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Abstract
The motion intensity of patient is significant for the trajectory control of exoskeleton robot during rehabilitation, as it may
have important influence on training effect and human–robot interaction. To design rehabilitation training task according
to situation of patients, a novel control method of rehabilitation exoskeleton robot is designed based on motion intensity
perception model. The motion signal of robot and the heart rate signal of patient are collected and fused into multi-modal
information as the input layer vector of deep learning framework, which is used for the human–robot interaction model of
control system. A 6-degree of freedom (DOF) upper limb rehabilitation exoskeleton robot is designed previously to implement
the test. The parameters of the model are iteratively optimized by grouping the experimental data, and identification effect of
the model is analyzed and compared. The average recognition accuracy of the proposed model can reach up to 99.0% in the
training data set and 95.7% in the test data set, respectively. The experimental results show that the proposed motion intensity
perception model based on deep neural network (DNN) and the trajectory control method can improve the performance of
human–robot interaction, and it is possible to further improve the effect of rehabilitation training.
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Introduction

Compared with the traditional rehabilitation training, the
rehabilitation exoskeleton robots can provide more scien-
tific and reasonable rehabilitation training for patients while
reducing the workload of the therapists [1, 2], which have
become one of the most popular research topics [3–5]. Many
research groups over the world have worked in this area
[6–8], and the exoskeleton robots for different rehabilitation
parts have been presented [9–11]. To improve the rehabili-
tation training and safety of exoskeleton robot, researchers
have been exploring new design and control methods of
human–robot interaction system [12–14].

The German Research Center for Artificial Intelligence
(DFKI) developed a double-arm exoskeleton rehabilitation
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robot named RECUPERA. Patients with hemiplegia can
conduct rehabilitation training in both standing and sit-
ting posture through modular design, realizing two different
rehabilitation modes: teaching and mirror image [15, 16].
Mehran et al. [17, 18] designed a 7-DOF upper limb reha-
bilitation exoskeleton robot and studied the adaptive neural
network fast sliding mode control method. Aiguo et al. [19,
20] designed the WAM upper limb rehabilitation exoskele-
ton robot. Using the designed sensor to detect the motion
state of the patients’ limb and the corresponding posture
warning controller, the robot can immediately remove the
restraint to patient’s limb in case of abnormal conditions
during the movement. Guoliang et al. [21, 22] developed
a flexible exoskeleton robot with 6-DOF, the shoulder joints
were based on 3RPS parallel mechanism, and all joints were
driven by pneumatic cylinders to perform the flexible motion
control of each joint. To improve the interaction and con-
trol performance of the exoskeleton robot, the researchers
proposed a control method based on electroencephalogram
(EEG) [23, 24], electromyogram (EMG) [25, 26] and other
motion intention recognition methods, without considering
the influence of the wearer’s motor function on control. In
this study, we propose a bionic control method for the upper
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limb exoskeleton robot [27] and a motion intensity classi-
fication method based on multi-modal information, which
includes the motion signal of robot and the heart rate signal
of patient [28]. Themethod proposed can reproduce the daily
motion trajectories and provide a new method for improving
the human–robot interaction performance.

At present, the existing control methods of the upper
limb rehabilitation exoskeleton robots have improved the
human–robot interaction performance [29, 30], but the reha-
bilitation training process lacks the perception of patients’
motor function, which limits the effect and safety of the
rehabilitation training. In this study, a novel control method
of rehabilitation exoskeleton robot is designed based on
motion intensity perception model. The main contributions
of the study are as follows: (1) to reflect patients’ motion
intensity more comprehensively and accurately, the kine-
matic acceleration signal and the heart rate signal of patient
are simultaneously collected to constitute the multi-modal
vector. (2) Taking multi-modal vector as input, the motion
intensity perception model is built based on the DNNmodel,
which can perceive and classify motion intensity into three
categories: strong, moderate and weak. (3) According to the
perceived motion intensity, the control system is designed
to optimize the motion trajectory of the exoskeleton robot
in real time, and the online test is conducted to verify the
effectiveness of the proposed method.

