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Abstract
Three-dimensional (3D) semantic segmentation of point clouds is important in many scenarios, such as automatic driving,
robotic navigation, while edge computing is indispensable in the devices. Deep learning methods based on point sampling
prove to be computation and memory efficient to tackle large-scale point clouds (e.g. millions of points). However, some local
features may be abandoned while sampling. In this paper, We present one end-to-end 3D semantic segmentation framework
based on dilated nearest neighbor encoding. Instead of down-sampling point cloud directly, we propose a dilated nearest
neighbor encoding module to broaden the network’s receptive field to learn more 3D geometric information. Without increase
of network parameters, our method is computation and memory efficient for large-scale point clouds. We have evaluated the
dilated nearest neighbor encoding in two different networks. The first is the random sampling with local feature aggregation.
The second is the Point Transformer.We have evaluated the quality of the semantic segmentation on the benchmark 3D dataset
S3DIS, and demonstrate that the proposed dilated nearest neighbor encoding exhibited stable advantages over baseline and
competing methods.
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Introduction

Automatic driving and robotics have obtained rapid progress
in recent years, and one important reason is the development
of edge computing which makes real-time computation to be
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achievable. Automatic driving and robotic navigation always
use LIDAR to collect point clouds for recognition of 3D
objects. Point cloud is one kind of 3D geometrical data con-
taining 3D coordinate on every point of the scanned object.
Compared with two-dimensional (2D) images, point clouds
have some advantages. First, they can represent 3D shapes
or objects. Second, their 3D coordinates are not effected
by climate or illuminations. Third, accurate distance can
be calculated from the data. So point clouds have many
latent applications including creation of 3D CAD models,
metrology and quality inspection, visualization, animation,
rendering.

The recognition and semantic segmentation of 3D point
clouds plays an important role for scene understanding in
intelligent systems, such as robotics [1–4], automatic driv-
ing for navigation [5–10] or interaction tasks in real-world
environments. However, the processing of point clouds is
challenging since they are unstructured, unordered, and con-
tains a varying number of points.

Feature extraction is always the first step for recogni-
tion and segmentation. Traditional methods for point clouds
include 3D Harris [11], intrinsic shape signature [12], point
feature histograms [13], viewpoint feature histogram [14],
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eigenvalues [15], subspace selection [16], etc. The effec-
tiveness of these methods can be evaluated in respect of
invariance of rigid transform, discriminative ability, robust-
ness. But the above methods have some limitations since
they are sensitive to the change of data mode and application
scenarios.

Recently Deep Neural Networks (DNNs) have been used
for processing point clouds [17] due to the powerful rep-
resentation ability. Some different kinds of networks have
been designed. The first is the voxel-based methods, such
as VoxNet [18] and VoxelNet [19]. In the VoxNet [18], a
volumetric occupancy grid representation for point cloud is
integrated with a 3D Convolutional Neural Network (CNN)
for 3D object recognition. In [19], a voxel feature extractor
(VFE) network is proposed to transform voxels into fixed-
dimensional feature vectors. Volumetric representation is
constrained by its resolution due to the computation cost
of 3D convolution. The second kind of methods directly
take point cloud data as input, among which PointNet [20]
is one of the most representative methods. It directly tack-
les point clouds and respects the permutation invariance of
input points. The point-wise features are learned using shared
multilayer perceptions. Although efficient and effective, it
is unaware of context information because max-pooling
operation aggregates a batch of features into one feature.
PointNet++ [21] is introduced to extract local features from
partitions of point clouds to deal with the problem so that it
can be used in large scale scenes.

To deal with large-scale point clouds, sampling is per-
formed first to reduce the redundant computation. However,
there is still a problem that the point sampling methods
used in these methods are either computationally expensive
or memory inefficient. Hu et al. [22] proposed a solution
using random point sampling instead of heuristic sampling
or learning-based sampling methods. Accordingly, a local
feature aggregationmodule is proposed,which uses local fea-
ture encoding, attention pooling and dilated residual block to
extract the features of random sampling points. The shared
multi-layer perception is used for up-sampling and decod-
ing to obtain the final result of semantic segmentation. The
backbone of the network is a typically encoding–decoding
architecture. During the process of down sampling, K-
Nearest Neighbor (KNN) is used for feature aggregation,
which causes other points’ features to be discarded which
are outside of the nearest neighbors.

