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Abstract
A single-valued neutrosophic multi-set is characterized by a sequence of truth membership degrees, a sequence of indeter-
minacy membership degrees and a sequence of falsity membership degrees. Nature of a single-valued neutrosophic multi-set
allows us to consider multiple information in the truth, indeterminacy and falsity memberships which is pretty useful in multi-
criteria group decision making. In this paper, we consider sequences of intuitionistic fuzzy values instead of numbers to define
the concept of intuitionistic fuzzy-valued neutrosophic multi-set. In this manner, such a set gives more powerful information.
We also present some set theoretic operations and a partial order for intuitionistic fuzzy-valued neutrosophic sets and provide
some algebraic operations between intuitionistic fuzzy-valued neutrosophic values. Then, we develop two types of weighted
aggregation operators with the help of intuitionistic fuzzy t-norms and t-conorms. By considering some well-known additive
generators of ordinary t-norms, we give the Algebraic weighted arithmetic and geometric aggregation operators and the
Einstein weighted arithmetic and geometric aggregation operators that are the particular cases of the weighted aggregation
operators defined via general t-norms and t-conorms. We also define a simplified neutrosophic valued similarity measure
and we use a score function for simplified neutrosophic values to rank similarities of intuitionistic fuzzy-valued neutrosophic
multi-values. Finally, we give an algorithm to solve classification problems using intuitionistic fuzzy-valued neutrosophic
multi-values and proposed aggregation operators and we apply the theoretical part of the paper to a real classification problem.
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Introduction

Fuzzy sets (FSs) [1] are characterized by membership
functions and a fuzzy set is a successful tool to handle uncer-
tainties arising from partial belongingness of an element to
a set. Atanassov [2] extended the concept of fuzzy set to
the concept of intuitionistic fuzzy set (IFS) via a member-
ship function μA and a non-membership function νA such
that 0 ≤ μA(x) + νA(x) ≤ 1 for each x ∈ X . For a
fixed x ∈ X , the pair (μA(x), νA(x)) is called an intuition-
istic fuzzy value (IFV) or an intuitionistic fuzzy number [3].
Moreover, Atanassov [2] described the hesitant function of
an IFS that is given by πA(x) = 1 − μA(x) − νA(x). This
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function indicates exactly the level of indecision of a deci-
sion maker and it is not included in the classical intuitionistic
fuzzy set notion. Theory of IFS has been extensively studied
by many authors and it has been applied to vary fields such
as decision making, image fusion and segmentation systems,
classification and clustering (see e.g., [4–9]). Recently, many
methods and approaches also have been developed to solve
the problems in many areas. For example, Krawczak and
Szkatula [10] have studied on IFSs’s perturbation and they
have applied this concept to classification problems. He et al.
[11] have proposed somedistancemeasures between IFSs via
dissimilarity function and have given a pattern recognition
application. Kumar [12] have formulated the crisp, fuzzy and
intuitionistic fuzzy optimization problems. Lohani et al. [13]
have carried out experimental study of intuitionistic fuzzy
c-mean algorithm over machine learning dataset.

Smarandache [14] has proposed the concept of neutro-
sophic set (NS) from a philosophical point of view as a
generalization of the concept of FS and IFS. A NS is char-
acterized by a truth membership function, an indeterminacy
membership function and a falsity membership function and
each membership degree is a real standard or a non-standard
subset of the non-standard unit interval ]−0, 1+[. Unlike
IFSs, there is no restriction on the membership functions
in a NS, and the degree of hesitancy is included in the NS.
Nonetheless, NSs are hard to apply in practical problems
since the values of the truth, indeterminacy and falsity mem-
bership functions lie in ]−0, 1+[. Therefore, this concept has
been extended to variousNSswhose truth, falsity and indeter-
minacy membership functions take only one value from the
closed interval [0, 1] such as single-valued neutrosophic sets
(SVNSs) [15], simplified neutrosophic sets (SNSs) [16], neu-
trosophic soft sets (NSSs) [17] and they have been applied to
various multi-criteria decision making problems. However,
decision makers get hard to determine the truth, indetermi-
nacy and falsity membership degree of an element to a set
in some real-life situation and so they give rise of giving a
few different values due to doubt such as fuzzy multi-sets
(FMs) and intuitionistic fuzzy multi-sets (IFMSs) (see e.g.,
[18–20]). In such a situation, it may be useful to use the
concept of single-valued neutrosophic multi-set (SVNMS)
which was proposed by Ye and Ye [21] in 2014. A SVNMS
is characterized by sequences of truth, indeterminacy and
falsity membership degrees coming from [0, 1].

The process of combining several numerical values into a
single representative one is called aggregation, and a numer-
ical function performing this process is called an aggregation
operator. This concept has various application areas such as
artificial intelligence, operations research, economics and
finance, pattern recognition and image processing, data
fusion, multi-criteria decision making, classification and
clustering, automated reasoning, etc. (see, e.g., [35]). The
concepts of t-norm and t-conorm are often used to define

algebraic operations and aggregation operators for fuzzy sets.
Most researchers have identified various aggregation opera-
tors for an IFS and its generalizations using several types of
t−norm and t− conorm. For example, Beliakov et al. [22]
constructed some operations for IFSs based on Archimedean
t-norm and t-conorm, fromwhich an aggregation principle is
proposed for intuitionistic fuzzy information. Liu et al. [23]
proposed Heronian aggregation operators of IFVs based on
the Archimedean t−norm and t−conorm and Liu and You
[24] developed Heronian mean operators based on Einstein
t−norm and t−conorm for linguistic IFSs. Garg and Rani
[25] have proposed Bonferroni mean aggregation operators
based on Archimedean t−norm and t−conorm for complex
intuitionistic fuzzy information and Garg and Arora [26]
introduced Maclaurin symmetric mean aggregation opera-
tor based on Archimedean t−norm for intuitionistic fuzzy
soft sets.

Classification is a pattern identificationmethod in the field
of data science and statistics. This method is used for rear-
ranging the data into predefined classes according to the
some specific algorithms. These algorithms have been com-
monly used in machine learning as a supervised rule learning
method. On the other hand, cluster analysis is an unsuper-
vised learningmethodwhich is used for classificationwithout
labeled responses. Once data have been classified or clus-
tered, the correct output can be checked using some statistical
features like accuracy. There are plenty of classification and
clustering algorithms in machine learning studies. These
algorithms are commonly based on some statistical features
or analysis. The concept is preferred by researchers in vari-
ous fields such as pattern recognition, information retrieval,
microbiology analysis, data mining, etc. In the meantime,
recently many researchers have been using fuzzy methods as
well as fuzzy set theory in classification analysis (see, e.g.,
[36–38]) and clustering analysis (see, e.g., [39,40]).

In this paper, we expand the idea of SVNMS to the
concepts of intuitionistic fuzzy-valued neutrosophic multi-
set (IFVNMS) and intuitionistic fuzzy-valued neutrosophic
multi-value (IFVNMV), which combine NS theory with IFS
theory with the help of IFVs instead of numbers in mem-
bership sequences. Actually, an IFVNMS lets us model
membership and non-membership degrees of an element
to truth, indeterminacy and falsity sequences in the neutro-
sophic environment. Therefore, more detailed information
can be carried when transforming the data to fuzzy infor-
mation and so decision makers can assign less strict fuzzy
values. Thus, an IFVNMS or IFVNMV prevents the loss of
the information and relaxes the decision process. We also
present some set theoretic operations and a partial order
for IFVNMSs. Then, we give some fundamental algebraic
operations with the help of intuitionistic fuzzy t-norms and
t-conorms and we provide some weighted arithmetic and
geometric aggregation operators for IFVNMVs. A compar-
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Table 1 Literature survey based on aggregation operators for IFS, NS

References Type of the set Aggregation operator t−norm/t-conorm Case study

Beliakov et al. [22] IFS Averaging Archimedean, Łukasiewicz –

Liu et al. [23] IFS Heronian Archimedean –

Liu and You [24] Linguistic IFS Heronian Einstein Supplier selection problem

Garg and Rani [25] Complex IFS Bonferroni Archimedean Software selection problem

Garg and Arora [26] IF Soft S Maclaurin symmetric Archimedean Investment selection problem

Zhang et al. [27] IFS Frank power Frank Investment selection problem

Zhu et al. [28] Linguistic Hamacher weighted Hamacher Supplier selection problem

Interval-valued IFS

Chen et al. [29] SVNS Dombi weighted Dombi Investment selection problem

Peng et al. [30] SNS Arithmetic/geometric Archimedean Investment selection problem

Peng et al. [31] Multi-valued NS Power Einstein Investment selection problem

Ye et al. [32] Neutrosophic enthalpy Arithmetic/geometric Algebraic, Einstein Car selection problem

Jamil et al. [33] Bipolar NS Bipolar N Hamacher Hamacher Investment selection problem

Wang et al. [34] Bipolar NS Frank Choquet Frank Plant location selection

Bonferroni

Present study IFVNMS Arithmetic/geometric Algebraic, Einstein Classification

Table 2 Comparison of IFVNMS with some existing sets

Sets Truth Indeterminacy Falsity Restriction on Repetitive Representable as sequence of two
Membership function information dimensional information in

multi-valued set setting

FS � × × × × ×
IFS � × � � × ×
FMS � × × × � ×
IFMS � × � � � ×
NS � � � × × ×
SVNMS � � � × � ×
IFVNMS � � � � � �

ison of aggregation operators from the literature and those
of the present study is provided in Table 1 and the advan-
tages of the concept of IFVNMS is emphasized in Table 2.
Next, we aim to solve a real classification problem with the
help of the proposed aggregation operators. For this purpose,
we first define a simplified neutrosophic valued cosine sim-
ilarity measure between IFVNMVs and we rank similarity
results via a score function for SNVs. As an example, we
consider a real-life example and construct a new classifica-
tion method based on IFVNMVs, the proposed aggregation
operators and the cosine similarity measure for an applied
classification problem.

