0.3,0.2) 43 0.7266 2.1461 0.2436 0.3539

Yeast (0.3,0.9) 95 0.7607 6.3599 0.1706 0.2312

Flags (0.3,0.15) 11 0.8357 3.8 0.2069 0.0923

Cal500 (0.05,0.3) 31 0.4841 132.07 0.1908 0.1111

Plant (0,0) 158 0.5441 0.3538 0.2063 0.6462

Gnegative (0,0) 216 0.7875 0.8399 0.1062 0.3237

Virus (0.05,0) 62 0.6905 1.2530 0.2093 0.4819

BBC (0,0.05) 48 0.5035 2.2768 0.4183 0.6964

Guardian (0,0.05) 39 0.5012 2.1633 0.3959 0.7143

Table 4 The evaluation results of the ten datasets under classifier MLFE

Dataset (δ, λ) N AP (↑) CV (↓) HL (↓) RL (↓) OE (↓) MacF1 (↑) MicF1 (↑)
Scene (0.05,1) 184 0.8622 0.4933 0.0925 0.0780 0.2308 0.7124 0.7105

Emations (0.05,0.15) 43 0.7751 1.7303 0.2228 0.1729 0.3202 0.5972 0.6124

Yeast (0.3,0.85) 95 0.7560 6.4962 0.2056 0.1766 0.2388 0.4090 0.6228

Flags (0.35,0.55) 12 0.8268 3.7385 0.2484 0.2162 0.1538 0.6368 0.7341

Cal500 (0.1,1) 21 0.4646 135.81 0.1535 0.2069 0.1786 0.1182 0.3702

Plant (0,0) 158 0.5868 1.9 0.1644 0.0917 0.6103 0.1589 0.2909

Gnegative (0.05,0) 198 0.8237 0.7374 0.0920 0.0764 0.2698 0.3745 0.6480

Virus (0.05,0) 62 0.6538 1.5181 0.2653 0.2169 0.5181 0.3624 0.4194

BBC (0.1,0.05) 64 0.5339 2.1429 0.3844 0.2426 0.6518 0.2553 0.2819

Guardian (0.05,0.05) 46 0.5322 2.0816 0.3842 0.2364 0.6733 0.2215 0.2486

Table 5 The comparative of evaluation results among nine methods on
the Scene dataset

Methods AP (↑) CV (↓) RL (↓) HL (↓)
MLNB 0.8351 0.5936 0.0976 0.0984

MDDMspc 0.8313 0.6212 0.1036 0.1028

MDDMproj 0.8383 0.6003 0.0990 0.1040

PMU 0.8277 0.6355 0.1066 0.1052

RF-ML 0.7933 0.7575 0.1307 0.1200

MFNMIopt 0.8396 0.6087 0.1015 0.0964

MFNMIneu 0.8302 0.6388 0.1074 0.1019

MFNMIopt 0.8169 0.6873 0.1711 0.1088

MFSFN 0.8513 0.5711 0.0933 0.0966

results in reference [63] are used, and in reference [20], the
number of missing labels is set up to 0. In the aspects of AP,
CV, OE and RL, the results of this classification are demon-
strated in Tables 8, 9, 10 and 11.

In Table 8, the OE index of MFSFN performs obvious
advantages compared with other algorithms on most of the
datasets, which exhibits superior performance against other
algorithms on four datasets: Flags, Yeast, Plant and Virus,

Table 6 The comparative of evaluation results among five methods on
the Scene dataset

Methods N AP (↑) CV (↓) OE (↓) HL (↓)
ParetoFS 59 0.7942 0.6947 0.3451 0.1225

ELA-CHI 100 0.6765 1.2237 0.5032 0.1605

PPT-CH 100 0.6972 1.1507 0.4720 0.1552

MUCO 87 0.7838 0.7617 0.3587 0.1900

MFSFN 197 0.8513 0.5711 0.2383 0.0966

Mean 109 0.7606 0.8804 0.3835 0.1450

Table 7 The comparative of evaluation results among five methods on
the Yeast dataset

