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Abstract
Diabetic retinopathy is the leading cause of blindness in working population. Lesion segmentation from fundus images helps
ophthalmologists accurately diagnose and grade of diabetic retinopathy. However, the task of lesion segmentation is full of
challenges due to the complex structure, the various sizes and the interclass similarity with other fundus tissues. To address
the issue, this paper proposes a cascade attentive RefineNet (CARNet) for automatic and accurate multi-lesion segmentation
of diabetic retinopathy. It can make full use of the fine local details and coarse global information from the fundus image.
CARNet is composed of global image encoder, local image encoder and attention refinement decoder. We take the whole
image and the patch image as the dual input, and feed them to ResNet50 and ResNet101, respectively, for downsampling to
extract lesion features. The high-level refinement decoder uses dual attentionmechanism to integrate the same-level features in
the two encoders with the output of the low-level attention refinement module for multiscale information fusion, which focus
the model on the lesion area to generate accurate predictions. We evaluated the segmentation performance of the proposed
CARNet on the IDRiD, E-ophtha and DDR data sets. Extensive comparison experiments and ablation studies on various data
sets demonstrate the proposed framework outperforms the state-of-the-art approaches and has better accuracy and robustness.
It not only overcomes the interference of similar tissues and noises to achieve accurate multi-lesion segmentation, but also
preserves the contour details and shape features of small lesions without overloading GPU memory usage.
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Introduction

Diabetic retinopathy (DR) is one of the major complications
of diabetes and has become a leading cause of blindness. It
has been reported that approximately 600million people will
suffer from diabetes, and one-third of them will have DR by
2040 worldwide [1,2]. DR is caused by diabetic microvascu-
lar disease, which is divided into three stages: blood vessel
rupture and haemorrhage, release of growth factors and
blood vessel obstruction. Common pathological features of
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DR include hard exudate (EX), soft exudate (SE), microa-
neurysms (MA) and haemorrhage (HE) [3,4], as shown in
Fig. 1. The International Clinical Diabetic Retinopathy Dis-
ease Severity Scale classifies DR into five stages, including
normal, mild, moderate, severe and proliferative, based on
lesion symptoms [5]. Therewere no obvious symptoms in the
early stages of DR, but the severity gradually increased over
time. At present, ophthalmologists manually observe lesions
from fundus images for DR screening in real clinical applica-
tions. However, this method is not only labour intensive and
time-consuming but also susceptible to the subjective factors
of experts, which has difficulty ensuring detection accuracy.
Therefore, it is particularly crucial to create an automatic
lesion segmentation method for DR diagnosis.

Although great progress has been made in the task of
lesion segmentation, it is still full of challenges. The main
reasons are as follows. (1) The proportion of lesions (e.g.,
MA) in the high-resolution fundus image is so small that
is easily confused as noises. (2) The structure of the lesion
is complex, and various kinds of lesions have differences

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00630-4&domain=pdf
http://orcid.org/0000-0003-1652-3861


1682 Complex & Intelligent Systems (2022) 8:1681–1701

Microaneurysm

Haemorrhage

Hard exudate

Soft exudate

Fig. 1 Different types of DR lesions in fundus images

in shape, size, colour and brightness. (3) The colour, con-
tour and texture of tissues on the retina (e.g., blood vessels
and optic disc) are similar to those of lesions, which are
prone to false-positive results. (4) The appearance of the
retinal images varies due to differences in the camera sys-
tem and light source intensities. (5) The tissue pigmentation
in fundus images of patients of different races varies greatly,
which increases lesion segmentation difficulty [6]. Specifi-
cally, compared with the fundus images of white people and
yellowpeople, the retinal pigmented epitheliumof black peo-
ple contains more melanocytes, which forms the most outer
layer of the retina. Compared with the light-colored retina,
the darker retina obscures some lesions and vascular changes.

Recently, convolutional neural networks (CNNs) have
becomewidespread inmany fields of real life [7–11], numer-
ous deep learning-based methods have been presented for
lesion segmentation of DR. The existing methods [12–17]
for lesion segmentation of DR are categorized into encoder–
decoder structures and non-encoder–decoder structures. On
the one hand, due to the high resolution of fundus images
and GPU memory limitations, works [12–15] first cropped
the original image into patches or resized and input them
intoU-Net and its variants for lesion segmentation. However,
patch images lack global information, and the deconvolu-
tion operation cannot preserve the detailed information of
small lesions, such as MA, which makes generating accu-
rate predictions difficult. On the other hand, considering that
different types of lesions are inconsistent in size and scale,
algorithms [16,17] fed the full image to VGG or ResNet to
extract the contextual information and used a 1 × 1 convo-
lution operation to fuse multiscale feature maps. However,
these methods cannot make full use of multilevel features,
especially low-level features, such as edges. The main rea-
son is that the strategy uses fixed fusionweights formultilevel
information while ignoring the content differences between
them. Therefore, efficiently fusing multiscale context fea-

tures without excessively consuming computing resources is
crucial for accurate multi-lesion segmentation of DR images.

To address the above issues, this paper proposes a cascade
attentive RefineNet (CARNet) for multiple lesion segmenta-
tion. CARNet adopts a dual-input encoder–decoder structure
and trains in an end-to-end manner. The input is the whole
image and the patch image, and the output is the segmen-
tation result of four lesions. The proposed model includes
the whole image encoder, patch image encoder and attention
refinement decoder. First, the whole images and the patch
images are sent toResNet50 andResNet101, respectively, for
downsampling to extract features. Second, the deep features
of the fourth residual block in ResNet50 and ResNet101 are
simultaneously fed to the bottom-level attention refinement
module (ARM) to fuse the global and local features. Third,
the feature maps from the same level in the two encoders
and the output of the previous ARM are fed to the current
ARM to fuse multiscale lesion features. Finally, the fused
feature maps of the top-level ARM are sent to the dense sig-
moid layer to obtain the final lesion segmentation results.
We evaluate the proposed CARNet on three public data sets,
i.e., IDRiD [18], E-Ophtha [19] andDDR [20]. Experimental
results show that our method has good robustness and accu-
racy. It not only overcomes the interference of similar tissue
and noise but also reserves the fine details of the lesion area
without overloading GPU memory usage. To the best of our
knowledge, this is the first study to apply attentive RefineNet
for multi-lesion segmentation from DR images.

The main contributions are summarized as follows:

1) To make full use of the coarse global information and
fine local features in fundus images, this paper takes the
full images and patches as dual inputs, and proposes a
cascade attentive RefineNet (CARNet) to achieve multi-
lesion segmentation of DR.