Preliminaries

The concepts of triangular norm (t-norm) and triangular
conorm (t-conorm) have a significant importance in the
definition of algebraic operations and aggregation opera-

tors for fuzzy sets. A t-norm and a t-conorm are functions
that map pairs of numbers from [0, 1] to [0, 1]. Deschrijver
et al. [41] extended the notions of t-norm and t-conorm
to the intuitionistic fuzzy case by defining these func-
tions from the domain of I ∗ × I ∗ to I ∗ where I ∗ :=
{(x1, x2) : x1, x2 ∈ [0, 1] and x1 + x2 ≤ 1}. Before recall-
ing these concepts, we recall a partial order for IFVs.

Let x = (x1, x2) and y = (y1, y2) be two IFVs.According
to the partial order introduced by Atanassov [2] x ≤(int) y if
and only if x1 ≤ y1 and x2 ≥ y2.

A function T : I ∗ × I ∗ → I ∗ is called an intuitionistic
fuzzy t-norm if

(1) For any x ∈ I ∗, T (x, (1, 0)) = x (border condition),
(2) For any x, y ∈ I ∗, T (x, y) = T (y, x) (commutativity),
(3) For any x, y, z ∈ I ∗, T (x, T (y, z)) = T (y, T (x, z))

(associativity),
(4) For any x = (x1, x2), x ′ = (x ′

1, x
′
2), y = (y1, y2), y′ =

(y′
1, y

′
2) ∈ I ∗, T (x, y) ≤(int) T (x ′, y′) whenever
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(x1, x2) ≤(int) (x ′
1, x

′
2) and (y1, y2) ≤(int) (y′

1, y
′
2)

(monotonicity) [41].

A function S : I ∗ × I ∗ → I ∗ is called an intuitionistic
fuzzy t-conorm if

(1) For any x ∈ I ∗, S(x, (0, 1)) = x (border condition),
(2) For any x, y ∈ I ∗, S(x, y) = S(y, x) (commutativity),
(3) For any x, y, z ∈ I ∗, S(x,S(y, z)) = S(y,S(x, z))

(associativity),
(4) For any x = (x1, x2), x ′ = (x ′

1, x
′
2), y = (y1, y2), y′ =

(y′
1, y

′
2) ∈ I ∗, S(x, y) ≤(int) S(x ′, y′) whenever

(x1, x2) ≤(int) (x ′
1, x

′
2) and (y1, y2) ≤(int) (y′

1, y
′
2)

(monotonicity) [41].

Definitions of t-norm and t-conorm in the ordinary sense
can be found in [42,43].

A function N : I ∗ → I ∗ is called a fuzzy negator if

(1) For any x = (x1, x2), y = (y1, y2) ∈ I ∗, N (x) ≤(int)

N (y) whenever x ≥(int) y, i.e., N is decreasing,
(2) N ((0, 1)) = (1, 0) and N ((1, 0)) = (0, 1) [41].

Remark 1 (i) The mapping Ns defined by Ns((x1, x2)) =
(x2, x1) is a fuzzy negator and it is called the standard
negator (see e.g., [41]).

(ii) Let T be an intuitionistic fuzzy t-norm and let N be
a fuzzy negator. Then, the function T ∗ : I ∗ × I ∗ →
I ∗ defined by T ∗(x, y) = N (T (N (x) ,N (y))) is a
t-conorm which is called the dual intuitionistic fuzzy t-
conorm of T with respect to N [41].

(iii) Let T be a t-norm and let S be a t-conorm in the ordinary
sense. If

T (a, b) ≤ 1−S(1−a, 1−b) for any a, b ∈ [0, 1], (2.1)

then the mapping T : I ∗ × I ∗ → I ∗ defined by
T (x, y) = (T (x1, y1), S(x2, y2)) is an intuitionistic
fuzzy t-norm and the mapping T ∗ : I ∗ × I ∗ → I ∗
defined by T ∗(x, y) = (S(x1, y1), T (x2, y2)) is the
dual intuitionistic fuzzy t-conorm of T with respect to
Ns [41].

Remark 2 Additive generators of t-norms and t-conorms of
ordinary sense play an important role while defining the alge-
braic operators. Now, we generate an intuitionistic fuzzy
t-norm and an intuitionistic fuzzy t-conorm using genera-
tors in the ordinary sense. Let g : [0, 1] → [0,∞] be the
additive generator of a t-norm T and let S be the dual t-
conorm of T . In this case, we know that h(t) = g(1 − t)
(see, e.g., [44]). Then, (2.1) is satisfied. Thus, using (iii) of
Remark 1 we obtain an intuitionistic fuzzy t-norm T defined
by

T (x, y) =
(
g−1(g(x1) + g(y1)), h

−1(h(x2) + h(y2))
)

and its dual t-conorm

T ∗(x, y) =
(
h−1(h(x1) + h(y1)), g

−1(g(x2) + g(y2))
)

with respect to Ns . In this case, we say that T is the intu-
itionistic fuzzy t-norm generated by g.

Example 1 Let g, h : [0, 1] → [0,∞] defined by g(t) =
− log t and h(t) = − log(1 − t). Then, we obtain the alge-
braic intuitionistic fuzzy t-norm

T (x, y) = (x1y1, x2 + y2 − x2y2)

given in [41] (see pg.48) and its dual intuitionistic fuzzy dual
t-conorm

T ∗(x, y) = (x1 + y1 − x1y1, x2y2).

Let α, β ∈ [0, 1] such that α + β ≤ 1. Then, the pair
(α, β) is called an IFV [2]. Now, we are ready to introduce
the concepts of IFVNMS and IFVNMV.

Definition 1 Let X = {x1, ..., xn} be a finite set. An
IFVNMS defined on X is given with

A =
{〈
xi ,
(
(T

i, j
A )

pi
j=1, (I

i, j
A )

pi
j=1, (F

i, j
A )

pi
j=1

)〉
: i = 1, ...n

}

(2.2)

where (T
i, j
A )

pi
j=1, (I

i, j
A )

pi
j=1 and (F

i, j
A )

pi
j=1 are the truth, the

indeterminacy and the falsity membership sequences of
IFVs, respectively, i.e., i = 1, ..., n, j = 1, ..., pi

T
i, j
A = (T j,ti

A , T j, fi
A ),with T j,ti

A , T j, fi
A ∈ [0, 1]

such that 0 ≤ T j,ti
A + T j, fi

A ≤ 1 (2.3)

I
i, j
A = (I j,tiA , I j, fiA ),with I j,tiA , I j, fiA ∈ [0, 1] such that

0 ≤ I j,tiA + I j, fiA ≤ 1 (2.4)

and

F
i, j
A = (F j,ti

A , F j, fi
A ),with F j,ti

A , F j, fi
A ∈ [0, 1]

such that 0 ≤ F j,ti
A + F j, fi

A ≤ 1. (2.5)

For a fixed i = 1, ..., n the expression

α =
〈
(T j

α)
p
j=1, (I

j
α)

p
j=1, (F

j
α)

p
j=1

〉

:=
〈
xi ,
(
(T

i, j
A )

pi
j=1, (I

i, j
A )

pi
j=1, (F

i, j
A )

pi
j=1

)〉
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denotes an IFVNMV.

Example 2 Let X = {x1, x2}. The following is an IFVNMS:

A =

⎧
⎪⎪⎨
⎪⎪⎩

〈
x1, ((0.5, 0.4), (0.7, 0.1)) , ((0.3, 0.2), (0.1, 0.1)) , ((0.9, 0.1), (0.2, 0.6))

〉
,

〈
x2,

((0.3, 0.5), (0.4, 0.2), (0.1, 0.2)) , ((0.1, 0.9), (0.5, 0.5), (0.7, 0.2)) ,

((0.0, 0.8), (0.3, 0.6), (0.5, 0.2))

〉

⎫
⎪⎪⎬
⎪⎪⎭

.

Now, we introduce some set theoretic operations among
IFVNMSs.Throughout thismanuscript “⊂(int),∩(int),∪(int),

(·)c(int)”denote the set operations for IFSs [2].
Definition 2 Let X = {x1, ..., xn} be a finite set and let A
and B be two IFVNMSs in X . Some set operations among
IFVNMSs can be defined as follows:

a) A ⊂ B if and only if

(i) T
i, j
A ⊂(int) T

i, j
B i.e., T j,ti

A ≤ T j,ti
B and T j, fi

A ≥ T j, fi
B

(ii) I
i, j
A ⊃(int) I

i, j
B i.e., I j,tiA ≥ I j,tiB and I j, fiA ≤ I j, fiB

(iii) F
i, j
A ⊃(int) F

i, j
B i.e., F j,ti

A ≥ F j,ti
B and F j, fi

A ≤ F j, fi
B

for j = 1, 2, ...pi and i = 1, 2, ..., n.
(b) A = B if and only if A ⊂ B and A ⊃ B.