To utilize more points with geometric information, in this
paper, we propose a method to increase the receptive field
of neural network by dilated neighborhood with the same
number of neural network parameters. We have verified the
efficiency in two different frameworks. The first is based on
the random sampling and local feature aggregation network
(RandLA-Net [22]). The second is based on the Point Trans-
former [23]. Both frameworks have their special advantages.

The RandLA-Net takes a fast sampling strategy and uses
local feature aggregation tomake up for the lost features. The
Transformer does not use anyCNNorRNN, and it is based on
self-attention network, which have been successfully used in
natural language processing by measuring the relationship
between every word and others in the sentence. The self-
attention is a set operator which is invariant to permutation
and cardinality of the input elements, so it is appropriate for
point cloudswhich are actually sets embedded in 3D space. In
the experiments, we will show the efficiency of the proposed
dilated nearest neighbor encoding in both frameworks.

The main contributions of this work are summarized as
follows:

• A dilated nearest neighbor encoding is introduced to the
point cloud sampling network to broaden the network’s
receptive field in the purpose of learning more 3D geo-
metric information.

• We have designed one end-to-end framework based on
random sampling and the dilated nearest neighbor encod-
ing for 3D point cloud semantic segmentation to illustrate
its efficiency. And we have also verified the effectiveness
of the dilated nearest neighboring encoding in the frame-
work of the Point Transformer.

• Better performance than state-of-the-art methods has
been achieved on the large-scale benchmark datasets.

Related works

A number of methods have been proposed for feature
extraction of point clouds, and based on this, 3D object clas-
sification and recognitionmethods have also been developed.
Since we focus on semantic segmentation in this paper, we
will introduce related works in the area of feature learning
and semantic segmentation of point clouds.

Conventional methods

Feature learning of point cloud has been studied in the past
decades, and handcrafted features have been always used in
the conventional methods. Histogram can represent accumu-
lated information, so this kind of methods have also been
introduced for point clouds to learn their 3D geometric fea-
tures, such as point feature histograms (PFHs) [24], fast point
feature histograms (FPFHs) [13]. Various histogram-based
methods have been proposed, and they have been compared
in [25]. The 3D covariance matrix from the neighboring
points’ coordinates have been used for describing the local
3D structure [26], as well as covariance of angular measures
and point distances [27]. Weinmann et al. [28] presented
2D and 3D point cloud features for automated large-scale
scene analysis, including basic geometric properties (e.g.
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absolute height, radius, local point density, local normal vec-
tor), 3D structure and shape features (general distribution,
normalized eigenvalues, linearity, planarity, scattering, omni-
variance, anisotropy, eigenentropy, local surface variation,
etc.). One question in [28] is that they compute features at
multiple scales, so this method is time-consuming. Hackel
et al. [15] proposed a fast semantic segmentation method
for 3D point clouds based on carefully handling of points’
neighborhood relations. They first extract a rich and expres-
sive set of features to capture the geometric properties of a
point’s neighborhood. The 3D features are based on neigh-
boring points’ covariance (sum, omnivariance, eigenentropy,
anisotropy, planarity, linearity, surface variation, spheric-
ity, verticality), moment (1st and 2nd order, 1st and 2nd
axis) and height (vertical range, height below, height above).
Based on these feature, a classifier is trained to predict class-
conditional probabilities. One limitation of the handcrafted
feature-based methods is that they are usually designed for
specific tasks.

