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Abstract
Pythagorean fuzzy sets (briefly, PFSs) were created as an upgrade to intuitionistic fuzzy sets (briefly, IFSs) which helped
to address some problems that IFSs couldn’t solve. The definition of q-rung orthopair fuzzy sets (briefly, q-ROFS) is then
declared to generalize and solve PFS and IFS failures. Using the concept of PF β-neighborhood, Zhan et al. defined the
description of the covering through the Pythagorean fuzzy rough set (briefly, CPFRS). Hussain et al. also developed the
concept of q-ROF β-neighborhood to build the concept of covering through q-rung orthopair fuzzy rough sets (Cq-ROFRS).
To enhance the results in Zhan et al.’s and Hussain et al.’s method and in a related context, the concept of PF complementary
β-neighborhood is constructed. Hence, using PF β-neighborhood and PF complementary β-neighborhood, three novel kinds
of CPFRS are investigated and the related characteristics are analyzed. The interrelationships between Zhan et al.’s approach
and our approaches are also discussed. Besides, the concept of q-ROF complementary β-neighborhood is examined. Three
new Cq-ROFRS models are differentiated using the principles of q-ROF β-neighborhood and q-ROF complementary β-
neighborhood. As a result, the related properties and relationships between these various models and Hussain et al.’s model
are established. Because of these correlations, we may consider our approach to be a generalization of Zhan et al.’s and
Hussain et al’s approaches. Finally, we developed applications to solve MADM problems using CPFRS and Cq-ROFRS, as
well as variances of the two methods using numerical examples are presented.
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Introduction

Rough set (RS) theory was established for adapting the
ambiguity and granularity in data via Pawlak [1,2]. It is
also utilized in various areas such as neighborhood systems,
graphs, kernel, reduction, granulation, probabilistic rough
set, variable precision and so on [3–13]. The most important
generalization of this theory is covering via rough set (CRS).
Many researchers worked on CRS as Pomykala [14,15] stud-
ied the two pairs of dual operator, Yao [16,17] extent these
operators via the neighborhood and granularity, Couso et al.
[18] construct CRS with incomplete data, Bonikowski et al.
[19] established CRS through minimal description, Zhu [20]
discussed topological properties to CRS, Zhu et al. [21] pre-
sented the reduction on CRS, Zhu et al. [22,23], Tsang et al.
[24] and Xu et al. [25] introduced other kinds of CRS, Liu
et al. [26] built the differences between CRS Zhu’s and Xu’s
models, Ma [27] investigated some kinds of neighborhoods
via CRS.

The concept of fuzzy rough set (FRS) and rough fuzzy set
(RFS) was constructed by Dubois et al. [28]. Deng et al. [29]
proposed new model of fuzzy covering according to FRS.
Atef et al. and Li et al. studied additional kinds of fuzzy
rough covering (FRC) [30–34]. Also, Ma [35] discovered
kinds of fuzzy covering rough set (FCRS) using the fuzzy
β-neighborhood. Moreover, the notions of a fuzzy comple-
mentary β-neighborhood and fuzzy β minimal and maximal
description were found by Yang et al. [36,37].

Fuzzy set theory (FS) was initiated by Zadeh [38]. There
are some problems in FS for dealing with uncertain data, so
the definition of IFSs was appeared by Atanassov [39] which
contain two parts membership degree and non-membership
degree. In IFSs, the sumofmembership and non-membership
classes is between [0, 1]. Atanassov et al. [40] used IFS
to make a decision multi-person problem. Huang et al.
[41,42] introduced the notion of intuitionistic fuzzy multi-
granulation rough sets and intuitionistic fuzzy via CRS.
Alcantud et al. [43] discussed the decomposition theorems.

In realistic problems, much difficult application can not
be solved via IFSs. Therefore, Yager [44] introduced the
concept of PFSs. The main adding in PFSs is the sum of
squares of membership class and non-membership class is in
[0,1]. Yager [45,46] suggested the usage of PFSs to solve real
problem and make a decision. Garg [47,48] studied the gen-
eralized Pythagorean fuzzy information aggregation using
Einstein operations and Pythagorean geometric aggregation
operations using Einstein t-norm with their applications.
Zhang et al. [49] extend the PFSs to solve MCDM issues.
Hussain et al. [50] defined the concept of Pythagorean fuzzy
soft rough sets. Wang andGarg [51] introduced an algorithm
for MADM by Pythagorean fuzzy archimedean norm opera-
tions. Recently, Zhan et al. [52] established the definition of
CPFRS according to a PF β-neighborhood. They used these

notions to solve problems in multi-attribute Pythagorean
fuzzy decision making (MAPFDM).

From profounding in the real application, there were some
problems not solved by IFSs and PFSs. So, In 2017, Yager
[53] demonstrate a new notion to solve these issues in IFSs
and PFSs. This notion called the q-rung orthopair fuzzy sets
(q-ROFSs) are considered a generalization of PFSs and IFSs.
The sum of qth power of membership class and qth power
of nonmembership class is in the interval [0, 1] in q-ROFSs.
In recent years, q-ROFSs studied and applied more widely
in many distinct areas. Yager and Alajlan [54] discussed the
relevant characteristics of q-ROFSs. In 2019, there was a
new think of q-ROFSs via orbits by Ali [55]. The notions of
connection number based q-ROFS is developed byGarg [56].
Especially,Hussain et al. [57] introduced the definition ofCq-
ROFRS through the notion of q-ROF β-neighborhood and
applied it in multi-attribute q-ROF decision making (MAq-
ROFDM). These differences illustrate that 3-PFβCRS is the
best approximations among1-PFβCRS (Zhan et al.’smodel),
2-PFβCRS and 4-PFβCRS.

The main aim of this study is to improve Zhan et al.’s
[52] and Hussain et al.’s [57] studies, by overgrowing the
lower approximation and diminish the upper approxima-
tion of the proposed methods. Thus, we set the meaning of
PF complementary β-neighborhood and hence we present a
new type of CPFRS model (2-PFβCRS). To generalize this
study, we obtain two new PF β-neighborhoods by joining
PF β-neighborhood and PF complementary β-neighborhood
and then two new CPFRS models are built (3-PFβCRS
and 4-PFβCRS). The properties of these models are also
discussed. Further, the relationships through the Zhan et
al.’s model and our models (i.e., 1-PFβCRS, 2-PFβCRS,
3-PFβCRS and 4-PFβCRS) are investigated. Moreover, we
put forward the definition of q-ROF complementary β-
neighborhood and using it to introduce a novel model of
Cq-ROFRS (2-q-ROFβCRS). Hence, we merge the defini-
tions of q-ROF β-neighborhood and q-ROF complementary
β-neighborhood to generate two new kinds of q-ROF β-
neighborhood (3-q-ROFβCRS and 4-q-ROFβCRS). We use
these kinds to give two other paradigms of Cq-ROFRS
and also study relevant properties. Relationships between
Hussain et al.’s model and our’s (i.e., 1-q-ROFβCRS, 2-
q-ROFβCRS, 3-q-ROFβCRS and 4-q-ROFβCRS) are also
given. We put forward some examples to explain the dif-
ferences between these two approaches which conclude
that 3-PFβCRS is the best among others (i.e., 1-PFβCRS,
2-PFβCRS and 4-PFβCRS) and 3-q-ROFβCRS is more
accurate than others (i.e., 1-q-ROFβCRS, 2-q-ROFβCRS
and 4-q-ROFβCRS). Finally, we apply the presented work
to solve MAPFDM and MAq-ROFDM problems.

The rest of the article is as follows. The basic notions
about PFSs and q-ROFSs are set in “Preliminaries”. “PF
complementary β-neighborhood and three novel kinds of
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CPFRS” constructs three newmodels of CPFRS bymeans of
PFβ-neighborhood andPFcomplementaryβ-neighborhood.
We determine the definition of q-ROF complementary β-
neighborhood and use it to build three models of Cq-ROFRS
with the help of q-ROF β-neighborhood in “q-ROF com-
plementary β-neighborhood and three novel kinds of Cq-
ROFRS”. In “Decision-making approach using PFβCAS”,
we give numerical examples via our methods to explain the
theoretical studies. We put forward the main goals of this
study in “Conclusion”.

Preliminaries

In the following,we supply a short scanningof someconcepts
consumed over the paper.

Definition 1 [49] Let Λ be a universe. For every u ∈ Λ, if
we have a membership function ϑP : Λ → [0, 1] and a non-
membership function ζP : Λ → [0, 1]. Define the PFS P as
indicated below.

P = {(u, ϑP (u), ζP (u))}, (1)

where 0 ≤ ϑ2
P (u) + ζ 2

P (u) ≤ 1.

Definition 2 [49] Consider a PFS P ∈ Λ, define the grade
of indeterminacy of u ∈ Λ to P as follows.

ξP (u) =
√

1 − ϑ2
P (u) − ζ 2

P (u). (2)

Definition 3 [49]LetP1 = (ϑP1 , ζP1) andP2 = (ϑP2 , ζP2),
for P1,P2 ∈ PF(Λ). Then ∀u ∈ Λ, we have the following
properties

(1) Pc
1 = {(u, ζP1(u), ϑP1(u))}.

(2) P1 = P2 ⇐⇒ ϑP1(u) = ϑP2(u) and ζP1(u) =
ζP2(u).

(3) P1 ⊆ P2 if ϑP1(u) ≤ ϑP2(u) and ζP1(u) ≤ ζP2(u).
(4) P1 ∩ P2 = {(u, ϑP1(u) ∧ ϑP2(u), ζP1(u) ∨ ζP2(u))}.
(5) P1 ∪ P2 = {(u, ϑP1(u) ∨ ϑP2(u), ζP1(u) ∧ ζP2(u))}.
(6) P1 − P2 = P1 ∩ Pc

2 .

Definition 4 [49] LetP1 = (ϑP1 , ζP1) andP2 = (ϑP2 , ζP2)

be two PFNs. Then the distances among them is defined as
follows.

E(P1,P2) = 1

2

[

|ϑ2
P1

− ϑ2
P2

| + |ζ 2
P1

− ζ 2
P2

| + |ξ2P1
− ξ2P2

|
]

.

(3)

Zhan et al. [52] introduced the notion of CPFRS and put
forward the definition of PF β-neighborhood as indicated
below.

Definition 5 [52] Consider Λ be a universe and ˜Υ =
{˜Δ1, ˜Δ2, . . . , ˜Δm} where ˜Δi ∈ PF(Λ) and i = 1, 2, ...,m.
Then for each PFN β = (ϑβ, ζβ), a Pythagorean fuzzy β

covering of Λ, if ˜Δi (u) ≥ β for each u ∈ Ω . Now (Λ, ˜Υ )

is called the Pythagorean fuzzy β-covering approximation
space (briefly, PFβCAS).

Definition 6 [52] Consider a PFβCAS (Λ, ˜Υ ), for some
PFN β = (ϑβ, ζβ). For every u ∈ Λ, define the PF β-
neighborhood of u as follows.

˜Pβ
u = ∩{˜Δi ∈ ˜Υ : ˜Δi (u) ≥ β}. (4)

Definition 7 [52]Consider a PFβCAS (Λ, ˜Υ ), for somePFN
β = (ϑβ, ζβ). For every u ∈ Λ and X ∈ PF(Λ), that is,
X = {(ϑX (ui ), ζX (ui )) : i = 1, 2, . . . ,m}. Define the first
type of PF lower approximation (1-PFLA) LPF

1 (X ) and the
first type of PF upper approximation (1-PFUA) U PF

1 (X ) as
follows.

LPF
1 (X ) =

{
(

ui ,∧n
t=1

(

ζ
˜Pβ
u
(ui , u j ) ∨ ϑX (u j )

)

,

∨n
i=1

(

ϑ
˜Pβ
u
(ui , u j ) ∧ ζX (u j )

))

}

, (5)

U PF
1 (X ) =

{
(

ui ,∨n
i=1

(

ϑ
˜Pβ
u
(ui , u j ) ∧ ϑX (u j )

)

,

∧n
i=1

(

ζ
˜Pβ
u
(ui , u j ) ∨ ζX (u j )

))

}

(6)

Then the pair
(

LPF
1 (X ),U PF

1 (X )
)

is called the
1-PFβCRS.

Definition 8 Consider Θ be a universe. For every u ∈ Θ ,
if we have a membership function μX : Θ → [0, 1] and
a non-membership function νX : Θ → [0, 1]. Define the
q-ROFS X as indicated below.

X = {(u, μX (u), νX (u))}, (7)

where 0 ≤ μ
q
X (u) + ν

q
X (u) ≤ 1.

Definition 9 [53] Consider a q-ROFS X ∈ Θ , define the
grade of indeterminacy of u ∈ Θ to X as follows.

ΞX (u) = q
√

1 − ϑ
q
P (u) − ζ

q
P (u). (8)

Definition 10 [53] Let X1 = (μX1 , νX1) and X2 = (μX2 ,

νX2), for X1,X2 ∈ q-ROF(Θ). Then ∀u ∈ Θ , we have the
following properties

(1) X c
1 = {(u, νX1(u), μX1(u))}.

(2) X1 = X2 ⇐⇒ μX1(u) = μX2(u) and νX1(u) =
νX2(u).