(c) Ac =
{〈
xi ,
(
(F

i, j
A )

pi
j=1, ([Ii, jA ]c(int) )pij=1, (T

i, j
A )

pi
j=1

)〉
:

i = 1, 2, ...n}
(d) A ∪ B =

{〈
xi ,
(
(T

i, j
A ∪(int) T

i, j
B )

pi
j=1, (I

i, j
A ∩(int)

I
i, j
B )

pi
j=1, (F

i, j
A ∩(int) F

i, j
B )

pi
j=1

)〉
: i = 1, 2, ...n

}
where

(T
i, j
A ∪(int) T

i, j
B )

pi
j=1 = (max

j
(T j,ti

A , T j,ti
B ),

min
j

(T j, fi
A , T j, fi

B ))
pi
j ,

(I
i, j
A ∩(int) I

i, j
B )

pi
j=1 = (min

j
(I j,tiA , I j,tiB ),

max
j

(I j, fiA , I j, fiB ))
pi
j ,

and

(F
i, j
A ∩(int) F

i, j
B )

pi
j=1 = (min

j
(F j,ti

A , F j,ti
B ),

max
j

(F j, fi
A , F j, fi

B ))
pi
j .

(e) A∩B=
{〈
xi ,
(
(T

i, j
A ∩(int) T

i, j
B )

pi
j=1, (I

i, j
A ∪(int) I

i, j
B )

pi
j=1,

(F
i, j
A ∪(int) F

i, j
B )

pi
j=1

)〉
: i = 1, 2, ...n

}
where

(T
i, j
A ∩(int) T

i, j
B )

pi
j=1 = (min

j
(T j,ti

A , T j,ti
B ),

max
j

(T j, fi
A , T j, fi

B ))
pi
j ,

(I
i, j
A ∪(int) I

i, j
B )

pi
j=1 = (max

j
(I j,tiA , I j,tiB ),

min
j

(I j, fiA , I j, fiB ))
pi
j ,

and

(F
i, j
A ∪(int) F

i, j
B )

pi
j=1 = (max

j
(F j,ti

A , F j,ti
B ),

min
j

(F j, fi
A , F j, fi

B ))
pi
j .

Example 3 Let X = {x1, x2} and let A and B be two IFVN-
MSs given with:

A =

⎧⎪⎪⎨
⎪⎪⎩

〈x1, ((0.5, 0.4), (0.7, 0.1)) , ((0.3, 0.2), (0.1, 0.0)) , ((0.9, 0.1), (0.2, 0.4))〉 ,

〈
x2,

((0.3, 0.5), (0.1, 0.2), (0.1, 0.1)) , ((0.4, 0.2), (0.5, 0.5), (0.7, 0.3)) ,

((0.7, 0.2), (0.3, 0.5), (0.2, 0.3))

〉

⎫⎪⎪⎬
⎪⎪⎭

and

B =

⎧⎪⎪⎨
⎪⎪⎩

〈x1, ((0.6, 0.2), (0.9, 0.1)) , ((0.1, 0.5), (0.1, 0.3)) , ((0.6, 0.3), (0.2, 0.6))〉 ,

〈
x2,

((0.5, 0.4), (0.4, 0.1), (0.1, 0.0)) , ((0.1, 0.3), (0.2, 0.6), (0.4, 0.6)) ,

((0.0, 0.8), (0.3, 0.6), (0.0, 0.9))

〉

⎫⎪⎪⎬
⎪⎪⎭

123



1708 Complex & Intelligent Systems (2022) 8:1703–1721

then A ⊂ B. On the other hand, it is easy to check that

Ac =

⎧⎪⎪⎨
⎪⎪⎩

〈x1, ((0.9, 0.1), (0.2, 0.4)) , ((0.2, 0.3), (0.0, 0.1)) , ((0.5, 0.4), (0.7, 0.1))〉 ,

〈
x2,

((0.7, 0.2), (0.3, 0.5), (0.2, 0.3)) , ((0.2, 0.4), (0.5, 0.5), (0.3, 0.7)) ,

((0.3, 0.5), (0.1, 0.2), (0.1, 0.1))

〉

⎫⎪⎪⎬
⎪⎪⎭

,

A ∪ B =

⎧
⎪⎪⎨
⎪⎪⎩

〈x1, ((0.6, 0.2), (0.9, 0.1)) , ((0.1, 0.5), (0.1, 0.3)) , ((0.6, 0.3), (0.2, 0.6))〉 ,

〈
x2,

((0.5, 0.4), (0.4, 0.1), (0.1, 0.0)) , ((0.1, 0.3), (0.2, 0.5), (0.4, 0.6)) ,

((0.0, 0.8), (0.3, 0.6), (0.0, 0.9))

〉

⎫
⎪⎪⎬
⎪⎪⎭

,

and

A ∩ B =

⎧⎪⎪⎨
⎪⎪⎩

〈x1, ((0.5, 0.4), (0.7, 0.1)) , ((0.3, 0.2), (0.1, 0.0)) , ((0.9, 0.1), (0.2, 0.4))〉 ,

〈
x2,

((0.3, 0.5), (0.1, 0.2), (0.1, 0.1)) , ((0.4, 0.2), (0.5, 0.5), (0.7, 0.3)) ,

((0.7, 0.2), (0.3, 0.5), (0.2, 0.3))

〉

⎫⎪⎪⎬
⎪⎪⎭

.

The following shows that De Morgan’s rules are valid for
set operations defined in Definition 2.

Theorem 1 Let X = {x1, ..., xn} be a finite set and let

A =
{〈
xi ,
(
(T

i, j
A )

pi
j=1, (I

i, j
A )

pi
j=1, (F

i, j
A )

pi
j=1

)〉
: i = 1, 2, ...n

}

and

B =
{〈
xi ,
(
(T

i, j
B )

pi
j=1, (I

i, j
B )

pi
j=1, (F

i, j
B )

pi
j=1

)〉
: i = 1, 2, ...n

}

be two IFVNMSs in X. The following De Morgan’s rules are
satisfied:

(1) (A ∪ B)c = Ac ∩ Bc,
(2) (A ∩ B)c = Ac ∪ Bc.

Proof We obtain

(A ∪ B)c =
{〈
xi ,
(
(F

i, j
A ∩(int) F

i, j
B )

pi
j=1,

((I
i, j
A ∩(int) I

i, j
B )c(int) )

pi
j=1,

(T
i, j
A ∪(int) T

i, j
B )

pi
j=1

)〉
: i = 1, 2, ...n

}

=
{〈
xi ,
(
(F

i, j
A ∩(int) F

i, j
B )

pi
j=1,

((I
i, j
A )c(int) ∪(int) (I

i, j
B )c(int) )

pi
j=1,

(T
i, j
A ∪(int) T

i, j
B )

pi
j=1

)〉
: i = 1, 2, ...n

}

=Ac ∩ Bc

and

(A ∩ B)c =
{〈
xi ,
(
(F

i, j
A ∪(int) F

i, j
B )

pi
j=1,

((I
i, j
A ∪(int) I

i, j
B )c(int) )

pi
j=1,

(T
i, j
A ∩(int) T

i, j
B )

pi
j=1

)〉
: i = 1, 2, ...n

}

=
{〈
xi ,
(
(F

i, j
A ∪(int) F

i, j
B )

pi
j=1,

((I
i, j
A )c(int) ∩(int) (I

i, j
B )c(int) )

pi
j=1,

(T
i, j
A ∩(int) T

i, j
B )

pi
j=1

)〉
: i = 1, 2, ...n

}

=Ac ∪ Bc

which finish the proof. ��
Nowwe define a partial order over the set of all IFVNMSs

on a given set X using“≤(int)”.

Proposition 1 The relation defined on the set of all IFVN-
MSs on a set X by α � β if and only if T

j
α ≤(int)

T
j
β , I

j
α ≥(int) I

j
β and F

j
α ≥(int) F

j
β for any j =

1, ..., p where α =
〈
(T

j
α)

p
j=1, (I

j
α)

p
j=1, (F

j
α)

p
j=1

〉
and β =〈

(T
j
β)

p
j=1, (I

j
β)

p
j=1, (F

j
β)

p
j=1

〉
is a partial order.

Proof Reflexivity and antisymmetry are trivial. To prove

transitivity let α � β and β � γ where γ =
〈
(T

j
γ )

p
j=1,

(I
j
γ )

p
j=1, (F

j
γ )

p
j=1

〉
. Therefore, for any j = 1, ..., p, we have

T
j
α ≤(int) T

j
β, I jα ≥(int) I

j
β,F j

α ≥(int) F
j
β (2.6)

and

T
j
β ≤(int) T

j
γ , I

j
β ≥(int) I

j
γ ,F

j
β ≥(int) F

j
γ . (2.7)
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Since,“≤(int)” is a partial order we have from (2.6) and
(2.7)

T
j
α ≤(int) T

j
γ , I jα ≥(int) I

j
γ ,F j

α ≥(int) F
j
γ

which yields that α � γ . ��
Note that

0 = (((0, 1) , ... (0, 1)) , ((1, 0) , ... (1, 0)) , ((1, 0) , ... (1, 0)))

and

1 = (((1, 0) , ... (1, 0)) , ((0, 1) , ... (0, 1)) , ((0, 1) , ... (0, 1)))

are the minimal and the maximal elements of the IFVNMVs
with respect to“�”.

Algebraic operations for IFVNMVs

In this section, using intuitionistic fuzzy t-norms and intu-
itionistic fuzzy t-conorms, we define some algebraic opera-
tions for IFVNMVs.

