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Abstract
To solve dynamic multi-objective optimization problems better, the key is to adapt quickly to environmental changes and track
the possible changing optimal solutions in time. In this paper, we propose a special point-based transfer component analysis
for dynamic multi-objective optimization algorithm (SPTr-RM-MEDA). To be specific, when a change occurs, the neighbors
of some special points are selected from the optimal set at previous time, and the transfer component analysis makes the use
of minimizing the distance between the mapped previous optima and the mapped current optima. Accordingly, the purpose is
to predict a part of next initial population from the neighborhoods of special points by transfer component analysis. To adapt
to the change well, SPTr-RM-MEDA also reevaluates the previous optimal set. In addition, an adaptive diversity introduction
strategy is adopted to maintain the population size. SPTr-RM-MEDA is performed on 12 test problems under 8 kinds of
environmental changes, and experimental results show that it is superior to other five state-of-the-art algorithms on most of
test problems.
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Introduction

Dynamic multi-objective optimization problem (DMOP)
refers to a problem containing multiple objectives under a
time-varying environment. Every time the environment is
changed, the optimization problems may also be changed. In
the real world, DMOP exists everywhere, such as dynamic
portfolio optimization problem in deregulated electricity
markets, hydro-thermal power scheduling problem, training
neural networks, and so on [5,11,13].Different from the static
multi-objective optimization problems, the optimal solutions
of DMOPs may always change with time. Therefore, the tra-
ditional static optimization algorithms are not suitable to deal
with DMOPs. Affected by some factors like the severity and
frequency of environmental changes, the objective function,
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the constraint function, and other parameters of DMOPs will
be changed [4]. A good algorithm for DMOPs not only needs
a fast convergent rate before the next change happens, but
also can maintain the diversity after each change [8], which
is still a trade-off to be balanced for dynamic multi-objective
optimization.

In recent years, many studies have made great achieve-
ments by taking evolutionary algorithms and swarm intel-
ligence algorithms as the common frameworks in DMOPs
[1,2,17,18,21]. According to the response strategy after
changing, the existing algorithms canbedivided into four cat-
egories: diversity-based, memory-based, multi-population-
based, and prediction-based method [1].

The diversity-based method introduces the individuals
with great difference into a population to preserve diversity
after a change occurs. Hypermutation [16] is introduced to
make the population tend to diverge by increasing the muta-
tion rate when a change is detected. In 2007, Deb modified
the static NSGA-II into a dynamic version (i.e., dynamic
NSGA-II) [5]. After a change was detected, part of solutions
were introduced in a random way, or they were mutated. To
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adapt to the change well, the key to maintain diversity is to
introduce some solutions different from ones in the popula-
tions last time in each iteration. However, the method of how
many solution to be replaced is just out.

The memory-based method improves the adaptability by
reusing the stored historical informationwhen changes occur.
Goh and Tan [8] used a temporary memory method in their
proposed algorithm to deal with previous solutions in the
archive (an external set used to store non-dominant solu-
tions). However, this method could not make the full use of
history information. Later, another algorithm developed an
adaptive population management strategy [1] to select the
number of random and historical solutions according to the
severity of changes. This kind of methods is more suitable
for the DMOPs with periodic changes.

The multi-population-based method is to track the change
of multiple peaks with several populations at the same time,
which is capable of increasing diversity. The self-organizing
scouts’ method was proposed by Branke et al. [3]. When
a peak was found, a sub-population would be generated to
monitor the mountain, and the rest of sub-populations would
continue to search for new peaks. Li and Yang [15] proposed
amulti-population particle swarm optimization algorithm, in
which evolutionary programming explored the most promis-
ing region in the whole search space. Meanwhile, several
sub-populations used the fast particle swarm optimization
algorithm to find the local optimal solutions. The difficulty
of multi-population method was that the operation of each
sub-population needs to coordinate with each other. There-
fore, it took more computing time than the single-population
method in most situation [7].

The method based on prediction is to design a model
by combining the existing historical information with some
technologies from machine learning, which can predict a
new initial population and adapt to changes better. Hatzakis
and Wallace [9] adopted a prediction method based on the
forward-looking model to predict the optimal solutions after
an environmental change. Zhou et al. [24] proposed an algo-
rithm based on population prediction strategy, which takes
into account the distribution characteristic of optima in objec-
tive space, and establishes time series on center points of
population. Jiang et al. [13] applied the transfer learning into
DMOP. The main shortcoming of prediction-based method
is that the solutions sampled from prediction models will be
adopted into the next population no matter whether they will
help the population evolve toward the right direction or not.

To use historical information and construct a suitable pre-
diction model, this paper proposes a new special point-based
transfer component analysis (TCA) for dynamic multi-
objective optimization algorithm (SPTr-RM-MEDA). The
main contributions can be given as follows:

(1) To predict the solutions closer to the potential opti-
mal sets in target domain using TCA, it is necessary to
select some special points in the source domain which
are preferably approximately uniformly distributed at
the Pareto fronts. Therefore, we select the five kinds of
special points and their neighborhoods to build the pre-
diction model using TCA.

(2) The non-dominated set at previous time are reevaluated
using the objective functions at current time, and then,
those non-dominated solution at current timewill go into
the next generation directly togetherwith those predicted
by TCA.

(3) Moreover, if the number of solutions gotten by the two
strategies above is not enough, the adaptive diversity
introduction strategy is acted as supplement by introduc-
ing remain number of individuals which are generated
randomly by Gaussian mutation.

(4) This automatic adaptation mechanism is combined with
RM-MEDA and experimental results show that SPTr-
RM-MEDA is superior to other five typical dynamic
multi-objective evolutionary algorithms.

The rest of this paper is organized as follows. Section 2
introduces the related work. Section 3 elaborates the frame-
work of the proposed algorithm in detail. Section 4 shows
the experimental settings, comparative experimental results,
and analysis. Section 5 gives a conclusion and discusses the
potential research work in the future.

Related work

Dynamic multi-objective optimization problem

Generally, a DMOP can be defined as follows:

min
x∈�

f (x, t) = ( f1(x, t), f2(x, t), . . . , fM (x, t))T

s.t. g(x, t) ≤ 0

h(x, t) = 0,

(1)

where t is the time variable, x = (x1, x2, . . . , xn)T is a
vector including n decision variables, � is the search space
for decision variables, g (x, t) and h (x, t) are the equality
and inequality constraints, respectively. f (x, t) is an M-
dimension objective vector. The obtained optimal solutions
to Eq. (1) are called Pareto fronts (PFs) in the objective space
and Pareto solutions (PSs) in the decision space.