(3) X1 ⊆ X2 if μX1(u) ≤ μX2(u) and νX1(u) ≤ νX2(u).
(4) X1 ∩ X2 = {(u, μX1(u) ∧ μX2(u), νX1(u) ∨ νX2(u))}.
(5) X1 ∪ X2 = {(u, μX1(u) ∨ μX2(u), νX1(u) ∧ νX2(u))}.
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(6) X1 − X2 = X1 ∩ X c
2 .

Hussian et al. [57] presented the concept of CPFRS with
the aid of the definition of q-ROF β-neighborhood as indi-
cated below.

Definition 11 [57] Consider Θ be a universe and ˜� =
{˜R1, ˜R2, . . . , ˜Rm} where ˜Ri ∈ q-ROF(Θ) and i =
1, 2, ...,m. Then for each q-ROFN β = (μβ, νβ), a q-ROF
β covering of Θ , if ˜Ri (u) ≥ β for each u ∈ Θ . Now (Θ, ˜R)

is called the q-ROFβ-covering approximation space (briefly,
q-ROFβCAS).

Definition 12 [57] Consider a q-ROFβCAS (Θ,˜�), for
some q-ROFN β = (μβ, νβ). For every u ∈ Θ , define the
q-ROF β-neighborhood of u as follows.

˜Qβ
u = ∩{˜Ri ∈ ˜� : ˜Ri (u) ≥ β}. (9)

Definition 13 [57] Consider a q-ROFβCAS (Θ,˜�), for
some q-ROFN β = (μβ, νβ). For every u ∈ Θ and
X ∈ q-ROF(Λ), that is, X = {(μX (ui ), νX (ui )) : i =
1, 2, ...,m}. Define the first type of q-ROF lower approxi-
mation (1-q-ROFLA)Lq-ROF

1 (X ) and the first type of q-ROF

upper approximation (1-q-ROFUA) Uq-ROF
1 (X ) as follows.

Lq-ROF
1 (X ) =

⎧

⎨

⎩

(

uk , ∧n
k=1

(

μ
˜Qβ
uk

(uk , ur ) ∧ μX (ur )
)

,

∨n
k=1

(

ν
˜Qβ
uk

(uk , ur ) ∨ νX (ur )
))

q

⎫

⎬

⎭

, (10)

Uq-ROF
1 (X ) =

⎧

⎨

⎩

(

uk ,∨n
k=1

(

μ
˜Qβ
uk

(uk , ur ) ∨ μX (ur )
)

,

∧n
k=1

(

ν
˜Qβ
uk

(uk , ur ) ∧ νX (ur )
))

q

⎫

⎬

⎭

(11)

Then the pair
(

Lq-ROF
1 (X ),Uq-ROF

1 (X )
)

is called the 1-q-

ROFβCRS.

Definition 14 [57] Let X1 = (μX1 , νX1) and X2 = (μX2 ,

νX2) be two q-ROFNs. Then the distances among them is
defined as follows ∀q ≥ 1.

E(X1,X2) =
[

1

2n

∑

u∈Θ

|μX1(u) − μX2(u)|q

+ 1

2n

∑

u∈Θ

|νX1(u) − νX2(u)|q
] 1

q

. (12)

PF complementaryˇ-neighborhood and
three novel kinds of CPFRS

This section’s objective is to investigate the definition of
PF complementary β-neighborhood and then construct three
new types of a CPFRS model. Further, we discuss the rela-
tionships via these models.

Table 1 Rating for (Λ, ˜Υ )

˜Δ1 ˜Δ2 ˜Δ3 ˜Δ4 ˜Δ5

u1 (0.8, 0.2) (0.7, 0.6) (0.5, 0.8) (0.9, 0.3) (0.4, 0.6)

u2 (0.7, 0.3) (0.4, 0.5) (0.8, 0.1) (0.6, 0.7) (0.7, 0.2)

u3 (0.6, 0.4) (0.8, 0.6) (0.8, 0.3) (0.3, 0.9) (0.7, 0.1)

u4 (0.8, 0.3) (0.3, 0.9) (0.4, 0.3) (0.7, 0.6) (0.8, 0.4)

u5 (0.2, 0.7) (0.7, 0.3) (0.9, 0.2) (0.7, 0.5) (0.8, 0.3)

u6 (0.6, 0.6) (0.7, 0.2) (0.6, 0.5) (0.8, 0.1) (0.4, 0.2)

PF complementaryˇ-neighborhood

Definition 15 Consider a PFβCAS (Λ, ˜Υ ) and PFN β =
(ϑβ, ζβ). Then for each u ∈ Λ, define the PF complementary
β-neighborhood of u as follows.

ˆ̃Pβ
u (v) = ˜Pβ

v (u), ∀v ∈ Λ. (13)

Example 1 Consider aPFβCAS (Λ, ˜Υ ),Λ = {u1, u2, u3, u4,
u5, u6} and ˜Υ = {˜Δ1, ˜Δ2, ˜Δ3, ˜Δ4, ˜Δ5}, where β =
(0.7, 0.4) are summarized in Table 1.

It is computed that

˜P(0.7,0.4)
u1 = ˜Δ1 ∩ ˜Δ4,

˜P(0.7,0.4)
u2 = ˜Δ1 ∩ ˜Δ3 ∩ ˜Δ5,

˜P(0.7,0.4)
u3 = ˜Δ3 ∩ ˜Δ5,

˜P(0.7,0.4)
u4 = ˜Δ1 ∩ ˜Δ5,

˜P(0.7,0.4)
u5 = ˜Δ2 ∩ ˜Δ3 ∩ ˜Δ5,

˜P(0.7,0.4)
u6 = ˜Δ2 ∩ ˜Δ4

The rating corresponding to them are computed and listed in

Table 2. However, the values of their complement
ˆ

˜P(0.7,0.4)
u

is given in Table 3.

The first type of a CPFRS

Definition 16 Consider a PFβCAS (Λ, ˜Υ ) and PFN β =
(ϑβ, ζβ). For all u ∈ Λ and X ∈ PF(Λ). Define the 2-PFLA
LPF
2 (X ) and 2-PFUA UPF

2 (X ) as follows.

LPF
2 (X ) =

⎧

⎨

⎩

(

ui ,∧n
i=1

(

ζ ˆ̃Pβ
u
(ui , u j ) ∨ ϑX (u j )

)

,

∨n
i=1

(

ϑ ˆ̃Pβ
u
(ui , u j ) ∧ ζX (u j )

))

⎫

⎬

⎭

, (14)

UPF
2 (X ) =

⎧

⎨

⎩

(

ui ,∨n
i=1

(

ϑ ˆ̃Pβ
u
(ui , u j ) ∧ ϑX (u j )

)

,

∧n
i=1

(

ζ ˆ̃Pβ
u
(ui , u j ) ∨ ζX (u j )

))

⎫

⎬

⎭

(15)

Then the pair
(

LPF
2 (X ),UPF

2 (X )
)

is called the 2-PFβCRS.
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Table 2 Result for
˜P(0.7,0.4)
us , s = 1, 2, ..., 6

u1 u2 u3 u4 u5 u6

˜Pβ
u1 (0.8, 0.3) (0.6, 0.7) (0.3, 0.9) (0.7, 0.6) (0.2, 0.7) (0.6, 0.6)

˜Pβ
u2 (0.4, 0.8) (0.7, 0.3) (0.6, 0.4) (0.4, 0.4) (0.2, 0.7) (0.4, 0.6)

˜Pβ
u3 (0.4, 0.8) (0.7, 0.2) (0.7, 0.3) (0.4, 0.4) (0.8, 0.3) (0.4, 0.5)

˜Pβ
u4 (0.4, 0.6) (0.7, 0.3) (0.6, 0.4) (0.8, 0.4) (0.2, 0.7) (0.4, 0.6)

˜Pβ
u5 (0.4, 0.8) (0.4, 0.5) (0.7, 0.6) (0.3, 0.9) (0.7, 0.3) (0.4, 0.5)

˜Pβ
u6 (0.7, 0.6) (0.4, 0.7) (0.3, 0.9) (0.3, 0.9) (0.7, 0.5) (0.7, 0.2)

Table 3 Result forˆ
˜P(0.7,0.4)
us , s = 1, 2, ..., 6

u1 u2 u3 u4 u5 u6

ˆ̃Pβ
u1 (0.3, 0.8) (0.7, 0.6) (0.9, 0.3) (0.6, 0.7) (0.7, 0.2) (0.6, 0.6)

ˆ̃Pβ
u2 (0.8, 0.4) (0.3, 0.7) (0.4, 0.6) (0.4, 0.4) (0.7, 0.2) (0.6, 0.4)

ˆ̃Pβ
u3 (0.8, 0.4) (0.2, 0.7) (0.3, 0.7) (0.4, 0.4) (0.3, 0.8) (0.5, 0.4)

ˆ̃Pβ
u4 (0.6, 0.4) (0.3, 0.7) (0.4, 0.6) (0.4, 0.8) (0.7, 0.2) (0.6, 0.4)

ˆ̃Pβ
u5 (0.8, 0.4) (0.5, 0.4) (0.6, 0.7) (0.9, 0.3) (0.3, 0.7) (0.5, 0.4)

ˆ̃Pβ
u6 (0.6, 0.7) (0.7, 0.4) (0.9, 0.3) (0.9, 0.3) (0.5, 0.7) (0.2, 0.7)

Example 2 Consider Example 1 and X = (u1, 0.7, 0.4) +
(u2, 0.4, 0.7)+(u3, 0.8, 0.6)+(u4, 0.8, 0.1)+(u5, 0.6, 0.5)
+ (u6, 0.9, 0.1). Then the following results hold.

(1) LPF
1 (X ) = (u1, 0.7, 0.6)+(u2, 0.4, 0.7)+(u3, 0.4, 0.7)

+ (u4, 0.4, 0.7) + (u5, 0.5, 0.6) + (u6, 0.6, 0.5),
UPF
1 (X ) = (u1, 0.7, 0.4)+(u2, 0.6, 0.4)+(u3, 0.7, 0.4)

+ (u4, 0.8, 0.4) + (u5, 0.7, 0.5) + (u6, 0.7, 0.2).
(2) LPF

2 (X ) = (u1, 0.6, 0.7)+(u2, 0.6, 0.5)+(u3, 0.7, 0.4)
+ (u4, 0.6, 0.5) + (u5, 0.4, 0.6) + (u6, 0.4, 0.7),
UPF
2 (X ) = (u1, 0.8, 0.5)+(u2, 0.7, 0.4)+(u3, 0.7, 0.4)

+ (u4, 0.6, 0.4) + (u5, 0.8, 0.3) + (u6, 0.8, 0.3).

Theorem 1 Consider a PFβCAS (Λ, ˜Υ ). Then, we have the
following properties

(1) LPF
2 (X ) = (UPF

2 (X c))c.

(2) UPF
2 (X ) = (LPF

2 (X c))c.

(3) If X ⊆ Y , then LPF
2 (X ) ⊆ LPF

2 (Y).

(4) If X ⊆ Y , then UPF
2 (X ) ⊆ UPF

2 (Y).

(5) LPF
2 (X ∩ Y) = LPF

2 (X ) ∩ LPF
2 (Y).

(6) UPF
2 (X ∩ Y) ⊆ UPF

2 (X ) ∩ UPF
2 (Y).

(7) LPF
2 (X ∪ Y) ⊇ LPF

2 (X ) ∪ LPF
2 (Y).

(8) UPF
2 (X ∪ Y) = UPF

2 (X ) ∪ UPF
2 (Y).

Proof of Theorem 1 We just prove (1), (3), (5) and (7).

(1) LPF
2 (X c)

=
⎧

⎨

⎩

(

us,∧n
s=1

(

ζ ˆ̃Pβ
u
(us, ut ) ∨ ϑX c(ut )

)

,

∨n
s=1

(

ϑ ˆ̃Pβ
u
(us, ut ) ∧ ζX c(ut )

))

⎫

⎬

⎭

=
⎧

⎨

⎩

(

us,∧n
s=1

(

ζ ˆ̃Pβ
u
(us, ut ) ∨ (1 − ϑX (ut ))

)

,

∨n
s=1

(

ϑ ˆ̃Pβ
u
(us, ut ) ∧ (1 − ζX (ut ))

))

⎫

⎬

⎭

= (

U PF
2 (X )

)c

(3) Let X ,Y ∈ PF(Λ) such that X ⊆ Y (i.e., ϑX ≤ ϑY and
ζX ≥ ζY ) and u ∈ Λ. Then we get the following result.

LPF
2 (X )(u) =

⎧

⎨

⎩

(

us,∧n
s=1

(

ζ ˆ̃Pβ
u
(us, ut ) ∨ ϑX (ut )

)

,

∨n
s=1

(

ϑ ˆ̃Pβ
u
(us, ut ) ∧ ζX (ut )

))

⎫

⎬

⎭

Now for X ⊆ Y , we have

ϑLPF
2 (X ) = ∧n

s=1

(

ϑ ˆ̃Pβ
u
(us, ut ) ∨ ϑX (ut )

)

≤ ∧n
s=1

(

ϑ ˆ̃Pβ
u
(us, ut ) ∨ ϑY (ut )

)

= ϑLPF
2 (Y)

and

ζLPF
2 (X ) = ∨n

s=1

(

ϑ ˆ̃Pβ
u
(us, ut ) ∧ ζX (ut )

)

≥ ∨n
s=1

(

ϑ ˆ̃Pβ
u
(us, ut ) ∧ ζY (ut )

)

= ζLPF
2 (Y)
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Therefore, LPF
2 (X ) ⊆ LPF

2 (Y).