2) This paper proposes an attention refinement module
(ARM) to fully integrate themultilevel context features of
different lesions. It consists of a residual convolution unit
(RCU), attention fusion block (AFB) and chained resid-
ual pooling (CRP). ARM uses fine-grained local features
as auxiliary information to promote the reorganization
of coarse-grained global information, which focuses the
network on the lesion area.

3) We carry out comprehensive experiments on three fundus
image data sets of IDRiD, E-Ophtha and DDR. Abla-
tion studies show that the whole image and patch image
as the dual input and attention fusion block contribute
to improving the performance of lesion segmentation.
Comparison experiments demonstrate that the proposed
framework outperforms the state-of-the-art approaches
and has better robustness and accuracy. It can effectively
avoid the interference of other similar tissues and unde-
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sirable noise for automatic and accurate multiscale lesion
segmentation from retinal images.

The rest of this paper is organized as follows. “Related
work” introduces related works on lesion segmentation.
“Proposed method” describes the proposed approach in
detail. “Experiments and results” presents the experimen-
tal data sets, implementation details and results analysis.
“Discussion” discusses the advantages and limitations of the
proposed framework. “Conclusion draws conclusions and
suggests future work.

Related work

Recently, the task of lesion segmentation fromDR images has
attracted considerable attention from numerous researchers,
and they have proposed several methods for the problem. The
existing methods can be divided into traditional methods and
deep learning methods based on the features used in lesion
segmentation.

Traditional methods

Traditionalmethods for lesion segmentation are grouped into
four categories: region growing methods [21], thresholding
algorithms [22], mathematical morphology approaches [23]
and machine learning-based methods [24].

Wu et al. [21] first preprocessed the original fundus image
to make the MAs clearer, then used the region growing
method to locate the MA candidate areas, and extracted
dimensional features to feed to AdaBoost, Bayesian net
and k-nearest neighbour (KNN) classifiers to segment MA
from fundus images. Long et al. [22] combined fuzzy C-
means clustering with a dynamic threshold to determine the
candidate HE regions, extracted the texture features from
fundus images, and finally fed them into the support vec-
tor machine (SVM) classifier for automatic HE detection.
Colomer et al. [23] extracted granulometric profiles and local
binary patterns (LBP) to calculate themorphological and tex-
ture features of the fundus images and then used Gaussian
processing, random forest and SVM for EX, MA and HE
segmentation on the DIARETDB1 [25] and E-Ophtha_EX
[19] data sets. Amin et al. [24] first applied the Gabor filter
for image enhancement, then extracted geometric and sta-
tistical features from the candidate lesion area, and finally
adopted Bayesian net, KNN and SVM for EX detection on
the DIARETDB1 and E-Ophtha EX data sets.

However, the performances of the above methods are
easily limited by the brightness and contrast of the fundus
images. Therefore, the robustness is poor and inefficient for
meeting the need for clinical screening.

Deep learningmethods

In recent years, deep learning algorithms [12–17,26–29] have
shown outstanding performance and outperformed tradi-
tional methods in lesion segmentation. The existing methods
can be classified into two types: encoder–decoder and non-
encoder–decoder structure.

Zhou et al. [26] proposed a semi-supervised collabora-
tive learning model based on attention mechanism to realize
lesion segmentation and DR classification. They combined
U-Net with the Xception module to generate segmentation
masks for four kinds of lesions. Foo et al. [13] presented
MTUnet for lesion segmentation and DR classification on
the IDRiD and SiDRP14–15 [30] data sets. They replaced
the encoder with a VGG16 network and passed the skip
connection to the decoder before each max-pooling oper-
ation. Furthermore, transposed convolution instead of the
usual upsampling operation is used in the decoder. Yang et
al. [14] proposed a two-stage network for lesion detection
(e.g., EX, HE andMA) and DR grading. The original fundus
images are divided into patches overlapping grid and input
into the local network to generate weighted lesion maps, and
then the weighted lesion maps are fed to the global network
to classify the DR severity. Sambyal et al. [15] developed an
improved U-Net framework for MA and HE segmentation.
The model adopts ResNet34 as the encoder and applies the
upsampling operation of periodic shuffling convolution to
realize the rapid convergence of the network. However, peri-
odic shuffling with subpixel convolution is suitable for the
super-resolution task. In summary, the deconvolution opera-
tion in the encoder–decoder framework cannot recover the
low-level features lost after downsampling, which makes
generating accurate high-resolution segmentation results dif-
ficult.

Guo et al. [16] modified VGG16 and proposed L-Seg,
using amultiscale feature fusion approach and amultichannel
bin loss function to address the issues of small lesions that are
difficult to accurately segment and class imbalances, respec-
tively. However, they adopted fixed weights for the fusion
of multiple side output features. Mo et al. [17] proposed a
fully convolutional residual network for EX segmentation.
However, this model is only suitable for single lesion seg-
mentation. Xue et al. [27] proposed a hybrid structure-based
dynamic membrane system to segment HE and MA in the
IDRiD, E-Ophtha and Messidor [31] data sets. Li et al. [20]
established a new retinal image data set named DDR and
applied holistically nested edge detection (HED) [32] and
DeepLabv3+ [33] for EX, HE, MA, and SE segmentation.
Tan et al. [28] adopted a ten-layer fully CNN to realize auto-
matic and simultaneous segmentation of HE, MA and EX
on the CLEOPATRA data set. However, this method only
used pixels instead of the lesion area to evaluate the segmen-
tation performance. Zhou et al. [34] introduced a new data
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set named FGADR for DR segmentation and grading and
used FCN, DeepLabv3+, U-Net and its variations for lesion
segmentation.

The goal of this study was to create a lesion segmentation
method from DR images that overcomes the limitations of
traditional algorithms and deep learning approaches. There-
fore, a cascade attentive RefineNet is proposed in this paper
to realize automaticmulti-lesion segmentation ofDR images.

Proposedmethod

Problem formulation

Let T = {(X ,Y )} denote the training set, where X =
{xi , i = 1, . . . ,m} denotes the original fundus image, Y =
{yi , i = 1, . . . ,m, yi ∈ (0, 1)} denotes the lesion label, and
m denotes the number of images in the training set. Each orig-
inal image corresponds to a maximum of four labels due to
different types of lesions in fundus images. Before inputting
the segmentation network, we crop each training image and
the lesion mask (xi , yi ) into n patches p = {(xki , yki ), k =
1, . . . , n}. In this paper, we take the whole images and the
patch images as dual inputs and train the segmentationmodel
by minimizing the difference between the predictions and
ground-truth masks. Our goal is defined as:

min
η

=
m∑

i=1

n∑

k=1

L(Cη(xi , x
k
i ), (yi , y

k
i )), (1)

whereCη and η represent the lesion segmentation model and
parameters, respectively, and L denotes the loss function.