According to the different characteristics of change,
DMOPs can be divided into the following four types [6]:

– Type I: the PS is changed, the PF remains unchanged.
– Type II: both the PS and the PF are changed.
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– Type III: thePF is changed, but thePS remains unchanged.
– Type IV: both the PS and PF remain unchanged.

Transfer component analysis

TCA mainly aims at the problem of domain adaptive learn-
ing in the process of transfer learning [12,19]. It reuses the
knowledge obtained from the source domain and performs
tasks in the target domain, which is related to but different
from the source domain. Because the domains are in different
distributions, the data from themwill bemapped together into
a reproducing kernel Hilbert space (RKHS) H [20], where
the distance between the source and target is minimized and
their internal attributes are retained to the maximum extent.
Intuitively, it is not easy to minimize the distance between
them in the current space, so amapping thatmakes them clos-
est in the space is necessary to establish. TCA is designed to
calculate distances more universal and simpler.

TCA [12] assumes that the marginal distribution of the
source domain and the target domain is different, i.e.,
P(Xs) �= P(Yt ), where Xs and Yt represent the source
domain and the target domain, respectively. It assumes that
there is a feature mapping φ, so that P(φ(Xs)) ≈ P(φ(Yt )).
Maximummean discrepancy (MMD) is used to calculate the
distance, and is given as follows:

dist
(
X

′
s,Y

′
t

)
=

∥∥∥∥
1

n1

∑n1

i=1
φ (xi ) − 1

n2

∑n2

i=1
φ (yi )

∥∥∥∥
2

H
,

(2)

where Xs = {x1, x2, . . . , xn1}, and Yt = {y1, y2, . . . , yn2}.
X

′
s and Y

′
t represent φ(Xs) and φ(Yt ), respectively. φ (·) :

X → H is the domain mapped in RKHS. To facilitate the
calculation in a easier way, TCA introduces a kernel matrix
K and a coefficient matrix L as follows:

K =
[
Ks,s Ks,t

Kt,s Kt,t

]
∈ R

(n1+n2)×(n1+n2)

Li j =

⎧⎪⎪⎨
⎪⎪⎩

1
n21

xi , x j ∈ Xs

1
n22

yi , y j ∈ Yt

− 1
n1n2

otherwise,

(3)

where Ku,v is a kernel matrix. Taking Ks,t as an example,
each element ki, j = k

(
xi , y j

) = φ(xi )Tφ(y j ). Ks,s , Kt,s ,
and Kt,t have the similar process to be calculated.

Thus, Eq. (2) above can be changed into the following
form:

dist
(
X

′
s,Y

′
t

)
= tr (K L) , (4)

where tr(·) is the trace of matrix. Here, Eq. (2) can be trans-
formed into a semi-definite programming problem as Eq. (4).

To reduce the computation cost, let ϕ(x) = WT kx ∈
R
d , and then the MMD can be calculated in a dimensional

reduction way, where W is an (n1 + n2) × d (d � n1 + n2)
weight matrix of samples, kx = [k(x1, x), . . . , k(xn1 , x),
k(y1, x), . . . , k(yn2 , x)]T , and the kernel function K can be
converted as the following formula:

K̃ = [
ϕ(x1), . . . , ϕ(xn1), ϕ(y1), . . . , ϕ(yn2)

]T
· [

ϕ(x1), . . . , ϕ(xn1), ϕ(y1), . . . , ϕ(yn2)
]

=
[
WT kx1, . . . ,W

T kxn1 ,W
T ky1 , . . . ,W

T kyn2

]T

·
[
WT kx1 , . . . ,W

T kxn1 ,W
T ky1, . . . ,W

T kyn2

]

= KTWWT K

= KWWT K ,

(5)

where K is a symmetric matrix and, therefore, KT = K .
After sorting out the above formulas, TCA can be

expressed as

argmin
W

tr
(
WT K LKW

)
+ μ tr

(
WTW

)

s.t. WT K HKW = I ,
(6)

where H = In1+n2− 1
n1+n2

11T is a centralmatrix tomaintain
the different data characteristics, I is the identity matrix, and
1 is an all-ones matrix. For solving the above optimization
problem, the second regularization term of Eq. (6) is added
by the Lagrange duality to get W . It can be concluded that
the solution of W is the first m eigenvectors.

In conclusion, TCA can be concluded as follows. The
inputs are two matrices of source and target domain, respec-
tively, which are two populations generated randomly from
the previous and current time. We first calculate L and H
matrices, select a common kernel function for mapping such
as linear kernel and Gaussian kernel, and then calculate K .
Finally, the output is W , which is constructed by the first m
eigenvectors of (K LK + μI )−1K HK .

Regularity model-basedmulti-objective estimation
of distribution algorithm

When the environmental change is not detected, the static
algorithm is utilized for seeking the optimal solutions at
current time. In 2008, the regularity model-based multi-
objective estimation of distribution algorithm (RM-MEDA)
was proposed by Zhang [22], which is as the static optimiza-
tion algorithm after each change in this paper.

RM-MEDA makes the advantage of the regularity of PS.
In other words, the distribution of PS in the feasible region is
an (M − 1)-dimension manifold, where M is the number of
objectives. To be more exact, the shape of parent population
from PS is mapped into (M − 1)-dimension linear space,

123



1232 Complex & Intelligent Systems (2023) 9:1229–1245

Fig. 1 The diagram of the overall algorithm

and the offspring is produced by sampling on multiple linear
spaces.

RM-MEDA algorithm divides the parent population into
K classes, and each class forms a linear subspace. The
process is as follows: first, K linear Spaces are generated
by dividing population into K sub-populations randomly.
And then calculate the distance between each point in par-
ent population and centers from different linear subspace,
and cluster sub-populations again by the minimum distance.
After dividing points and calculating the new centers, prin-
cipal component analysis is used to update the new linear
subspace. The process is repeated until each class is no longer
changed. As for sampling, when linear fitting above is over,
the upper and lower bounds of each linear subspace need to
be demarcated. Then, the probability of the new solution in
the truncated linear subspace is based on the ratio of the vol-
ume of each truncated linear space to the total volume. A new
solution is obtained by selecting a manifold with this proba-
bility, sampling on themanifold uniformly, and adding noise.
The offspring population can be generated by repeating the
sampling process.