(5) LPF
2 (X ∩ Y)

=
⎧

⎨

⎩

(

us,∧n
s=1

(

ζ ˆ̃Pβ
u
(us, ut ) ∨ ϑX∩Y (ut )

)

,

∨n
s=1

(

ϑ ˆ̃Pβ
u
(us, ut ) ∧ ζX∩Y (ut )

))

⎫

⎬

⎭

=
⎧

⎨

⎩

(

us,∧n
s=1

(

ζ ˆ̃Pβ
us

(us, ut ) ∨ (ϑX (ut ) ∩ ϑY (ut ))
)

,

∨m
t=1

(

ϑ ˆ̃Pβ
us

(us, ut ) ∧ (ζX (ut ) ∩ ζY (ut ))
))

⎫

⎬

⎭

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

us,∧n
s=1

(

ζ ˆ̃Pβ
us

(us, ut ) ∨ ϑX (ut )
)

∧ ∧n
s=1

(

ζ ˆ̃Pβ
us

(us, ut ) ∨ ϑY (ut )
)

,

∨m
t=1

(

ϑ ˆ̃Pβ
us

(us, ut ) ∧ ζX (ut )
)

∧ ∨m
t=1

(

ϑ ˆ̃Pβ
us

(us, ut ) ∧ ζY (ut )
))

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

= LPF
2 (X ) ∩ LPF

2 (Y)

(7) LPF
2 (X ∪ Y)

=
⎧

⎨

⎩

(

us,∧n
s=1

(

ζ ˆ̃Pβ
us

(us, ut ) ∨ ϑ(X∪Y)(ut )
)

,

∨n
s=1

(

ϑ ˆ̃Pβ
us

(us, ut ) ∧ ζ(X∪Y)(ut )
))

⎫

⎬

⎭

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

us,∧n
s=1

(

ζ ˆ̃Pβ
us

(us, ut )

∨(ϑX (ut ) ∪ ϑY (ut ))
)

,

∨m
s=1

(

ϑ ˆ̃Pβ
us

(us, ut )

∧(ζX (ut ) ∪ ζY (ut ))
))

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

≥

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

us,∧n
s=1

(

ζ ˆ̃Pβ
us

(us, ut ) ∨ ϑX (ut )
)

∨ ∧n
s=1

(

ζ ˆ̃Pβ
us

(us, ut ) ∨ ϑY (ut )
)

,

∨m
t=1

(

ϑ ˆ̃Pβ
us

(us, ut ) ∧ ζX (ut )
)

∧ ∨m
t=1

(

ϑ ˆ̃Pβ
us

(us, ut ) ∧ ζY (ut )
))

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

= LPF
2 (X ) ∪ LPF

2 (Y)

��

Definition 17 Consider a PFβCAS (Λ, ˜Υ ) and PFN β =
(ϑβ, ζβ). Thus the rough and precision degrees of X ∈
PF(Λ) are respectively seen as follows.

2� ˆ̃Pβ(X )
= D

(

LPF
2 (X ),UPF

2 (X )
)

,

2P ˆ̃Pβ(X )
= 1 − 2� ˆ̃Pβ(X )

. (16)

Example 3 Consider Examples 1 and 2. Then the following
results hold.

2� ˆ̃Pβ(X )
= 0.248, 2P ˆ̃Pβ(X )

= 0.752

The second type of a CPFRS

Definition 18 Consider a PFβCAS (Λ, ˜Υ ) and PFN β =
(ϑβ, ζβ). Then for each u ∈ Λ, define a new kind of PF
β-neighborhood as follows.

1˜¶
β
u = ˜Pβ

u ∧ ˆ̃Pβ
u . (17)

Example 4 Consider Example 1. We compute 1˜¶
β
u as set in

Table 4.

Definition 19 Consider a PFβCAS (Λ, ˜Υ ) and PFN β =
(ϑβ, ζβ). For all u ∈ Λ and X ∈ PF(Λ). Define the 3-PFLA
LPF
3 (X ) and 3-PFUA UPF

3 (X ) as follows.

LPF
3 (X ) =

{
(

ui ,∧n
i=1

(

ζ
1˜¶

β
u
(ui , u j ) ∨ ϑX (u j )

)

,

∨n
i=1

(

ϑ
1˜¶

β
u
(ui , u j ) ∧ ζX (u j )

))

}

, (18)

UPF
3 (X ) =

{
(

ui ,∨n
i=1

(

ϑ
1˜¶

β
u
(ui , u j ) ∧ ϑX (u j )

)

,

∧n
i=1

(

ζ
1˜¶

β
u
(ui , u j ) ∨ ζX (u j )

))

}

. (19)

Then the pair
(

LPF
3 (X ),UPF

3 (X )
)

is called the 3-PFβCRS.

Example 5 Consider Examples 1 and 2. Then we have the
following outcomes.

LPF
3 (X ) = (u1, 0.7, 0.6) + (u2, 0.7, 0.4)

+(u3, 0.7, 0.4) + (u4, 0.7, 0.4)

+(u5, 0.5, 0.6) + (u6, 0.7, 0.5),

UPF
3 (X ) = (u1, 0.6, 0.6) + (u2, 0.4, 0.4)

+(u3, 0.4, 0.4) + (u4, 0.4, 0.6)

+(u5, 0.6, 0.5) + (u6, 0.6, 0.7)

Now,we obtain the following theoremwhich has the prop-
erties of the 3-PFβCRS model. The proof of this theorem is
straightforward from Definition 19 and Theorem 1, so, we
omit this proof.

Theorem 2 Consider a PFβCAS (Λ, ˜Υ ). Then, we have the
following properties

(1) LPF
3 (X ) = (UPF

3 (X c))c.

(2) UPF
3 (X ) = (LPF

3 (X c))c.

(3) If X ⊆ Y , then LPF
3 (X ) ⊆ LPF

3 (Y).

(4) If X ⊆ Y , then UPF
3 (X ) ⊆ UPF

3 (Y).

(5) LPF
3 (X ∩ Y) = LPF

3 (X ) ∩ LPF
3 (Y).

(6) UPF
3 (X ∩ Y) ⊆ UPF

3 (X ) ∩ UPF
3 (Y).

(7) LPF
3 (X ∪ Y) ⊇ LPF

3 (X ) ∪ LPF
3 (Y).

(8) UPF
3 (X ∪ Y) = UPF

3 (X ) ∪ UPF
3 (Y).
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Table 4 Result for
1˜¶

β
us , s = 1, 2, ..., 6

u1 u2 u3 u4 u5 u6

1˜¶
β
u1 (0.3, 0.8) (0.6, 0.7) (0.3, 0.9) (0.6, 0.7) (0.2, 0.7) (0.6, 0.6)

1˜¶
β
u2 (0.4, 0.8) (0.3, 0.7) (0.4, 0.6) (0.4, 0.4) (0.2, 0.7) (0.4, 0.6)

1˜¶
β
u3 (0.4, 0.8) (0.2, 0.7) (0.3, 0.7) (0.4, 0.4) (0.3, 0.8) (0.4, 0.5)

1˜¶
β
u4 (0.4, 0.6) (0.3, 0.7) (0.4, 0.6) (0.4, 0.8) (0.2, 0.7) (0.4, 0.6)

1˜¶
β
u5 (0.4, 0.8) (0.4, 0.5) (0.6, 0.7) (0.3, 0.9) (0.3, 0.7) (0.4, 0.5)

1˜¶
β
u6 (0.6, 0.7) (0.4, 0.7) (0.3, 0.9) (0.3, 0.9) (0.5, 0.7) (0.2, 0.7)

Definition 20 Consider a PFβCAS (Λ, ˜Υ ) and PFN β =
(ϑβ, ζβ). Thus the rough and precision degrees of X ∈
PF(Λ) are respectively seen as follows.

3� ˆ̃Pβ(X )
= D

(

LPF
3 (X ),UPF

3 (X )
)

,

3P ˆ̃Pβ(X )
= 1 − 3� ˆ̃Pβ(X )

. (20)

Example 6 Consider Examples 1 and 2. Then the following
results hold.

3� ˆ̃Pβ(X )
= 0.228, 3P ˆ̃Pβ(X )

= 0.772

The third type of a CPFRS

Definition 21 Consider a PFβCAS (Λ, ˜Υ ) and PFN β =
(ϑβ, ζβ). Then for each u ∈ Λ, define a new kind of PF
β-neighborhood as follows.

2˜¶
β
u = ˜Pβ

u ∨ ˆ̃Pβ
u . (21)

Example 7 Consider Example 1. We compute 2˜¶
β
u as follows

in Table 5.

Definition 22 Consider a PFβCAS (Λ, ˜Υ ) and PFN β =
(ϑβ, ζβ). For all u ∈ Λ and X ∈ PF(Λ). Define the 4-PFLA
LPF
4 (X ) and 4-PFUA UPF

4 (X ) as follows.

LPF
4 (X ) =

{
(

ui ,∧n
i=1

(

ζ
2˜¶

β
u
(ui , u j ) ∨ ϑX (u j )

)

,

∨n
i=1

(

ϑ
2˜¶

β
u
(ui , u j ) ∧ ζX (u j )

))

}

,

UPF
4 (X ) =

{
(

ui ,∨n
i=1

(

ϑ
2˜¶

β
u
(ui , u j ) ∧ ϑX (u j )

)

,

∧n
i=1

(

ζ
2˜¶

β
u
(ui , u j ) ∨ ζX (u j )

))

}

Then the pair
(

LPF
4 (X ),UPF

4 (X )
)

is called the 4-PFβCRS.

Example 8 Consider Examples 1 and 2. Then the following
results hold.

LPF
4 (X ) = (u1, 0.6, 0.7) + (u2, 0.4, 0.7)

+(u3, 0.4, 0.7) + (u4, 0.4, 0.7)

+(u5, 0.4, 0.6) + (u6, 0.4, 0.7),

UPF
4 (X ) = (u1, 0.8, 0.4) + (u2, 0.7, 0.4)

+(u3, 0.7, 0.4) + (u4, 0.8, 0.4)

+(u5, 0.8, 0.3) + (u6, 0.8, 0.2)

Theorem 3 Consider a PFβCAS (Λ, ˜Υ ). Then, we have the
following properties

(1) LPF
4 (X ) = (UPF

4 (X c))c.

(2) UPF
4 (X ) = (LPF

4 (X c))c.

(3) If X ⊆ Y , then LPF
4 (X ) ⊆ LPF

4 (Y).

(4) If X ⊆ Y , then UPF
4 (X ) ⊆ UPF

4 (Y).

(5) LPF
4 (X ∩ Y) = LPF

4 (X ) ∩ LPF
4 (Y).

(6) UPF
4 (X ∩ Y) ⊆ UPF

4 (X ) ∩ UPF
4 (Y).

(7) LPF
4 (X ∪ Y) ⊇ LPF

4 (X ) ∪ LPF
4 (Y).

(8) UPF
4 (X ∪ Y) = UPF

4 (X ) ∪ UPF
4 (Y).

Proof The proof is similar to Theorem 1 using Definition 22.
��

Definition 23 Consider a PFβCAS (Λ, ˜Υ ) and PFN β =
(ϑβ, ζβ). Thus the rough and precision degrees of X ∈
PF(Λ) are respectively seen as follows.

4� ˆ̃Pβ(X )
= D

(

LPF
4 (X ),UPF

4 (X )
)

,

4P ˆ̃Pβ(X )
= 1 − 4� ˆ̃Pβ(X )

. (22)

Example 9 Consider Examples 1 and 2. Then the following
results hold.

4� ˆ̃Pβ(X )
= 0.40195, 4P ˆ̃Pβ(X )

= 0.59805

Relationships between the proposedmethods

Below, we proceed to explain some relationships among
these kinds.

Proposition 1 Consider aPFβCAS (Λ, ˜Υ ) andX ∈ PF(Λ).
Then the following properties holds.
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Table 5 Result for
2˜¶

β
us , s = 1, 2, ..., 6

u1 u2 u3 u4 u5 u6

2˜¶
β
u1 (0.8, 0.3) (0.7, 0.6) (0.9, 0.3) (0.7, 0.6) (0.7, 0.2) (0.6, 0.6)

2˜¶
β
u2 (0.8, 0.4) (0.7, 0.3) (0.6, 0.4) (0.4, 0.4) (0.7, 0.2) (0.6, 0.4)

2˜¶
β
u3 (0.8, 0.4) (0.7, 0.2) (0.7, 0.3) (0.4, 0.4) (0.8, 0.3) (0.5, 0.4)

2˜¶
β
u4 (0.6, 0.4) (0.7, 0.3) (0.6, 0.4) (0.8, 0.4) (0.7, 0.2) (0.6, 0.4)

2˜¶
β
u5 (0.8, 0.4) (0.5, 0.4) (0.7, 0.6) (0.9, 0.3) (0.7, 0.3) (0.5, 0.4)

2˜¶
β
u6 (0.7, 0.6) (0.7, 0.4) (0.9, 0.3) (0.9, 0.3) (0.7, 0.5) (0.7, 0.2)

(1) LPF
4 (X ) ≤ LPF

2 (X ) ≤ LPF
3 (X ).