Preprocessing

We perform necessary preprocessing on the original image
for lesion enhancement and data augmentation before train-
ing the proposed network.

First, all images are uniformly resized to 1024 × 1024
due to inconsistent image size in different data sets, and the
inner circle of retina is appropriately cropped and filled into
squares to remove zero-pixel areas. Second, the original fun-
dus images are cropped into patches with a resolution of
1024 × 1024. Third, due to the differences in illumination
and contrast between fundus images, we use contrast-limited
adaptive histogram equalization (CLAHE) to enhance the
contrast between the lesion area and the background, as
shown in Fig. 2. Finally, data augmentation operations are
performed on the original image because of the limited num-
ber of image samples. (1) Scaling randomly by a factor of
[0.8,1.2] in a step of 0.1. (2) Rotating randomly within the
range of [0, 360◦] in a step of 60◦. (3) Translating the orig-

(a) (b)

CLAHE

Fig. 2 Comparison of fundus image before and after preprocessing. a
Original DR image. b DR image after CLAHE operation with channel
separation

inal image from −50 pixels to 100 pixels in 30-pixel steps
vertically and horizontally.

Framework overview

The overall architecture of the proposed CARNet is shown in
Fig. 3. The model adopts the encoder–decoder structure and
consists of a global image encoder, a patch image encoder
and an attention refinement decoder. The two encoders send
the whole images and patches to ResNet50 and ResNet101,
respectively, for downsampling to obtain feature maps of
different resolutions. The decoder consists of five attention
refinementmodules (ARMs). ARMcombines the output fea-
ture of the same level in the two encoders and low-level ARM
for upsampling, and then passes them to the high-level ARM
to fuse multiscale lesion feature. The ARM is composed
of residual convolution unit (RCU), attention fusion block
(AFB) and chain residual pooling (CRP). AFB uses local
features as auxiliary information to promote the reorgani-
zation of global information, which focus the model on the
lesion area. In this way, the integration of both fine-grained
local information and coarse global information is beneficial
to generate accurate lesion segmentation results.

Deep residual network

The whole image encoder Encwhole and patch image encoder
Encpatch use ResNet50 and ResNet101, respectively, to
extract multiscale contextual features from full images and
patch images. The encoding process of Encwhole and Encpatch
can be expressed as

F1
w, F2

w, F3
w, F4

w = Encwhole(xi ),

F1
p , F

2
p , F

3
p , F

4
p = Encpatch(x

k
i ),

(2)

where Fw and Fp represent the encoding features of the
whole image and the patch image in different hidden lay-
ers, respectively.

Both ResNet50 and ResNet101 [35] are composed of four
residual blocks, and the resolution of the output image after
each residual block is reduced to 1/4 of the original image.
The structure of residual block is shown in Fig. 4, which
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Fig. 3 Overall architecture of proposed CARNet framework

Fig. 4 Structure of residual block, both 1*1 and 3*3 indicate the kernel
size of the convolution layers

includes three convolutional layers, two batch normalization
(BN) layers and three rectified linear unit (ReLU) layers.
ResNet introduces a residual block through skip connection
to improve the information flow, and it consists of multiple
shallow networks to speed up network convergence.

Attention refinement module

The decoding process of the attention refinement module is
formulated as

S j = DecARM(F j
w, F j

p ), j = 1,

S j = DecARM(F j
w, F j

p , S j−1), j = 2, 3, 4, 5,
(3)

where S j indicates the predictions of the j th ARM, and S5
denotes the final segmentation results.

Figure 5 shows the framework of the proposed ARM,
which includes RCU, AFB and CRP. The arrows in differ-
ent colours represent input features of various types. First,
the whole image features, the patch image features and the
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Fig. 5 Overall framework of
attention refinement module Attention Refinement Module
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output features
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Conv 3*3

ReLU

Conv 3*3

ReLU
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Fig. 6 Illustration of residual convolution unit

output features of the previous ARM are input into the RCU
to extract multiscale features. Second, the feature maps of
three RCUs are integrated into the AFB to locate the lesion
area. Third, the fused attention features are fed to the CRP
to capture contextual features in a larger image area. Finally,
the outputs of the pooling operation are fed to the RCU to
obtain the final predictions. Formally, the input of j th ARM
is the features of full images xi and patches xki , as well as
the output S j−1 of the previous ARM, then the predictions
of ARM are calculated as follows:

Mfusion = fusion(xi , x
k
i , S j−1), (4)

Wattention = W (γ1M
c
fusion + γ2M

s
fusion), (5)

S j = Wattention ∗ Mfusion + S j−1, (6)

where Mfusion, Mc
fusion and Ms

fusion represent the fusion fea-
ture of the three inputs, channel attention feature and spatial
attention feature, respectively. Wattention and S j denote the
weight of the ARM and the output of j th ARM, respectively.
γ1 and γ2 represent factors used to balance the weight of the
channel attention feature and the spatial attention feature,
respectively.

Residual convolution unit

The detailed structure of the RCU is illustrated in Fig. 6. It
includes two ReLU and two convolution layers with a kernel
size of 3 × 3. Moreover, it uses addition to fuse the feature
maps before and after the convolution. Compared with the
original ResNet [35], the RCU removes the BN layer.

Attention fusion block

Different from the previous method using a fixed fusion
weight [16,17], the proposed CARNet adopts a dual atten-
tion mechanism to adaptively learn different types of input
features for information fusion. The architecture of the AFB
is shown in Fig. 7, which consists of channel attention and
spatial attention. This module can not only enhance specific
semantic information to improve the dependence between
channels, but also model rich contextual feature representa-
tion in space.

Channel attention: The fusion feature from the three types
of input in the ARM is defined asMfusion ∈ RW×H×C , where
W , H andC represent the width, height, and channel number
of the feature map, respectively. First, the fusion features are
reshaped toMc1

fusion ∈ R(W×H)×C andMc2
fusion ∈ RC×(W×H),

respectively. Then we use matrix multiplication and softmax
operation to obtain the channel attention map tc ∈ RC×C .
Finally, the final channel attention feature is computed by
Mc

fusion = Mfusion + Reshape(tcMc3
fusion).

Spatial attention: We perform three convolution opera-
tions on the fusion feature map to obtain three branches.
First, the channel dimension of feature maps from the first
two branches is reduced to C/ f to reduce the computa-
tional complexity. Second, we multiply the reshaped feature
Ms1

fusion ∈ R(W×H)×(C/ f ) and Ms2
fusion ∈ R(C/ f )×(W×H).