The proposed algorithm

Overall flowchart of SPTr-RM-MEDA

This section introduces the proposed SPTr-RM-MEDA. Fig-
ure 1 shows the diagram of the proposed algorithm. When

a change is detected, a mechanism of automatic adaptation
to change would generate the initial population under new
environment, using TCA with special points and an adap-
tive diversity introduction. And then, the initial population
is optimized by RM-MEDA [22]. Compared with NSGA-II,
RM-MEDA showed more advantages with TCA in experi-
ments [13]. The pseudo-code of SPTr-RM-MEDA is shown
in Algorithm 1, and the NPopsp and NPopnon are the size of
Popsp and Popnon , respectively.

Algorithm 1 SPTr-RM-MEDA
Input:
A DMOP; the termination condition: Ter; the population size: N ;a
kernel function.

Output:
Approximation of PS: X ; Approximation of PF: F(X).
Initialization: The number of time change and the initial parent pop-
ulation Pop0.
Step1:Randomly select 5% individuals to reevaluated. if environment
is changed, go to Step 2. Otherwise, go to Step 6.
Step2: Predict a new population Popsp by the prediction strategy in
Algorithm 2.
Step3: Reevaluate the previous non-dominated solutions Popnon in
t + 1 time.
Step4:Calculate the number of diversity introduction NPopdiv = N−
NPopnon − NPopsp , and introduce random individuals Popdiv .
Step5: Get Popt+1 = Popsp + Popnon + Popdiv by Steps 2, 3 and
4. t = t + 1.
Step6: Optimize Popt by RM-MEDA.
Step7: If Ter is met, stop. Otherwise go to the step 1.

Automatic adaptation to change

Prediction strategy

Special points can outline the PF for most multi-objective
problems. Five kinds of special points are introduced in this
paper as follows.

The boundary point [23] refers to the point of minimum
value of each object in the objective space for a minimization
problem. Its mathematical expression is given as follows:

B = {( f1min(X), . . . , fM (X)) ,

. . . , ( f1(X), . . . , fMmin(X))}, (7)

where M is the number of objectives and B represents the
set of boundary points. To be more specific, there are two
or three boundary points in two-objective or three-objective
optimization, respectively.

The knee point [23] has the maximum marginal regres-
sion rate in the objective space. In the other word, it can
be defined as the point farthest from the vertical distance of
hyperplane S determined by boundary points. The dimen-
sion of hyperplane varies which is equal to the dimension of
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objective space minus one in this paper. For example, if the
number of objectives M is 2 or 3, the dimension of S is 1 or
2, respectively.

For ∀x ∈ S, the equation WT X + b = 0 is satisfied. The
coefficient vector W = [w1, w2, . . . , wM ]T and the coeffi-
cient term b is a constant. In the objective space, the variable
vector X = [x1, x2, . . . , xM ]T . The knee point can be calcu-
lated by maximizing the vertical distance from the point X
to the hyperplane S

K = argmax
X∈P

D (X0, S) (8)

D (X , S) =|WT X + b|
‖W‖ , (9)

where X represents those points out of hyperplane S, and P
stands for the non-dominated set at previous time t . If the
point X is on the hyperplane S, the vertical distance is 0.

The point closest to the boundary (PCTB) can be under-
stood as the point with the smallest distance to the sum of all
boundary points. The formula is presented in the following:

min
1≤i≤NP

∑M

j=1

∥∥Xi − Bj
∥∥, (10)

where Bj is the boundary point, and Np is the number of
non-dominated points Xi .

For theminimization problem, the ideal point is composed
of the minimum values in each dimension of the objective
space. However, in general, the ideal point does not exist in
the non-dominated set. E = [E1, E2, . . . , EM ]T is the ideal
point, which is given in the following:

E j = min
X∈P

f j (X), j = 1, . . . , M, (11)

where P represents the non-dominated set at previous time
t .

The center point usually refers to the center of all points in
the non-dominated set. The calculation formula of the center
point is shown as follows:

Ci = 1

|P|
∑
X∈P

Xi , i = 1, 2..., M, (12)

where P is the non-dominated set.
These special points and their neighbor points will be

found from the PS and PF at previous time to form special
point populations, which will participate in predicting points
by TCA model in this paper. Because the center point or the
ideal point in Eqs. (11) and (12) does not exist in the non-
dominated set, the closest point from the non-dominated set
P to either of them in the objective space is chosen as the
actual center or ideal point, respectively. All the neighbor

points are selected based on the Euclidean distance to the
actual special points in the objective space. Note that the size
of each neighborhood is 10. And only the neighborhoods of
special points are used for predicting byTCA in the following
strategy.

When the environmental change is detected, the pre-
diction part is mainly based on the special points in the
non-dominated set at previous moment. Each special point
and its neighborhood will be partly sampled, and then, the
sampling set will be acquired through TCA as a part of ini-
tial population at next time. In TCA prediction method, the
objective values of individuals at t time are in the source
domain, and that at t + 1 time is in the target domain. When
establishing the mapping relationship, the individuals in new
environment can be predicted by the transfer learning of the
sampled special points’ population. The prediction strategy
based on TCA with special points is given in detail in Algo-
rithm 2. At Step 1, the points on the neighborhood refer to
closet to the special point and from the non-dominated set.
In Steps 6 and 7, l represents the individuals from special
points’ neighborhoods SPop.

Algorithm 2 Prediction strategy based on TCA
Input:
The objective function: F(·); PF at time t ; a kernel function: k (· , ·);
the sampling rate: γs ; the size of population: N .

Output:
Popsp at time t + 1.
Step1: Calculate the special points, and the sampling size around
each special point’s neighborhood is γs N . Then partial samplings are
generated and denoted as SPop.
Step2:Randomly generate two sets of initial solutions Xs and Yt , and
then calculate objective function values Ft (Xs) and Ft+1(Yt ) at time
t and t + 1, respectively.
Step3: Use TCA on Ft (Xs) and Ft+1(Yt ) to determine the mapping
relationship and obtain the matrix W by Eq. (6).
Step4:Map the population SPop at time t into high-dimension space
by k (· , ·).
Step5: Use ϕ(x) = WT kx to calculate the characteristic mapping of
Popsp in high-dimension space, ϕ(Ft (l)) = WT kl , l ∈ SPop.
Step6: ϕ(Ft (l)) will search one by one for mapping solu-
tions at t + 1, and ϕ(Ft+1(x)) is the closest to it. x ←
argmin

x
‖ϕ(Ft+1(x)) − ϕ(Ft (l))‖.

Step7: The solution obtained in Step 6 is the predicted initial popu-
lation Popsp .