The method proposed is feasible to control the exoskele-
ton robot motion state according to patient’s condition and
improve the human-robot interaction performance and safety.

Design of multi-modal information fusion
vector

According to the definition of medical theory, motion inten-
sity refers to the degree of exertion of strength and the tension
of human body in executing actions, which is mainly deter-
mined by the degree of strength and fatigue of subjects.
Motion intensity directly affects the stimulation effect of cur-
rent movement on human body, moderate motion intensity
can effectively promote the improvement and recovery of
motor function. However, if motion intensity is too high and
exceeds the limit that the human body can withstand for a
long time, it will cause the human motor function decline
[31]. In the process of rehabilitation training for patients,
keeping moderate motion intensity can improve the stimu-
lation of exercise on human body, prevent secondary injury
and improve the safety of rehabilitation training.

Human motion intensity is mainly determined by real-
timemotion posture, recovery degree of patients and exercise
fatiguedegree, and themeasurement standard ismainly based
on patients’ physiological state and real-time motion state.
Most human–robot interaction processes are performed by

patients’ physiological signals or motion signals in the reha-
bilitationmedical field [32, 33]. Therewill be great individual
differences when using physiological signals alone, and the
motion signal has the lag in intention recognition and trajec-
tory control. In this study, the kinematic acceleration signal
and the physiological heart rate signal are simultaneously
used to form a multi-modal vector, which correspond to
patients’ motion state and physiological state. Combining
the advantages of the two signals, the multi-modal vector is
used as the input layer of the deep learning model.

Figure 1 shows the process of obtaining motion intensity.
Considering the patient’s exertion and fatigue during exer-
cise, it is divided into three categories: strong, moderate and
weak. The finger clip photoelectric pulse sensor Heat Rate
Clamp is used to collect heart rate signals, the information
is mainly concentrated in the time domain and frequency
domain. To accurately and efficiently extract the heart rate
information, four eigenvalues of the heart rate signal from
the time domain and frequency domain are extracted. First,
time domain standard deviation (SD) is obtained as follows:

SD �

√
√
√
√
√

N∑

i�1
|xi − μ|2

N
, (1)

where xi is the value of the heart rate signal corresponding
to the time series, N is the total number of sampling points
for this time series, μ is the average value of the signal for
the period.

Furthermore, time domain approximate entropy (ApEn)
is extracted to express the complexity of time series. For
one-dimensional heart rate discrete signal a(1), a(2),…,a(N)
obtained by equal interval sampling, reconstruct it into m
dimensional vector A(1), A(2),…, A(N-m + 1), where m � 3
is reconstructed vector dimension, and count reconstructed
vectors satisfying the following conditions:

Cm
i (r) �

(

number of A( j) satisfying

d[A(i), A( j) ≤ r ]

)

N − m + 1
, (2)

where d[A(i), A(j)] is the vector distance, which is defined
as the maximum absolute difference of each dimension in
the two reconstruction vectors, r � 0.2 ×SD represents the
measure of similarity, j ∈ [1, N − m + 1].

The disordered state variable in m dimension is

φm
r (r) � (N − M + 1)−1

N−m+1
∑

i�1

log
(

Cm
i (r)

)

. (3)
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Fig. 1 The flowchart of motion
intensity obtainment

ApEn is the difference between the disordered state vari-
ables with higher and lower reconstruction dimensions:

ApEn � φm(r) − φm+1(r). (4)

Considering the periodicity and real-time performance of
heart rate signal, fast Fourier transform is used to obtain fre-
quency domain signal, root mean square frequency (RMSF)
and frequency standard deviation (RVF) are extracted as fre-
quency domain eigenvalues:

RMSF �
√
√
√
√

∫ +∞
0 f 2S( f )d f
∫ +∞
0 S( f )d f

, (5)

RVF �
√
√
√
√

∫ +∞
0 ( f − FC)2S( f )d f

∫ +∞
0 S( f )d f

, (6)

where f is sampling frequency of heart rate signal, and S is
the corresponding amplitude.