Third, we use a softmax function to obtain the spatial atten-
tionmap. Finally, the spatial attention feature is calculated by
Ms

fusion = Mfusion + Reshape(t sMs3
fusion). In the experiment,

we set f as 8, 16, 32 and 64 to adapt to the following feature
maps of different scales 28 × 28 × 2048, 56 × 56 × 1024,
128 × 128 × 512 and 256 × 256 × 256. The final output of
the ARM is the sum of weighted pixel-by-pixel addition of
Mc

fusion andM
s
fusion, as well as the output S j−1 of the previous

ARM.
To explore the relationship between different types of

input features, we compare three fusion strategies of atten-
tion, addition and concatenation, and show the experimental
results in the ablation study.

Addition fusion: It directly adds the corresponding chan-
nels of input features with different types. The computational
complexity of this strategy is low, but the relationship
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Fig. 7 Structure of attention
fusion block. The pink arrows
represent the convolution
operations. The orange arrows
denote the reshape operations
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Fig. 8 Details of chained residual pooling

between features in different channels will be destroyed dur-
ing the addition process, which causes information loss.

Concatenation fusion: It fuses different input features to
increase the number of feature channels in terms of channel
dimensions. In the concatenation operation, the contribution
of each feature channel is the same.

Attention fusion: This method can automatically learn
the attention weights between different types of input fea-
tures, focusing on learning the features of the lesion area.
We use fine-grained local features as auxiliary information to
promote the reorganization of coarse global features, which
makes the ARM focus on the lesion area.

Chained residual pooling

The specific structure of CRP is shown in Fig. 8. It is a chain
composed of multiple pooling operations, which is similar
to CRP of RefineNet [36]. Each pooling module contains a
convolutional layer and a max-pooling layer. The next CRP
takes the output of the previous CRP as input, so the current
CRP can reuse the result of the previous pooling operation.
Therefore, context features are captured from a larger back-
ground area without using a larger pooling window.

Loss function

The loss function is computed by the difference between
the prediction and the label of each pixel in the retinal
image. However, due to the serious imbalance between the
lesion pixels and the normal pixels in the retinal image, the
predictions tend to be more prone to healthy pixels if not
considered the sample imbalance problem. Therefore, we use
the weighted sum of the class-balanced binary cross-entropy
loss and the Dice loss as the overall loss function of the pro-
posed CARNet to solve the potential overfitting problem. Let
Y = {yi , i = 1, . . . ,m, yi ∈ (0, 1)} denote the lesion label
and S = {si , i = 1, . . . ,m, si ∈ (0, 1)} denote the prediction
of the network, then the loss function is defined as

L(Y , S) = λ1LBCE(Y , S) + λ2LDice(Y , S)

= λ1 · [−β yi logsi − (1 − β)(1 − yi )log(1 − si )]
+λ2(1 − 2〈yi , si 〉

‖yi‖1 + +‖si‖1 ), (7)

where LBCE and LDice represent the balanced cross-entropy
loss and Dice loss function, respectively. λ1 and λ2 represent
the factors used to balance LBCE and LDice. β indicates that
the weighting factor used to balance the difference between
the lesion and normal pixel. 〈yi , si 〉 denotes the matrix dot
product of the ground truth and the prediction results of each
channel, and ‖·‖1 denotes a norm, i.e., the sumof the absolute
values of the matrix elements.
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Table 1 Overview of
experimental data set

Data set Total Size HE MA SE EX Healthy Country

IDRiD 81 80 81 40 81 0 India

E-ophtha_EX 82 – – – 47 35 France

E-ophtha_MA 381 0 148 – – 233 France

DDR 757 601 570 239 486 – China

Experiments and results

Data sets

We evaluate the effectiveness of our CARNet on three fundus
image data sets of IDRiD [18], E-Ophtha [19] andDDR [20].
The general information of the data sets is shown in Table 1.

1) IDRiD: This data set includes 81 fundus images from
India with a resolution of 4288 × 4288. Each fundus
image has corresponding pixel-level labels of HE, SE,
MA and EX. In the experiment, 54 images were used for
training, and 27 images were used for testing.

2) E-ophtha: This data set includes 463 retinal images
of French, and the resolution of images ranges from
1440 × 960 to 2544 × 1696. It contains two subsets
of E-ophtha_EX and E-ophtha_MA. E-ophtha_EX con-
tains 82 original fundus images and corresponding EX
labels, including 47 EX images and 35 healthy images.
E-ophtha_MA contains 381 fundus images and corre-
sponding ground truth mask, which includes 148 MA
images and 233 healthy images.

3) DDR: This data set contains 757 colour fundus pho-
tographs ofChinese individuals. Each image corresponds
to the manufactured labels of four kinds of lesions.
The resolution of images ranges from 1380 × 1382 to
2736 × 1824. In the experiment, 383 images were used
for training, 149 images were used for validation, and
225 images were used for testing.

Implementation details

All experiments were performed on an Ubuntu 18.04 system
with anNVIDIAGeForce RTX2080Ti graphics cardwith 11
GB of RAM. The framework was implemented based on the
PyTorch platform. We used ResNet pretrained on ImageNet
[37] as the backbone of the encoder.We applied the stochastic
gradient descent (SGD) method to train the model for rapid
convergence. Moreover, we used the multilearning strategy
to update the learning rate. The batch sizewas set to 4, and the
initial learning rate, momentum and weight decay were set to
10−4, 0.9 and 2e−3, respectively. The learning rate was the

initial learning rate multiplied by (1 − iter
max_iter )

power, where
the power was 0.9, and the maximum number of iterations
was 300. The balance parameters λ1, λ2 and β in the loss
functionwere set to 0.6, 0.4 and0.7, respectively. The balance
factors γ1 and γ2 in the weight of the attention fusion module
are set to 0.3 and 0.7, respectively.

Evaluationmetrics

We adopted sensitivity (Sen), specificity (Spe), accuracy
(Acc) and Dice to evaluate the segmentation performance
of various networks. The evaluation metrics are calculated
as follows:

Sen = TP

TP + FN
, (8)

Spe = TN

TN + FP
, (9)

Acc = 1

2
(sen + spe), (10)

Dice = 2TP

2TP + FN + FP
, (11)

Specifically, Sen denotes the proportion of real lesion pix-
els classified as lesion pixels. Spe shows the percentage of
actual healthy pixels correctly classified by the network. Acc
represents the ratio of the number of correct predictions to the
total number of predicted pixels. Dice refers to the similarity
extent between the prediction of the algorithm and the ground
truth. In Eqs. (8)–(11), TP is true positive, which indicates
the number of lesion pixels that are correctly classified. FP
is false-positive, which denotes the number of normal pix-
els misclassified as lesion pixels. TN is true negative, which
shows the number of normal pixels that are correctly pre-
dicted by the network. FN is false negative, which represents
the number of lesion pixels misclassified as healthy pixels.