Projection-based networks

To use large-scale 2D image datasets and successful 2D con-
volutional networks, the irregular point data is projected
to other forms suitable for 2D approaches. In [29], the
point clouds are projected into 2D map position through the
azimuth and elevation angle of viewing the point. In [30], 3D
shapes features are learned by rendered views on 2D images,
and a multi-view CNN is introduced for 3D shape in a sin-
gle and compact shape descriptor. Point cloud is converted
to a stacked pillar (vertical column, a voxel in the z direc-
tion) tensor and pillar index tensor in the work of [31]. For
autonomous driving, the authors of [6] designed a network
to take the bird’s eye view and front view of LIDAR point
cloud as well as an RGB image as input. The bird’s eye view
features include hight maps, density and intensity. The front
view features include height, distance and intensity. And the
front view is projected to a cylinder plane. In [7], PIXOR is
proposed for 3D object localization in autonomous driving,
which also takes bird’s eyeview representation as input. Their
feature representation consists of a 3D occupancy tensor and
a 2D reflectance image. One limitation of the projection-
based methods is that the 3D geometric features may be lost.

Voxel-based networks

Since of the regulation of the voxel grids, some methods
use the voxel as the representation of point clouds’ features
[18,19], which is referred as 3D voxelization. First, the irreg-
ular point clouds will be split to voxels. The voxel is encoded
as fixed feature vectors, and then used as input for the follow-
ing 3D convolution neural network to extract features further
more. Submanifold sparse convolutional networks have been

proposed for high-dimensional, sparse input data, and veri-
fied in semantic segmentation of 3D point clouds [32]. A
voxel VAE network (VV-Net) is introduced for robust point
segmentation in [33], in which a radial basis function based
variational auto-encoder is used.

Basic point-based networks

Someworks directly use point clouds as input [34–39]. Point-
Net uses the shared multilayer perceptions (MLP) to learn
per-point features, and uses max-pooling for global feature
to solve the unordered data question [20]. PointNet++ learns
hierarchical features in a metric space after furthest point
sampling, with multi-scale and multi-resolution grouping
[21]. Qi et al. [40] utilize PointNet as its basic feature extrac-
tor anduse sliding frustums to constructmappingbetween2D
image and 3D point clouds. PointCNN is proposed in [41],
and a transform is learned for the coordinates of points to
weight and permute the input features, followed by a convo-
lution, together as a basic building block for the framework.
PointRCNN [42] generates proposals of bounding boxes
directly from the segmented foreground point set, and then
fine-tunes such proposals through transformation into canon-
ical coordinates.

Based on a graph convolutional network, superpoint graph
(SPG) is proposed in [43] to capture the organization of 3D
point clouds with a compact and rich representation of con-
textual relationships between object parts. A graph attention
convolution (GAC) is proposed in [36], the kernels of which
can be dynamically carved into specific shapes to adapt to the
structure of different objects. It has been used for fine-grained
segmentation of point clouds. A grouping technique-based
method is proposed in [44] to incorporate neighborhood
information from the feature space and the world space, as
well as a pairwise distance loss and a centroid loss.

Extended deep neural networks

Wang et al. [45] proposed a framework of Associatively
Segmenting Instances and Semantics (ASIS). This frame-
work associates instance and semantic segmentation together
based on the consideration that two tasks can benefit from
each other to boost respective performance. Specifically,
instance segmentation is boosted by learning semantic-aware
point-level instance embedding, while semantic segmenta-
tion is boosted by fusing the semantic features of the points
belonging to the same instance.

A Joint instance semantic Segmentation neural Network
(JSNet) is proposed in [46], which includes a shared fea-
ture encoder, two parallel branch decoder, a feature fusion
module for each decoder, and a joint segmentation module.
The joint instance and semantic segmentation module trans-
forms semantic (instance) features into instance (semantic)

123



3836 Complex & Intelligent Systems (2022) 8:3833–3845

(a) Network Architecture

F
C

D
L

F
A

D
L

F
A

D
L

F
A

D
L

F
A

(N,8) (N/4,32)
(N/16,128)

(N/64,256)

(N/256,512)

U
S

U
S

U
S

U
S

F
C

(N/64,256)

(N/16,128)
(N/4,32) (N,8)

M
L

P

R
S

R
S

R
S

R
S

M
H

F
F

M
H

F
F

M
H

F
F

M
H

F
F

(b) Dilated Local Feature Aggregation
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Fig. 1 Framework of the proposed method. FC fully connected layer, RS random sampling, DNFE dilated neighbor-hood feature extraction,MLP
multilayer perception, US up sampling, MHFF multi-level hierarchical feature fusion, DNE dilated nearest neighbor encoding

embedding space by a 1D convolution and then the trans-
formed features are fused with instance (semantic) features
to facilitate instance (semantic) segmentation.