Adaptive diversity introduction strategy

Because the number of boundary points is related to the
objective dimension, the number of special points in two
or three objectives is 6 or 7, respectively, so the size of
total partial sampling (denoted as NPopsp ) is 6 × γs × N
or 7 × γs × N , respectively. And, the non-dominated set at
t time are reevaluated using the objective functions at t + 1
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time, and then, those non-dominated solutions (the size is
denoted as NPopnon ) will go into the next generation together
with those predicted by TCA. If the total number of Popsp
and Popnon (NPopsp + NPopnon ) is less than the population
size N , the remain N − (NPopsp + NPopnon ) individuals are
generated randomly around Popnon and Popsp by adding
the noise with normal distribution with the mean of 0 and the
standard deviation of 0.5.

Experimental results

In this section, the proposed SPTr-RM-MEDA is compared
with five other dynamic multi-objective optimization evolu-
tionary algorithms, including transfer learning-basedNSGA-
II (Tr-NSGA-II) [13], transfer learning-based RM-MEDA
(Tr-RM-MEDA) [13], two version of dynamic NSGA-II [5]
(DNSGA-II-A and DNSGA-II-B), and individual transfer-
based dynamic multi-objective evolutionary algorithm (IT-
DMOEA) [14]. Tr-NSGA-II and Tr-RM-MEDA both used
TCA to predict based on different static algorithms, NSGA-
II and RM-MEDA. DNSGA-II-A and DNSGA-II-B are
modified NSGA-II with different individuals introducing
strategies. In DNSGA-II-A, randomly generated individu-
als are introduced and replaced part of population whenever
there was a change. In DNSGA-II-B, some individuals are
replaced by those generated by mutations. IT-DMOEA used
a presearch strategy to filter out the good individuals and pro-
posed an individual-based transfer learning to construct the
initial population.

Experimental settings

To test the performance of SPTr-RM-MEDA, three types of
DMOPs [10] were selected, as shown in Table 1. What’s
more, the time parameter in Eq.(1) is t = �τ/τt/nt , where
nt , τT and τt are the severity of change, themaximumnumber
of iterations, and frequency of change, respectively, and τ is
from τT /20 to τT , there are totally 20 environment changes.
The parameters of SPTr-RM-MEDA, SPTr-NSGA-II, Tr-
RM-MEDA, and Tr-NSGA-II are presented in the following:
the population size N is 200; the sample rate γs is 0.05. In
TCA, the kernel function is a Gaussian kernel function, the
expected dimension valuem is 20, and the trade-off parame-
ter μ is set at 0.5. Our algorithm was performed on 12 kinds
of test functions under 8 groups of environmental changes,
which is denoted as C1–C8, and different environmental
parameter settings are shown in Table 2.

Performancemetrics

MIGD [24] is used to calculate the average inverted genera-
tional distance (IGD) value in different time, and it is adopted

Table 1 Functions settings

Function Type Dim Objectives Feature

FDA4 I 12 3 Non-convex

FDA5 II 12 3 Non-convex

FDA5iso II 12 3 Isolated

FDA5dec II 12 3 Deceptive

DIMP2 I 10 2 Continuous

DMOP2 II 10 2 Convex to concave

DMOP2iso II 10 2 Isolated

DMOP2dec II 10 2 Deceptive

DMOP3 I 10 2 Convex

HE2 III 30 2 Discontinuous

HE7 III 10 2 Complex PSs

HE9 III 10 2 Complex PSs

Table 2 Functions parameters’ settings

C1 C2 C3 C4 C5 C6 C7 C8

nt 10 10 10 10 1 1 20 20

τT 100 200 500 1000 200 1000 200 1000

τt 5 10 25 50 10 50 10 50

to evaluate the performance in this paper. The definition is
shown as follows:

MIGD(Pt , PFt ,C) = 1

|T |
∑
t∈T

∑
v∈PFt d(v, Pt )

|PFt | , (13)

where T means a set of discrete time points in a run. PFt
is Pareto optimal points set distributed uniformly in PF,
Pt represents the approximated PF obtained by algorithms,
d (v, Pt ) = minu∈Pt ‖F(v) − F(u)‖ represents the distance
between the point v from PFt and Pt . The parameter C is
a symbol for eight environments, ranging from C1 to C8
shown in Table 2.

To evaluate algorithms under different environments,
DMIGD is defined based on the MIGD, calculated by [13]

DMIGD(Pt , PFt ) = 1

|E |
∑
C∈E

MIGD(Pt , PFt ,C), (14)

where E means a set of different environment, and |E | is
the number of different environment in experiments. In our
experiments, |E | is equal to 8.
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Table 3 The MIGD and DMIGD of 12 test functions compared with four algorithms