Definition 3 Let α =
〈
(T

j
α)

p
j=1, (I

j
α)

p
j=1, (F

j
α)

p
j=1

〉
and β =〈

(T
j
β)

p
j=1, (I

j
β)

p
j=1, (F

j
β)

p
j=1

〉
be two IFVNMVs with same

sequence lengths p ∈ Z
+, let T be an intuitionistic t-norm

and let N be a fuzzy negator. Then,

(i) α ⊕ β :=
〈(
T ∗
(
T

j
α,T

j
β

))p
j=1

,
(
T
(
I
j
α, I

j
β

))p
j=1

,

(
T
(
F
j
α,F

j
β

))p
j=1

〉
,

(ii) α ⊗ β :=
〈(
T
(
T

j
α,T

j
β

))p
j=1

,
(
T ∗
(
I
j
α, I

j
β

))p
j=1

,

(
T ∗
(
F
j
α,F

j
β

))p
j=1

〉

where T ∗ is the dual intuitionistic fuzzy t-conorm of T with
respect to N .

The following proposition confirms that the sum and the
product of two IFVNMVs are also IFVNMVs.

Proposition 2 Let α and β be two IFVNMVs, let T be an
intuitionistic t-norm and let T ∗ be the dual intuitionistic t-
conorm of T with respect to a fuzzy negator. Then, α⊕β and
α ⊗ β are IFVNMVs.

Proof Since T and T ∗ have range I ∗ the proof is trivial. ��
Now, we define multiplication by a positive constant and

a positive power of IFVNMVs using additive generators of
ordinary t-norms.

Definition 4 Let α =
〈
(T

j
α)

p
j=1, (I

j
α)

p
j=1, (F

j
α)

p
j=1

〉
be an

IFVNMV with sequence length p ∈ Z
+ and let g be the

additive generator of a t-norm and let h(t) = g(1− t). Then,

i) For λ > 0, λα =
{〈

(T
j
λα)

p
j=1, (I

j
λα)

p
j=1, (F

i, j
λα )

p
j=1

〉

: i = 1, 2, ...n} where T
j
λα = (T j,t

λα , T j, f
λα ), I

j
λα =

(I j,tλα , I j, fλα ), F j
λα = (F j,t

λα , F j, f
λα ) and

T j,t
λα := h−1

(
λh
(
T j,t

α

))

T j, f
λα := g−1

(
λg
(
T j, f

α

))

I j,tλα := g−1
(
λg
(
I j,tα

))

I j, fλα := h−1
(
λh
(
I j, fα

))

and

F j,t
λα := g−1

(
λg
(
F j,t

α

))

F j, f
λα := h−1

(
λh
(
F j, f

α

))

for any j = 1, ..., p.

(ii) For λ > 0, αλ :=
{〈

(T
j
αλ)

p
j=1, (I

j
αλ)

p
j=1, (F

i, j
αλ )

p
j=1

〉

: i = 1, 2, ...n} where T
j
αλ := (T j,t

αλ , T j, f
αλ ), I j

αλ :=
(I j,t

αλ , I j, f
αλ ), F j

αλ := (F j,t
αλ , F j, f

αλ ) and

T j,t
αλ := g−1

(
λg
(
T j,t

α

))

T j, f
αλ := h−1

(
λh
(
T j, f

α

))

I j,t
αλ := h−1

(
λh
(
I j,tα

))

I j, f
αλ := g−1

(
λg
(
I j, fα

))

and

F j,t
αλ := h−1

(
λh
(
F j,t

α

))

F j, f
αλ := g−1

(
λg
(
F j, f

α

))

for any j = 1, ..., p.

The following theorem validates that λα and αλ are also
an IFVNMVs.
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Theorem 2 Let α and β be two IFVNMVs and λ > 0. Then,
λα and αλ are IFVNMVs on X.

Proof We prove that λα is an IFVNMV. Since T j,t
α ≤ 1 −

T j, f
α and h, h−1 are increasingwe obtain for any j = 1, ..., p

that

0 ≤ T j,t
λα + T j, f

λα

= h−1
(
λh
(
T j,t

α

))
+ g−1
(
λg
(
T j, f

α

))

≤ h−1
(
λh
(
1 − T j, f

α

))
+ g−1
(
λg
(
T j, f

α

))

= 1 − g−1
(
λg
(
T j, f

α

))
+ g−1
(
λg
(
T j, f

α

))

= 1

which proves that T j
λα is an I FV . Similarly, we can prove

that I jλα,F
j
λα,T

j
αλ, I

j
αλ and F

j
αλ are IFVs. ��

Some properties of the operational laws are given in the
following theorem.

Theorem 3 Let α, β and ν be IFVNMVs on X. Assume that
t-norm T , t-conorm S and intuitionistic fuzzy t-norm T are
generated by an algebraic generator g and let h(t) = g(1−
t). Then,

(i) α ⊕ β = β ⊕ α,
(ii) α ⊗ β = β ⊗ α,
(iii) (α ⊕ β) ⊕ ν = α ⊕ (β ⊕ ν),
(iv) (α ⊗ β) ⊗ ν = α ⊗ (β ⊗ ν),
(v) λ(α ⊕ β) = λα ⊕ λβ, λ > 0,
(vi) (λ + γ )α = λα ⊕ γα, λ, γ > 0,
(vii) (α ⊗ β)λ = αλ ⊗ βλ, λ > 0,
(viii) αλ ⊗ αγ = αλ+γ , λ, γ > 0.
(ix) If α � β, then α ⊕ ϕ � β ⊕ ϕ.
(x) If α � β, then α ⊗ ϕ � β ⊗ ϕ.
(xi) α ⊕ 0 = α.
(xii) α ⊗ 1 = 1.

Proof (i) and (ii) are trivial.
(iii)We know that

T
j
α⊕β

=
(
h−1
(
h
(
T , j,t

α

)
+ h
(
T , j,t

β

))
, g−1
(
g
(
T , j, f

α

)

+g
(
T , j, f

β

)))

for any j = 1, ..., p which yields that

T
j
(α⊕β)⊕ν = T ∗ (

T
j
α⊕β,T j

ν

)

=
(
h−1
(
h
(
h−1
(
h
(
T , j,t

α

)

+h
(
T , j,t

β

)))
+ h
(
T , j,t

ν

))
,

g−1
(
g
(
g−1
(
g
(
T , j, f

α

)
+ g
(
T , j, f

β

)))

+g
(
T , j, f

ν

)))

=
(
h−1
(
h
(
T , j,t

α

)
+ h
(
T , j,t

β

)

+h
(
T , j,t

ν

))
,

g−1
(
g
(
T , j, f

α

)
+ g
(
T , j, f

β

)
+ g
(
T , j, f

ν

)))

=
(
h−1
(
h
(
T , j,t

α

)
+ h
(
h−1
(
h
(
T , j,t

β

)

+h
(
T , j,t

ν

))))
,

g−1
(
g
(
T , j, f

α

)
+ g
(
g−1
(
g
(
T , j, f

β

)

+g
(
T , j, f

ν

)))))

= T ∗ (
T

j
α,T

j
β⊕ν

)

= T
j
α⊕(β⊕ν).

Similarly, we get I j(α⊕β)⊕ν = I
j
α⊕(β⊕ν) and F

j
(α⊕β)⊕ν =

F
j
α⊕(β⊕ν) for any j = 1, ..., p .
(iv) It is clear that

T
j
α⊗β

=
(
g−1
(
g
(
T , j,t

α

)
+ g
(
T , j,t

β

))
, h−1
(
h
(
T , j, f

α

)

+h
(
T , j, f

β

)))

for any j = 1, ..., p. Therefore, we obtain

T
j
(α⊗β)⊗ν = T

(
T

j
α⊗β,T j

ν

)

=
(
g−1
(
g
(
g−1
(
g
(
T , j,t

α

)
+ g
(
T , j,t

β

)))

+g
(
T , j,t

ν

))
,

h−1
(
h
(
h−1
(
h
(
T , j, f

α

)
+ h
(
T , j, f

β

)))

+h
(
T , j, f

ν

)))

=
(
g−1
(
g
(
T , j,t

α

)
+ g
(
T , j,t

β

)
+ g
(
T , j,t

ν

))
,

h−1
(
h
(
T , j, f

α

)
+ h
(
T , j, f

β

)
+ h
(
T , j, f

ν

)))

=
(
g−1
(
g
(
T , j,t

α

)
+ g
(
g−1
(
g
(
T , j,t

β

)
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+g
(
T , j,t

ν

))))
,

h−1
(
h
(
T , j, f

α

)
+ h
(
h−1
(
h
(
T , j, f

β

)

+h
(
T , j, f

ν

)))))

= T
(
T

j
α,T

j
β⊗ν

)

= T
j
α⊗(β⊗ν).