The kinematic eigenvalue comes from the elbow joint and
shoulder joint extension/flexion DOF, which are commonly
used in daily life, they are extracted from both the integrated
encoder of discmotor and the encoder configured on the back
side of the steppermotor. The change of humanmotion inten-
sity will lead to the joint relative angle difference between
the body and the exoskeleton. Therefore, the relative veloc-
ity difference is extracted to predict the motion intensity. To
avoid the error classification of the motion intensity caused
by the sudden acceleration or deceleration of the joint at a
certain time, all angle signal data in the first 3 s of a certain
moment is collected, calculate the difference between the
angle signal collected and the angle signal of the expected

trajectory, and get its average value as relative velocity dif-
ference. After data standardization, the multi-modal fusion
vector is imported into themotion intensity perceptionmodel
as the input layer, and finally the real-time motion intensity
is perceived and classified.

Due to different data sources, there is numerical differ-
ence between each data of multi-modal vectors. Gradient
descent method [7] is needed for the subsequent model iter-
ative optimization. The data imported into the classification
model with large differences in each dimension will lead
to instability of the gradient data, which greatly affected
the convergence rate of the model. Therefore, the vector
can only be used as the input layer of the model when
the data is preprocessed. The mean and standard devia-
tion of eigenvalues based on the Z-Score standardized data
preprocessing method are shown in Fig. 2, the abscissa
corresponds to the six eigenvalues extracted from multi-
modal information fusion vectors, the ordinate represents
the dimensionless value of the vectors after data standardiza-
tion, and the three colors represent different motion intensity
labels. It can be seen from the figure that the average value
of the first four-dimensional eigenvalues extracted from the
heart rate signal differ significantly with small variances.
Therefore, the recognition of the heart rate signal eigenvalues
of the multi-modal vector is higher, while the latter two-
dimensional motion signal eigenvalues are more scattered
with low recognition due to hysteresis and lack of period-
icity of rehabilitation actions, which indicate that the heart
rate signal has a higher correlation with the motion intensity
defined in this study.
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Fig. 2 Themean and standard deviation distributions of six-dimensional
eigenvalues

Motion intensity perceptionmodel based
on deep learning

The primary function of deep learning is to perform clas-
sification based on deeper model structure. Deep learning
includes a variety of algorithms, where the input of con-
volutional neural network (CNN) is tensor, and deep belief
network (DBN) is used to evaluate classification probabil-
ity. In this study, the input of the motion intensity perception
model is themulti-modal fusion vector, and the expected out-
put is the specific classification result. Therefore, the DNN
method is used to implement the model in this study.

DNN is composed of neurons of perceptionmodels,which
are mainly divided into input layer, hidden layer and output
layer. According to the experience of modeling, the number
of neurons in the three layers is 10, 8 and 4, respectively.
To alleviate the gradient vanishing and exploding problems,
select the linear activation function ReLu for the first two
layers of the network and Softmax for the last layer [34].

Forward propagation of perceptionmodel

The forward propagation algorithm is mainly used to solve
the output of the next layer through the output of the previous
layer. Figure 3 shows the basic framework of DNN model
constructed in this study.

Generalizing the forward relationship, for the J neurons
in the i-1 layer, the output a(i) k of the k-th neuron in layer i
is

a(i)k � σ (z(i)k ) � σ

⎛

⎝

j
∑

l�1

ω
(i)
kl a

(i−1)
l + b(i)k

⎞

⎠, (7)

Fig. 3 Local schematic diagram of deep neural network

where superscript denotes the layer index of the neural net-
work and subscript denotes the neuron index of the neural
network layer; z is the linear operation result of a single neu-
ron; b is the deviation ratio after linear operation; ω is the
linear operational coefficient of the neuron; the two numbers
in the subscript represent the index of operation coefficients
from the k-th neuron in layer i to the l-th neuron in layer i-1;
σ is the neuronal activation function [35]; if i � 2, the upper
input a is taken as the x parameter of the input layer.