(2) LPF
4 (X ) ≤ LPF

1 (X ) ≤ LPF
3 (X ).

(3) UPF
3 (X ) ≤ UPF

2 (X ) ≤ UPF
4 (X ).

(4) UPF
3 (X ) ≤ UPF

1 (X ) ≤ UPF
4 (X ).

Proof It is clear from Definitions 7, 16, 19 and 22. ��
Proposition 2 Consider aPFβCAS (Λ, ˜Υ ) andX ∈ PF(Λ).
Then the following properties holds.

(1) LPF
3 (X ) ≥ LPF

1 (X ) ∪ LPF
2 (X ).

(2) UPF
3 (X ) ≤ UPF

1 (X ) ∩ UPF
2 (X ).

(3) LPF
4 (X ) ≤ LPF

1 (X ) ∩ LPF
2 (X ).

(4) UPF
4 (X ) ≥ UPF

1 (X ) ∪ UPF
2 (X ).

Proof It is obvious. ��
Remark 1 Consider a PFβCAS (Λ, ˜Υ ) and X ∈ PF(Λ).
According to Example 2, you can see the following relations.

(1) LPF
1 (X ) � LPF

2 (X ) and LPF
2 (X ) � LPF

1 (X ).

(2) UPF
1 (X ) � UPF

2 (X ) and UPF
2 (X ) � UPF

1 (X ).

Based on the above remark and Example 2, the two model
1-PFβCRS and 2-PFβCRS are distinct from some of them.

q-ROF complementaryˇ-neighborhood and
three novel kinds of Cq-ROFRS

To treat the insufficiency in PF, Yager’s set the notion of q-
ROF. In this section, we define the q-ROF complementary
β-neighborhood and then we present three models of Cq-
ROFRS. In addition, we study the relationships between us
and the last method by Hussian et al. [56].

q-ROF complementaryˇ-neighborhood

Definition 24 Consider a q-ROFβCAS (Θ,˜�) and q-ROF
β = (μβ, νβ). Then for each u ∈ Θ , define the q-ROF

complementary β-neighborhood of u as follows.

ˆ̃Qβ
u (v) = ˜Qβ

v (u), ∀v ∈ Θ. (23)

Example 10 Consider a q-ROFβCAS (Θ,˜�), Θ = {u1, u2,
u3, u4, u5, u6} and ˜R = {˜R1, ˜R2, ˜R3, ˜R4, ˜R5}, where β =
〈0.5, 0.3, 0.8〉 are summarized in Table 6.

It is computed that

˜Q(0.8,0.7)
u1 = ˜R1 ∩ ˜R2 ∩ ˜R5

˜Q(0.8,0.7)
u2 = ˜R1 ∩ ˜R2,

˜Q(0.8,0.7)
u3 = ˜R1 ∩ ˜R3,

˜Q(0.8,0.7)
u4 = ˜R1 ∩ ˜R4 ∩ ˜R5,

˜Q(0.8,0.7)
u5 = ˜R2 ∩ ˜R4,

˜Q(0.8,0.7)
u6 = ˜R1 ∩ ˜R3

and the complete values of ˜Q(0.8,0.7)
u are listed in Table 7.

Thus, we can obtain their complement values
ˆ

˜Q(0.8,0.7)
u as

in Table 8.

The first type of a Cq-ROFRS

Definition 25 Consider a q-ROFβCAS (Θ,˜�) and
β = (μβ, νβ). For all u ∈ Θ andX ∈ q− ROF(Θ). Define

the 2-q-ROFLALq−ROF
2 (X ) and 2-q-ROFUA Uq−ROF

2 (X )

as follows.

Lq−ROF
2 (X ) =

⎧

⎪

⎨

⎪

⎩

(

uk,∧n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∨ μX (ur )
)

,

∨n
k=1

(

ν ˆ̃Qβ
uk

(uk, ur ) ∧ νX (ur )
))

q

⎫

⎪

⎬

⎪

⎭

(24)

Uq−ROF
2 (X ) =

⎧

⎪

⎨

⎪

⎩

(

uk,∨n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∧ μX (ur )
)

,

∧n
k=1

(

ν ˆ̃Qβ
uk

(uk, ur ) ∨ νX (ur )
))

q

⎫

⎪

⎬

⎪

⎭

(25)

Then the pair
(

Lq−ROF
2 (X ),Uq−ROF

2 (X )
)

is called the

2-q-ROFβCRS.
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Table 6 Result for (Θ,˜�)
˜R1 ˜R2 ˜R3 ˜R4 ˜R5

u1 (0.9, 0.5) (0.85, 0.65) (0.7, 0.8) (0.5, 0.9) (0.9, 0.3)

u2 (0.89, 0.7) (0.93, 0.45) (0.79, 0.65) (0.69, 0.8) (0.65, 0.95)

u3 (0.95, 0.6) (0.69, 0.85) (0.98, 0.63) (0.7, 0.4) (0.5, 0.9)

u4 (0.85, 0.7) (0.6, 0.9) (0.55, 0.85) (0.97, 0.3) (0.89, 0.4)

u5 (0.6, 0.87) (0.9, 0.45) (0.69, 0.85) (0.92, 0.6) (0.3, 0.75)

u6 (0.88, 0.55) (0.6, 0.9) (0.9, 0.63) (0.8, 0.7) (0.5, 0.89)

Table 7 Result for
˜Q(0.8,0.7)
uk , k = 1, 2, ..., 6

u1 u2 u3 u4 u5 u6

˜Qβ
u1 (0.35, 0.65) (0.35, 0.65) (0.7, 0.8) (0.5, 0.9) (0.5, 0.9) (0.7, 0.8)

˜Qβ
u2 (0.65, 0.95) (0.39, 0.7) (0.79, 0.7) (0.65, 0.93) (0.69, 0.3) (0.79, 0.7)

˜Qβ
u3 (0.5, 0.9) (0.69, 0.35) (0.95, 0.6) (0.5, 0.9) (0.69, 0.85) (0.95, 0.6)

˜Qβ
u4 (0.6, 0.9) (0.6, 0.9) (0.55, 0.85) (0.85, 0.7) (0.92, 0.6) (0.55, 0.85)

˜Qβ
u5 (0.6, 0.87) (0.6, 0.87) (0.6, 0.87) (0.6, 0.87) (0.6, 0.9) (0.6, 0.8)

˜Qβ
u6 (0.5, 0.9) (0.6, 0.9) (0.88, 0.63) (0.5, 0.89) (0.6, 0.9) (0.88, 0.63)

Table 8 Result forˆ
˜Q(0.8,0.7)
uk , k = 1, 2, ..., 6

u1 u2 u3 u4 u5 u6

ˆ̃Qβ
u1 (0.65, 0.35) (0.65, 0.35) (0.8, 0.7) (0.9, 0.5) (0.9, 0.5) (0.8, 0.7)

ˆ̃Qβ
u2 (0.95, 0.65) (0.7, 0.39) (0.7, 0.79) (0.93, 0.65) (0.3, 0.69) (0.7, 0.79)

ˆ̃Qβ
u3 (0.9, 0.5) (0.35, 0.69) (0.6, 0.95) (0.9, 0.5) (0.85, 0.69) (0.6, 0.95)

ˆ̃Qβ
u4 (0.9, 0.6) (0.9, 0.6) (0.85, 0.55) (0.7, 0.85) (0.6, 0.92) (0.85, 0.55)

ˆ̃Qβ
u5 (0.87, 0.6) (0.87, 0.6) (0.87, 0.6) (0.87, 0.6) (0.9, 0.6) (0.8, 0.6)

ˆ̃Qβ
u6 (0.9, 0.5) (0.9, 0.6) (0.63, 0.88) (0.89, 0.5) (0.9, 0.6) (0.63, 0.88)

Example 11 Consider Example 10 and

X =
{
(

u1, 0.91, 0.62
)

,
(

u2, 0.58, 0.83
)

,
(

u3, 0.8, 0.75
)

,
(

u4, 0.95, 0.35
)

,
(

u5, 0.8, 0.7
)

,
(

u6, 0.98, 0.37
)

}

Then we get the following results.

(1) Lq-ROF
1 (X ) =

⎧

⎪

⎨

⎪

⎩

(

u1, 0.35, 0.9
)

,
(

u2, 0.39, 0.95
)

,
(

u3, 0.5, 0.9
)

,
(

u4, 0.55, 0.9
)

,
(

u5, 0.58, 0.9
)

,
(

u6, 0.5, 0.9
)

⎫

⎪

⎬

⎪

⎭

,

Uq-ROF
1 (X ) =

⎧

⎪

⎨

⎪

⎩

(

u1, 0.98, 0.35
)

,
(

u2, 0.98, 0.3
)

,
(

u3, 0.98, 0.35
)

,
(

u4, 0.98, 0.35
)

,
(

u5, 0.98, 0.35
)

,
(

u6, 0.98, 0.35
)

⎫

⎪

⎬

⎪

⎭

.

(2) Lq-ROF
2 (X ) =

⎧

⎪

⎨

⎪

⎩

(

u1, 0.58, 0.83
)

,
(

u2, 0.3, 0.83
)

,
(

u3, 0.35, 0.95
)

,
(

u4, 0.58, 0.92
)

,
(

u5, 0.58, 0.83
)

,
(

u6, 0.58, 0.88
)

⎫

⎪

⎬

⎪

⎭

,

Uq-ROF
2 (X ) =

⎧

⎪

⎨

⎪

⎩

(

u1, 0.98, 0.35
)

,
(

u2, 0.98, 0.35
)

,
(

u3, 0.98, 0.35
)

,
(

u4, 0.98, 0.35
)

,
(

u5, 0.98, 0.35
)

,
(

u6, 0.98, 0.35
)

⎫

⎪

⎬

⎪

⎭

.

Theorem 4 Consider a q-ROFβCAS (Θ,˜�). Then, we have
the following properties

(1) Lq-ROF
2 (X ) = (Uq-ROF

2 (X c))c.

(2) Uq-ROF
2 (X ) = (Lq-ROF

2 (X c))c.

(3) If X ⊆ Y , then Lq-ROF
2 (X ) ⊆ Lq-ROF

2 (Y).

(4) If X ⊆ Y , then Uq-ROF
2 (X ) ⊆ Uq-ROF

2 (Y).

(5) Lq-ROF
2 (X ∩ Y) = Lq-ROF

2 (X ) ∩ Lq-ROF
2 (Y).

123



2358 Complex & Intelligent Systems (2022) 8:2349–2370

(6) Uq-ROF
2 (X ∩ Y) ⊆ Uq-ROF

2 (X ) ∩ Uq-ROF
2 (Y).

(7) Lq-ROF
2 (X ∪ Y) ⊇ Lq-ROF

2 (X ) ∪ Lq-ROF
2 (Y).

(8) Uq-ROF
2 (X ∪ Y) = Uq-ROF

2 (X ) ∪ Uq-ROF
2 (Y).

(9) Lq-ROF
2 (X ) ⊆ X ⊆ Uq-ROF

2 (X ).

Proof of Theorem 4: We prove (1), (3), (5), (7) and (9) only.

(1) Lq−ROF
2 (X c)

=

⎧

⎪

⎨

⎪

⎩

(

uk,∧n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∨ μX c (ur )
)

,

∨n
k=1

(

ν ˆ̃Qβ
uk

(uk, ur ) ∧ νX c (ur )
))

q

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

(

uk,∧n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∨ (1 − μX (u j ))
)

,

∨n
k=1

(

ν ˆ̃Qβ
uk

(uk, ur ) ∧ (1 − νX (ur ))
))

q

⎫

⎪

⎬

⎪

⎭

=
(

Uq−ROF
2 (X )

)c

(3) LetX ,Y ∈ q-ROF(Θ) such thatX ⊆ Y (i.e.,μX ≤ �Y
and νX ≥ νY ) and u ∈ Θ . Then we get the following
result.

Lq−ROF
2 (X )(u)

=

⎧

⎪

⎨

⎪

⎩

(

uk,∧n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∨ μX (ur )
)

,

∨n
k=1

(

ν ˆ̃Qβ
uk

(uk, ur ) ∧ νX (ur )
))

q

⎫

⎪

⎬

⎪

⎭

Now for X ⊆ Y , we have

μLq−ROF
2 (X )

= ∧n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∨ μX (ur )
)

≤ ∧n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∨ μY (ur )
)

= μLq−ROF
2 (Y)

and

νLq−ROF
2 (X )

= ∨n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∧ νX (ur )
)

≥ ∨n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∧ νY (ur )
)

= νLq−ROF
2 (Y)

Therefore, Lq−ROF
2 (X ) ⊆ Lq−ROF

2 (Y).