Similarly, we get I j(α⊗β)⊗ν = I
j
α⊗(β⊗ν) and F

j
(α⊗β)⊗ν =

F
j
α⊗(β⊗ν) for any j = 1, ..., p.
(v) We have for any j = 1, ..., p that

T
j
λ(α⊕β) =

(
h−1
(
λh
(
T j,t

α⊕β

))
, g−1
(
λg
(
T j, f

α⊕β

)))

=
(
h−1
(
λh
(
S
(
T j,t

α , T j,t
β

)))
,

g−1
(
λg
(
T
(
T j, f

α , T j, f
β

))))

=
(
h−1
(
λh
(
h−1
(
h
(
T j,t

α

)
+ h
(
T j,t

β

))))

g−1
(
λg
(
g−1
(
g
(
T j, f

α

)
+ g
(
T j, f

α

)))))

=
(
h−1
(
λh
(
T j,t

α

)
+ λh
(
T j,t

β

))

g−1
(
λg
(
T j, f

α

)
+ λg
(
T j, f

α

)))
. (3.1)

On the other hand, we obtain

T
j
λα⊕λβ = T ∗ (

T
j
λα,T

j
λβ

)

=
(
S
(
T j,t

λα , T j,t
λβ

)
, T
(
T j, f

λα , T j, f
λβ

))
(
h−1
(
h
(
T j,t

λα

)
+ h
(
T j,t

λβ

))
, g−1
(
g
(
T j, f

λα

)

+g
(
T j, f

λβ

)))

=
(
h−1
(
h
(
h−1
(
λh
(
T j,t

λα

)))

+h
(
h−1
(
λh
(
T j,t

λβ

))))
,

g−1
(
g
(
g−1
(
λg
(
T j, f

λα

)))

+g
(
hg−1
(
λg
(
T j, f

λβ

)))))

=
(
h−1
(
λh
(
T j,t

λα

)
+ λh
(
T j,t

λβ

))
,

g−1
(
λg
(
T j, f

λα

)
+ λg
(
T j, f

λβ

)))
. (3.2)

From (3.1) and (3.2) we have T j
λ(α⊕β) = T

j
λα⊕λβ . Simi-

larly, we obtain I jλα⊕λβ = I
j
λα⊕λβ and F j

λα⊕λβ = F
j
λα⊕λβ for

any j = 1, ..., p which proves the claim.
vi) We get for any j = 1, ..., p that

T
j
λα⊕γα = T ∗ (

T
j
λα,T j

γα

)

= T ∗ ((h−1
(
λh
(
T j,t

α

))
, g−1
(
λg
(
T j, f

α

)))
,

(
h−1
(
γ h
(
T j,t

α

))
, g−1
(
γ g
(
T j, f

α

))))

=
(
S
(
h−1
(
λh
(
T j,t

α

))
, h−1
(
γ h
(
T j,t

α

)))
,

T
(
g−1
(
λg
(
T j, f

α

))
, g−1
(
γ g
(
T j, f

α

))))

=
(
h−1
(
h
(
h−1
(
λh
(
T j,t

α

)))

+h
(
h−1
(
γ h
(
T j,t

α

))))
,

g−1
(
g
(
g−1
(
λg
(
T j, f

α

)))

+g
(
g−1
(
γ g
(
T j, f

α

)))))

=
(
h−1
(
λh
(
T j,t

α

)
+ γ h
(
T j,t

α

))
,

g−1
(
λg
(
T j, f

α

)
+ γ g
(
T j, f

α

)))

=
(
h−1
(
(λ + γ ) h

(
T j,t

α

))
,

g−1
(
(λ + γ ) g

(
T j, f

α

)))

= T
j
(λ+γ )α.

Similarly, we obtain I
j
λα⊕γα = I

j
(λ+γ )α and F

j
λα⊕γα =

F
j
(λ+γ )α for any j = 1, ..., p which proves the claim.
vii) We obtain for any j = 1, ..., p that

T
j
(α⊗β)λ

=
(
g−1
(
λg
(
T j,t

α⊗β

))
, h−1
(
λh
(
T j, f

α⊗β

)))

=
(
g−1
(
λg
(
T
(
T j,t

α , T j,t
β

)))
,

h−1
(
λh
(
S
(
T j, f

α , T j, f
β

))))

=
(
g−1
(
λg
(
g−1
(
g
(
T j,t

α

)
+ g
(
T j,t

β

))))
,

h−1
(
λh
(
h−1
(
h
(
T j, f

α

)
+ h
(
T j, f

β

)))))

=
(
g−1
(
λg
(
T j,t

α

)
+ λg
(
T j,t

β

))
,

h−1
(
λh
(
T j, f

α

)
+ λh
(
T j, f

β

)))
(3.3)

and

T
j
αλ⊗βλ =

(
T
(
T j,t

αλ , T j,t
βλ

)
, S
(
T j, f

αλ , T j, f
βλ

))

=
(
T
(
g−1
(
λg
(
T j,t

α

))
, g−1
(
λg
(
T j,t

β

)))
,

S
(
h−1
(
λh
(
T j, f

α

))
, h−1
(
λh
(
T j, f

β

))))

=
(
g−1
(
g
(
g−1
(
λg
(
T j,t

α

)))

+g
(
g−1
(
λg
(
T j,t

β

))))
,

h−1
(
h
(
h−1
(
λh
(
T j, f

α

)))
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+h
(
h−1
(
λh
(
T j, f

β

)))))

=
(
g−1
(
λg
(
T j,t

α

)
+ λg
(
T j,t

β

))
,

h−1
(
λh
(
T j, f

α

)
+ λh
(
T j, f

β

)))
. (3.4)

Now, from (3.3) and (3.4)we getT j
(α⊗β)λ

= T
j
αλ⊗βλ . Sim-

ilarly, we obtain I
j
(α⊗β)λ

= I
j
αλ⊗βλ and F

j
(α⊗β)λ

= F
j
αλ⊗βλ

for any j = 1, ..., p which proves the claim.
viii)We have for any j = 1, ..., p that

T
j
αλ⊗αγ =

(
T
(
T j,t

αλ , T j,t
αγ

)
, S
(
T j, f

αλ , T j, f
αγ

))

=
(
T
(
g−1
(
λg
(
T j,t

α

))
, g−1
(
γ g
(
T j,t

α

)))
,

S
(
h−1
(
λh
(
T j, f

α

))
, h−1
(
γ h
(
T j, f

α

))))

=
(
g−1
(
g
(
g−1
(
λg
(
T j,t

α

)))

+g
(
g−1
(
γ g
(
T j,t

α

))))
,

h−1
(
h
(
h−1
(
λh
(
T j, f

α

)))

+h
(
h−1
(
γ h
(
T j, f

α

)))))

=
(
g−1
(
λg
(
T j,t

α

)
+ γ g
(
T j,t

α

))

h−1
(
λh
(
T j, f

α

)
+ γ h
(
T j, f

α

)))

=
(
g−1
(
(λ + γ ) g

(
T j,t

α

))
,

h−1
(
(λ + γ ) h

(
T j, f

α

)))

= T
j
αλ+γ .

Similarly,weobtain I j
αλ⊗αγ = I

j
αλ+γ andF

j
αλ⊗αγ = F

j
αλ+γ

for any j = 1, ..., p which proves the claim.
ix) Let α � β. Then, for any j = 1, ..., p, we have

T
j
α ≤(int) T

j
β

which yields that

T j,t
α ≤ T j,t

β ,T j, f
α ≥ T j, f

β

and soT ∗
(
T

j
α,T

j
ϕ

)
≤(int) T ∗

(
T

j
β,T

j
ϕ

)
. Similarly I jα ≥(int)

I
j
β andF j

α ≥(int) F
j
β imply that T

(
I
j
α, I

j
ϕ

)
≥(int) T

(
I
j
β, I

j
ϕ

)

and T
(
F
j
α,F

j
ϕ

)
≥(int) T

(
F
j
β,F

j
ϕ

)
. Hence, α ⊕ϕ � β ⊕ϕ.

x) The proof is similar to the proof of (ix).
xi) We have

α ⊕ 0

=
〈(
T ∗ (

T
j
α, (1, 0)

))p
j=1

,
(
T
(
I
j
α, (0, 1)

))p
j=1

,

(
T
(
F
j
α, (0, 1)

))p
j=1

〉
.

On the other hand, for any j = 1, ..., p, we obtain

T ∗ (
T

j
α, (1, 0)

)
= h−1
(
h
(
T j,t

α

)
+ h (0)
)

= h−1
(
h
(
T j,t

α

))

= T j,t
α

which yields that T j
α⊕0

= T
j
α . Similarly, we have I j

α⊕0
=

F
j
α and F

j
α⊕0

= T
j
α . Hence, we get α ⊕ 0 = α.

xii) The proof is similar to the proof of (xi). ��

Remark 3 FromTheorem3, it is clear that “⊗” and “⊕”define
a t-norm and a t-conorm on the set of IFVNMVs, respec-
tively.

Weighted aggregation operators

Aggregation operators are very crucial while transforming
the data that is represented by a fuzzy set to a more compact
form. In this section, using operations discussed in Sect. 3,
we give some weighted aggregation operators for classes of
IFVNMVs. Throughout this section, we study with t-norm
T , the dual t-conorm S of T and intuitionistic fuzzy t-norm
T that are generated by an algebraic generator g.

Weighted arithmetic aggregation operator

In the following, we define a weighted arithmetic aggrega-
tion operator for collections of IFVNMVs given with equal
sequence lengths.

Definition 5 Let
{
αi =
〈
(T

, j
αi )

p
j=1, (I

, j
αi )

p
j=1, (F

, j
αi )

p
j=1

〉

: i = 1, ..., n} be a collection of IFVNMVs with equal
sequence lengths p ∈ Z

+. Then, a weighted arithmetic
aggregation operator W A − I FV NMV is defined by

W A − I FV NMV (α1, ..., αn) :=
n⊕

i=1

ωiαi

where 0 ≤ ωi ≤ 1 for any i = 1, ..., n with
∑n

i=1
ωi = 1.