For each layer of neural network, matrix operation is sim-
pler than direct algebraic operation. Therefore, assuming that
there are j neurons in i-1th layer and k neurons in the i-th
layer, the output of the i-1 layer can form a vector ai−1 with
dimension j ×1. Similarly, the output of the i-th layer can
form a vector ai with dimension k ×1. The linear coefficients
of the i-th layer can compose the operation matrix Wi with
dimension j ×k. The offset coefficient b of the i-th layer can
compose the operation vector bi with dimension k ×1. The
inactive operation results of the i-th layer compose the vec-
tor zi with dimension k ×1. Then, the forward propagation
matrix is

ai � σ (zi ) � σ (Wiai−1 + bi ). (8)

Backward propagation of perceptionmodel

The deployment of DNN is completed by establishing the
forward propagation relationship, and the unknown param-
eters in the neural network are set by random initial values
during the deployment, whichmakes the neural network does
not have uniform characteristics. Therefore, it is necessary
to calculate the deviation between the output layer data and
the predetermined label according to the loss function. The
deviation value is used to optimize parameters of the neural
network, which is the backward propagation process of the
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neural network. In DNN, gradient descent is often used to
solve the extreme value of the loss function [36].

The primary function of the motion intensity perception
model is classification. Tomake the classification labelsmore
obvious, the one-hot coding is adopted to replace different
motion intensity labels, therefore, the cross-entropy is used
as the loss function in the optimization process [37].

The specific calculation formula of the cross-entropy loss
function is [37]

L(y, p) � −
n

∑

c�1

(ŷc ln yc)

� −1

n

n
∑

c�1

[yc ln(pc)+(1 − yc) ln(1 − pc)],

(9)

where n is the number of classification categories; yc is the
classification indicator variable, which is 1 if the classifica-
tion results are consistent, otherwise it is 0; c is the current
category; pc is the prediction probability of the current model
for category c.

As the classification indicator variable yc can only be 1 or
0, and p under each classification label is independent of each
other, therefore, the gradient vector can be further simplified,
and the gradient of the specific loss function for p is

∇L(p) �
(

∂L

∂p1
,

∂L

∂p2
,

∂L

∂p3
, . . . ,

∂L

∂pn

)

�
(

− y1
p1

,− y2
p2

,− y3
p3

, . . . ,− yn
pn

)

.

(10)

In practical application, the objects which needed to be
optimized are the neuron parameters ω and b of each layer of
the neural network, the loss function is a function of classifi-
cation indicator variable y andprediction probabilityp, which
is not directly related to the neuron parameters of each layer.
Therefore, the partial differentiation needs to be calculated
by chain derivative rule of compound function in turn. It can
be obtained that

∂L

∂ωi
� ∂L

∂pi

∂pi
∂zi

∂zi
∂ωi

. (11)

The first term of Eq. (11) has been solved. For the second
term, the results of the linear operation are derived mainly
from the activation function, the primarymethod to deal with
the second term is to derive the results of the linear operation
for the activation function,while theReLuactivation function
itself is also a linear activation function. Therefore, it can be
obtained that

∂p

∂z
�

{

1
0
z > 0
z ≤ 0

. (12)

The third term in Eq. (11) is the derivation of the linear
operation result to the weight parameter of the neuron, which
can be easily obtained as the corresponding value of the input
layer when the front layer of the current neural network is
the input layer.

Gradient descent optimization algorithm

To update and optimize the internal parameters of the model,
solve the problem of slow gradient descent and ensure the
stability of the model, many optimization algorithms have
been proposed. Adam algorithm combines the advantages of
Momentum and RMSProp algorithm, retains the new super
parameters in both algorithms, and adds the adjustment of
middle process, which is commonly used in deep learn-
ing models. Therefore, the Adam optimization algorithm is
adopted in this study, and its implementation is as follows.

The exponential weighted average values in the Momen-
tum algorithm are

VdW � β1VdW + (1 − β1)dW , (13)

Vdb � β1Vdb + (1 − β1)db, (14)

where dW and db are error gradients of neuron parametersW
and b obtained by backward propagation, respectively; β1 is
the hyper parameter of the algorithm with the default value
of 0.9.