(5) Lq−ROF
2 (X ∩ Y)

=

⎧

⎪

⎨

⎪

⎩

(

uk,∧n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∨ μ(X∩Y)(ur )
)

,

∨n
k=1

(

ν ˆ̃Qβ
uk

(uk, ur ) ∧ ν(X∩Y)(ur )
))

q

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

(

uk,∧n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∨ (μX (y) ∩ μY (y))
)

,

∨m
r=1

(

ν ˆ̃Qβ
uk

(uk, ur ) ∧ (νX (y) ∩ νY (y))
))

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

uk,∧n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∨ μX (y)
)

∧n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∨ μY (y)
)

,

∨m
r=1

(

ν ˆ̃Qβ
uk

(uk, ur ) ∧ νX (y)
)

∨m
r=1

(

ν ˆ̃Qβ
uk

(uk, ur ) ∧ νY (y)
))

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

= Lq−ROF
2 (X ) ∩ Lq−ROF

2 (Y)

(7) Lq−ROF
2 (X ∪ Y)

=

⎧

⎪

⎨

⎪

⎩

(

uk,∧n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∨ μ(X∪Y)(ur )
)

,

∨n
k=1

(

ν ˆ̃Qβ
uk

(uk, ur ) ∧ ν(X∪Y)(ur )
))

q

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

(

uk,∧n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∧ (μX (y) ∪ μY (y))
)

,

∨m
r=1

(

ν ˆ̃Qβ
uk

(uk, ur ) ∧ (νX (y) ∪ νY (y))
))

⎫

⎪

⎬

⎪

⎭

≥

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

uk,∧n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∨ μX (y)
)

∨ ∧n
k=1

(

μ ˆ̃Qβ
uk

(uk, ur ) ∨ μY (y)
)

,

∨m
r=1

(

ν ˆ̃Qβ
uk

(uk, ur ) ∧ νX (y)
)

∧ ∨m
r=1

(

ν ˆ̃Qβ
uk

(uk, ur ) ∧ νY (y)
))

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

= Lq−ROF
2 (X ) ∪ Lq−ROF

2 (Y)

(9) Straightforward. ��

Definition 26 Consider a q-ROFβCAS (Θ,˜�) and β =
(μβ, νβ). Thus the rough and precision degrees of X ∈
q-ROF(Θ) are respectively seen as follows.

2� ˆ̃Qβ(X )
= D

(

Lq-ROF
2 (X ),Uq-ROF

2 (X )
)

,

2P ˆ̃Qβ(X )
= 1 − 2� ˆ̃Qβ (X )

. (26)

Example 12 Consider Example 11, then we have the follow-
ing outcomes.

1� ˆ̃Qβ(X )
= 0.218, 1P ˆ̃Qβ(X )

= 0.782

2� ˆ̃Qβ(X )
= 0.201, 2P ˆ̃Qβ(X )

= 0.799

The second type of a Cq-ROFRS

Definition 27 Consider a q-ROFβCAS (Θ,˜�) and β =
(μβ, νβ). Then for each u ∈ Θ , define a new kind of q-ROF
β-neighborhood as follows.

1˜Q
β
u = ˜Qβ

u ∧ ˆ̃Qβ
u . (27)
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Example 13 Consider Example 10 and we can obtain the fol-
lowing results for 1˜Q

β
u as listed in Table 9.

Definition 28 Consider a q-ROFβCAS (Θ,˜�) and
β = (μβ, νβ). For all u ∈ Θ andX ∈ q− ROF(Θ). Define

the 3-q-ROFLALq−ROF
3 (X ) and 3-q-ROFUA Uq−ROF

3 (X )

as follows.

Lq−ROF
3 (X ) =

⎧

⎨

⎩

(

uk,∧n
k=1

(

μ
1˜Q

β
uk

(uk, ur ) ∨ μX (ur )
)

,

∨n
k=1

(

ν
1˜Q

β
uk

(uk, ur ) ∨ νX (ur )
))

q

⎫

⎬

⎭

,

(28)

Uq−ROF
3 (X ) =

⎧

⎨

⎩

(

uk,∨n
k=1

(

μ
1˜Q

β
uk

(uk, ur ) ∧ μX (ur )
)

,

∧n
k=1

(

ν
1˜Q

β
uk

(uk, ur ) ∨ νX (ur )
))

q

⎫

⎬

⎭

(29)

Then, the pair
(

Lq−ROF
3 (X ),Uq−ROF

3 (X )
)

is called the 3-

q-ROFβCRS.

Example 14 Consider Example 10 and 11. Then we have the
following results.

Lq-ROF
3 (X ) =

⎧

⎪

⎨

⎪

⎩

(

u1, 0.35, 0.9
)

,
(

u2, 0.3, 0.95
)

,
(

u3, 0.35, 0.95
)

,
(

u4, 0.55, 0.92
)

,
(

u5, 0.58, 0.9
)

,
(

u6, 0.5, 0.9
)

⎫

⎪

⎬

⎪

⎭

,

Uq-ROF
3 (X ) =

⎧

⎪

⎨

⎪

⎩

(

u1, 0.98, 0.35
)

,
(

u2, 0.98, 0.35
)

,
(

u3, 0.98, 0.35
)

,
(

u4, 0.98, 0.35
)

,
(

u5, 0.98, 0.35
)

,
(

u6, 0.98, 0.35
)

⎫

⎪

⎬

⎪

⎭

.

Theorem 5 Consider a q-ROFβCAS (Θ,˜�). Then, we have
the following properties

(1) Lq-ROF
3 (X ) = (Uq-ROF

3 (X c))c.

(2) Uq-ROF
3 (X ) = (Lq-ROF

3 (X c))c.

(3) If X ⊆ Y , then Lq-ROF
3 (X ) ⊆ Lq-ROF

3 (Y).

(4) If X ⊆ Y , then Uq-ROF
3 (X ) ⊆ Uq-ROF

3 (Y).

(5) Lq-ROF
3 (X ∩ Y) = Lq-ROF

3 (X ) ∩ Lq-ROF
3 (Y).

(6) Uq-ROF
3 (X ∩ Y) ⊆ Uq-ROF

3 (X ) ∩ Uq-ROF
3 (Y).

(7) Lq-ROF
3 (X ∪ Y) ⊇ Lq-ROF

3 (X ) ∪ Lq-ROF
3 (Y).

(8) Uq-ROF
3 (X ∪ Y) = Uq-ROF

3 (X ) ∪ Uq-ROF
3 (Y).

(9) Lq-ROF
3 (X ) ⊆ X ⊆ Uq-ROF

3 (X ).

Proof It is obvious. ��
Definition 29 Consider a q-ROFβCAS (Θ,˜�) and β =
(μβ, νβ). Thus the rough and precision degrees of X ∈
q-ROF(Θ) are respectively seen as follows.

3� ˆ̃Qβ (X )
= D

(

Lq-ROF
3 (X ),Uq-ROF

3 (X )
)

,

3P ˆ̃Qβ(X )
= 1 − 3� ˆ̃Qβ(X )

. (30)

Example 15 Consider Example 14, then we have the follow-
ing outcomes.

3� ˆ̃Qβ(X )
= 0.137, 3P ˆ̃Qβ(X )

= 0.863

The third type of a Cq-ROFRS

Definition 30 Consider a q-ROFβCAS (Θ,˜�) and β =
(μβ, νβ). Then for each u ∈ Θ , define a new kind of q-ROF
β-neighborhood as follows.

2˜Q
β
u = ˜Qβ

u ∨ ˆ̃Qβ
u . (31)

Example 16 Consider Example 10 and we can obtain the fol-
lowing results for 2˜Q

β
u as listed in Table 10.

Definition 31 Consider a q-ROFβCAS (Θ,˜�) and
β = (μβ, νβ). For all u ∈ Θ andX ∈ q− ROF(Θ). Define

the 4-q-ROFLALq−ROF
4 (X ) and 4-q-ROFUA Uq−ROF

4 (X )

as follows.

Lq−ROF
4 (X ) =

⎧

⎨

⎩

(

uk,∧n
k=1

(

μ
2˜Q

β
uk

(uk, ur ) ∨ μX (ur )
)

,

∨n
k=1

(

ν
2˜Q

β
uk

(uk, ur ) ∧ νX (ur )
))

q

⎫

⎬

⎭

,

(32)

Uq−ROF
4 (X ) =

⎧

⎨

⎩

(

uk,∨n
k=1

(

μ
2˜Q

β
uk

(uk, ur ) ∧ μX (ur )
)

,

∧n
k=1

(

ν
2˜Q

β
uk

(uk, ur ) ∨ νX (ur )
))

q

⎫

⎬

⎭

(33)

Then the pair
(

Lq−ROF
4 (X ),Uq−ROF

4 (X )
)

is called the

4-q-ROFβCRS.

Example 17 Consider Examples 10 and 11. Then we get the
following results.

Lq-ROF
4 (X ) =

⎧

⎪

⎨

⎪

⎩

(

u1, 0.58, 0.83
)

,
(

u2, 0.58, 0.83
)

,
(

u3, 0.58, 0.83
)

,
(

u4, 0.58, 0.83
)

,
(

u5, 0.58, 0.83
)

,
(

u6, 0.58, 0.83
)

⎫

⎪

⎬

⎪

⎭

,

Uq-ROF
4 (X ) =

⎧

⎪

⎨

⎪

⎩

(

u1, 0.98, 0.35
)

,
(

u2, 0.98, 0.3
)

,
(

u3, 0.98, 0.35
)

,
(

u4, 0.98, 0.35
)

,
(

u5, 0.98, 0.35
)

,
(

u6, 0.98, 0.35
)

⎫

⎪

⎬

⎪

⎭

.

Theorem 6 Consider a q-ROFβCAS (Θ,˜�). Then, we have
the following properties

(1) Lq-ROF
4 (X ) = (Uq-ROF

4 (X c))c.

(2) Uq-ROF
4 (X ) = (Lq-ROF

4 (X c))c.

(3) If X ⊆ Y , then Lq-ROF
4 (X ) ⊆ Lq-ROF

4 (Y).

(4) If X ⊆ Y , then Uq-ROF
4 (X ) ⊆ Uq-ROF

4 (Y).

(5) Lq-ROF
4 (X ∩ Y) = Lq-ROF

4 (X ) ∩ Lq-ROF
4 (Y).
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Table 9 Result for
1˜Q

β
uk , k = 1, 2, ..., 6

u1 u2 u3 u4 u5 u6

1˜Q
β
u1 (0.35, 0.65) (0.35, 0.65) (0.7, 0.8) (0.5, 0.9) (0.5, 0.9) (0.7, 0.8)

1˜Q
β
u2 (0.65, 0.95) (0.39, 0.7) (0.7, 0.79) (0.65, 0.93) (0.3, 0.69) (0.7, 0.79)

1˜Q
β
u3 (0.5, 0.9) (0.35, 0.69) (0.6, 0.95) (0.5, 0.9) (0.69, 0.85) (0.6, 0.95)

1˜Q
β
u4 (0.6, 0.9) (0.6, 0.9) (0.55, 0.85) (0.7, 0.85) (0.6, 0.92) (0.55, 0.85)

1˜Q
β
u5 (0.6, 0.87) (0.6, 0.87) (0.6, 0.87) (0.6, 0.87) (0.6, 0.9) (0.6, 0.8)

1˜Q
β
u6 (0.5, 0.9) (0.6, 0.9) (0.63, 0.88) (0.5, 0.89) (0.6, 0.9) (0.63, 0.88)

Table 10 Result for
2˜Q

β
uk , k = 1, 2, ..., 5

u1 u2 u3 u4 u5 u6

2˜Q
β
u1 (0.65, 0.35) (0.65, 0.35) (0.8, 0.7) (0.9, 0.5) (0.9, 0.5) (0.8, 0.7)

2˜Q
β
u2 (0.95, 0.65) (0.7, 0.39) (0.79, 0.7) (0.93, 0.65) (0.69, 0.3) (0.79, 0.7)

2˜Q
β
u3 (0.9, 0.5) (0.69, 0.35) (0.95, 0.6) (0.9, 0.5) (0.85, 0.69) (0.95, 0.6)

2˜Q
β
u4 (0.9, 0.6) (0.9, 0.6) (0.85, 0.55) (0.85, 0.7) (0.92, 0.6) (0.85, 0.55)

2˜Q
β
u5 (0.87, 0.6) (0.87, 0.6) (0.87, 0.6) (0.87, 0.6) (0.9, 0.6) (0.8, 0.6)

2˜Q
β
u6 (0.9, 0.5) (0.9, 0.6) (0.88, 0.63) (0.89, 0.5) (0.9, 0.6) (0.88, 0.63)

(6) Uq-ROF
4 (X ∩ Y) ⊆ Uq-ROF

4 (X ) ∩ Uq-ROF
4 (Y).

(7) Lq-ROF
4 (X ∪ Y) ⊇ Lq-ROF

4 (X ) ∪ Lq-ROF
4 (Y).

(8) Uq-ROF
4 (X ∪ Y) = Uq-ROF

4 (X ) ∪ Uq-ROF
4 (Y).

(9) Lq-ROF
4 (X ) ⊆ X ⊆ Uq-ROF

4 (X ).

Proof ��
Definition 32 Consider a q-ROFβCAS (Θ,˜�) and β =
(μβ, νβ). Thus the rough and precision degrees of X ∈
q-ROF(Θ) are respectively seen as follows.

4� ˆ̃Qβ(X )
= D

(

Lq-ROF
4 (X ),Uq-ROF

4 (X )
)

,

4P ˆ̃Qβ(X )
= 1 − 4� ˆ̃Qβ(X )

. (34)

Example 18 Consider Example 17, then we have the follow-
ing outcomes.

4� ˆ̃Qβ(X )
= 0.159, 4P ˆ̃Qβ(X )

= 0.841

Relationships between the proposedmethods

Next, we explain some relationships among these kinds.