Methods N AP (↑) CV (↓) OE (↓) HL (↓)
ParetoFS 56 0.7584 6.3313 0.2366 0.1976

ELA-CHI 100 0.7544 6.3906 0.2395 0.1984

PPT-CH 100 0.7529 6.4201 0.2415 0.1996

MUCO 30 0.7359 6.6838 0.2563 0.2052

MFSFN 95 0.7607 6.3599 0.2312 0.1969

Mean 76 0.7525 6.4371 0.2410 0.1995
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the highest value on Guardian dataset is achieved by FSRD
and the highest value on Gnegative and BBC is achieved by
MFSMR, the other four algorithms do not achieve optimal
performance on all datasets. As an example, with the respect
to the Flags dataset, theAP value ofMFSFN is 0.8357, which
compares better than other five algorithms with 0.8093 for
MDDMproj, 0.8226 forMDDMspc, 0.7970 for PUM,0.8148
for RF-ML,0.8288 for FSRD and 0.8182 for MFSMR. It is
evident that the proposed method has the advantage over
other methods.

From Table 9, in the CV index, MFSFN has obvious
advantages compared with other five algorithms on the Yeast
and Plant datasets. On the Gnegative dataset, MFSFN is
inferior to MFSMR and MDDMproj, but it has obvious
advantages over the other four algorithms. On the Virus
dataset, the CV of MFSFN is 1.2530, is in close proximity to
the lowest CV value of FSRD, 1.2417, which represents that
our method has certain competitiveness with other methods.
Additionally, MDDMproj, PMU and RF-ML do not outper-
form the other algorithms on any dataset. The CV value
of MFSFN on the Guardian dataset is slightly lower than
the algorithm FSRD, and ranks 2nd. In short, our proposed
method is superior to other algorithms in most cases.

As seen from Table 10, on the datasets Yeast and Plant,
the RL of the proposed method is obviously better than other
algorithms. On the Virus dataset, MFSFN was 0.0186 lower
than MDDMSPC and 0.0031 lower than the algorithm RF-
ML.On the datasetsGnegative andGuardian, theRLvalue of
MFSFN ranks 2nd. It is clear that the 2nd best performance
for MFSFN is slightly inferior to FSRD or MFSMR, but
better than other five algorithms.

As shown in Table 11, the OE index of MFSFN performs
exhibits superior performance against other algorithms on
three datasets Flags, Plant,and Virus. On the Yeast dataset,
the best performance of OE is FSRD, our method is only
0.0072 larger than FSRD. On the dataset BBC, MFSFN is
larger 0.268 of the lowest value which is achieved by the
algorithm MFSMR and ranks 2nd. On the dataset Guardian,
the proposed algorithm is slightly inferior to MDDMspc and
RF-ML, but MFSFN is about 0.037 lower than PMU. On the
whole, our proposedmethod is fairlywell to other algorithms.
From Tables 8, 9, 10 and 11, comprehensive analysis shows
that our algorithm has higher classification performance than
other algorithms in AP, CV, RL and OE.

To verify the validity and stability of proposed algorithm
MFSFN, the experimental comparisons for multi-label clas-
sification on the selected features are carried out by fivefold
cross-validation.We select fourmulti-label datasets of differ-
ent fields fromTable 2, includingYeast, Emotions, Scene and
Cal500 datasets. Combine the proposed algorithm MFSFN
withMUCO,MDDMproj, MDDMspc, PMU,MFS-KA [64]
and RFNMIFS [39] in four multi-label datasets. The six
comparison algorithms verify the validity of our proposed