Using RMSprop algorithm to update the iterative weight
S,

SdW � β2SdW + (1 − β2)dW
2, (15)

Sdb � β2Sdb + (1 − β2)db
2, (16)

where the initial value of the iterative weight S is 0, which
will be updated continuously with the progress of gradient
descent. β2 is the hyper parameter of RMSprop algorithm
with the default value of 0.999.

The Adam algorithm needs to modify the gradient value
according to the deviation, add superscript corrected to the
gradient correction term, then obtained

V corrected
dW � VdW

1 − β t
1
, (17)

ScorrecteddW � SdW
1 − β t

2
, (18)

where t is the current iteration time.
Similarly, the gradient correction terms of neuron param-

eter b are, respectively,

V corrected
db � Vdb

1 − β t
1
, (19)
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Fig. 4 Network structure of motion intensity perception model

Scorrecteddb � Sdb
1 − β t

2
. (20)

Neuron parameters W and b that updated according to
learning rate α are

W � W − α
VdW

√

ScorrecteddW

, (21)

b � b − α
Vdb

√

Scorrecteddb

. (22)

Analysis of motion intensity perceptionmodel

The motion intensity perception model is constructed based
on DNN, and Fig. 4 shows the specific structure of DNN
based on motion intensity perception.

The motion intensity is divided into three corresponding
categories: strong, moderate and weak. Signal acquisition
methods are different under each intensity. The definition of
weak motion intensity is that the subject can complete the
entire motion trajectory without initiatively sending force
during the whole rehabilitation training process, and next
round of data collection is conducted at an interval of 3 min
after each group of data collection. The definition of moder-
ate motion intensity is that the maximum output torque of the
motor is limited and can only move under the condition of no
load. During rehabilitation training, the subject will feel the
assistance from the exoskeleton, and can complete the whole
rehabilitation trajectory with less effort. After several contin-
uous experiments, the subject will rest and pause to collect
data. The definition of strong motion intensity is that the out-
put torque of the motor on the rehabilitation exoskeleton is
further restricted, and it can hardly drive itself to carry out

rehabilitation training. The subjects need to take the initia-
tive to complete the whole rehabilitation trajectory and carry
out continuous experiments, and the data of fatigue status of
subjects are mainly used.

The action of drinking water requires the collaborative
participation of the fourmain joints of the human upper limb,
which is a typical action in rehabilitation training. There-
fore, taking drinking water as the training action, as shown
in Fig. 5, a total of four healthy volunteers (22–24 years
old) are selected for the test, including three males and one
female. One of the volunteers (male, 23 years old) is selected
as the subject for online test, and the other three volunteers
are selected for offline test.

To simulate the rehabilitation scene of patients with upper
limb muscular weakness, two sandbags weighing 1.0 kg
are tied to the middle of brachium and forearm of the sub-
jects, and the motor output moment is limited. In the process
of model training and testing, when the subjects wear the
exoskeleton robot and heart rate sensor, the operator will
operate the host computer, let the exoskeleton output the
corresponding motor torque according to different motion
intensities, and move in accordance with the predetermined
rehabilitation trajectory. At the same time, the operator will
guide subjects the exertion of strength under different motion
intensities. 600 groups of rehabilitation tests are performed
under each motion intensity.

To give the model enough data to converge, 300 sets of
multi-modal vector data (training data) with classification
labels under each motion intensity are collected for model
training. In addition, 300 sets ofmulti-modal vector data (test
data) under each motion intensity are taken for model test,
and a total of 1800 sets of multi-modal vector data is used
formodel construction and analysis. The average recognition
accuracy of the perception model can reach 99.0% in the
training data set and 95.7% in the test data set, respectively,
and the accuracy fluctuation range is stable.