Tr-RM-MEDA DNSGA-II-A DNSGA-II-B IT-DMOEA SPTr-RM-MEDA

FDA4

C1 8.59E−02 6.47E−01(++) 6.50E−01(++) 3.57E−01(++) 9.54E−02

C2 5.97E−02 2.57E−01(++) 2.70E−01(++) 2.31E−01(++) 6.36E−02

C3 3.41E−02 3.86E−02(++) 3.95E−02(++) 9.38E−02(++) 3.83E−02

C4 2.86E−02 1.80E−02 1.79E−02 6.73E−02(++) 3.10E−02

C5 6.00E−02 3.47E+00(++) 3.38E+00(++) 6.10E−01(++) 2.28E−01

C6 2.29E−02 3.21E+00(++) 3.35E+00(++) 6.89E−02(++) 4.35E−02

C7 5.63E−02 7.47E−02(++) 7.42E−02(++) 2.25E−01(++) 6.79E−02

C8 2.92E−02 1.41E−02 1.44E−02 6.75E−02(++) 3.01E−02

DMIGD 4.71E−02 9.66E−01(++) 9.74E−01(++) 2.15E−01(++) 7.47E−02

FDA5

C1 9.41E−01 1.15E+00 1.11E+00 1.44E+00 7.20E−01

C2 8.06E−01 7.89E−01 7.97E−01 1.20E+00 6.54E−01

C3 6.06E−01(++) 5.31E−01 5.32E−01 7.51E−01(++) 6.01E−01

C4 6.31E−01 5.45E−01 5.45E−01 4.26E−01 6.31E−01

C5 9.86E−01 2.55E+00(++) 2.55E+00(++) 1.26E+00(++) 1.21E+00

C6 4.89E−01 3.19E+00(++) 3.04E+00(++) 1.36E+00(++) 5.14E−01

C7 7.85E−01 6.95E−01 6.91E−01 1.21E+00 6.21E−01

C8 6.08E−01(++) 5.21E−01 5.21E−01 3.77E−01 6.07E−01

DMIGD 7.32E−01 1.25E+00 1.22E+00 1.00E+00 6.95E−01

FDA5iso
C1 9.35E−01 7.86E−01 7.89E−01 2.68E+01 6.05E−01

C2 8.27E−01(++) 8.02E−01(++) 8.05E−01(++) 2.66E−01 6.24E−01

C3 6.49E−01 8.11E−01 8.11E−01 2.80E+00 5.92E−01

C4 6.25E−01 8.05E−01 8.09E−01 3.23E+01 6.25E−01

C5 6.80E−01 6.19E−01 6.18E−01 7.17E+00 7.23E−01

C6 4.72E−01 7.25E−01 6.64E−01 2.70E+01 4.71E−01

C7 8.04E−01(++) 7.84E−01(++) 7.86E−01(++) 2.66E−01 6.02E−01

C8 6.02E−01 7.74E−01(++) 7.69E−01(++) 1.13E−01 6.02E−01

DMIGD 6.99E−01 7.63E−01 7.56E−01 1.21E+01 6.06E−01

FDA5dec
C1 1.88E+00(++) 9.50E−01 9.44E−01 5.11E+03(++) 1.30E+00

C2 1.63E+00(++) 8.56E−01 8.62E−01 2.37E+03(++) 1.15E+00

C3 1.33E+00(++) 7.78E−01 7.80E−01 2.58E+03(++) 8.21E−01

C4 9.95E−01 7.76E−01 7.76E−01 2.61E+03 7.61E−01

C5 9.65E+00(++) 1.47E+00 1.29E+00 1.31E+02(++) 1.77E+00

C6 5.52E−01 9.19E−01(++) 8.83E−01(++) 4.76E+03(++) 6.09E−01

C7 1.67E+00(++) 8.12E−01 8.22E−01 3.51E+03(++) 1.04E+00

C8 1.27E+00(++) 7.53E−01 7.52E−01 4.67E+03(++) 8.30E−01

DMIGD 2.37E+00(++) 9.14E−01 8.89E−01 3.22E+03(++) 1.04E+00

DIMP2

C1 1.40E+01(++) 1.08E+01 1.08E+01 1.05E+01 1.13E+01

C2 1.18E+01(++) 6.14E+00 6.10E+00 8.83E+00 8.99E+00

C3 6.17E+00(++) 2.15E+00 2.21E+00 6.33E+00(++) 5.51E+00

C4 4.38E+00 4.91E−01 5.12E−01 5.20E+00(++) 4.42E+00

C5 1.14E+01(++) 5.83E+00 5.97E+00 8.62E+00 9.01E+00
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Table 3 continued

Tr-RM-MEDA DNSGA-II-A DNSGA-II-B IT-DMOEA SPTr-RM-MEDA

C6 4.54E+00 3.96E−01 3.93E−01 5.07E+00(++) 4.69E+00

C7 1.21E+01(++) 5.81E+00 5.95E+00 8.69E+00(++) 9.25E+00

C8 4.52E+00 8.06E−02 9.18E−02 5.22E+00(++) 4.66E+00

DMIGD 8.61E+00(++) 3.96E+00 4.00E+00 7.31E+00(++) 7.23E+00

DMOP2

C1 3.57E+00(++) 3.09E+00(++) 2.80E+00(++) 1.47E−01 4.58E−01

C2 9.32E−01(++) 1.76E−01(++) 1.81E−01(++) 7.46E−02 1.17E−01

C3 5.67E−02 9.23E−02 8.84E−02 1.38E−02 8.53E−03

C4 2.42E−03 5.67E−01 3.37E−01 9.76E−03 1.82E−03

C5 2.96E+01(++) 3.74E+01(++) 3.73E+01(++) 2.21E−01 2.38E+01

C6 1.97E+01(++) 3.74E+01(++) 3.74E+01(++) 1.37E−01 1.91E+01

C7 9.46E−01(++) 4.76E−02 3.80E−02 7.55E−02 8.18E−02

C8 6.69E−03 8.94E−02 2.32E−03 8.48E−03 1.84E−03

DMIGD 6.85E+00(++) 9.86E+00(++) 9.77E+00(++) 8.59E−02 5.44E+00

DMOP2iso

C1 3.75E−04 8.69E−02(++) 7.65E−02(++) 8.28E−03(++) 3.79E−04

C2 3.74E−04 2.30E−03 6.62E−03 8.27E−03 3.74E−04

C3 3.82E−04 3.83E−04 3.82E−04 8.27E−03 3.77E−04

C4 3.75E−04 3.78E−04 3.80E−04 8.27E−03 3.75E−04

C5 1.27E−01 1.31E−01(++) 1.38E−01(++) 1.40E−01(++) 1.28E−01

C6 1.27E−01 1.29E−01 1.29E−01 1.40E−01 1.27E−01

C7 3.77E−04 1.15E−03 7.85E−03 4.66E−03 3.77E−04

C8 3.78E−04 3.79E−04 3.79E−04 4.66E−03 3.75E−04

DMIGD 3.21E−02 4.40E−02 4.50E−02 4.03E−02 3.21E−02

DMOP2dec

C1 2.90E+00 6.96E+00 7.36E+00 2.01E+00 9.80E−01

C2 1.70E+00 1.47E+01 1.69E+01 1.26E+00 4.44E−01

C3 2.65E−01 7.84E+02 4.77E+02 3.73E−01 1.25E−01

C4 5.79E−02 3.51E+04 2.94E+04 1.08E−01 5.76E−02

C5 6.40E+00 5.33E+05 6.21E+05 3.34E+00 2.64E+00

C6 2.50E−01(++) 9.39E+06(++) 9.15E+06(++) 1.81E−01 2.30E−01

C7 1.80E+00 2.85E+01 2.31E+01 1.10E+00 3.14E−01

C8 7.18E−02 2.57E+03 2.38E+03 8.02E−02 3.99E−02

DMIGD 1.68E+00 1.25E+06 1.23E+06 1.06E+00 6.03E−01

DMOP3

C1 1.29E+00(++) 6.36E+00(++) 5.94E+00(++) 7.70E−02 3.39E−01

C2 3.55E−01(++) 1.71E+00(++) 1.80E+00(++) 3.57E−02 6.73E−02

C3 3.65E−02 1.35E−01 1.78E−01 5.69E−03 4.32E−03

C4 1.79E−03 1.34E−02 1.37E−02 2.78E−03 1.39E−03

C5 2.00E+01 3.43E+01(++) 3.48E+01(++) 2.06E−01 2.33E+01

C6 1.32E+01 2.55E+01(++) 2.50E+01(++) 1.10E−01 1.91E+01

C7 3.30E−01(++) 4.69E−01(++) 5.04E−01(++) 3.41E−02 5.59E−02

C8 2.29E−03 6.20E−03 5.11E−03 2.42E−03 1.53E−03

DMIGD 4.40E+00 8.55E+00(++) 8.53E+00(++) 5.92E−02 5.36E+00
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Table 3 continued