Theorem 4 Let
{
αi =
〈
(T

, j
αi )

p
j=1, (I

, j
αi )

p
j=1, (F

, j
αi )

p
j=1

〉

: i = 1, ..., n} be a collection of IFVNMVs with equal
sequence lengths p ∈ Z

+ and let 0 ≤ ωi ≤ 1 for
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any i = 1, ..., n with
∑n

i=1ωi = 1. Then, W A −
I FV NMV (α1, ..., αn) is an IFVNMV and we have

W A − I FV NMV (α1, ..., αn)

=
⎛
⎝
⎛
⎝
{
h−1

(
n∑

i=1
ωi h
(
T j ,t
αi

))}p

j=1

,

{
g−1

(
n∑

i=1
ωi g
(
T j , f
αi

))}p

j=1

⎞
⎠ ,

⎛
⎝
{
g−1

(
n∑

i=1
ωi g
(
I j,tαi

))}p

j=1

,

{
h−1

(
n∑

i=1
ωi h
(
I j , fαi

))}p

j=1

⎞
⎠ ,

⎛
⎝
{
g−1

(
n∑

i=1
ωi g
(
F j,t
αi

))}p

j=1

,

{
h−1

(
n∑

i=1
ωi h
(
F j , f
αi

))}p

j=1

⎞
⎠
⎞
⎠ .

Proof FromProposition 2 andTheorem2,W A−I FV NMV
(α1, ..., αn) is an IFVNMV. For the second part of the proof,
we conduct mathematical induction. For any j = 1, ..., p,
we obtain

T
j
ω1α1⊕ω2α2

= T ∗ (
T

j
ω1α1

,T j
ω2α2

)

= T ∗ ((T j,t
ω1α1

, T j, f
ω1α1

)
,
(
T j,t

ω2α2
, T j, f

ω2α2

))

=
(
S
(
T j,t

ω1α1
, T j,t

ω2α2

)
, T
(
T j, f

ω1α1
, T j, f

ω2α2

))

=
(
h−1
(
h
(
T j,t

ω1α1

)
+ h
(
T j,t

ω2α2

))

, g−1
(
g
(
T j, f

ω1α1

)
+ g
(
T j, f

ω2α2

)))

=
(
h−1
(
h
(
h−1
(
ω1h
(
T j,t

α1

)))

+h
(
h−1
(
ω2h
(
T j,t

α2

))))
,

g−1
(
g
(
g−1
(
ω1g
(
T j, f

α1

)))

+g
(
ω2g
(
T j, f

α2

))))

=
(
h−1
(
ω1h
(
T j,t

α1

)
+ ω2h
(
T j,t

α2

))
,

g−1
(
ω1g
(
T j, f

α1

)
+ ω2g
(
T j, f

α2

))

=
(
h−1
(

2∑
i=1

ωi h
(
T j,t

αi

))
,

g−1
(

2∑
i=1

ωi g
(
T j, f

αi

)))
.

Similar proof is valid for I jω1α1⊕ω2α2
and F

j
ω1α1⊕ω2α2

for
any j = 1, ..., p which yield that the statement is true for
n = 2. Assume that

T
j
An−1

=
(
h−1
(
n−1∑
i=1

ωi h
(
T j,t

αi

))
, g−1
(
n−1∑
i=1

ωi g
(
T j, f

αi

)))

where An :=
⊕n

i=1
ωiαi . Then, we have for any j =

1, ..., p that

T
j
An

= T
j
An−1⊕ωnαn

= T ∗ (
T

j
An−1

,T j
ωnαn

)

= T ∗ ((T j,t
An−1

, T j, f
An−1

)
,
(
T j,t

ωnαn
, T j, f

ωnαn

))

=
(
S
(
T j,t
An−1

, T j,t
ωnαn

)
, T
(
T j, f
An−1

, T j, f
ωnαn

))

=
(
h−1
(
h
(
T j,t
An−1

)
+ h
(
T j,t

ωnαn

))
,

g−1
(
g
(
T j, f
An−1

)
+ g
(
T j, f

ωnαn

)))

=
(
h−1
(
h

(
h−1
(
n−1∑
i=1

ωi h
(
T j,t

αi

)))

+h
(
h−1
(
ωnh
(
T j,t

αn

))))
,

g−1
(
g

(
g−1
(
n−1∑
i=1

ωi g
(
T j, f

αi

)))

+g
(
g−1
(
ωng
(
T j, f

αn

)))))

=
(
h−1
(
n−1∑
i=1

ωi h
(
T j,t

αi

)
+ ωnh
(
T j,t

αn

))
,

g−1
(
n−1∑
i=1

ωi g
(
T j, f

αi

)
+ ωng
(
T j, f

αn

)))

= h−1
(

n∑
i=1

ωi h
(
T j,t

αi

))
, g−1
(

n∑
i=1

ωi g
(
T j, f

αi

))
.

Similar proof is valid for I jAn
and F j

An
for any j = 1, ..., p

which finishes the proof. ��
Proposition 3 W A − I FV NMV (0, ..., 0) =

⊕n

i=1
ωi0

and W A − I FV NMV (1, ..., 1) =
⊕n

i=1
ωi1 = 1.

Proof From Theorem 4, we have

W A − I FV NMV (0, ..., 0) =
n⊕

i=1

ωi0

=
⎛
⎝
⎛
⎝
{
h−1

(
n∑

i=1
ωi h (0)

)}p

j=1

,

{
g−1

(
n∑

i=1
ωi g (1)

)}p

j=1

⎞
⎠ ,

⎛
⎝
{
g−1

(
n∑

i=1
ωi g (1)

)}p

j=1

,

{
h−1

(
n∑

i=1
ωi h (0)

)}p

j=1

⎞
⎠ ,

⎛
⎝
{
g−1

(
n∑

i=1
ωi g (1)

)}p

j=1

,

{
h−1

(
n∑

i=1
ωi h (0)

)}p

j=1

⎞
⎠
⎞
⎠ .

= (((0, 1) , ...(0, 1)) , ((1, 0) , ..., (1, 0)) , ((1, 0) , ..., (1, 0)))

= 0.
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Note here that, g(0) = ∞ and g−1(∞) = 0 stand for
limt→0+ g(t) = ∞ and h(1) = ∞ and h−1(∞) = 1 stand
for limt→1− h(t) = ∞. Similarly, it is seen that

W A − I FV NMV (1, ..., 1) =
n⊕

i=1

ωi1 = 1.

��
The following theorem shows that W A − I FV NMV is

monotone.

Theorem 5 Let
{
αi =
〈
(T

, j
αi )

p
j=1, (I

, j
αi )

p
j=1, (F

, j
αi )

p
j=1

〉
:

i = 1, ..., n} and
{
βi =
〈
(T

, j
βi

)
p
j=1, (I

, j
βi

)
p
j=1, (F

, j
βi

)
p
j=1

〉
:

i = 1, ..., n} be two families of IFVNMVs such that αi � βi
for any i = 1, ..., n. Then,

W A− I FV NMV (α1, ..., αn) � W A− I FV NMV (β1, ...,

βn)

and

WG − I FV NMV (α1, ..., αn) � WG − I FV NMV (β1, ...,

βn).

Proof Assume that αi � βi for any i = 1, ..., n. Then, we
have

T j,t
αi

≤ T j,t
βi

and T j, f
αi

≥ T j, f
βi

.

Since h, h−1, g and g−1 are increasing, we have

h−1

(
n∑

i=1

ωi h
(
T j,t

αi

))
≤ h−1

(
n∑

i=1

ωi h
(
T j,t

βi

))

and

g−1

(
n∑

i=1

ωi g
(
T j, f

αi

))
≥ g−1

(
n∑

i=1

ωi g
(
T j, f

βi

))

which implies that TW A−I FV NMV (α1,...,αn) ≤(int)

TW A−I FV NMV (β1,...,βn).
Similarly, we obtain

IW A−I FV NMV (α1,...,αn) ≥(int) IW A−I FV NMV (β1,...,βn)

and

FW A−I FV NMV (α1,...,αn) ≥(int) FW A−I FV NMV (β1,...,βn).

Therefore,we getW A− I FV NMV (α1, ..., αn) � W A−
I FV NMV (β1, ..., βn). Hence,W A− I FV NMV is mono-
tone with respect to the partial order “�”. ��

Weighted geometric aggregation operator

Definition 6 Let
{
αi =
〈
(T

, j
αi )

p
j=1, (I

, j
αi )

p
j=1, (F

, j
αi )

p
j=1

〉
:

i = 1, ..., n} be a collection of IFVNMVs with equal
sequence lengths p ∈ Z

+. Then, aweightedgeometric aggre-
gation operator WG − I FV NMV is defined by

WG − I FV NMV (α1, ..., αn) :=
n⊗

i=1

α
ωi
i

where 0 ≤ ωi ≤ 1 for any i = 1, ..., n with
∑n

i=1
ωi = 1.

Theorem 6 Let
{
αi =
〈
(T

, j
αi )

p
j=1, (I

, j
αi )

p
j=1, (F

, j
αi )

p
j=1

〉
:

i = 1, ..., n}bea collectionof IFVNMVswith equal sequence
lengths p ∈ Z

+ and let 0 ≤ ωi ≤ 1 for any i = 1, ..., n with∑n

i=1
ωi = 1. Then, WG − I FV NMV (α1, ..., αn) is an

IFVNMV and we have

WG − I FV NMV (α1, ..., αn)

=
(({

g−1
(

n∑
i=1

ωi g
(
T j,t

αi

))}p

j=1

,

{
h−1
(

n∑
i=1

ωi h
(
T j, f

αi

))}p

j=1

)
,

({
h−1
(

n∑
i=1

ωi h
(
I j,tαi

))}p

j=1

,

{
g−1
(

n∑
i=1

ωi g
(
I j, fαi

))}p

j=1

)
,

({
h−1
(

n∑
i=1

ωi h
(
F j,t

αi

))}p

j=1

,

{
g−1
(

n∑
i=1

ωi g
(
F j, f

αi

))}p

j=1

))
.