To compare the recognition accuracy of different algo-
rithm models and different types of fusion vectors hori-
zontally, the six-dimensional vectors are divided into three
groups. The time domain standard deviation and approxi-
mate entropy of the first two dimensions of heart rate signals
are time domain eigenvalues (TDE), the root mean square
frequency and frequency domain standard deviation of the
middle two dimensions are frequency domain eigenvalues
(FDE), and the two-dimensional motion with joint velocity
difference is angular velocity deviation (AVD). The identifi-
cation effect of classification perception is measured, and the
radar chart of test data identification accuracy distribution is
obtained, as shown in Fig. 6.

The identification accuracy data of each model and
multi-modal vector combination are shown in Table 1. By
intuitively comparing different mathematical models, it can
be seen that the classification accuracy of the DNN model
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Fig. 5 Schematic diagram of
water drinking movement

Fig. 6 Multi-group model and
multi-group vector combination
classification effect radar chart

is much higher than k-nearest neighbor (KNN) and sup-
port vector machine (SVM), which is mainly because of the
algorithm complexity of DNN is much higher than that the

other two while the time of training and classification test of
DNN model is also higher. By analyzing the combination of
different vectors, the identification accuracy of multi-modal
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Table 1 Identification rate of
multi-group model and
multi-group vector combination

ALL (%) TDE + FDE (%) FDE + AVD (%) TDE + AVD (%)

DNN 95.7 93.7 92.2 87.1

KNN 94.7 93.7 89.3 86.4

SVM 94.3 92.8 91.1 84.7

vector fusion is significantly higher than any combination
of two other feature signals. The identification accuracy of
all eigenvalues combination of the heart rate signal is also
higher than other combinations, which also indicates that the
heart rate signal has a higher correlation with the motion
intensity defined in this study. In addition, adding kinematic
signals does not reduce the overall identification accuracy,
and the eigenvalues of kinematic signals are mainly aimed
at the individual differences in the general physiological sig-
nals. Therefore, the DNN model and the multi-modal fusion
vector combination with all dimensions obtain the highest
identification accuracy.

After horizontally comparing of different classification
models, we try to analyze and compare the different classifi-
cation labels of the single classificationmodel. The confusion
matrix is drawn by adding multi-modal fusion vectors of all
dimensions to the DNNmodel with the highest classification
accuracy in the above model. The confusion matrix is also
known as the error matrix, which is mainly used to eval-
uate the accuracy of the classification model. The square
matrix intuitively shows the classification accuracy of the
classification model for different label data. The identifica-
tion accuracy of the perception model for each label of the
motion intensity is mainly observed, as shown in Fig. 7.

In Fig. 7, the abscissa represents the motion intensity
label predicted by the perception model, and the ordinate
represents the actual label of the multi-modal vector. The
percentage values in blocks represent the sensitivity of the

model, and the numbers on the right side of confusion matrix
represent the precision and the false positive rate of the
model. By observing the confusion matrix, it can be found
that the perception model has a high recognition degree for
the weak motion intensity label, and the identification error
mainly comes from the identification deviation of strong
motion intensity and moderate motion intensity, the error is
within an acceptable range. The reason for the analysis error
is that the distinction between the strongmotion intensity and
the moderate motion intensity is too vague when the sample
data are collected.

Based on the above analysis of the classification accuracy
of the perception model, it can be seen that the percep-
tion model is suitable for the motion intensity classification
requirements defined in this study.

Control experiment based onmotion
intensity perception

Overall design of control system

The master–slave control scheme of centralized control and
distributed control in parallel is determined for the control
system. PC is used as the main controller to directly con-
trol the integrated joint motor, combine with the STM32
embedded controller as the stepper motor control system.
The control system can be divided into four main modules:

Fig. 7 Confusion matrix of deep
neural network model
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Fig. 8 Structure diagram of the
control system

Power supply

PC

CAN bus

57-axis stepping motor 
of shoulder joint

86-axis stepping 
motor of elbow joint

Driver 1 Encoder 1 Driver 2 Encoder 2

STM32CAN 
master station

CAN↔ USB
Serial 

communication

INNFOS motor of 
shoulder joint 

INNFOS motor of 
elbow joint 

main controller module, embedded controller module, step-
per motor module and joint motor module. The structure
diagram of the control system is shown in Fig. 8.