Proposition 3 Consider a q-ROFβCAS (Θ,˜�) and X ∈
q-ROF(Θ). Then the following properties holds.

(1) Lq-ROF
3 (X ) ≤ Lq-ROF

2 (X ) ≤ Lq-ROF
4 (X ).

(2) Lq-ROF
3 (X ) ≤ Lq-ROF

1 (X ) ≤ Lq-ROF
4 (X ).

(3) Uq-ROF
4 (X ) ≤ Uq-ROF

2 (X ) ≤ Uq-ROF
3 (X ).

(4) Uq−ROF
4 (X ) ≤ Uq-ROF

1 (X ) ≤ Uq-ROF
3 (X ).

Proof The proof is clear from Definitions 28 and 31. ��

Proposition 4 Consider a q-ROFβCAS (Θ,˜�) and X ∈
q-ROF(Θ). Then the following properties holds.

(1) Lq-ROF
4 (X ) ≥ Lq-ROF

1 (X ) ∪ Lq-ROF
2 (X ).

(2) Uq-ROF
4 (X ) ≤ Uq-ROF

1 (X ) ∩ Uq-ROF
2 (X ).

(3) Lq-ROF
3 (X ) ≤ Lq-ROF

1 (X ) ∩ Lq-ROF
2 (X ).

(4) Uq-ROF
3 (X ) ≥ Uq-ROF

1 (X ) ∪ Uq-ROF
2 (X ).

Proof Straightforward. ��

Remark 2 Consider a q-ROFβCAS (Θ,˜�) andX ∈ q-ROF(Θ).
From Example 11, you can see the following relations.

(1) Lq-ROF
1 (X ) � Lq-ROF

2 (X ) andLq-ROF
2 (X ) � Lq-ROF

1 (X ).

(2) Uq-ROF
1 (X ) � Uq-ROF

2 (X ) andUq-ROF
2 (X ) ≤ Uq-ROF

1 (X ).

Basedon the above remark andExample 11, the twomodel
1-q-ROFβCAS and 2-q-ROFβCAS are distinct from some
of them.

Decision-making approach using PFˇCAS

Now, we illustrate the proposed theoretical study with a real
example to clarify how this study is beneficial for the real
problems.
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Method on a CPFRS

Description and process

Assume thatΛ = {ur : r = 1, ..., k} is the set of alternatives,
the m main attributes ˜Υ = {˜Δi : i = 1, 2, ...,m}. Then
˜Υ (ur ) = (xr j , yr j ) indicates the experts assessment outcome
relevant to the alternatives ur and the attribute ˜Δi . Also, we
suppose that PFN β = (ϑβ, ζβ). Thus (Λ, ˜Υ ) is a PFβCAS.
Therefore, by using the proposed covering method, we set
up the following steps to solve problems in MAPFDM.

Step 1: Construct MAPFDM with information system
(Λ, ˜Υ ,S ,E ). So, we have the following formula.

S↑ = {˜Δ j ,
∨

1≤i≤n

(

R(˜Δ j (ur ))
) : ( j = 1, ...,m)}

= {(˜Δ1, x
↑
1 , y↑

1 ), (˜Δ2, x
↑
2 , y↑

2 ), ..., (˜Δm, x↑
m, y↑

m)} (35)

and

S↓ = {˜Δ j ,
∧

1≤i≤n

(

R(˜Δ j (ur ))
) : ( j = 1, ...,m)}

= {(˜Δ1, x
↓
1 , y↓

1 ), (˜Δ2, x
↓
2 , y↓

2 ), ..., (˜Δm, x↓
m, y↓

m)}, (36)

where
∨

and
∧

denotes to “max” and “min”, respectively,
and R is the score function. If we have P = (ϑP , ζP ), then
R(P) = ϑ2

P − ζ 2
P and −1 ≤ R(P) ≤ 1.

Step 2: Counting the adequate distances E↑ and E↓ as
follows:

E↑ =
m
∑

j=1

T j × E
[

˜Δ j (ur ), ˜Υ j (S↑)

]

= 1

2

m
∑

j=1

T j ×
[∣

∣

∣

∣

x2r j − x↑
j

2
∣

∣

∣

∣

+
∣

∣

∣

∣

y2r j − y↑
j

2
∣

∣

∣

∣

+
∣

∣

∣

∣

ξ2r j − ξ
↑
j

2
∣

∣

∣

∣

]

, (37)

and

E↓ =
m
∑

j=1

T j × E
[

˜Δ j (ur ), ˜Υ j (S↓)

]

= 1

2

m
∑

j=1

T j ×
[∣

∣

∣

∣

x2r j − x↓
j

2
∣

∣

∣

∣

+
∣

∣

∣

∣

y2r j − y↓
j

2
∣

∣

∣

∣

+
∣

∣

∣

∣

ξ2r j − ξ
↓
j

2
∣

∣

∣

∣

]

, (38)

where T j = (T1, T2, ..., Tm) is the weight vector such that
∑m

j=1 T j = 1. And if we have two PFNs P1 = (ϑP1 , ζP1)

and P2 = (ϑP2 , ζP2), then E(P1,P2) = 1
2

[

|ϑ2
P1

− ϑ2
P2

| +

|ζ 2
P1

− ζ 2
P2

| + |ξP1 − ξP2 |
]

and ξP =
√

1 − ϑ2
P − ζ 2

P . E =
(E↑,E↓)

Step 3: Based on the presented knowledge, calculate the
lower and upper approximation of X using 3-PFβCRSs as
the following equations.

LPF
3 (E ) =

⎧

⎨

⎩

(

ui ,∧n
i=1

(

ζ
˜Pβ
u ∧ ˆ̃Pβ

u
(ui , u j ) ∨ ϑE (u j )

)

,

∨n
i=1

(

ϑ
˜Pβ
u ∧ ˆ̃Pβ

u
(ui , u j ) ∧ ζE (u j )

))

⎫

⎬

⎭

,

(39)

U PF
3 (E ) =

⎧

⎨

⎩

(

ui ,∨n
i=1

(

ζ
˜Pβ
u ∧ ˆ̃Pβ

u
(ui , u j ) ∧ ϑE (u j )

)

,

∧n
i=1

(

ϑ
˜Pβ
u ∧ ˆ̃Pβ

u
(ui , u j ) ∨ ζE (u j )

))

⎫

⎬

⎭

(40)

Step 4: If 0 < γ ≤ 1 is a threshold and T (u, v) =
uv√

1+(1−u2)(1−v2)
. Calculate the sorting function of the

MAPFDM problem as follows.

�(ui ) = γ × T
(

LPF
3 (E )

) + (1 − γ ) × T
(

U PF
3 (E )

)

, (41)

and hence sorting the alternatives.
The following algorithm is established from the above

data and it put forward in Algorithm 1.

Algorithm 1. Algorithm for a PFβCRSs to make a decision.

Input: MAPFDM with information system (Λ, ˜Υ ,S , E ).
Output: Decision Making.
1: Compute S↑ and S↓.
2: Compute E↑ and E↓ 3: From Definition 6, compute ˜Pβ

u .

4: From Step 2 and by Definition 15, compute
ˆ̃Pβ
u .

5: From Steps 2 and 3, compute 3-PFβCRSs LPF
3 (E ) and U PF

3 (E )

6: Compute the sorting function �(ui ).
7: Obtain the decision.

Test example

Presume thatΛ = {u1, u2, ..., u8} is a set of eight emergency
plans and ˜Υ = {Comprehensiveness and completeness (˜Δ1),
Timely Response (˜Δ2), Feasibility (˜Δ3), Budgeting the cost
(˜Δ4), Ability to adjust the plan (˜Δ5) } is the attribute set.
The proceedings of the mentioned algorithm 1 are indicated
below.

Step 1: In the set of attributes, an expert analyses each
alternative and provides its conclusions with relevant values
that are concise in Table 11.

Step 2: Expert gives the following results, according to
the significance of these five attributes.
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Table 11 Result for (Λ, ˜Υ )

˜Δ1 ˜Δ2 ˜Δ3 ˜Δ4 ˜Δ5

u1 (0.7, 0.1) (0.8, 0.5) (0.8, 0.1) (0.9, 0.4) (0.6, 0.5)

u2 (0.4, 0.3) (0.7, 0.2) (0.3, 0.9) (0.6, 0.3) (0.3, 0.8)

u3 (0.2, 0.6) (0.7, 0.4) (0.7, 0.7) (0.3, 0.9) (0.7, 0.1)

u4 (0.7, 0.5) (0.4, 0.8) (0.6, 0.1) (0.5, 0.4) (0.7, 0.4)

u5 (0.6, 0.6) (0.9, 0.3) (0.7, 0.1) (0.6, 0.3) (0.7, 0.7)

u6 (0.5, 0.3) (0.5, 0.7) (0.5, 0.2) (0.9, 0.4) (0.7, 0.3)

u7 (0.6, 0.5) (0.6, 0.1) (0.4, 0.6) (0.8, 0.5) (0.6, 0.2)

u8 (0.8, 0.3) (0.7, 0.7) (0.2, 0.6) (0.6, 0.3) (0.4, 0.5)

S↑ = {(˜Δ1, 0.8, 0.3), (˜Δ2, 0.9, 0.3), (˜Δ3, 0.8, 0.1),

(˜Δ4, 0.9, 0.4), (˜Δ5, 0.7, 0.1)}.
S↓ = {(˜Δ1, 0.2, 0.6), (˜Δ2, 0.4, 0.8), (˜Δ3, 0.3, 0.9),

(˜Δ4, 0.3, 0.9), (˜Δ5, 0.3, 0.8)}.

Step 3: If we have the following weights T1 = 0.18, T2 =
0.32, T3 = 0.1, T4 = 0.25, T5 = 0.15, then we compute
the suitable distances as follows.

E↑ =

⎧

⎪

⎨

⎪

⎩

(u1, 0.1249), (u2, 0.4466), (u3, 0.3945),

(u4, 0.3871), (u5, 0.2213), (u6, 0.2822),

(u7, 0.2945), (u8, 0.3289)

⎫

⎪

⎬

⎪

⎭

E↓ =

⎧

⎪

⎨

⎪

⎩

(u1, 0.5265), (u2, 0.3914), (u3, 0.2698),

(u4, 0.3628), (u5, 0.5299), (u6, 0.4154),

(u7, 0.5101), (u8, 0.4452)

⎫

⎪

⎬

⎪

⎭

Therefore,

E =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(u1, 0.1249, 0.5265), (u2, 0.4466, 0.3914),

(u3, 0.3945, 0.2698), (u4, 0.3871, 0.3628),

(u5, 0.2213, 0.5299), (u6, 0.2822, 0.4154),

(u7, 0.2945, 0.5101), (u8, 0.3289, 0.4452)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

Step 4: Using 3-PFβCRSs, compute the lower and upper
approximation as the following results.

First, we calculate the PF β-neighborhoods as follows.

˜P(0.7,0.4)
u1 = ˜Δ1 ∩ ˜Δ2 ∩ ˜Δ3 ∩ ˜Δ4,

˜P(0.7,0.4)
u2 = ˜Δ2,

˜P(0.7,0.4)
u3 = ˜Δ2 ∩ ˜Δ5,

˜P(0.7,0.4)
u4 = ˜Δ3 ∩ ˜Δ5,

˜P(0.7,0.4)
u5 = ˜Δ2 ∩ ˜Δ3,

˜P(0.7,0.4)
u6 = ˜Δ4 ∩ ˜Δ5,

˜P(0.7,0.4)
u7 = ˜Δ2 ∩ ˜Δ4,

˜P(0.7,0.4)
u8 = ˜Δ1

The complete values of ˜P(0.7,0.4)
us , s = 1, 2, ..., 6 are given in

Table 12.
The PF complementary β-neighborhood of ˜P(0.7,0.4)

us , s =
1, 2, ..., 6 is given in Table 13.

Moreover, the 1˜¶
β
u neighborhood as follow in Table 14.

Then using such information, we can obtain the results as
follows.

LPF
3 (E ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(u1, 0.6, 0.5299), (u2, 0.6, 0.5),

(u3, 0.6, 0.5299), (u4, 0.5, 0.5299),

(u5, 0.6, 0.5), (u6, 0.5, 0.5299),

(u7, 0.6, 0.5), (u8, 0.4466, 0.5299)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

,

UPF
3 (E ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(u1, 0.3945, 0.6), (u2, 0.3945, 0.6),

(u3, 0.3871, 0.6), (u4, 0.3945, 0.5),

(u5, 0.3945, 0.6), (u6, 0.3871, 0.5),

(u7, 0.3871, 0.6), (u8, 0.3871, 0.4)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

Step 5: Compute the sorting function �(u) as follows.