Fuzzy3DSeg [47] is proposed based on fuzzy math-
ematical methods to integrate the learning of the fuzzy
neighborhood feature of each point for the fine-grained local
feature missing problem. Both spatial information (coor-
dinates) and other features (colors) are used for feature
learning.

A fuzzy mechanism in spherical convolutional kernel is
introduced for 3D point clouds, as well as a graph convo-
lutional network (SegGCN) for semantic segmentation [48].
The fuzzy kernel will be robust to boundary effects in feature
extraction since it avoids splits along the radial direction.

Ourmethod

Problem statement

A point cloud is a set of 3D points, which can be represented
as

P = {pi‖i = 1, ..., Np}, (1)

where each point pi represents a vector of its (x, y, z) coor-
dinate in our work. The semantic segmentation of the point
cloud is to predict Np × Nc scores to indicate their semantic
categories.

Overview of the proposed approach

The framework of the proposed network is shown in Fig. 1.
The network follows the widely used encoding-decoding
structure, and is based on the backbone of RandLA-Net
[22]. First, several encoding layers which consist of random
sampling (RS) layers and dilated local feature aggregation
(DLFA) are used to learn the features of each sampled point.
Then, the features of each level of down sampling are up-
sampled, and the features belonging to the same layer are
concatenated. Finally, three full connection layers and one
Dropout (DP) layer are used to predict the semantic tags of
each point.

We will introduce the sampling strategy of point clouds,
dilated local feature aggregation, multi-level hierarchical
feature fusion, and point cloud data augmentation in the fol-
lowing.

Sampling of point clouds

Various samplingmethods havebeendesigned for large-scale
point clouds to reduce the computational complexity. Due to
the properties of point cloud data such as disorder, irregular-
ity and large volume, it is necessary to find an efficient point
sampling method. Farthest point sampling (FDS) is widely
used in many classical methods, such as PointNet [20] and
PointNet++ [21].However it has very high computation com-
plexity due to the calculation of the distance between each
point. Inverse Density Importance Sampling (IDIS) selects
the top K points according to the density of each point. Com-
pared with FPS, IDIS has a great decrease of computation
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complexity, but it is still not suitable for large-scale point
clouds.

Different from the above methods that need to preprocess
the data,RandomSampling (RS)directly select K points from
the original point clouds. It has a low computation complex-
ity, so we use this method in the sampling of point clouds.

Dilated local feature aggregation

To extract local features of sampled point clouds, we
designed the dilated local feature aggregation module, which
consists of three components: dilated nearest neighbor
encoding, attention pooling, and dilated residual block.

Dilated nearest neighbor encoding

As shown in Fig. 2, the input of the dilated nearest neighbor
encoding is point cloud data. N is the number of points, the
dimension of the point space coordinates (x, y, z) is 3, and d
is the dimension of point feature f obtained by the previous
network layer (fully connected layer).

Inspired by the dilated convolutional networks, we aim
to increase the model’s reception field for 3D point clouds.
Based on the K-nearest neighbor (KNN) algorithm, we first
find 2K neighborhood points of the i th point, and then 50%
are randomly selected as key points for subsequent calcula-
tion. In other words, for each sampling point, the receptive
field is expanded by twice so that the features of the obtained
neighborhood points are more representative.