algorithm using the classification in AP, CV, OE, RL and
HL measures, and using the experimental techniques and
results in the literature [39], The results of classification are
demonstrated in Tables 12, 13, 14, 15 and 16. From Table
12, the index AP of MFSFN apparently outperforms other
algorithms on the four datasets Yeast, Emotions, Cal500 and
Scene; as an example, with respect to the Scene dataset, the
maximum value of MFSFN is 0.0099 lower than MDDM-
spc, and the minimum value of MFSFN is 0.0941 higher
than MDDMspc. Thus, MFSFN obtained better classifica-
tion performance than other algorithms onAP.As can be seen
from Table 13 that the CV value of MFSFN has a significant
advantage over other algorithms on the three datasets: Yeast,
Emotions and Scene. On the Cal500 dataset, the proposed
algorithm MFSFN is 0.0917 higher than the minimum value
of RFNMIFS, but the maximum value of MFSFN is 0.6717
lower than RFNMIFS, so MFSFN is more stable than RFN-
MIFS. As shown in Table 14, for the Yeast, Emotions and
Scene datasets in metrics of OE,MFSFN achieves the lowest
mean values.On theCal500 dataset, the lowest value ofRFN-
MIFS is 0.0143 lower than that of the MFSFN algorithm,
but the highest value of RFNMIFS is 0.0047 higher than
that of MFSFN, which proves that the stability of MFSFN is
stronger than other algorithms. It can be seen from Table 15
that the RL of MFSFN is significantly better than other the
six algorithms and obtains satisfactory results on the four
datasets. From Table 16, the HL of MFSFN is better than
other algorithms on the Yeast, Scene, Emotions and Cal500
four datasets. The results show that our algorithm can not
only eliminate the redundant features on the four datasets,
but also achieve better performance than other six algorithms
in terms of AP, CV, OE, RL and HL.

Comparison results of methods under MLFE

This subsection illustrates the performance of the proposed
method by comparing with other methods under classifier
MLFE. We select three datasets from Table 2, including
Flags, Yeast and Scene. MFSFN is compared with six most
advanced multi-label feature selection methods, including
PCT-CHI2 [19], CSFS [65], SFUS [66], Avg.CHI [67],
MCLS [54], and RFNMIFS, on three multi-label datasets.
The algorithm MFSFN is tested on the aspects of AP, CV,
OE,RL,MacF1, andMicF1, the experimental techniques and
results in reference [39] are used, as shown in Tables 17, 18
and19.MFSFNprevails over other algorithms for the optimal
mean values in the each evaluation index. It can be seen from
Table 17 that the six metrics of MFSFN are better than other
algorithms in the Flags dataset. The CV, MacF1 and MicF1
value of MFSFN have obvious advantages against the other
six algorithms. On the RL index, MFSFN is 0.0172 higher
than the lowest value of RFNMIFS and 0.0112 lower than its
highest value. On the whole, MFSFN has better classifica-
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Table 8 AP (↑) index of the
seven methods on the seven
datasets