Proof The proof is similar to the proof of Theorem 4. There-
fore, we omit it. ��
Proposition 4 WG − I FV NMV (0, ..., 0) =

⊕n

i=1
ωi0

and WG − I FV NMV (1, ..., 1) =
⊕n

i=1
ωi1 = 1.

Proof It can be proved similar to Proposition 3. ��
Remark 4 Similar to Theorem 5, it can be proved that

WG − I FV NMV (α1, ..., αn) � WG − I FV NMV

(β1, ..., βn)

whenever αi � βi for any i = 1, ..., n. Hence, WG −
I FV NMV is monotone with respect to partial order “�”.

123



Complex & Intelligent Systems (2022) 8:1703–1721 1715

Some particular cases ofWA− IFVNMV and
WG− IFVNMV

In this subsection, we study some particular cases of W A −
I FV NMV and WG − I FV NMV by choosing particular
additive generators.

(1) Consider the generator g recalled in Example 1 and
defined by g(t) = − log t . Then, W A − I FV NMV
and WG − I FV NMV turn into following Algebraic
weighted aggregation operators:

W AA − I FV NMV (α1, ..., αn)

:=
(({

1 −
n∏

i=1

(
1 − T j,t

αi

)ωi
}p

j=1

,

{
n∏

i=1

(
T j, f

αi

)ωi
}p

j=1

)
,

({
n∏

i=1

(
I j,tαi

)ωi
}p

j=1

,

{
1 −

n∏
i=1

(
1 − I j, fαi

)ωi
}p

j=1

)
,

({
n∏

i=1

(
F j,t

αi

)ωi
}p

j=1

,

{
1 −

n∏
i=1

(
1 − F j, f

αi

)ωi
}p

j=1

))

(4.1)

and

WGA − I FV NMV (α1, ..., αn)

:=
(({

n∏
i=1

(
T j,t

αi

)ωi
}p

j=1

,

{
1 −

n∏
i=1

(
1 − T j, f

αi

)ωi
}p

j=1

)
,

({
1 −

n∏
i=1

(
1 − I j,tαi

)ωi
}p

j=1

,

{
n∏

i=1

(
I j, fαi

)ωi
}p

j=1

)
,

({
1 −

n∏
i=1

(
1 − F j,t

αi

)ωi
}p

j=1

,

{
n∏

i=1

(
F j, f

αi

)ωi
}p

j=1

))
,

(4.2)

respectively.
(2) Consider the additive generator g defined by g(t) =

log 2−t
t . Then,W A− I FV NMV andWG− I FV NMV

turn into following Einstein weighted aggregation oper-
ators:

W AE − I FV NMV (α1, ..., αn)

:=
⎛
⎜⎝

⎛
⎜⎝

⎧⎪⎨
⎪⎩

∏n
i=1

(
1 + T j,t

αi

)ωi −∏n
i=1

(
1 − T j,t

αi

)ωi

∏n
i=1

(
1 + T j,t

αi

)ωi +∏n
i=1

(
1 − T j,t

αi

)ωi

⎫⎪⎬
⎪⎭

p

j=1

,

⎧⎪⎨
⎪⎩

2
∏n

i=1

(
T j, f

αi

)ωi

∏n
i=1

(
2 − T j, f

αi

)ωi +∏n
i=1

(
T j, f

αi

)ωi

⎫⎪⎬
⎪⎭

p

j=1

⎞
⎟⎠ ,

⎛
⎜⎝

⎧⎪⎨
⎪⎩

2
∏n

i=1

(
I j,tαi

)ωi

∏n
i=1

(
2 − I j,tαi

)ωi +∏n
i=1

(
I j,tαi

)ωi

⎫⎪⎬
⎪⎭

p

j=1

,

⎧⎪⎨
⎪⎩

∏n
i=1

(
1 + I j, fαi

)ωi −∏n
i=1

(
1 − I j, fαi

)ωi

∏n
i=1

(
1 + I j, fαi

)ωi +∏n
i=1

(
1 − I j, fαi

)ωi

⎫⎪⎬
⎪⎭

p

j=1

⎞
⎟⎠ ,

⎛
⎜⎝

⎧⎪⎨
⎪⎩

2
∏n

i=1

(
F j,t

αi

)ωi

∏n
i=1

(
2 − F j,t

αi

)ωi +∏n
i=1

(
F j,t

αi

)ωi

⎫⎪⎬
⎪⎭

p

j=1

,

⎧⎪⎨
⎪⎩

∏n
i=1

(
1 + F j, f

αi

)ωi −∏n
i=1

(
1 − F j, f

αi

)ωi

∏n
i=1

(
1 + F j, f

αi

)ωi +∏n
i=1

(
1 − F j, f

αi

)ωi

⎫⎪⎬
⎪⎭

p

j=1

⎞
⎟⎠

⎞
⎟⎠ (4.3)
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and

WGE − I FV NMV (α1, ..., αn)

:=

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

⎧⎪⎨
⎪⎩

2
∏n

i=1

(
T j,t

αi

)ωi

∏n
i=1

(
2 − T j,t

αi

)ωi +∏n
i=1

(
T j,t

αi

)ωi

⎫⎪⎬
⎪⎭

p

j=1

,

⎧⎪⎪⎨
⎪⎪⎩

∏n
i=1

(
1 + T j, f

αi

)ωi −∏n
i=1

(
1 − T j, f

αi

)ωi

∏n
i=1

(
1 + T j, f

αi

)ωi +
n∏

i=1

(
1 − T j, f

αi

)ωi

⎫⎪⎪⎬
⎪⎪⎭

p

j=1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎝

⎧
⎪⎨
⎪⎩

∏n
i=1

(
1 + I j,tαi

)ωi −∏n
i=1

(
1 − I j,tαi

)ωi

∏n
i=1

(
1 + I j, fαi

)ωi +∏n
i=1

(
1 − I j, fαi

)ωi

⎫
⎪⎬
⎪⎭

p

j=1

,

⎧
⎪⎨
⎪⎩

2
∏n

i=1

(
I j, fαi

)ωi

∏n
i=1

(
2 − I j, fαi

)ωi +∏n
i=1

(
I j, fαi

)ωi

⎫
⎪⎬
⎪⎭

p

j=1

⎞
⎟⎠ ,

⎛
⎜⎝

⎧
⎪⎨
⎪⎩

∏n
i=1

(
1 + F j,t

αi

)ωi −∏n
i=1

(
1 − F j,t

αi

)ωi

∏n
i=1

(
1 + F j,t
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respectively.

An application of IFVNMVs to a classification
problem

In this section, we give a classification method using
I FV NMSs and aggregation operators defined in Section
“Weighted aggregation operators”.

A simplified neutrosophic valued cosine similarity
measure for IFVNMVs

Similarity measures are convenient tools in the classifica-
tion. A cosine similarity measure between IFSs depends on
the cosine of the angle of the vector representations of the
membership and non-membership degrees (see e.g., [45]).
Now, we propose a simplified neutrosophic valued cosine
similarity measure. First, let us recall the notion of SNS and
simplified neutrosophic value (SNV). A SNS [16] on a uni-
versal set X = {x1, ..., xn} is given by

A = {〈xi , (TA(xi ), IA(xi ), FA(xi ))〉 : i = 1, ..., n}

where TA, IA, FA : X → [0, 1] are the truth, indeterminacy
and falsity functions. For a fixed x ∈ X ,

τ = 〈Tτ , Iτ , Fτ 〉 := 〈TA(x), IA(x), FA(x)〉

is called a simplified neutrosophic value (SNV).

Definition 7 A simplified neutrosophic valued weighted
cosine similarity measure between IFVNMVs α and β with
same sequence lengths p is given with

CSN (α, β)

:=

⎛
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(5.1)

where 0 ≤ ω j ≤ 1 for any j = 1, ..., p and
∑p

j=1 ω j = 1.

It is clear that CSN (α, β) is a SNV. Therefore, we need a
score function to rank the values of CSN . Let A = (a, b, c)
be a SNV. An improved score function N defined by

N (A) = 1 + (a − 2b − c)(2 − a − c)

2
(5.2)

has been proposed by Nancy and Garg [25]. We use the score
function N to rank the results of CSN .
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In this sub-section, we consider a real-life example of classi-
fication. Before, we summarize the proposed method by the
following simple algorithm:

Step 1: Consider the whole data set as X = {x1, ..., xn},
where n is the sample size of the data set.

Step 2: Separate the database as the training set T =
{t1, ..., tm} and testing set Y = {y1, ..., yl}, wherem and l are
the sample sizes of the training and testing sets, respectively.

Step 3:According to the view of p experts, the value sizes
are expressed as IFVNMVs.

Step 4: For each attribute xi in data set, calculate the range
as R = x(m)−x(1) where x(m) is the maximum value and x(1)

is the minimum value of the data set. The range is divided
into c categories using percentiles. Determine the levels and
each level corresponds to an IFVNMV from Step 3.

Step 5: For each class in the training set, calculate the
mean value X̄ for each attribute. The interval that X̄ is coming
from determines the level. Obtain the IFVNMS representa-
tions that consists of IFVNMVs from Step 4 of each class
using these levels and using a weighted aggregation operator,
obtain the IFVNMV representation of each class.

Step 6:With the same algorithm, determine the IFVNMV
representation of the each sample from testing set.