Moreover, we adopted the receiver operating characteris-
tic (ROC) curve to visualize the performances of different
approaches for lesion segmentation. The AUC value repre-
sents the area under the ROC curve. The higher the AUC
value is, the better the model works.
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Fig. 9 Multi-lesion segmentation performance on the IDRiD data set. The green and blue box represent false positives and false negatives,
respectively. a EX results. b EX results. c HE results. d MA results

Comparisons with state-of-the-art methods

Performance on IDRiD

We compared the proposed approach to other state-of-the-art
methods in Fig. 9, including Zhou et al. [26], Foo et al. [13],
Sambyal et al. [15], Guo et al. [16], Mo et al. [17] and Tan

et al. [28]. As shown in Fig. 9, there were lesions of incon-
sistent size and other noises in the fundus images, which
increased the difficulty of simultaneous segmentation of the
four types of lesions. Zhou et al. [26] segmented large EX
and SE regions accurately but segmented small and incon-
spicuous MA and HE areas poorly. The main reason is that
this method uses dilated convolution to extract features for
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Fig. 10 Segmentation results of
four lesions on IDRiD data set
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each channel, which introduces coarse feature subsampling
results in losing the detailed information of small lesions. The
approach of Foo et al. [13] had difficulty preserving the fine
boundary details of the HE region, which leads to the coarse
contour of segmentation results. Moreover, this method eas-
ily confuses MA and small HE. The main reason is that the
scale and shape between some MA and HE regions are sim-
ilar, which makes accurately distinguishing the two kinds of
lesions difficult. Although Sambyal et al. [15] segmented EX
and SE accurately, it is easy to misclassify some large and
bright cotton wool spots as HE and ignore small HE. Guo et
al. [16] could not accurately detect tiny EXs in high-contrast
fundus images, because they cannot distinguish EXs from
other bright lesions, such as drusen and artefacts. Mo et al.
[17] sometimes misclassified cotton wool spots as SE, lead-
ing to false-positive results in SE segmentation. The main
reason is that this model is only suitable for segmentation
of a single lesion and does not consider the variety in scale
between different lesions. Xue et al. [27] easily confused
EX and SE, which indicates that the method has poor per-
formance in the segmentation of similar lesions. Tan et al.
[28] distinguished the obvious EX and SE, but it was easier
to ignore the tiny MA. The main reason is that this method
performs lesion segmentation based on pixel features while
not considering the context information of the whole image.

Compared with other methods, the proposed CARNet can
not only segment large-scale EX and SE regions but also
retain details of small-scale MA and HE. It has good robust-
ness, which can effectively overcome the interference of
reflective vessels, artefacts and drusen noise. The main rea-
son is that we use the whole images and the patch images as
the dual input of the network. First, ResNet is used for down-
sampling to extract rich features, and then the ARM is used
for upsampling to fuse multilevel contextual information.
The ARM combines spatial attention and channel attention,
which can not only enhance specific semantic information
to improve the dependence between different channels but
also model rich contextual feature representations in space,
making the network focus more on lesions areas. Although
multiscale lesions respond at different levels of the network,
theARMcan adaptively learn different types of input features

and perform effective fusion to generatemore accurate lesion
segmentation results. In summary, the proposed method can
make full use of coarse global features and fine local features
to realize accurate segmentation of multiple lesions.

Furthermore, Fig. 10 displays the four types of lesion
segmentation results of the proposed method for better visu-
alization. We use four colours to denote the different kinds
of lesions. Red indicates EX, yellow indicates SE, blue indi-
cates MA, and green indicates HE. As shown in Fig. 10, the
proposed approach can overcome the interference of similar
tissues (e.g., intertwined blood vessels and optic discs) and
other lesion noises (e.g., cotton wool spots and drusen), and
segment lesions of various scales and shapes from complex
fundus images accurately.

Table 2 quantitatively compares the four lesions segmenta-
tion performance of our method and seven other state-of-the-
art methods on the IDRiD data set. It is observed from Table
2 that the Acc and Dice of our method in segmenting EX,
SE, MA and HE reached 0.9823/0.9752/0.9257/0.9537 and
0.9782/0.9642/0.9183/0.9478, respectively. Compared with
Foo et al. [13], the Acc and Dice of EX, SE, MA, and HE are
increased by 8.06%/6.28%/12.71%/13.23% and
8.89%/12.15%/16.68%/18.86%, respectively. Experimental
results on the IDRiD data set demonstrate the superiority of
CARNet over other competing approaches on multi-lesion
segmentation.

In addition, Table 3 shows the quantitative comparison
results between the proposed approach and the top five teams
in the IDRiD competition on average-precision (AP) scores.
AP represents the area under the precision–recall curve. In
general, the higher the AP value is, the better the segmenta-
tion model. Table 3 shows that the proposed CARNet ranks
third, first, first, and third in the segmentation of EX, SE,
MA, and HE, respectively. Although the top five teams can-
not segment the four lesions simultaneously, they are better
at segmenting a single lesion. Compared with the other five
state-of-the-art methods, the proposed method uses an end-
to-end architecture to simultaneously segment the four lesion
areas in the fundus image and performs better in the segmen-
tation of small lesions.
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Figure 11 shows the ROC curves of the five methods in
EX, SE,MAandHE segmentation. The closer theROCcurve
is to the upper-left boundary, the more accurate the training
model is. It can be seen in Fig. 11a, b that the ROC curve
of the proposed CARNet is the upper-left curve of the five
models, and the curve of Guo et al. [16] is the lowest curve
of the five curves. The data in the lower right corners of Fig.
11c, d show that the AUC value of the proposed method is
the largest, Sambyal et al. [15] is second, and Guo et al. [16]
is the smallest.