Datasets MDDMproj MDDMspc PMU RF-ML FSRD MFSMR MFSFN

Flags 0.8093 0.8226 0.7970 0.8148 0.8288 0.8182 0.8357

Yeast 0.7447 0.7469 0.7507 0.7571 0.7584 0.7581 0.7607

Plant 0.5182 0.5299 0.5276 0.5136 0.5322 0.5307 0.5441

Gnegative 0.7770 0.7670 0.7642 0.7753 0.7785 0.8074 0.7875

Virus 0.6853 0.6420 0.6534 0.6845 0.6886 0.6829 0.6905

BBC 0.4692 0.4867 0.4850 0.4995 0.5034 0.5299 0.5035

Guardian 0.4910 0.5036 0.4713 0.5037 0.5057 0.4928 0.5012

Table 9 CV (↓) index of the
seven methods on the seven
datasets

Datasets MDDMproj MDDMspc PMU RF-ML FSRD MFSMR MFSFN

Flags 3.7329 3.6779 3.8782 3.7787 3.6671 3.7231 3.8

Yeast 6.4753 6.5020 6.4108 6.3888 6.4053 6.3795 6.3599

Plant 2.5865 2.5918 2.5929 2.6530 2.5558 2.4590 2.3538

Gnegative 0.8270 0.8904 0.9110 0.8457 0.8414 0.7230 0.8399

Virus 1.2471 1.3536 1.3000 1.3090 1.2417 1.2771 1.2530

BBC 2.3210 2.3138 2.3252 2.2537 2.2400 2.0714 2.2768

Guardian 2.2298 2.2402 2.3622 2.2473 2.1510 2.3656 2.1633

Table 10 RL (↓) index of the
seven methods on the seven
datasets

Datasets MDDMproj MDDMspc PMU RF-ML FSRD MFSMR MFSFN

Flags 0.2121 0.2061 0.2359 0.2135 0.1990 0.2056 0.2069

Yeast 0.1806 0.1796 0.1755 0.1731 0.1752 0.1716 0.1706

Plant 0.2232 0.2226 0.2233 0.2299 0.2198 0.2158 0.2063

Gnegative 0.1078 0.1170 0.1201 0.1112 0.1097 0.0904 0.1062

Virus 0.2045 0.2279 0.2183 0.2124 0.2022 0.2126 0.2093

BBC 0.4343 0.4291 0.4311 0.4193 0.4129 0.3725 0.4183

Guardian 0.4146 0.4127 0.4379 0.4165 0.3931 0.4023 0.3959

tion performance on the Flags dataset. FromTable 18, theAP,
MacF1 and MicF1 indexes of MFSFN are better than other
algorithms on theYeast dataset; on the CV,MFSFN is 0.0176
larger than the lowest value of RFNMIFS and 0.2832 lower
than the highest value of RFNMIFS, so MFSFN has better
performance for CV. For the OE index, MFSFN is 0.0056
higher than the lowest value of RFNMIFS, but 0.0164 lower
than the highest value, in short, MFSFN still has advantages
in OE measurement. In the terms of RL, MFSFN is 0.0010

higher than the lowest value of RFNMIFS, but 0.0216 lower
than its highest value.MFSFN ismore stable than other algo-
rithms. It can be seen from Table 19 that the six indicators of
MFSFN are significantly better than other algorithms on the
Scene dataset. Based on the above analysis of the classifica-
tion results of the three datasets onMLFE classifier, MFSFN
algorithm can not only effectively eliminate the redundant
features of the three datasets, but also has higher classifica-
tion performance than other algorithms.

Table 11 OE (↓) index of the
seven methods on the seven
datasets

Datasets MDDMproj MDDMspc PMU RF-ML FSRD MFSMR MFSFN

Flags 0.2450 0.2274 0.2368 0.2213 0.2058 0.2154 0.0923

Yeast 0.2491 0.2491 0.2420 0.2246 0.2230 0.2334 0.2312

Plant 0.6871 0.6708 0.6626 0.6892 0.6677 0.6693 0.6462

Gnegative 0.3506 0.3621 0.3656 0.3492 0.3456 0.3040 0.3237

Virus 0.5069 0.5888 0.5745 0.4967 0.5067 0.4940 0.4819

BBC 0.7640 0.7246 0.7303 0.7106 0.7102 0.6696 0.6964

Guardian 0.7381 0.7051 0.7513 0.7048 0.7182 0.7347 0.7143
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Fig. 4 Comparison of the seven methods with Bonferroni–Dunn test under MLKNN

Statistical analysis

To systematically analyze the classification performance of
MFSFN and intuitively display the statistical performance of
each evaluation index under various comparison algorithms,
Friedman statistical test [68] and Bonferroni–Dunn test [69]
are used in this section. Friedman test is demonstrated as
follows

χ2
F = 12T

M(M + 1)

(
M∑

i=1

R2
i − M(M + 1)2

4

)

, (30)

FF = (T − 1)χ2
F

T (M − 1) − χ2
F

, (31)

where M and T are the numbers of methods and datasets,
respectively, and Ri is the average order value of the i −
th method in all datasets. In the Bonferroni–Dunn test, the
average rank difference between methods is calculated to
evaluate whether there are significant differences between
methods. The critical difference is expressed as follows

(CD)α = qα

√
M(M + 1)

6T
, (32)

where qα indicates the critical tabulated value of the test, and
α represents the significance level. According to the statisti-
cal tests in references [36,70], the mean order of all datasets
is obtained by averaging all levels on each metric. The opti-

mal value under each index is set to the rank of 1, the second
is set to the rank of 2, and so on. With CD value chart is
used to visually displayMFSFN correlationswith other algo-
rithms, each of these algorithms, the average ranking of each
method is drew along the axis, in which the rank value on
the axis increases from left to right. The MFSFN and com-
pared algorithms are linked together with a thick line if the
mean rank difference between these algorithms is within a
criticality difference, indicating there is no significant dif-
ference between algorithms; otherwise, any algorithm that is
not connected together will be consideredmarkedly different
from the other algorithms.