For the K points {p1i ...pki ...pKi } of each center point pi ,
we use an augmented matrix of their relative position and
feature aggregation as their feature representation, which can
be described as

lki = MLP(pi ⊕ pki ⊕ (pi − pki ) ⊕ ‖pi − pki ‖), (2)

where lki is the relative position encoding, ⊕ represents a
concatenation operation, and ‖ · ‖ calculates the Euclidean
distance. Then we augment the encoded relative point posi-
tions lki of each neighboring point with its corresponding
features f ki , so the augmented features can be described as

̂Fi = {̂f 1i ...̂f ki ...̂f Ki }. (3)

Attention pooling

After obtaining features of neighboring point features ̂Fi , we
use attention pooling to aggregate a set of features. First,
we use function g() to calculate the attention score of each
feature ̂f ki , which acts as a mask and is a MLP with shared
parameters. W represents weight parameters of MLP. Then

the mask is formulated as

mk
i = g(̂f ki ,W ). (4)

Finally, the feature of point pi can be calculated as

f̃i =
K

∑

k=1

(̂f ki · mk
i ). (5)

Dilated residual block

Due to the above two steps, the point cloud data is sig-
nificantly down-sampled, and a lot of details will be lost.
Therefore, it is necessary to expand the reception field of each
point so that the geometric details of the input point cloud
can be retained as much as possible. An extended residual
block is composed of two dilated nearest neighbor encoding
and attention pooling units.

After the firstDilated Neighborhood Encoding and Atten-
tion Pooling operation, its receiving field includes K neigh-
boring points, and after the second operation, its receiving
field is expanded to K 2 points.

Dilated point transformer

To verify the efficiency of the dilated nearest neighbor strat-
egy, we designed another semantic segmentation framework
for point clouds, named as dilated point transformer. The
backbone is based on the work in [23], which is motivated
by the success of the Transformer in natural language pro-
cessing (NLP), and its core component is the self-attention
mechanism. The self-attention operator is invariant to permu-
tation and cardinality of input elements, so it is very suitable
to process point clouds which are ‘sets’ embedded in 3D
space with the properties of irregularity.

The point transformer layer can be formulated as

yi =
∑

p j∈P(i)

σ (γ (ϕ(pi ) − ψ(pi ) + δ)) � (α(p j ) + δ) (6)

where σ is a normalization function (e.g. softmax), γ is the
attention vector,ϕ,ψ andα are pointwise feature transforma-
tion. δ is a position encoding function. The point transformer
modules are depicted in Fig. 3 including point transformer
block, feature encoding and decoding modules. The frame-
work of the dilated point transformer is depicted in Fig. 4,
which has a similar architecture with that in Fig. 1 but dif-
ferent in encoding. The subset P(i) ⊆ P is a set of points in
a local neighborhood of pi . In our dilated point transformer,
we changed the subset in a form of dilated nearest neighbor
graph P(i) → ˜P(i).
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Experiments

Experiments will be introduced in this section to illustrate
the efficiency of our proposed method. First, the experiment
settings and datasets will be presented. Then we evaluate our
method and compare with state-of-the-art methods.

Experiment settings

We use the point clouds data with semantic segmentation
labels. The data is preprocessed and the sampling rate is 4%
of the original data. The feature dimension is from (N , 8)
to (N/128, 512) with a sub-sampling ratio of 4, where N is
40,960 in this experiment. The results of the network with
four layers and five layers are tested, respectively. The net-
work training environment isUbuntu 16.04.3with 2NVIDIA
Titan XP GPUs.

Datasets

In the experiments, we have used the benchmark S3DIS
dataset [49], which is obtained by scanning 271 rooms in
indoor areas of large buildings, and it consists of over 215
million points covering 6000 square meters. The scanned
areas include various architectures including offices, con-
ference rooms, restrooms, lobbies, stairways, and hallways.
Twelve semantic elements have been labeled in the dataset
including structural elements (ceiling, floor, wall, beam, col-
umn, window, and door), and some furniture (table, chair,
sofa, bookcase, and board).

Experimental results

Wehave compared ourmethodwith the state-of-the-artmeth-
ods including PointNet++ [21], PointCNN [41], DGCNN
[50], 3P-RNN [51], SPG [43], JSNet [46], and RandLA-
Net [22]. The comparison results are listed in Table 1. Two
metrics have been used as criterion to evaluate the meth-
ods’ performance, i.e. overall accuracy (OA) and mean IoU
(mIoU). From Table 1, it can be seen that our proposed
method has a better performance than others on both met-
rics. Compared with the baseline of RandLA-Net [22], our
method has achieved an improvement of 1.7 and 1.6% for
OA andmIOU, respectively. Compared with one most recent
method, JSNet [46], our method performs slightly better on
the overall accuracy, but has an improvement of 7.1% on the
mean IOU.