Tr-RM-MEDA DNSGA-II-A DNSGA-II-B IT-DMOEA SPTr-RM-MEDA

HE2

C1 1.24E+00(++) 8.36E−02 8.23E−02 1.48E+00(++) 5.18E−01

C2 8.19E−01(++) 4.11E−02 3.91E−02 1.37E+00(++) 4.05E−01

C3 3.60E−01(++) 3.13E−02 3.14E−02 1.09E+00(++) 1.46E−01

C4 9.41E−02(++) 3.14E−02 3.12E−02 8.68E−01(++) 4.41E−02

C5 7.20E−01(++) 4.44E−02 4.50E−02 1.32E+00(++) 2.28E−01

C6 6.25E−02(++) 3.64E−02 3.64E−02 6.89E−01(++) 4.99E−02

C7 8.21E−01(++) 3.90E−02 3.99E−02 1.36E+00(++) 3.21E−01

C8 1.01E−01 3.15E−02 3.15E−02 8.66E−01(++) 5.18E−01

DMIGD 9.56E−01 9.88E−01 9.85E−01 1.01E+00 8.43E−01

HE7

C1 1.53E+00 4.62E+00(++) 4.77E+00(++) 1.78E−01 2.42E+00

C2 1.70E+00 5.20E+00(++) 5.08E+00(++) 1.29E−01 3.59E+00

C3 1.88E+00 5.25E+00(++) 5.61E+00(++) 8.59E−02 4.82E+00

C4 2.58E+00 6.02E+00(++) 5.76E+00(++) 8.30E−02 5.36E+00

C5 1.32E+00 3.18E+00(++) 3.08E+00(++) 1.68E−01 2.23E+00

C6 1.88E+00 3.84E+00(++) 3.66E+00(++) 1.36E−01 3.26E+00

C7 1.68E+00 5.52E+00(++) 5.22E+00(++) 1.32E−01 3.75E+00

C8 2.70E+00 5.46E+00(++) 5.85E+00(++) 8.65E−02 5.29E+00

DMIGD 1.80E+00 4.45E+00(++) 4.45E+00(++) 2.23E−01 3.51E+00

HE9

C1 2.55E+00 1.36E+03(++) 1.37E+03(++) 3.20E−01 2.53E+00

C2 2.16E+00 1.37E+03(++) 1.36E+03(++) 2.99E−01 3.36E+00

C3 2.18E+00 1.37E+03(++) 1.36E+03(++) 2.75E−01 5.98E+00

C4 2.56E+00 1.36E+03(++) 1.35E+03(++) 2.60E−01 6.54E+00

C5 2.05E+00 1.36E+03(++) 1.36E+03(++) 2.63E−01 2.66E+00

C6 2.34E+00 1.35E+03(++) 1.36E+03(++) 2.24E−01 4.55E+00

C7 2.04E+00 1.36E+03(++) 1.36E+03(++) 3.04E−01 3.54E+00

C8 2.44E+00 1.36E+03(++) 1.35E+03(++) 2.63E−01 6.28E+00

DMIGD 2.29E+00 1.36E+03(++) 1.36E+03(++) 2.76E−01 4.43E+00

Results and analysis

Comparison with other algorithms

To prove the universal applicability of the proposed SPTr-
RM-MEDA, we compared it with Tr-RM-MEDA [13],
DNSGA-II-A [5], DNSGA-II-B [5], and IT-DMOEA [14].
The population size and the maximum of iterations are the
same with SPTr-RM-MEDA to make a fair comparison. The
test functions are consistent with Table 1. Here, we choose
the average MIGD of each problem under 8 different envi-
ronments and DMIGD of each problem as the performance
metrics. Note that "++" represents that SPTr-RM-MEDA
performs better than this algorithm except for the best one in
boldface. The experimental result for comparison is shown
in Table 3.

As can be seen, the experimental results on 9 out of 12
groups of problems show that SPTr-RM-MEDA has bet-
ter performance than DNSGA-II-A and DNSGA-II-B. More
than half of the results of SPTr-RM-MEDA have the higher
MIGD than the transfer learning algorithms like Tr-RM-
MEDAand IT-DMOEA.And for type I and type II problems,
SPTr-RM-MEDA is superior to DNSGA-II-A and DNSGA-
II-B for most problems, especially for a series of DMOP. For
type III problems (i.e., the complex HE7 and HE9), although
our algorithm is better than DNSGA-II-A and DNSGA-II-
B, it has poor convergence compared with Tr-RM-MEDA
and IT-DMOEA. However, from the DMIGD value, SPTr-
RM-MEDA takes up the first with 5 out of 12 best, and
IT-DMOEA has 4 out of 12.
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Table 4 The MIGD of 12 test
functions compared with
Tr-RM-MEDA and Tr-NSGA-II