From the classification results in Tables 8, 9, 10 and 11,
we can get the average ranking of MFSFN and six com-
parison algorithms on the four aspects of AP, CV, RL and
OE under the MLKNN classifier, and the corresponding FF

values are demonstrated in Table 20. When the significance
level α = 0.1, each indicator rejects the zero hypotheses
that seven algorithms have the same performance under the
Friedman test. At that time, qα = 2.394, then CD = 2.7644
(M = 7, T = 7). The accuracy comparison of seven algo-
rithms by Bonferroni–Dunn test is demonstrated in Fig. 4.
It can be obtained from Fig. 4 that MFSFN is significantly
better than other algorithms in AP and OE evaluation indica-
tors. From Fig. 4a, for the metric AP, the proposed algorithm
has obvious advantages compared with PMU, MDDMspc,
MDDMproj, RF-ML, and MFSFN is no significant differ-
ence with algorithms FSRD and MFSMR. It can be seen
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Table 20 Values of the four evaluation indexeswith FF underMLKNN

AP CV OE RL

χ2
F 18.3552 18.3625 28.3385 25.3740

FF 4.6577 4.6610 12.4459 9.1570

Table 21 Values of the five evaluation indexes with FF underMLKNN

AP CV OE RL HL

χ2
F 17.3571 20.4643 16.2589 20.3839 9.0804

FF 7.8387 17.3636 6.3010 16.91111 1.8259

from Fig. 4b, in the aspect of CV index, there is no signifi-
cant difference with algorithm MFSMR, and it has obvious
advantages over algorithms MDDMproj, PMU, RF-ML and
MDDMspc, and there is no definite evidence to prove that
MDDMproj, RF-ML, MDDMspc and PMU have prominent
differences. As shown in Fig. 4c, in metric of RL index,
the algorithms MFSFN, FSRD and MFSMR is significantly
better than MDDMproj, RF-ML, MDDMspc and PMU, and
there is no consistent evidence to prove a statistical equiva-
lence between MDDMproj, PMU, RF-ML and MDDMspc.
From Fig. 4d, the OE index of the algorithm MFSFN is dis-
tinctly better than other algorithms, and and the distinction
among the performance of FSRD, MFSMR, RF-ML, PMU
and MDDMspc is insignificant. To sum up, the proposed
algorithm hasmore excellent classification performance than
other algorithms.

From the classification results which are illustrated in
Tables 12, 13, 14, 15 and 16, we can get the average rank-
ing of the proposed method and six comparison algorithms
on the five aspects of AP, CV, HL, OE and RL under the
MLKNN classifier, and the corresponding FF values are dis-
played inTable 21.When the significance levelα = 0.1, each
indicator rejects the zero hypotheses that seven algorithms
have the same performance under the Friedman test. At that
time, qα= 2.394, then CD = 3.6569 (M = 7, T = 4). The
accuracy comparison of seven algorithms by the Bonferroni–
Dunn test is demonstrated in Fig. 5. It can be seen from
Fig. 5 that MFSFN is significantly better than other algo-
rithms in each index. Fig. 5a illustrates that in terms of AP,
MFSFN achieves significantly better than four algorithms
PMU,MDDMspc,MDDMproj andMUCOandobtains com-
parable results against MFS-KA and RFNMIFS. As can be
seen from Fig. 5b, d, the CV and RL of algorithm MFSFN
outperforms PMU, MUCO and MDDMproj and compara-
ble to MDDMspc, MFS-KA and RFNMIFS, and there is no
full evidence to demonstrate a statistical equivalence with
RFNMIFS, MFS-KA, MDDMspc, MDDMproj, MUCO and
PMU. As can be obtained from Fig. 5c, for the index OE,