Performance on E-ophtha

To demonstrate the effectiveness of our method, we com-
pared the proposed framework with recent state-of-art meth-
ods on the E-Ophtha data set in Fig. 12. As shown in Fig. 12,
Zhou et al. [26] detected a large EX but ignored inconspic-
uous MA. The main reason is that compared with the size
of the input image, MA is so small that it is easier to focus
on other parts of the input image for the model. The EX and
MA contours of the method proposed by Foo et al. [13] are
very coarse. The main reason is that the deconvolution oper-
ation cannot restore the low-level visual features lost after
downsampling, which makes it difficult to generate accurate
high-resolution segmentation results. The method presented
by Sambyal et al. [15] more easily misclassifies reflective
vessels as EX, which results in false-positive results. The
approach proposed by Guo et al. [16] is susceptible to inter-
ference from other lesion noises and thus cannot distinguish
EX from artefacts and drusen. The main reason is that this
method uses VGG to extract the contextual information and
uses a 1× 1 convolution operation to fuse multiscale feature
maps. This strategy uses fixed fusion weights for multilevel
features, but it ignores the content differences between them.
Xue et al. [27] misclassified cotton wool spots as EX, leading
to false-positive results in EX segmentation.

The experimental results in Fig. 12 demonstrate the supe-
rior performance of our method over the other five methods
[13,15,16,26,27] on DR image lesion segmentation. It can
overcome the adverse effects of optical artefacts from the
anatomical structure and vascular reflections, as well as the
light intensity and shape of the lesion area, and segment the
multiscale lesions from the fundus image accurately. More-
over, it can better retain the contour details of EX and MA.

Table 4 shows the quantitative results of the two lesions
segmentation on the E-ophtha data set with different meth-
ods. It is observed fromTable 4 that our method is superior to
othermethods onmostmetrics, andAcc andDice in segment-
ing EX and MA reach 0.9746/0.9489 and 0.9761/0.9513,
respectively. Compared with Guo et al. [16], the Acc and
Dice of EX and MA increased by 20.03%/25.07% and
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Table 3 Results comparison
with the top five teams in IDRiD
competition

Methods AP on EX AP on SE AP on MA AP on HE

VRT (1st) 0.7127 0.6995 0.4951 0.6804

PATech (2nd) 0.8850 – 0.4740 0.6490

IFLYTEK-MIG (3rd) 0.8741 0.6588 0.5017 0.5588

SOONER (4th) 0.7390 0.5395 0.4003 0.5395

SAIHST (5th) 0.8582 – – –

CARNet 0.8675 0.7125 0.5148 0.6389

The best results are shown in bold

(c) (d)

(a) (b)

Fig. 11 ROC curves of the four lesions segmentation on the IDRiD data set

26.02%/29.66%, respectively. The above results demonstrate
the superiority of the proposed model over the-state-of-art
methods for both the segmentation of yellow and red lesions.

Figure 13 displays theROCcurves of different networks in
segmenting EX and MA to evaluate the experimental perfor-
mance. We can observe that the AUC value of the proposed
CARNet is higher than that of the other four approaches in
terms of the performance of EX segmentation or MA seg-
mentation.

Performance on DDR

We compared the proposed CARNet with other existing
methods on the DDR data set to validate the effectiveness
of our framework. As shown in Fig. 14, the result of the pro-
posed CARNet is closer to the ground truth. Although there
are similar tissues and other lesion noises, our method can
overcome undesirable interference and segment multiscale
lesions from fundus images accurately. Zhou et al. [26] can
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Fig. 12 Qualitative comparison
results of the two lesions
segmentation on the E-ophtha
data set. The green and blue box
represent false positives and
false negatives, respectively. a
EX results. bMA results
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Table 4 Quantitative results of
different methods on E-ophtha

Methods EX MA

Sen Spe Acc Dice Sen Spe Acc Dice

Zhou et al. [26] 0.9542 0.9387 0.9546 0.9481 0.9016 0.8957 0.9214 0.9025

Foo et al. [13] 0.8427 0.8257 0.8692 0.8893 0.7984 0.8256 0.7862 0.7593

Sambyal et al. [15] 0.9451 0.9673 0.9652 0.9739 0.9317 0.9463 0.9459 0.9295

Guo et al. [16] 0.8064 0.6813 0.7743 0.7159 0.6517 0.7258 0.6982 0.6547

Mo et al. [17] 0.9227 0.9186 0.9053 0.9247 0.8546 0.8163 0.7985 0.8628

Xue et al. [27] 0.7723 0.9738 0.9614 0.9564 0.6725 0.9518 0.9473 0.9426

Tan et al. [28] 0.8759 0.9867 0.8541 0.8497 0.4606 0.9782 0.8563 0.9148

Xu et al. [12] 0.8755 0.7998 0.9217 0.9138 0.5933 0.5276 0.8867 0.7189

Proposed 0.9652 0.9845 0.9746 0.9761 0.9352 0.9582 0.9489 0.9513

The best results are shown in bold

(a) (b)

Fig. 13 ROC curve on the E-ophtha data set

detect large EX, SE and HE but cannot preverse the detailed
contours of MA. The method proposed by Foo et al. [13]
sometimes misclassifies small HE as MA due to the simi-
larity of the two lesions in colour and scale. The method of
Sambyal et al. [15] tends to ignore HE with low contrast,
resulting in false negative results. The approach of Guo et
al. [16] misclassifies other bright lesions, such as artefacts
and drusen as EX, which results in false-positive results. The
main reason is that the multichannel loss function can only
address the issue of misclassification to a certain extent but
cannot overcome the interference of other noises on lesion
segmentation completely. Tan et al. [28] can detect the obvi-
ous EX and HE but ignores the tiny MA. The main reason is
that this method only performs lesion segmentation based on
pixel features; however, it does consider context information
of whole images.

Table 5 displays the quantitative results for segmentation
over four lesions on different metrics. It is observed from
Table 5 that the proposed approach achieves the better scores

on most evaluation metrics, and Sen and Spe of segmenting
EX, SE,MAandHE reach 0.9664/0.9548/0.9361/0.9327 and
0.9782/0.9642/0.9651/0.9678, respectively. Compared with
Xue et al. [27], the proposed model improves Sen and Spe
of the four lesions by 20.41%/ 19.23%/25.78%/25.43% and
5.44%/0.24%/0.04%/2.5%, respectively.

In addition, Fig. 15 shows theROCcurves of variousmod-
els for segmenting four types of lesions. The data in the lower
right corner of Fig. 15 show that the AUC value of the pro-
posed CARNet is the largest, the model presented by Zhou
et al. [26] is second, and the approach proposed by Guo et
al. [16] is the smallest. The above results show the superior
performance of our method over other competitors on multi-
lesion segmentation of the DDR data set.