Tr-RM-MEDA Tr-NSGA-II SPTr-NSGA-II SPTr-RM-MEDA

FDA4 C1 8.59E−02 6.25E−02 1.02E−01 9.54E−02

C2 5.97E−02 5.04E−02 8.89E−02 6.36E−02

C3 3.41E−02 6.51E−02 9.13E−02 3.83E−02

C4 2.86E−02 5.19E−02 6.34E−02 3.10E−02

C5 6.00E−02 6.82E−02 6.88E−02 2.28E−01

C6 2.29E−02 3.66E−02 5.07E−02 4.35E−02

C7 5.63E−02 4.63E−02 8.36E−02 6.79E−02

C8 2.92E−02 5.33E−02 7.21E−02 3.01E−02

FDA5 C1 9.41E−01 1.10E+00 1.02E+00 7.20E−01

C2 8.06E−01 9.57E−01 7.86E−01 6.54E−01

C3 6.06E−01 1.16E+00 6.54E−01 6.01E−01

C4 6.31E−01 9.77E−01 7.33E−01 6.31E−01

C5 9.86E−01 1.16E+00 6.22E−01 1.21E+00

C6 4.89E−01 1.13E+00 6.42E−01 5.14E−01

C7 7.85E−01 9.56E−01 7.05E−01 6.21E−01

C8 6.08E−01 8.56E−01 7.04E−01 6.07E−01

FDA5iso C1 9.35E−01 9.77E−01 7.77E−01 6.05E−01

C2 8.27E−01 8.76E−01 7.59E−01 6.24E−01

C3 6.49E−01 6.56E−01 7.32E−01 5.92E−01

C4 6.25E−01 6.26E−01 7.19E−01 6.25E−01

C5 6.80E−01 5.79E−01 5.99E−01 7.23E−01

C6 4.72E−01 4.53E−01 5.88E−01 4.71E−01

C7 8.04E−01 7.70E−01 7.30E−01 6.02E−01

C8 6.02E−01 5.76E−01 7.19E−01 6.02E−01

FDA5dec C1 1.95E+00 6.28E+00 1.28E+00 1.30E+00

C2 1.62E+00 4.89E+00 8.04E−01 1.15E+00

C3 1.32E+00 2.88E+00 6.47E−01 8.21E−01

C4 1.01E+00 9.76E−01 6.28E−01 7.61E−01

C5 5.56E+00 8.07E+01 1.11E+00 1.77E+00

C6 5.40E−01 5.03E+00 7.87E−01 6.09E−01

C7 1.67E+00 1.88E+00 7.40E−01 1.04E+00

C8 1.11E+00 9.10E−01 6.98E−01 8.30E−01

DIMP2 C1 1.40E+01 1.65E+01 1.64E+01 1.13E+01

C2 1.18E+01 1.17E+01 1.08E+01 8.99E+00

C3 6.17E+00 6.66E+00 6.22E+00 5.51E+00

C4 4.38E+00 4.58E+00 3.89E+00 4.42E+00

C5 1.14E+01 1.17E+01 6.41E+00 9.01E+00

C6 4.54E+00 5.06E+00 2.21E+00 4.69E+00

C7 1.21E+01 1.18E+01 6.90E+00 9.25E+00

C8 4.52E+00 4.55E+00 3.03E+00 4.66E+00

DMOP2 C1 3.57E+00 1.26E+00 1.15E+00 4.58E−01

C2 9.32E−01 9.52E−01 6.69E−01 1.17E−01

C3 5.67E−02 2.27E−01 5.82E−02 8.53E−03

C4 2.42E−03 3.21E−02 4.23E−02 1.82E−03

C5 2.96E+01 3.33E+01 1.01E+01 2.38E+01

C6 1.97E+01 2.01E+01 1.19E−01 1.91E+01

C7 9.46E−01 9.76E−01 4.05E−01 8.18E−02

C8 6.69E−03 2.85E−02 4.03E−02 1.84E−03
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Table 4 continued Tr-RM-MEDA Tr-NSGA-II SPTr-NSGA-II SPTr-RM-MEDA

DMOP2iso C1 3.75E−04 4.85E−04 4.94E−02 3.79E−04

C2 3.74E−04 4.74E−04 4.87E−02 3.74E−04

C3 3.82E−04 5.01E−04 4.87E−02 3.77E−04

C4 3.75E−04 5.05E−04 4.86E−02 3.75E−04

C5 1.27E−01 1.29E−01 2.36E−01 1.28E−01

C6 1.27E−01 1.29E−01 2.37E−01 1.27E−01

C7 3.77E−04 4.72E−04 4.63E−02 3.77E−04

C8 3.78E−04 4.96E−04 4.66E−02 3.75E−04

DMOP2dec C1 2.90E+00 1.53E+00 1.68E+00 9.80E−01

C2 1.70E+00 1.12E+00 7.84E−01 4.44E−01

C3 2.65E−01 5.05E−01 1.55E−01 1.25E−01

C4 5.79E−02 1.49E−01 6.18E−02 5.76E−02

C5 6.40E+00 6.49E+00 4.52E+00 2.64E+00

C6 2.50E−01 1.04E+00 8.81E−01 2.30E−01

C7 1.80E+00 1.05E+00 6.07E−01 3.14E−01

C8 7.18E−02 1.45E−01 7.23E−02 3.99E−02

DMOP3 C1 1.29E+00 1.08E+00 4.34E−01 3.39E−01

C2 3.55E−01 7.49E−01 2.74E−01 6.73E−02

C3 3.65E−02 1.97E−01 4.16E−02 4.32E−03

C4 1.79E−03 4.16E−02 4.88E−03 1.39E−03

C5 2.00E+01 3.15E+01 8.98E+00 2.33E+01

C6 1.32E+01 1.96E+01 1.29E−01 1.91E+01

C7 3.30E−01 6.46E−01 1.04E−01 5.59E−02

C8 2.29E−03 2.91E−02 5.67E−03 1.53E−03

HE2 C1 1.24E+00 1.08E+00 7.48E−01 5.18E−01

C2 8.19E−01 2.06E−01 9.71E−02 4.05E−01

C3 3.60E−01 8.54E−02 6.31E−02 1.46E−01

C4 9.41E−02 7.81E−02 6.19E−02 4.41E−02

C5 7.20E−01 5.95E−02 1.74E−01 2.28E−01

C6 6.25E−02 4.73E−02 1.47E−01 4.99E−02

C7 8.21E−01 1.83E−01 6.97E−02 3.21E−01

C8 1.01E−01 8.24E−02 6.39E−02 5.18E−01

HE7 C1 1.53E+00 1.52E+00 8.00E+01 2.42E+00

C2 1.70E+00 9.62E+00 1.06E+02 3.59E+00

C3 1.88E+00 6.31E+01 1.37E+02 4.82E+00

C4 2.58E+00 7.20E+01 1.59E+02 5.36E+00

C5 1.32E+00 4.12E+00 1.77E+02 2.23E+00

C6 1.88E+00 2.34E+01 1.71E+02 3.26E+00

C7 1.68E+00 4.41E+00 9.48E+01 3.75E+00

C8 2.70E+00 1.01E+02 1.01E+02 5.29E+00

HE9 C1 2.55E+00 3.34E+00 6.95E+00 2.53E+00

C2 2.16E+00 3.84E+00 7.51E+00 3.36E+00

C3 2.18E+00 5.33E+00 7.62E+00 5.98E+00

C4 2.56E+00 6.20E+00 7.54E+00 6.54E+00

C5 2.05E+00 3.32E+00 8.19E+00 2.66E+00

C6 2.34E+00 4.24E+00 8.28E+00 4.55E+00

C7 2.04E+00 4.01E+00 6.60E+00 3.54E+00

C8 2.44E+00 6.00E+00 6.53E+00 6.28E+00
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Table 5 The CPU running time
of each function