�(ui ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(u1, 0.2486), (u2, 0.2354),

(u3, 0.2479), (u4, 0.202),

(u5, 0.2354), (u6, 0.209),

(u7, 0.2347), (u8, 0.1745)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

,

Table 12 Result for
˜P(0.7,0.4)
us , s = 1, 2, ..., 6

u1 u2 u3 u4 u5 u6 u7 u8

˜Pβ
u1 (0.7, 0.5) (0.3, 0.9) (0.2, 0.9) (0.4, 0.8) (0.6, 0.6) (0.5, 0.7) (0.4, 0.6) (0.2, 0.7)

˜Pβ
u2 (0.8, 0.5) (0.7, 0.2) (0.7, 0.4) (0.4, 0.8) (0.9, 0.3) (0.5, 0.7) (0.6, 0.1) (0.7, 0.7)

˜Pβ
u3 (0.6, 0.5) (0.3, 0.8) (0.7, 0.4) (0.4, 0.8) (0.7, 0.7) (0.5, 0.7) (0.6, 0.2) (0.4, 0.7)

˜Pβ
u4 (0.6, 0.5) (0.3, 0.9) (0.7, 0.7) (0.6, 0.4) (0.7, 0.7) (0.5, 0.3) (0.4, 0.6) (0.2, 0.6)

˜Pβ
u5 (0.8, 0.5) (0.3, 0.9) (0.7, 0.7) (0.4, 0.8) (0.7, 0.3) (0.5, 0.7) (0.4, 0.6) (0.2, 0.7)

˜Pβ
u6 (0.6, 0.5) (0.3, 0.8) (0.3, 0.9) (0.5, 0.4) (0.6, 0.7) (0.7, 0.4) (0.6, 0.5) (0.4, 0.5)

˜Pβ
u7 (0.8, 0.5) (0.6, 0.3) (0.3, 0.9) (0.4, 0.8) (0.6, 0.3) (0.5, 0.7) (0.6, 0.5) (0.6, 0.7)

˜Pβ
u8 (0.7, 0.1) (0.4, 0.3) (0.2, 0.6) (0.7, 0.5) (0.6, 0.6) (0.5, 0.3) (0.6, 0.5) (0.8, 0.3)
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Table 13 Result forˆ
˜P(0.7,0.4)
us , s = 1, 2, ..., 6

u1 u2 u3 u4 u5 u6 u7 u8

ˆ̃Pβ
u1 (0.5, 0.7) (0.9, 0.3) (0.9, 0.2) (0.8, 0.4) (0.6, 0.6) (0.7, 0.5) (0.6, 0.4) (0.7, 0.2)

ˆ̃Pβ
u2 (0.5, 0.8) (0.2, 0.7) (0.4, 0.7) (0.8, 0.4) (0.3, 0.9) (0.7, 0.5) (0.1, 0.6) (0.7, 0.7)

ˆ̃Pβ
u3 (0.5, 0.6) (0.8, 0.3) (0.4, 0.7) (0.8, 0.4) (0.7, 0.7) (0.7, 0.5) (0.2, 0.6) (0.7, 0.4)

ˆ̃Pβ
u4 (0.5, 0.6) (0.9, 0.3) (0.7, 0.7) (0.4, 0.6) (0.7, 0.7) (0.3, 0.5) (0.6, 0.4) (0.6, 0.2)

ˆ̃Pβ
u5 (0.5, 0.8) (0.9, 0.3) (0.7, 0.7) (0.8, 0.4) (0.3, 0.7) (0.7, 0.5) (0.6, 0.4) (0.7, 0.2)

ˆ̃Pβ
u6 (0.5, 0.6) (0.8, 0.3) (0.9, 0.3) (0.4, 0.5) (0.7, 0.6) (0.4, 0.7) (0.5, 0.6) (0.5, 0.4)

ˆ̃Pβ
u7 (0.5, 0.8) (0.3, 0.6) (0.9, 0.3) (0.8, 0.4) (0.3, 0.6) (0.7, 0.5) (0.5, 0.6) (0.7, 0.6)

ˆ̃Pβ
u8 (0.1, 0.7) (0.3, 0.4) (0.6, 0.2) (0.5, 0.7) (0.6, 0.6) (0.3, 0.5) (0.5, 0.6) (0.3, 0.8)

Table 14 Result for
˜P(0.7,0.4)
us , s = 1, 2, ..., 6

u1 u2 u3 u4 u5 u6 u7 u8

1˜¶
β
u1 (0.5, 0.7) (0.3, 0.9) (0.2, 0.9) (0.4, 0.8) (0.6, 0.6) (0.5, 0.7) (0.4, 0.6) (0.2, 0.7)

1˜¶
β
u2 (0.5, 0.8) (0.2, 0.7) (0.4, 0.7) (0.4, 0.8) (0.3, 0.9) (0.5, 0.7) (0.1, 0.6) (0.7, 0.7)

1˜¶
β
u3 (0.5, 0.6) (0.3, 0.8) (0.4, 0.7) (0.4, 0.8) (0.7, 0.7) (0.5, 0.7) (0.2, 0.6) (0.4, 0.7)

1˜¶
β
u4 (0.5, 0.6) (0.3, 0.9) (0.7, 0.7) (0.4, 0.6) (0.7, 0.7) (0.3, 0.5) (0.4, 0.6) (0.2, 0.6)

1˜¶
β
u5 (0.5, 0.8) (0.3, 0.9) (0.7, 0.7) (0.4, 0.8) (0.3, 0.7) (0.5, 0.7) (0.4, 0.6) (0.2, 0.7)

1˜¶
β
u6 (0.5, 0.6) (0.3, 0.8) (0.3, 0.9) (0.4, 0.5) (0.6, 0.7) (0.4, 0.7) (0.5, 0.6) (0.4, 0.5)

1˜¶
β
u7 (0.5, 0.8) (0.3, 0.6) (0.3, 0.9) (0.4, 0.8) (0.3, 0.6) (0.5, 0.7) (0.5, 0.6) (0.6, 0.7)

1˜¶
β
u8 (0.1, 0.7) (0.3, 0.4) (0.2, 0.6) (0.5, 0.7) (0.6, 0.6) (0.3, 0.5) (0.5, 0.6) (0.3, 0.8)

and the sorting values as below

u1 ≥ u3 ≥ u2 ≈ u5 ≥ u7 ≥ u6 ≥ u4 ≥ u8.

Method on a Cq-ROFRS

Description and process

Assume that Θ = {ur : r = 1, ..., k} is the set of alterna-
tives, the m main attributes ˜� = {˜δi : i = 1, 2, ..,m}. Then
Êin and Êout are the experts assessment outcomes relevant to
the alternatives ur and the attribute˜δi by μri and νri . Thus
˜δi (ur ) = (μri , νri ) is q-ROFN and represents by the follow-
ing matrix, where Êin is the membership grade μri and Êout
is the membership grade νri .

˜δi (ur ) =

⎛

⎜

⎜

⎜

⎝

(μ11, ν11) (μ12, ν12) · · · (μ1i , ν1i )

(μ21, ν21) (μ22, ν22) · · · (μ2i , ν2i )
...

...
. . .

...

(μr1, νr1) (μr2, νr2) · · · (μri , νri )

⎞

⎟

⎟

⎟

⎠

So, (Θ,˜�) is a q-ROFβCAS. Therefore, we give the fol-
lowing steps to solve MADM problems through presented
method on a Cq-ROFRS.

Step 1: Construct q-ROF plus ideal and q-ROF minus
ideal as the following formulas.

L ⊕ = {˜δ j ,
∨

1≤i≤n

(

S(˜δ j (ur ))
) : ( j = 1, ...,m)}

= {

(˜δ1, x
⊕
1 , y⊕

1 ), (˜δ2, x
⊕
2 , y⊕

2 ), ..., (˜δm, x⊕
m , y⊕

m )
}

(42)

and

L � = {˜δ j ,
∧

1≤i≤n

(

S(˜δ j (ur ))
) : ( j = 1, ...,m)}

= {

(˜δ1, x
�
1 , y�

1 ), (˜δ2, x
�
2 , y�

2 ), ..., (˜δm, x�
m , y�

m )
}

,

(43)

where
∨

and
∧

denotes to “max” and “min”, respectively,
and S is the score function. If we have X = (μX , νX ), then
S(X ) = 1

2

(

1 + μ
q
X − ν

q
X
)

and q ≥ 1.
Step 2: Counting the adequate distances D⊕ and D� as

follows:

123



2364 Complex & Intelligent Systems (2022) 8:2349–2370

D⊕ =
m
∑

j=1

W j D(˜δ j (ur ),˜δ j (L
⊕))

=
(

1

2n

m
∑

j=1

W j |μr j − μ⊕
j |q

+ 1

2n

m
∑

j=1

W j |νr j − ν⊕
j |q

) 1
q

, (44)

D� =
m
∑

j=1

W j D(˜δ j (ur ),˜δ j (L
�))

=
(

1

2n

m
∑

j=1

W j |μr j − μ�
j |q

+ 1

2n

m
∑

j=1

W j |νr j − ν�
j |q

) 1
q

, (45)

where W j = (W1,W2, ...,Wm) is the weight vector such
that

∑m
j=1 W j = 1. So, we have D = (D⊕,D�).

Step 3: Compute the lower and upper approximation of
X using 4-q-ROFβCRSs as the following equations.

Lq-ROF
4 (D) =

⎧

⎨

⎩

(

ui ,∧m
j=1

(

μ
2˜Q

β
ui

(ui , u j ) ∧ μD (u j )
))

,

(

ui ,∨m
j=1

(

ν
2˜Q

β
ui

(ui , u j ) ∨ νD (u j )
))

⎫

⎬

⎭

,

(46)

Uq-ROF
4 (D) =

⎧

⎨

⎩

(

ui ,∨m
j=1

(

μ
2˜Q

β
ui

(ui , u j ) ∨ μD (u j )
))

,

(

ui ,∧m
j=1

(

ν
2˜Q

β
ui

(ui , u j ) ∧ νD (u j )
))

⎫

⎬

⎭

(47)

Step 4: If 0 < ξ ≤ 1 is a threshold and T (u, v) =
uv

q√1+(1−uq )(1−vq )
, then compute the sorting function of the

MAq-ROFDM problem as follows.

ϕ(ui ) = ξ × T
(

Lq-ROF
4 (D)

) + (1 − ξ) × T
(

Uq-ROF
4 (D)

)

,

(48)

and hence sorting the alternatives.
The following algorithm is established from the above

data and it put forward in Algorithm 2.

Algorithm 2. Algorithm for a q-ROFβCRSs to make a decision.

Input: MAq-ROFDM with information system (Θ,˜�,L ,D).
Output: Decision Making.
1: Compute L⊕ and L�.
2: Compute D⊕ and D� 3: From Definition 12, compute ˜Qβ

u .

4: From Step 2 and by Definition 24, compute
ˆ̃Qβ
u .

5: From Steps 2 and 3, compute 4-q-ROFβCRSs Lq−ROF
4 (D) and

Uq−ROF
4 (D)

6: Compute the sorting function ϕ(ui ).
7: Obtain the decision.

Test example

Assume that Θ = {u1, u2, ..., u5} is a set of five candidates
for the faculty position in U university and ˜� = {Research
productivity (˜δ1), Managerial skill (˜δ2), Impact on research
community (˜δ3), Ability to work under pressure (˜δ4), Aca-
demic leadership qualities (˜δ5), Contribution toU University
(˜δ6) } is the attribute set. The proceedings of the mentioned
algorithm 2 are indicated below.

Step 1: The decision maker’s evaluate Êin and Êout are
established in Table 15.

Step 2: Compute L ⊕ and L � as the following.

L ⊕ =
{

(˜δ1, 0.98, 0.3), (˜δ2, 0.95, 0.4), (˜δ3, 0.95, 0.4),

(˜δ4, 0.9, 0.1), (˜δ5, 0.8, 0.65), (˜δ6, 0.94, 0.38)

}

,

L � =
{

(˜δ1, 0.5, 0.2), (˜δ2, 0.7, 0.8), (˜δ3, 0.7, 0.5),

(˜δ4, 0.6, 0.3), (˜δ5, 0.65, 0.87), (˜δ6, 0.4, 0.3)

}

Step 3: If we have the weights for all attribute as follows
W j =(0.2,0.18, 0.22, 0.12, 0.15, 0.13), then we compute the
distances as indicated below.

D⊕ =
{

(

u1, 0.12943
)

,
(

u2, 0.13642
)

,

(

u3, 0.14903
)

,
(

u4, 0.14129
)

,
(

u5, 0.13849
)

}

,

D� =
{

(

u1, 0.15782
)

,
(

u2, 0.10907
)

,

(

u3, 0.2201
)

,
(

u4, 0.11109
)

,
(

u5, 0.17627
)

}

.