Step 7:Calculate the similaritymeasures usingCSN (5.1)
and obtain the scores from score function N (5.2). Then, clas-
sify each sample according to the maximum score function
value.

It should be also noted that, these steps are repeated using
different aggregation operator.

As an application, a real example of classification from
UCI Machine Learning Repository is conducted to show the
performance of the method. Recently, researchers have car-
ried out some studies on iris dataset with the help of fuzzy
logic. For example, Singh and Ganie [47–49] have proposed
similarity and correlation measures for some various fuzzy
sets and have applied them to a classification problem with
Iris database. In these studies, the authors have introduced
the conversion formula from crisp data to fuzzy data. Also,
to assess the performance of the proposed measures a per-
formance index, namely “Degree of confidence (DoC)”, has
been introduced. In view of DoC, these proposed measures
are found to outperform the existing compatibility measures
and they have not proposed accuracy mean for result of clas-
sification. Moreover, Fei et al. [5] have introduced a vector
valued similarity measure for IFSs and they have applied it to
the same classification problem. Di Martino and Sessa [50]
have proposed classification algorithm based on direct and
inverse fuzzy transforms.

The data are for iris plants and consists of 150 sam-
ples. These samples are divided into three categories, namely
Setosa, Versicolour and Virginica and each sample has four
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Table 4 IFVNMV representations of each class with respect to aggregation operators (1=WAA-IFVNMV, 2=WGA-IFVNMV, 3=WAE -IFVNMV,
4=WGE -IFVNMV)

A.O. Class IFVNMV

Setosa {(0.38 0.46), (0.37 0.52), (0.44 0.46)} {(0.82 0.17), (0.84 0.12), (0.89 0.09)} {(0.55 0.36), (0.51 0.39), (0.53
0.41)}

1 Versicolour {(0.61 0.26), (0.61 0.31), (0.67 0.22)} {(0.65 0.33), (0.64 0.32), (0.71 0.24)} {(0.31 0.61), (0.26 0.64), (0.31
0.64)}

Virginica {(0.73 0.15), (0.71 0.22), (0.73 0.16)} {(0.70 0.25), (0.73 0.22), (0.76 0.19)} {(0.22 0.72), (0.17 0.70), (0.25
0.70)}

Setosa {(0.21 0.75), (0.22 0.69), (0.30 0.63)} {(1.00 0.00), (1.00 0.00), (1.00 0.00)} {(0.76 0.15), (0.75 0.22), (0.69
0.24)}

2 Versicolour {(0.59 0.31), (0.59 0.33), (0.65 0.24)} {(0.65 0.32), (0.64 0.30), (0.71 0.24)} {(0.33 0.57), (0.30 0.61), (0.31
0.64)}

Virginica {(0.68 0.22), (0.65 0.27), (0.70 0.20)} {(0.71 0.24), (0.75 0.20), (0.77 0.18)} {(0.27 0.66), (0.23 0.66), (0.27
0.68)}

Setosa {(0.34 0.51), (0.34 0.55), (0.41 0.48)} {(0.83 0.16), (0.85 0.11), (0.90 0.09)} {(0.58 0.32), (0.55 0.35), (0.56
0.38)}

3 Versicolour {(0.61 0.27), (0.61 0.31), (0.67 0.22)} {(0.65 0.33), (0.64 0.31), (0.71 0.24)} {(0.31 0.60), (0.27 0.64), (0.31
0.64)}

Virginica {(0.72 0.15), (0.70 0.22), (0.73 0.16)} {(0.70 0.25), (0.74 0.21), (0.76 0.19)} {(0.22 0.72), (0.17 0.69), (0.25
0.70)}

Setosa {(0.22 0.72), (0.24 0.67), (0.31 0.61)} {(1.00 0.00), (1.00 0.00), (1.00 0.00)} {(0.74 0.16), (0.73 0.23), (0.67
0.26)}

4 Versicolour {(0.59 0.31), (0.59 0.33), (0.66 0.24)} {(0.65 0.32), (0.64 0.31), (0.71 0.24)} {(0.33 0.58), (0.29 0.62), (0.31
0.64)}

Virginica {(0.69 0.21), (0.66 0.26), (0.71 0.19)} {(0.70 0.24), (0.74 0.20), (0.77 0.18)} {(0.26 0.67), (0.22 0.67), (0.26
0.68)}

Table 5 Scores of similarity measures between IFVNMVs of testing sets and all classes

Setosa Versicolour Virginica

Setosa Versicolour Virginica Setosa Versicolour Virginica Setosa Versicolour Virginica

0.99 0.70 0.66 0.92 0.93 0.85 0.71 0.93 0.99

0.97 0.91 0.88 0.91 0.94 0.84 0.69 0.91 0.97

0.93 0.92 0.92 0.84 0.95 0.86 0.76 0.97 0.99

0.97 0.69 0.59 0.83 0.99 0.98 0.74 0.95 0.99

0.98 0.75 0.65 0.84 0.99 0.94 0.70 0.92 0.98

0.99 0.86 0.81 0.79 0.99 0.97 0.68 0.93 0.98

0.99 0.78 0.72 0.77 0.99 0.98 0.64 0.91 0.99

0.95 0.65 0.54 0.90 0.98 0.93 0.71 0.91 0.98

0.99 0.77 0.69 0.85 0.98 0.85 0.74 0.90 0.99

0.99 0.86 0.80 0.79 0.98 0.91 0.70 0.97 0.98

0.89 0.49 0.39 0.84 0.99 0.92 0.69 0.96 0.99

0.95 0.65 0.54 0.79 0.96 0.90 0.70 0.95 0.99

0.95 0.92 0.87 0.90 0.98 0.94 0.82 0.99 0.98

0.99 0.91 0.87 0.85 0.99 0.90 0.70 0.91 0.99

0.98 0.90 0.84 0.86 0.95 0.92 0.65 0.93 0.98

0.95 0.71 0.69 0.75 0.95 0.90 0.64 0.90 0.99

0.95 0.65 0.54 0.78 0.96 0.93 0.70 0.92 0.99

0.99 0.90 0.82 0.90 0.99 0.95 0.72 0.89 0.98

0.98 0.89 0.81 0.85 0.99 0.95 0.69 0.91 0.98

0.95 0.65 0.52 0.77 0.98 0.91 0.80 0.99 0.98
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Table 6 Comparison of
classification study for Iris plant

Study Methodology Accuracy mean

Fei et al. [5] Vector valued similarity measure 90%

Di Martino and Sessa [50] MFC classifier 98.15%

Decision tree J48 98.38%

Multilayer perceptron 98.22%

Naive Bayes 96.55%

Lazy IBK 97.17%

This study Aggregation and score function, similarity measure 97%

attributes, namely Sepal Length (SL), Sepal Width (SW),
Petal Length (PL) and Petal Width (PW). In this example, 30
samples are randomly selected from each category as a train-
ing set and 20 of them are used as a testing set. First, each
value size of the iris plant is represented by an IFVNMV
by adapting Table 2 of [5]. For a fixed i = 1, 2, 3; Ti , Ii

and Fi is considered the truth, indeterminacy and falsity IFV,
respectively, given by the i th expert. The adapted values of
IFVNMs are shown in Table 3.

The IFVNMVs of three classes are obtained as shown in
Table 4 with four different aggregation operators.

Next, similarities are calculated between IFVNMVs of
the three classes and the 20 testing samples of each class and
score functions are calculated based on different aggregation
operators (see Table 4). Table 5 is constructed using aggre-
gation operatorWAA-IFVNMV for the sake of brevity. It can
be seen that other aggregation operators give the same result
as well.

It can be easily seen that, the accuracy is 100% in Setosa,
100% inVersicolour and 90% inVirginica class. The average
accuracy is 97%.

Conclusion

In this study, we introduce the concept of intuitionistic fuzzy-
valued neutrosophic multi-set (IFVNMS) by considering the
sequences of intuitionistic fuzzy values instead of numbers.
Therefore,more detailed information can be keptwhen trans-
forming the data to fuzzy sets. In this manner, it prevents the
loss of information.We present some set theoretic operations
between IFVNMSs. Using general t-norms and t-conorms,
we define some fundamental algebraic operations between
intuitionistic fuzzy-valued neutrosophic values (IFVNMVs).
With the help of these algebraic operations, we introduce
some weighted arithmetic and geometric aggregation oper-
ators. These aggregation operators allow us to aggregate
IFVNMSs to IFVNMVs. Thus, one may obtain more com-
pact and rich representation of real data. By defining a
simplified neutrosophic valued cosine similaritymeasure, we
rank IFVNMVs in the simplified neutrosophic environment.
After this, with the help of an improved score function for

Fig. 1 Application of the proposed theory to the classification

simplified neutrosophic values existing in the literature [25],
we manage to rank results of the cosine similarity measure.
We give an algorithm to give the applicability of the proposed
theory to the classification. We also apply the algorithm to
a real classification from UCI Machine Learning Repository
andwe show that the average accuracy is 97%. The steps how
we used the theoretic part of this paper in the classification
can be seen in Fig. 1.

The proposed theory is applicable in any multi-criteria
decision making problem, pattern recognition and classifi-
cation problems, especially problems with more than one
decision makers. Therefore, this new theory will be a useful
tool in decision and ranking problems such as robot selec-
tion, software selection, green suppliers selection or solid
waste landfill site selection problems etc. In the future, we
give some applications of the proposed theory to somemulti-
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criteria decision making problems such as medical diagnosis
and pattern recognition.
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