The main controller module is performed by the PC.
Its main functions include determining parameters used for
rehabilitation training, processing the collected sensor signal
data and importing vector to the motion intensity perception
model for updating the motion intensity in real time. The
main controller module communicates with the joint motor
module through USB to CAN interface to perform position
control. The main controller also needs to communicate with
the embedded controller module through serial port.

The core task of embedded controller is to provide output
enable signal, direction control signal and pulse control sig-
nal to the stepper motor driver through STM32. The encoder
of the stepper motor is connected with the pin of the embed-
ded controller, which collects the feedback signal of the
encoder. The embedded controller and the main controller
module can perform real-time synchronization control of
multiple joint motors through serial port connection.

Steppermotormodule is composedof steppermotor driver
and encoder. The driver needs themulti-channel PWMsignal
from the embedded controller to change the operating state
of the motor. The encoder assembled at the end of the step-
per motor can detect current motion position and feedback
to prevent motor blocking. After ADAMS dynamics simula-
tion, the 86 stepper motor and 54 stepper motor are selected
to achieve the function.

Joint motor module is a compact combination of disc
motor driver, harmonic reducer and encoder. Disc jointmotor
requires CAN bus protocol, communication content includes
receiving control signal and feedback position signal. The
CAN bus is directly connected to the PC through CAN to
USB, and the main controller sends the position control sig-
nal to it. Through ADAMS dynamic simulation, INNFOS
disc joint motors are selected to achieve the function.

Experimental design of rehabilitation exercise
based onmotion intensity

The motion intensity perception model has achieved good
results in offline test, but in the actual scenarios, the online
model is needed to perform the real-time interaction. In this
study, the rehabilitation training scene is simulated, and the
model program interface is added to the control program
of upper limb rehabilitation exoskeleton robot. The perfor-
mance of the perception model is observed through online
rehabilitation training.

The volunteer (male, 23 years old) is selected as the online
test subject. Before the test, the operator assists the subject
to wear his left arm on the exoskeleton and adjust the overall
length to the comfort. The sandbags are tied during the exper-
iment, and the heart rate sensor is wearing on the left hand.
The designed rehabilitation experiment is mainly aimed at
the flexion/extension degree of the shoulder joint and the
DOF of the elbow joint. First, to develop the demonstration
reproduction mode, the water drinking action is selected for
the rehabilitation training, the specific action decomposition
is shown in Fig. 9. The motor movement angle during reha-
bilitation training is collected, as shown in Fig. 10, which is
used as the training data of motion control. The zero position
corresponds to the free-falling position of the upper limb, and
the encoder data have been converted into the joint motion
angle data. The M1, M2 and M3 of the shoulder joint corre-
spond to the DOF of abduction/adduction, flexion/extension,
and internal rotation/external rotation. The collected trajec-
tory is saved in the corresponding file and outputted to the
control system as the expected trajectory.

Next, the rehabilitation training is performed. The initial
motion intensity is set to moderate intensity, and the online
perception model is used to modify the real-time motion
intensity every 5 s. According to the motion intensity col-
lected of the subject, the corresponding output torque of the
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Fig. 9 Schematic diagram of rehabilitation training

Fig. 10 Part of the rehabilitation training trajectory of drinking water in
demonstration reproduction model

exoskeleton is adjusted. Each rehabilitation training trajec-
tory is a rehabilitation cycle, the online test carries out five
consecutive rehabilitation cycles and pauses for 5 s after each
cycle is completed.

Using Lanczos resampling algorithm to up-sample the
rehabilitation motion trajectory to control the increment

adjustment. If the set of input points is x, then the weight
of the Lanczos window function for each point is

L(x) �
{

sin c(x) sin c(x/a)
0

if − a < x < a
otherwise

, (23)

where sin c(x) � sin(πx)
πx ; a is the hyper parameter of the

algorithm, which can be chosen as 2 or 3, corresponding
to the adjustment of the reduced interpolation or enlarged
interpolation. The demand is the up-sampling, where a � 3.