To further demonstrate the advantages of ourmethod com-
pared with RandLA-Net, more results have been given in
Table 2. In this table, we have listed the mIOU of segmenta-
tion methods on 6 areas of S3DIS dataset in all the categories
(e.g. ceiling, floor, wall, etc.). RandLA-Net-4 and RandLA-
Net-5 represent results of RandLA-Net with four-layer and

Table 1 Quantitative results of different approaches on the S3DIS
dataset

Methods OA (%) mIoU (%)

PointNet++, NeurIPS2017 [21] 78.6 47.6

DGCNN, NN2018 [50] 84.1 56.1

SPG, CVPR2018 [43] 85.5 62.1

3P-RNN, ECCV2018 [51] 86.9 56.3

PointCNN, NeurIPS2018 [41] 88.1 65.4

NF FW , ECCV2019 [44] 83.9 58.3

ASIS, CVPR2019 [45] 86.2 59.3

RandLA-Net, CVPR2020 [22] 87.2 67.2

JSNet, AAAI2020 [46] 88.7 61.7

Ours 88.9 68.8

five-layer networks respectively, and Ours-4 represents the
results of the four-layer network of our method. The results
show that our method with four-layer networks performs
better in most cases, even compared with RandLA-Net of
5-layers, since according to the mean value in Table 2,
our method performs better on 5 areas, Area 1(2.6% ↑
), Area 2(2.8% ↑), Area 4(1.2% ↑), Area 5(0.9% ↑
), Area 6(1.2% ↑). Specifically, our method is better on
4 areas for the category of ‘wall’, ‘window’, ‘chair’, ‘book-
case’, ‘board’, and better on 3 areas for other categories.

We have also evaluated our designed dilated point trans-
former, and the results have been listed inTable 3, fromwhich
it can be seen that the dilated point transformer performs bet-
ter on all the areas. This demonstrated the effectiveness of
the dilated nearest neighboring encoding. Specifically, the
dilated point transformer has obtained an increase of abso-
lute 2.8% for Area 1, 4.7% for Area 2, 1.6% for Area 3,
0.3% for Area 4, 2.5% for Area 5, and 2.2% for Area 6. In
our experiments, the dilated Point Transformer need about
one day for training the network (24 epochs), and six min-
utes for inference one area of the S3DIS, at the same level
with the RandLA-Net.

Some qualitative results of semantic segmentation have
been given in Figs. 5 and 6, in which we also give the full
RGB input point cloud and corresponding ground truth for
illustration. Figures 5 and 6 show that our method achieves
satisfactory semantic segmentation quality.

Conclusions

In this paper, we proposed a 3D dilated nearest neighbor
encodingmethod, which proves to be efficient to leverage the
semantic segmentation of large-scale point clouds. We have
verified its effectiveness in two different frameworks. The
first is based on random sampling and encoding–decoding
structure. The second is based on the Point Transformer.
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ceiling floor wall beam column window door table chair sofa bookcase board clutter

Ground truthOursInput

Fig. 5 Visualization of semantic segmentation results of test split on the S3DIS dataset. Left: full RGB input point cloud; middle: predicted labels;
right: ground truth
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ceiling floor wall beam column window door table chair sofa bookcase board clutter

Ground truthOursInput

Fig. 6 Visualization of semantic segmentation results of test split on the S3DIS dataset. Left: full RGB input point cloud; middle: predicted labels;
right: ground truth

Experiments on the benchmark dataset show that our model
has achieved better performance than state-of-the-art meth-
ods.

Edge computing has been widely used in many applica-
tions for real-time processing of large-scale IOT big data,
especially with the development of autonomous driving and
robotics. Point clouds semantic segmentation is one impor-
tant task in these areas. In the future, we will learn features of

both point cloud data and RGB images so that we can utilize
multi-modality information for prediction to further improve
the performance.
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