MFSFN is significantly better than other algorithms and com-
parable to RFNMIFS, MFS-KA and MDDMspc, and there
is no consistent evidence to indicate a statistical equivalence
with RFNMIFS, MFS-KA, MDDMspc, PMU and MDDM-
proj, and there is no concrete evidence to determine the
significant difference among MFS-KA, MDDMspc, PMU,
MDDMproj and MUCO. It can be obtained from Fig. 5e
that HL index of MFSFN is more excellent than MDDM-
spc, MDDMproj, MUCO and PMU. In general, MFSFN has
strong classification performance compared with other algo-
rithms under classifier MLKNN.

The classification results in Tables 17, 18 and 19 were
statistically tested under the classifier MLFE. The FF val-
ues of the six metrics are listed in Table 22. When α = 0.1,
qα = 2.394, then CD = 4.2226 (M = 7, T = 3). The test
results are demonstrated in Fig. 6. As can be obtained from
Fig. 6a, for the AP index, MFSFN performs better than PCT-
CHI2 and CSFS and is comparable to RFNMIFS, MCLS,
SFUS and Avg.CHI. As can be seen from Fig. 6b, e, there
is not enough evidence to suggest a statistical equivalence
among MFSFN and RFNMIFS, MCLS, SFUS, CSFS and
Avg.CHI in the aspects of CV and MacF1, and it is signifi-
cantly superior to PCT-CHI2. As can be seen from Fig. 6c,
there is no obvious difference between algorithm MFSFN
and RFNMIFS, MCLS, SFUS and CSFS in the OE index,
and it is superior to algorithms Avg.CHI and PCT-CHI2. As
can be seen from Fig. 6d, for RL index, MFSFN is com-
parable to RFNMIFS, MCLS, SFUS and PCT-CHI2, and
performs better thanAvg.CHI andCSFS.As can be seen from
Fig. 6f, in metric of MicF1, algorithm MFSFN is compara-
ble to RFNMIFS, MCLS, SFUS, PCT-CHI2 and Avg.CHI,
and is significantly superior to CSFS. Therefore, under the
classifier MLFE, the algorithm MFSFN has more excellent
performance compared with the other algorithms in general.

Conclusion

In this article, amulti-label feature selectionmethod based on
fuzzy neighborhood rough sets was improved by combining
information view with the algebraic view, which achieved
highly classification performance in the multi-label fuzzy
neighborhood decision system. First, a newmulti-label fuzzy
neighborhood rough set model was proposed by combin-
ing NRS with FRS. Second, the fuzzy similarity matrix was
obtained by computing the similarity between samples under
different condition attributes, and a new multi-label fuzzy
decision was proposed and the fuzzy neighborhood approxi-
mation accuracy was defined. Then, the fuzzy neighborhood
conditional entropywas introduced, according to the concept
of information entropy in information theory, and a hybrid
metric was designed by combining the fuzzy neighborhood
approximate accuracy with the fuzzy neighborhood condi-
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Fig. 5 Comparison of the seven methods with Bonferroni–Dunn test under MLKNN

Table 22 Values of the six eval-
uation indexes with FF under the
MLFE

AP CV OE RL MacF1 MicF1

χ2
F 13.1057 14.8729 14.0943 16.4429 13.9857 13.5615

FF 5.3555 9.5122 7.2173 21.1195 6.9680 6.1108

tional entropy, to measure the importance of each attribute.
Finally, amulti-label feature selectionmethod based on fuzzy
neighborhood rough sets was developed, a novel forward
search algorithm formulti-label feature selection is provided.
A series of experiments on ten multi-label datasets verify the

effectiveness of the proposed algorithm in multi-label classi-
fication. In our future work, we will seek multi-label feature
selection method of higher classification performance, and
more efficient search strategies.
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Fig. 6 Comparison of the seven methods with Bonferroni–Dunn test under MLFE
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