Reconstruct the required point set, the specific reconstruc-
tion function is

S(x) �
|x |+a
∑

i�|x |−a+1

si L(x − i), (24)

where S(x) is the resampling value at position x; si is the
sampling value of the original i position.

The purpose of resampling is to increase the number of
trajectory points, so that the system can change the output
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Fig. 11 Rehabilitation training
experiment
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Fig. 12 Schematic diagram of rehabilitation training experiment trajectory

Table 2 The schematic diagram
of motion intensity in the
rehabilitation training
experiment

Motion
intensity

The 1st cycle
(%)

The 2nd cycle
(%)

The 3rd cycle
(%)

The 4th cycle
(%)

The 5th cycle
(%)

Strong 25.2 24.3 6.6 0.0 0.0

Moderate 74.8 75.9 65.3 13.4 18.8

Weak 0.0 0.0 28.1 86.6 81.2

of corresponding position control signal according to the
motion intensity, and then changes the output velocity of
the motor.

After testing, the algorithm of establishing threads in the
main program for data collection, performing multi-modal
fusion and standardization, and using the perception model
for identification takes about 1.8 s to run. The control cycle of
themotor is 200Hz, and the thread resource utilizationmeets
the expectation. The collection cycle of heart rate signal is
3 s. the control system responds quickly enough because the
patient’s motion intensity is updated every 5 s. The experi-
mental device is built as shown in Fig. 11.

The five continuous periodic motion trajectories recorded
by the encoder are shown in Fig. 12. In the above experimen-
tal scheme, by collecting the heart rate signal and patients’
motion signal, the intensity data obtained by the online
motion intensity perception model is shown in Table 2. The

data in the table represent the duration of a certain motion
intensity during the rehabilitation cycle. Figure 12 shows
the trajectory of the simulated patients’ rehabilitation train-
ing driven by the motor in five rehabilitation cycles. In the
first three rehabilitation cycles of the simulated patients, due
to the full physical strength, rehabilitation training is car-
ried out faster. Only during some stretching exercises, weak
motion intensity is detected, and the overall motion intensity
is maintained at a moderate level. In contrast, during the last
two rehabilitation cycles, the percentage of weak intensity is
increased, and the correspondingmotion point trajectory out-
put rate decreased, the overall motion trajectory is smoother,
and also consumes more time to complete a rehabilitation
cycle. Therefore, it is feasible to apply the motion intensity
perception model proposed in this study to the control of the
upper limb rehabilitation exoskeleton robot, and the trajec-
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tory control and optimization based on the patients’ motion
intensity can be performed.

Conclusion

In this study, a motion intensity perception model based on
multi-modal information fusion is proposed by fusing accel-
eration signal and heart rate signal, and it is applied for
trajectory planning and control of upper limb rehabilitation
exoskeleton robot. Using the 6-DOF upper limb exoskeleton
robot developed in the laboratory previously, a multi-modal
information fusion perception system is built to implement a
series of tests. The results show that the collected experimen-
tal data of motion intensity basically conforms to the actual
motion law of human, and the average recognition accuracy
ofmotion intensity is greatly improved using theDNNmodel
designed in this study. The average recognition accuracy can
reach up to 99.0% in the training data set and 95.7% in the
test data set, respectively. Taking water drinking action as an
example, the rehabilitation training under teaching mode is
performed by software and algorithm design, and the opti-
mization strategy of motion velocity is accomplished based
on the results of motion intensity perception. The algorithm
of the system takes about 1.8 s to run. The control cycle
of the motor is 200 Hz, and the thread resource utilization
meets the expectation. The results show that the proposed
motion intensity perception model can be applied for upper
limb rehabilitation exoskeleton robots, as it can improve the
rehabilitation training effect and human–robot interaction
performance. Our future work will focus on adding EMG
signals to the multi-modal vector for the analysis of patients’
motion intention and intensity, as well as the control of com-
pliant motion.
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