Although the fundus images of experimental data sets are
from three different races, we found from Tables 2, 3, 4 and 5
that the segmentation performances of MA and HE is worse
than those of EX and SE. There are two main reasons. First,
MAs are so small and inconspicuous that even ophthalmol-
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Fig. 14 Qualitative comparison results of the four lesions segmentation on the DDR data set. The green and blue box represent false positives and
false negatives, respectively. a EX results. b SE results. c HE results. d MA results
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ogists cannot detect them with the eyes. Compared with red
lesions (MA and HE), yellow lesions (EX and SE) have rel-
atively higher contrast and larger area, which reduces the
difficulty of accurate segmentation to a certain extent. Sec-
ond, MAs and small HEs are very similar in shape and scale,
which makes accurately distinguish the two kinds of lesions
difficult.

Ablation study

Toverify the effectiveness of each component in the proposed
CARNet and its contribution to the experimental results, we
carry out comprehensive ablation studies. Since the DDR
data set contains four abundant kinds of lesion labels and
the number of fundus images is much greater than that of
the other two data sets, we choose to perform the following
ablation experiments on the DDR data set.

Ablation study of dual inputs

To prove the effectiveness of using the whole image and the
patch image as the dual input of the network, we compared
the performance of the segmentation network with the single
input and dual input. The quantitative results are shown in
Table 6. A single inputmeans that only full fundus images are
used as the input to the model. Dual input refers to the input
of the model using multi-size whole images, as well as the
whole images and the patch images. For a single-inputmodel,
we compared U-Net, RefineNet50, and combined ResNet50
with U-Net frameworks. For the dual-input model, we used
ResNet50 and ResNet101 as the whole image encoder and
patch image encoder, respectively, and adopted the ARM as
the decoder for comparison. Acc and Dice of Table 6 both
represent the average scores of the four lesion segmentation
results on the DDR data set.

As shown in Table 6, compared with the framework with a
single input, the segmentation performances of the dual-input
network are better than those of the single-input network.
Specifically, comparedwith the baseline,Model 1 andModel
2, the Acc and Dice of the proposed CARNet increased by
1.96%/1.21%/0.54% and 2.58%/1.31%/0.4%, respectively.
This shows that dual input provides more context informa-
tion of fundus images,which is beneficial to the framework to
extract richer multiscale features to realize lesion segmenta-
tion. In addition, compared with the multi-size whole image
as input, the whole image and the patch image as dual input
improved Acc and Dice by 0.35% and 0.17%, respectively.
The above results demonstrate that using the whole image
and the patch image as the dual input of the network can fully
exploit the global coarse features and local detailed features
of the fundus image, which helps the model achieve accurate
segmentation of lesions.

123



Complex & Intelligent Systems (2022) 8:1681–1701 1697

(b)

(c) (d)

(a)

Fig. 15 ROC curve on the DDR data set

Table 6 Verify the effect of different inputs on the segmentation results

Methods Encoder Decoder Input Acc Dice

Baseline U-Net U-Net Whole image 0.9382 0.9265

Model1 ResNet50 U-Net Whole image 0.9457 0.9392

Model2 ResNet50 RefineNet Whole image 0.9524 0.9483

Model3 ResNet50+ResNet101 ARM Multi-size whole image 0.9543 0.9506

CARNet ResNet50+ResNet101 ARM Whole image + patch image 0.9578 0.9523

The best results are shown in bold

Figure 16 visually compares the HE segmentation results
of models with different inputs on the DDR data set. As
shown in Fig. 16, compared with the single-input network,
Model 3 and ourmethod can better overcome the interference
of other noises, fully use the multiscale context features of
dual inputs, leading to the segmentation results clearer and
more accurate. Moreover, compared with Model 3, the pro-

posed model uses fine-grained local information as auxiliary
information to promote the reorganization of coarse-grained
global features, which makes the ARM pay more attention
to the lesion area. Therefore, the segmentation results can
better preserve the contour details and shape features of HE
areas.
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Fig. 16 Visual segmentation
results of networks with
different inputs

(a)

Original images

(b)

Ground truth

(c)

Baseline

(d)

Model 1

(e)

Model 2

(f)

Model 3

(g)

CARNet

Table 7 Verity the effectiveness
of the attention fusion in the
ARM

Dual-input encoder Feature fusion way Acc Dice
Whole image encoder Patch image encoder

ResNet50 ResNet101 Concatenation 0.9485 0.9471

Addition 0.9462 0.9483

Attention 0.9578 0.9523

ResNet101 ResNet101 Concatenation 0.9512 0.9513

Addition 0.9487 0.9492

Attention 0.9561 0.9517

The best results are shown in bold

Ablation study of attention fusion

We compared the segmentation performance of the three fea-
ture fusion methods in the ARM on two dual-input encoders
to explore the effectiveness of the AFB. Table 7 shows the
quantitative comparison results of different feature fusion
methods. Acc and Dice both represent the average values of
the four lesion segmentation results on the DDR data set.

It can be seen from Table 7 that the segmentation perfor-
mance of the attention fusion on any dual-input encoder is
significantly better than that of the other two feature fusion
methods. This shows that theAFBcan adaptively learn differ-
ent types of input features and perform efficient information
fusion. The quantitative results demonstrate that AFB plays
an irreplaceable role in theARM, and it has an important con-
tribution to accurately segmenting the lesion. In addition, a
good feature fusionmethod can compensate for the limitation
of network depth and improve the robustness of the frame-
work. It is observed from the experimental results of addition
and concatenation that because the depth of ResNet50 is
lower than that of ResNet101, the feature extraction ability
of ResNet50 as the whole image encoder is worse than that of
ResNet101. However, the results of the attention fusion are
the opposite, and the performance of the ResNet50 encoder

is better than that of ResNet101. This shows that the atten-
tion fusion method helps the network converge quickly and
generate better segmentation results.

Computation time

To analyse the time complexity of the proposed approach, we
compared the training time and test time of various networks
on the DDR data set, as shown in Table 8. To ensure a fair
comparison, we applied the same strategies (e.g., training
epoch, learning rate and optimizer) to train all competing
models on anNVIDIAGeForceTitanGPU in the experiment.
It can be seen in Table 8 that our method takes 7 h to train 300
epochs on aGPU, and it takes 0.2 s to test a fundus imagewith
a resolution of 1024 × 1024. Compared with other models,
the training time of our method is shorter than most methods,
and the test time is the shortest.