Tr-RM-MEDA Tr-NSGA-II SPTr-NSGA-II SPTr-RM-MEDA

DMOP3 1.13E+04 2.15E+04 7.13E+03 1.32E+03

DIMP2 8.73E+03 3.80E+02 1.88E+02 1.21E+03

FDA4 1.70E+04 1.13E+04 3.69E+03 6.09E+03

DMOP2 8.46E+03 1.82E+04 5.60E+03 3.87E+03

DMOP2iso 3.39E+03 3.80E+03 1.25E+03 6.58E+03

DMOP2dec 5.97E+03 2.26E+04 6.47E+03 1.73E+03

FDA5 1.25E+04 1.71E+04 6.53E+03 4.37E+03

FDA5iso 4.97E+03 4.99E+03 1.89E+03 6.74E+03

FDA5dec 5.38E+03 2.06E+04 5.94E+03 4.38E+03

HE2 1.40E+04 4.72E+04 9.55E+03 9.09E+03

HE7 2.24E+04 3.04E+04 5.03E+03 7.96E+03

HE9 1.44E+04 1.90E+04 3.47E+03 3.88E+03

Analysis of key technologies in SPTr-RM-MEDA

To figure out how the other static algorithm and the pro-
posed automatic adaptation to change work, we compare
Tr-RM-MEDA and Tr-NSGA-II [13] with SPTr-RM-MEDA
and SPTr-NSGA-II in experiments, including MIGD met-
ric in Table 4 and the CPU running time in Table 5.
SPTr-NSGA-II with NSGA-II has the only difference with
SPTr-RM-MEDA.

In Table 4, on the comparison between two static algo-
rithms, including RM-MEDA and NSGA-II. From Tr-RM-
MEDA and Tr-NSGA-II, or SPTr-RM-MEDA and SPTr-
NSGA-II, there is not doubt that RM-MEDA is a good
optimizer on the contribution of convergence and diversity
than NSGA-II.

Otherwise, when Tr-NSGA-II is compared with SPTr-
NSGA-II and Tr-RM-MEDA is compared with SPTr-RM-
MEDA, it can still be seen that the automatic adaptation to
change we proposed improves the efficiency of TCA model
in Table 4. SPTr-RM-MEDA performs well on almost half of
problems under different environments. This is because the
PFs of these problems are changed significantly, and SPTr-
RM-MEDA can accurately find the special points, improving
the convergence rate of the algorithm.

Furthermore, in terms of experimental cost, CPU running
time metric is adopted to show the efficiency of automatic
adaptation to change. Here, we give the average CPU time
under the 8 changes for each test function. The results are
shown inTable 5. SPTr-RM-MEDAandSPTr-NSGA-II have
less time complexity and faster convergent speed, which
greatly saves the calculation cost. According to SPTr-RM-
MEDA and SPTr-NSGA-II, almost all functions run half as
fast. Especially for DMOP2 and FDA5, the running time is
shortened by more than 70%.

To confirm the efficiency of automatic adaptation to
change by another way, Tr-RM-MEDA is used to compare

with SPTr-RM-MEDA in Fig. 2. Take the environmental
setting C3 as an example, the two-objective PFs under 5 dif-
ferent environment changes are shown. The parameter T is
the environment change varying from 1 to 20. The green dots
are the true PFs, and the red dots are the PFs from the cho-
sen algorithm. Altogether, the SPTr-RM-MEDA converges
better than the Tr-RM-MEDA. However, there are still some
problems with complex or static PFs like DIMP2, HE7, and
HE9, the PFs of which are far away from the true PFs.

Furthermore, to confirm the convergenceof three-objective
PFs, SPTr-RM-MEDA is compared with Tr-RM-MEDA
under 4 environment changes from C3 in Fig. 3. The blue
dots are the true PFs, and the red star-like dots are the PFs
from algorithm. Apart from the problem FDA4, the PFs from
SPTr-RM-MEDA aremore close to the true PFs than Tr-RM-
MEDA. Because the true PFs are unchanged on FDA4, the
difference between two algorithms is unclear.

Analysis of the size of neighborhood for each special point

The size of neighborhood of special points is an impor-
tant coefficient in SPTr-RM-MEDA. In this section, the size
ranges from 5 to 15 on DMOP2iso problem under 8 different
environments, so as to confirm the effects of different size.
The experimental result shows the MIGD of them in Table
6.

From Table 6, it is obvious that the size of neighborhood
has no effect on the MIGD value under different environ-
ments. And the larger size of neighborhood is, the more time
need for computing. Hence, we chose the middle scale of the
size like 10.
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Fig. 2 Comparative PFs on
different environments (T=5,
10, 15, 18, and 20 for
two-objective problems under
C3
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Fig. 2 continued
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Fig. 3 Comparative PFs on
different environments (T=5,
10, 15 and 20) for
three-objective problems under
C3
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Table 6 The MIGD of different size of neighborhood

5 10 15

DMOP2iso C1 3.77E−04 3.79E−04 3.78E−04

C2 3.78E−04 3.74E−04 3.79E−04

C3 3.76E−04 3.77E−04 3.76E−04

C4 3.74E−04 3.75E−04 3.77E−04

C5 1.28E−01 1.28E−01 1.28E−01

C6 1.27E−01 1.27E−01 1.27E−01

C7 3.76E−04 3.77E−04 3.78E−04

C8 3.78E−04 3.75E−04 3.74E−04

Conclusion

In this paper, SPTr-RM-MEDA based on special points and
TCA prediction strategy was proposed for DMOPs. The
main improvements focused on what the strategy could be
undertook after each change happened, which is called as
automatic adaptation to change. To improve the convergence,
after partly sampling on special points and their neighbor-
hoods, these points are used for transfer learning prediction.
Meanwhile, the diversity strategy is introduced adaptively to
balance the convergence and diversity. These strategies are
prepared for the initial population, which acts as the input of
static algorithm when the environment is changed.

The statistical results show that the proposed SPTr-RM-
MEDA is very competitive in DMOPs compared with the
other five representative algorithms, especially for type I
and II problems. And, comparative experiments have shown
that RM-MEDA and a mechanism of automatic adaptation
to change contributed greatly to the proposed algorithm on
different parts. The convergent speed of the population is
accelerated with the automatic adaptation to change work-
ing from the perspective of CPU running time.

However, the presented work still needs improvements
in the future. In terms of the selection of transfer learning
methods and the diversity of introduction strategies, we can
conduct a further research on the type III of DMOPs in our
future work. That is still a question how to react when PS is
not changed. And every time, the change happens, generating
initial points by a more various and appropriate way needs
to be researched.
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