Table 15 Result for (Θ,˜�)
˜δ1 ˜δ2 ˜δ3 ˜δ4 ˜δ5 ˜δ6

u1 (0.93, 0.3) (0.7, 0.4) (0.8, 0.2) (0.9, 0.1) (0.7, 0.6) (0.4, 0.3)

u2 (0.9, 0.4) (0.7, 0.8) (0.7, 0.8) (0.6, 0.3) (0.65, 0.87) (0.6, 0.2)

u3 (0.8, 0.7) (0.7, 0.2) (0.95, 0.4) (0.8, 0.4) (0.5, 0.2) (0.8, 0.3)

u4 (0.8, 0.3) (0.6, 0.3) (0.7, 0.4) (0.9, 0.2) (0.8, 0.65) (0.4, 0.2)

u5 (0.5, 0.2) (0.95, 0.4) (0.8, 0.3) (0.7, 0.1) (0.6, 0.3) (0.94, 0.33)
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Table 16 Result for
˜Q(0.8,0.4)
uk , k = 1, 2, ..., 5

u1 u2 u3 u4 u5

˜Qβ
u1 (0.8, 0.3) (0.7, 0.4) (0.4, 0.3) (0.9, 0.3) (0.4, 0.4)

˜Qβ
u2 (0.6, 0.5) (0.7, 0.8) (0.6, 0.5) (0.6, 0.4) (0.6, 0.8)

˜Qβ
u3 (0.8, 0.7) (0.4, 0.2) (0.8, 0.4) (0.8, 0.7) (0.7, 0.4)

˜Qβ
u4 (0.7, 0.4) (0.6, 0.5) (0.4, 0.4) (0.8, 0.3) (0.4, 0.5)

˜Qβ
u5 (0.5, 0.3) (0.59, 0.4) (0.7, 0.38) (0.5, 0.2) (0.58, 0.4)

Table 17 Result forˆ
˜Q(0.8,0.4)
uk , k = 1, 2, ..., 5

u1 u2 u3 u4 u5

ˆ̃Qβ
u1 (0.3, 0.8) (0.4, 0.7) (0.3, 0.4) (0.3, 0.9) (0.4, 0.4)

ˆ̃Qβ
u2 (0.5, 0.6) (0.8, 0.7) (0.5, 0.6) (0.4, 0.6) (0.8, 0.6)

ˆ̃Qβ
u3 (0.7, 0.8) (0.2, 0.4) (0.4, 0.8) (0.7, 0.8) (0.4, 0.7)

ˆ̃Qβ
u4 (0.4, 0.7) (0.5, 0.6) (0.4, 0.4) (0.3, 0.8) (0.5, 0.4)

ˆ̃Qβ
u5 (0.3, 0.5) (0.4, 0.59) (0.38, 0.7) (0.2, 0.7) (0.4, 0.58)

Table 18 Result for
2˜Q

β
uk , k = 1, 2, ..., 5

u1 u2 u3 u4 u5

2˜Q
β
u1 (0.8, 0.3) (0.7, 0.4) (0.4, 0.3) (0.9, 0.3) (0.4, 0.4)

2˜Q
β
u2 (0.6, 0.5) (0.8, 0.7) (0.6, 0.5) (0.6, 0.4) (0.8, 0.6)

2˜Q
β
u3 (0.8, 0.7) (0.4, 0.2) (0.8, 0.4) (0.8, 0.7) (0.7, 0.4)

2˜Q
β
u4 (0.7, 0.4) (0.6, 0.5) (0.4, 0.4) (0.8, 0.3) (0.5, 0.4)

2˜Q
β
u5 (0.5, 0.3) (0.59, 0.4) (0.7, 0.38) (0.7, 0.2) (0.58, 0.4)

Step 4: The lower and upper approximation of D using
3-q-ROFβCRSs are calculated as the following.

First, we investigate the q-ROF β-neighborhood and q-
ROF complementary β-neighborhood as established, respec-
tively, in Tables 16 and 17.

Now, we can calculate 2˜Q
β
u as the following Table 18.

Lq-ROF
4 (D) =

⎧

⎪

⎨

⎪

⎩

(

u1, 0.12943, 0.4
)

,
(

u2, 0.12943, 0.7
)

,
(

u3, 0.12943, 0.7
)

,
(

u4, 0.12943, 0.5
)

,
(

u5, 0.12943, 0.4
)

⎫

⎪

⎬

⎪

⎭

,

Uq-ROF
4 (D) =

⎧

⎪

⎨

⎪

⎩

(

u1, 0.0.9, 0.10907
)

,
(

u2, 0.8, 0.10907
)

,
(

u3, 0.8, 0.10907
)

,
(

u4, 0.8, 0.10907
)

,
(

u5, 0.7, 0.10907
)

⎫

⎪

⎬

⎪

⎭

Step 4: Compute the sorting function of the MAq-
ROFDM problem as follows.

ϕ(u1) = 0.0538, ϕ(u2) = 0.0765, ϕ(u3) = 0.0765

ϕ(u4) = 0.0585, ϕ(u5) = 0.0473

Then the order of these candidates is u2 ≈ u3 > u4 > u1 >

u5, thus the second candidate is proper for this job.

Comparative analysis

The goal of this part is to explain the differences between our
proposed study and the previous work. We split our vision
into two parts, that is, CPFRS and Cq-ROFRS, respectively.

(1) The prime objective of the given method of CPFRS
is capable of promoting the lower approximation and
minimizing the upper approximation of the former inves-
tigation by Zhan’s in [52] as apparent in Examples 2, 5
and 8. To state the rapprochements through different pro-
cesses, that isYager’s process [45], Zhang’s process [49],
Zhan’s process [52] and our process, the classification
score of these decision-making samples are recorded in
Table 19 and 20 . Also, we demonstrate Fig. 1, to show
the values of ordering variables between Zhan’s model
and our model. From this figure, you can see that our
outcomes are greater than Zhan’s outcomes, and also the
first candidate is the suitable one among all in the two
presented models.
Tables 19 and 20 interpreted that the optimal decision
is the same alternative u1 for the four processes i.e.,
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Table 19 Result for scores by
PFβCAS

Different processes Obtain a value
u1 u2 u3 u4 u5 u6 u7 u8

Zhan’s model [52] 0.2029 0.124 0.1211 0.123 0.1316 0.1575 0.1259 0.0644

Our model 0.2486 0.2354 0.2479 0.202 0.2354 0.209 0.2347 0.1745

Table 20 Result for scores by
PFβCAS

Different processes Obtain a decision

Yager’s process [45] u1 ≥ u5 ≥ u6 ≥ u7 ≥ u8 ≥ u4 ≥ u2 ≥ u3

Zhang’s process [49] u1 ≥ u5 ≥ u7 ≥ u6 ≥ u8 ≥ u4 ≥ u2 ≥ u3

Zhan’s process [52] u1 ≥ u6 ≥ u5 ≥ u7 ≥ u2 ≥ u4 ≥ u3 ≥ u8

Our process u1 ≥ u3 ≥ u2 ≈ u5 ≥ u7 ≥ u6 ≥ u4 ≥ u8

Alternatives
1 2 3 4 5 6 7 8

V
al
ue
s

0

0.1

0.2

0.3

0.4

0.5

Fig. 1 Representations of the ordering alternatives

(Yager’s [45], Zhang’s [48], Zhan’s [52] and our’s), that
is make our approach is feasible and effective.
Figures 2 and 3 states the another way to show that the
variances through Zhan’s method [52] and our method.
Figure 2 contains two parts. The left part illustrates that
our membership ϑ of the lower approximation is higher
than in Zhan et al. [52]. On the other hand, the right part

shows that our non-membership ζ of the lower approx-
imation is lower than in Zhan et al. [52]. This means
that our lower is better than Zhan’s lower from the view
of raising the lower approximation which makes our
approach is suitable than others.
Figure 3 also have two figures. The left one explained
that the our membership ϑ of the upper approximation
is lower than in Zhan et al. [52]. In contrast, the other
figure clarifies that the our non- membership ζ of the
upper approximation is higher than in Zhan et al. [52].
This shows that our upper is better than Zhan’s upper
from the view of lowering the upper approximation that
makes our model is more appropriate than others.

To sum, these two images mean that our lower approxi-
mation is better than Zhan-lower and our upper approx-
imation is lower than Zhan-upper which makes our
proposed study is more appropriate than others. There-
fore, the presented method is reliable, and effective and
is considered as a generalization of the Zhan’s method.

(2) q-ROF is considered as the generalization of PFS (where
q = 2) and IFS (where q = 1). The presented model of
Cq-ROFRS is the natural extension to Hussain et al. [57]
which investigates the novel covering method under the

Fig. 2 Representations of the
lower approximations between
methods in [52] and
Definition 19

Alternatives
1 2 3 4 5 6

V
al
ue
s

0

0.2

0.4

0.6

0.8

1

1-PFLA
3-PFLA

Alternatives
1 2 3 4 5 6

V
al
ue
s

0

0.2

0.4

0.6

0.8

1

1-PFLA
3-PFLA
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Fig. 3 Representations of the
upper approximations between
methods in [52] and
Definition 19

Alternatives
1 2 3 4 5 6

V
al
ue
s

0

0.2

0.4

0.6

0.8

1

1-PFUA
3-PFUA

Alternatives
0 1 2 3 4 5 6 7

V
al
ue
s

0

0.2

0.4

0.6

0.8

1
1-PFUA
3-PFUA

Table 21 Result for orders by
q-ROFβCAS

Distinct models Obtain a result
u1 u2 u3 u4 u5

Hussain’s model [57] 0.0538 0.0842 0.0765 0.0585 0.0473

Our model 0.0538 0.0765 0.0765 0.0585 0.0473

Table 22 Result for orders by q-ROFβCAS

Distinct models Obtain a decision

Hussain model [57] u2 > u3 > u4 > u1 > u5

Our model u2 ≈ u3 > u4 > u1 > u5

notion of q-ROF β-neighborhoods. Here, we present the
definition of q-ROF complementary β-neighborhoods
and combine these two types of neighborhoods to investi-
gate two other kinds of q-ROF β-neighborhoods. Hence,
we used these types to construct three novel kinds of Cq-
ROFRS model. Now, we build the Tables 21 and 22 to
demonstrate the outcomes between Hussain et al. [57]
and our’s.

From Tables 21 and 22, we can say that the best decree is
the second candidateu2 among twodifferent approaches (i.e.,

Hussain et al. [57] and our’s). This means that the decision
is the same alternative. This proofs that the proposed model
is effective and reliable.

Figures 4 and 5 states the another way to show that the
variances through Hussain’s method [52] and our method.

Figure 4 splits into two parts. The left split illustrates that
the μ of the lower approximation is higher than in Hussain
et al. [57]. On the other hand, the right split shows that the
ν of the lower approximation is lower than in Hussain et al.
[57].

Figure 5 also have two images. These figures explained
the differences between μ and ν in Hussain et al. [57] and
ours.

In particular, the above two images mean that our lower
approximation is better than Hussain-lower and our upper
approximation is lower than Hussain-upper. Therefore, the
presented method is reliable, and effective and is considered
as a generalization of the Hussain method.

Fig. 4 Representations of the
lower approximations between
methods in [57] and
Definition 31
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Fig. 5 Representations of the
upper approximations between
methods in [57] and
Definition 31

Fig. 6 The organization of the proposed methods

To simplify our studies and the relations between our
presented models in CPFRS and Cq-ROFRS, we give the
following Fig. 6 that explained in briefly our vision in this
study. This Figure clarifies that the Cq-ROFRS is a general-
ization of CPFRS.

Conclusion

The main purpose of the proposed article is to improve Zhan
et al’s model in [52] and Hussain et al.’s model in [57]. The
chief investigation of the study is summarized as follows.

(1) We extend the study of CPFRS through PF complemen-
tary β-neighborhood. By joining the concept of PF β-
neighborhood and PF complementary β-neighborhood,
we obtain three novel methods on a CPFRS. Also, we
investigate the comparisons between the Zhan et al.’s
process and our process. These differences illustrate that
3-PFβCRS is the best approximations among1-PFβCRS

(Zhan et al.’s model), 2-PFβCRS and 4-PFβCRS. It is
easy to see Tables 19 and 20 and Figs. 1, 2 and 3, which
shows these comparisons clearly.

(2) To generalize Hussain et al.’s model and our models via
PF in “PF complementary β-neighborhood and three
novel kinds of CPFRS”, the meaning of q-ROF com-
plementary β-neighborhood are distinguished. Also, we
combine the q-ROF β-neighborhood and q-ROF com-
plementary β-neighborhood to estimate new models
of Cq-ROFRS. Moreover, we discuss the differences
between Hussain et al.’s method and our’s. These com-
parisons explain that 4-q-ROFβCRS is the best approxi-
mations among 1-q-ROFβCRS (Hussain et al.’s model),
2-q-ROFβCRS and 3-q-ROFβCRS. It is handy to see
Tables 15 and 16 and Figs. 4 and 5, which shows these
differences clearly.

(3) In short, the proposed models are extended on the first
studies on CPFRS by Zhan et al’s [52] and Cq-ROFRS
by Hussain et al.’s [57] methods. Zhan et al.’s paper is
a generalization to the notions on covering method by
IFS and Hussain et al.’s article is a generalization to the
last studies on CPFRS by Zhan et al.’s, so it is already
generalized to IFS. This article is working in the same
direction as these studies and is splits into twomain parts.
The first one talks about the CPFRS model and makes
a generalization of Zhan et al.’s model. The second part
presents the new generalization of Zhan et al.’s model,
Hussain et al.’s model, and our’s in the first part by the
methodology of a Cq-ROFRS model.

(4) Cq-ROFRS investigates to solve the limitations in the
CPFRS, CIFRS, and CFRS. CIFRS deals with the mem-
bership and non-membership degrees not only on the
membership degree as CFRS. CPFRS is more accurate
than CIFRS because it deals with membership and non-
membership degrees that their square sum is less than or
equal to 1. To treat the limitation on CPFRS, Cq-ROFRS
is considered as a generalization of CPFRS, CIFRS, and
CFRS because of the values of q. Further studies will
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focus on explaining the topological properties of the
CPFRS and Cq-ROFRS as in [58,59] and extend to the
graph theory as in [60].
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