Themain reason is that the proposed CARNet adopted the
AFB to fuse the global image feature, the patch image feature,
and the output feature of the previous ARM to speed up the
network convergence, thereby shortening the training time.
Zhou et al. [26] combined U-Net and an Xception module
to achieve lesion segmentation and used dilated convolu-
tion to calculate lesion features for each channel. However,
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Table 8 Comparison of computation time of different methods

Methods Training time (h) Test time (s)

Zhou et al. [26] 9.2 1.45

Foo et al. [13] 7.8 1.21

Sambyal et al. [15] 8.5 1.53

Xu et al. [12] 8.2 0.69

Mo et al. [17] 7.4 1.1

Guo et al. [16] 6.7 0.65

Ours 7 0.2

The best results are shown in bold

dilated convolution introduces more calculation parameters
and increases the training time. Sambyal et al. [15] used
ResNet34 for downsampling to extract fundus image features
and applied periodic shuffling with convolution for upsam-
pling to generate lesion segmentation results. However, the
subpixel convolution increases the number of calculations.
Therefore, the training time is much longer than that of
the proposed method. Guo et al. [16] improved VGG16 for
lesion segmentation. Since VGG adopts a smaller convolu-
tion kernel and a shallower network, it can not only ensure
the receptive field but also reduce the parameters of the con-
volution layer; therefore, the training time is less than that of
our method. However, it comes at the cost of reduced seg-
mentation performance and increased testing time.

Discussion

DR is a leading cause of blindness worldwide. There-
fore, accurate lesion segmentation plays a vital role in DR
detection and grading. Although the existing methods have
achieved promising performance in lesion segmentation,
they are still full of challenges. The difficulty is mainly man-
ifested in the various sizes and scales, complex structure, and
similaritywith other fundus tissues in appearance. To address
this issue, this paper proposes a cascade attentive RefineNet
for automatic and accurate multi-lesion segmentation of DR
images. The proposed framework adopts whole images and
patch images as the dual input and applies ResNet50 and
ResNet101 to extract global features and local features. Then,
we applied the ARM to fuse the multiscale context features
from the two encoders and previous ARM to generate high-
resolution segmentation results. Dual input can provide the
coarse features andfine features of the fundus images, and the
ARM can effectively integrate the global features, local fea-
tures, and the output features of the low-level ARM to focus
more on lesion regions and promote network convergence.
Extensive comparison experiments show the superiority of
the proposed CARNet against other competing approaches
on various fundus image data sets of IDRiD, E-Ophtha and

DDR. It can eliminate the adverse effects of similar retinal
tissues and other lesion noise and segment different kinds of
lesions from complex fundus images accurately.

Currently, two mainstream ideas exist for solving the task
of multi-lesion segmentation. On the one hand, works [12–
15,26] resized or cropped the original fundus images into
patches and fed them into the U-Net based network for lesion
segmentation. However, they only use a single input and
the deconvolution operation cannot better retain the con-
tour detail information of the lesion, resulting in the coarse
segmentation result. On the other hand, approaches [16,17]
used non-encoder–decoder models (e.g., VGG, ResNet) to
extract lesion features and used 1×1 convolution to perform
multiscale feature fusion to obtain predictions. However,
these methods use a fixed fusion weight and ignore the
content difference between multilevel feature maps, which
makes exploiting middle layer features difficult. The pro-
posed approach can effectively overcome the limitations of
the current methods. It adopted the whole images and the
patch images as the dual input, and applied the dual attention
mechanism to adaptively learn the coarse global features and
fine detail information for multilevel feature fusion.

To verify the effectiveness of our backbone, we compared
different models on the IDRiD data set in terms of param-
eters, segmentation performance and test time in Table 9.
Acc and Dice both represent the average values of the four
lesion segmentation results. Table 9 shows that the calcula-
tion parameters of U-Net [38] and SegNet [39] are far less
than those of RefineNet [36], but the accuracy andDice score
are lower than those of RefineNet, and the test time is longer
than RefineNet. RefineNet [36] uses more residual connec-
tions to form short-range connections within the network,
and it forms long-range connections with ResNet to effec-
tively transfer the gradient to the whole framework. It helps
to improve the flow of information and speed up network
convergence. Compared with DeepLabv3+ [33] and VGG16
[40], RefineNet [36] has fewer calculation parameters, and
the test time is shorter while ensuring better segmentation
performance.

Although the proposed method achieves satisfactory seg-
mentation results on the IDRiD, DDR and E-Ophtha data
sets, it still has certain limitations. First, the proposed
approach sometimesmisclassified the noise asMA in the fun-
dus image with very low contrast, resulting in false-positive
results. In fact, it is difficult for ophthalmologists to identify
such small and inconspicuous lesions with eyes in clinical
practice. Therefore, it will be the focus of the next step of
research. Furthermore, we experiment on the fundus images
of Caucasian and Mongolian and mixed races for lesion seg-
mentation but do not consider the fundus images of the black
people. In general, tissue pigmentation in retinal images of
black people increases the difficulty of lesion segmentation.
Next, we will perform lesion segmentation experiments on

123



1700 Complex & Intelligent Systems (2022) 8:1681–1701

Table 9 Comparison of various
network backbones

Network Parameters Acc Dice Test time (s)

U-Net [38] 7.76 M 0.8954 0.8796 0.48

SegNet [39] 14.2 M 0.8876 0.9013 0.51

DeepLab v3+ [33] 42.1 M 0.9127 0.8695 1.23

VGG16 [40] 36.5 M 0.8467 0.8512 0.62

ResNet50 [35] 25 M 0.9374 0.9257 0.35

ResNet+RefineNet [36] 22 M 0.9592 0.9521 0.2

The best results are shown in bold

the fundus images of black people to prove the effectiveness
of our approach.

Conclusion

This paper proposes a cascade attentive RefineNet to real-
ize automatic and accurate multi-lesion segmentation of DR
images. The framework consists of three parts: the whole
image encoder, the patch image encoder and the attention
refinement decoder. First, the dual input of the whole image
and the patch image are input into ResNet50 and ResNet101,
respectively, to extract the features of multi-size fundus
images. Then, the features of the same level in the two
encoders and the output of the previous attention refinement
module are fed to the current attention refinement module
to fuse multiscale context features of lesions and obtain the
final segmentation results.We evaluate the segmentation per-
formance on fundus images from mixed races, Caucasian
and Mongolian race. Comprehensive experimental results
demonstrate the superiority and effectiveness of our CARNet
over state-of-the-art networks. It can overcome the inter-
ference of similar fundus tissue and noise and fully use
coarse-grained global features and fine-grained local details
to achieve precise segmentation of multiscale lesions.

However, the darker retina obscures some lesion changes,
because there are more melanocytes in the retinal pigmented
epithelium of black people. Therefore, in the future, we will
study lesion segmentation in retinal images of black people to
improve the generalization of the proposed approach. More-
over, we plan to grade the severity of DR based on the lesion
segmentation results in the next step.
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