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Abstract
With the vigorous development of mobile Internet technology and the popularization of smart devices, while the amount
of multimedia data has exploded, its forms have become more and more diversified. People’s demand for information is no
longer satisfied with single-modal data retrieval, and cross-modal retrieval has become a research hotspot in recent years.
Due to the strong feature learning ability of deep learning, cross-modal deep hashing has been extensively studied. However,
the similarity of different modalities is difficult to measure directly because of the different distribution and representation
of cross-modal. Therefore, it is urgent to eliminate the modal gap and improve retrieval accuracy. Some previous research
work has introduced GANs in cross-modal hashing to reduce semantic differences between different modalities. However,
most of the existing GAN-based cross-modal hashing methods have some issues such as network training is unstable and
gradient disappears, which affect the elimination of modal differences. To solve this issue, this paper proposed a novel
Semantic-guided Autoencoder Adversarial Hashing method for cross-modal retrieval (SAAH). First of all, two kinds of
adversarial autoencoder networks, under the guidance of semantic multi-labels, maximize the semantic relevance of instances
and maintain the immutability of cross-modal. Secondly, under the supervision of semantics, the adversarial module guides
the feature learning process and maintains the modality relations. In addition, to maintain the inter-modal correlation of all
similar pairs, this paper use two types of loss functions to maintain the similarity. To verify the effectiveness of our proposed
method, sufficient experiments were conducted on three widely used cross-modal datasets (MIRFLICKR, NUS-WIDE and
MS COCO), and compared with several representatives advanced cross-modal retrieval methods, SAAH achieved leading
retrieval performance.

Keywords Deep hashing · Cross-modal retrieval · Adversarial autoencoder · Adversarial learning

Introduction

In recent years, with the widespread popularity of the Inter-
net and mobile devices, the scale of multimodal data (text,
image, video, audio, etc.) has increased dramatically. while
the amount of multimedia data has exploded, its forms have
become more and more diversified. People’s demand for
information is no longer satisfied with single-modal data
retrieval, and cross-modal retrieval has become a research
hotspot in recent years. For example, given a query image, it
may be necessary to retrieve a set of text that best describes
the image, or match the given text to a set of visually
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related images. Cross-modal retrieval tasks can efficiently
analyze multi-modal data semantic relevance, to achieve
mutual matching between different modalities. To reduce
the cost of finding the nearest neighbor, Approximate Near-
est Neighbor (ANN) [1] has become the most commonly
used retrievalmethod in cross-modal retrieval tasks. In recent
years, the hash feature representation of data has the advan-
tages of small storage space and fast retrieval speed, so it
has received extensive attention in the field of large-scale
information retrieval [1–3,6,27,28].

As the data of different modalities are heterogeneous and
their distribution and presentation are inconsistent, the key to
cross-modal retrieval is “modality gap”, that is, how to mea-
sure the similarity between different modal representations
[8,29]. The current mainstreammethod is the common space
learning method, the purpose of this method is to learn the
features of different modalities in an intermediate common
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Fig. 1 A brief illustration of common space learning method for cross-modal retrieval, which can present retrieval results with different modalities
by a query of any modality

space and measure their similarity [29]. A brief description
of the common space learning method is shown in Fig. 1.

cross-modal hashing (CMH) method is considered as one
of the best methods to solve the cross-media retrieval prob-
lem [9–11,30]. It encodes samples of different modalities
into short binary codes, the search of hash code can effi-
ciently carry out cross-media retrieval. Among the existing
cross-media hashing methods, deep cross-media hashing has
achieved great success [12–14,21,31,32].

Although some breakthroughs have been made in this
field, there are still some problems in deep cross-modal
hashing. First of all, in cross-media adversarial learning, the
researcher often use GAN as the adversarial module. How-
ever, most of the existing GAN-based cross-modal retrieval
methodsmainly use the originalGAN loss function and train-
ing strategy, which leads to the problems of unstable network
training and gradients disappear, which affect the elimination
of modal differences to a certain extent. At present, there is
also a small amount of work that uses autoencoders for cross-
modal retrieval. The existing cross-modal retrieval methods
based on autoencoders mainly adopt the reconstruction strat-
egy based on mean square error. Compared with the original
input, the decoded output has a certain information loss, and
the original features cannot be better preserved.

To solve the above problems, in this paper, a novel
Semantic-guided Autoencoder Adversarial Hashing method
(SAAH) is proposed. As shown in Fig. 2, this is an end-to-
end neural network structure that can perform both feature
representation and hash coding. To facilitate feature learning
andmake up for themodal gap, this paper designed two kinds
of adversarial autoencoder modules (inter-modal and intra-
modal) based on semantic multi-labels. The intra-modal
adversarial network improves the intra-modal reconstruction
process of the autoencoder, and uses the idea of adversarial

learning to make it difficult to distinguish the input features
and reconstruction features. The inter-modal adversarial net-
work is used to reduce the difference between the modals,
so that the samples with the same semantics from different
modalities can generate uniform semantic features andbinary
codes. Through the minimax training strategy, the learned
features are optimized during the adversarial learning pro-
cess to achieve the consistency of the distribution of different
representationmodalities. Finally, imagemodal data and text
modal data are difficult to distinguish.

The main contributions are summarized as follows:

1. This paper proposed a novel semantic-guided adversar-
ial autoencoder hashing method (SAAH). we designed
two kinds of adversarial autoencoder networks (Inter-
modal adversarial network and Intra-modal adversarial
network). Under semantic supervision, the adversarial
networks guide the feature learning process and maintain
the modal relationship between common feature space
and common hamming space. The joint optimization of
the two types of adversarial autoencoder networks can
effectively eliminate the distribution differences between
modalities and improve retrieval accuracy.

2. The proposed adversarial cross-modal hashing method
integrates three loss functions, including the inter-modal
triplet loss, classification prediction loss and inter-modal
pairwise loss. Therefore, a more discriminative hash code
can be generated.

3. To verify the effectiveness of our proposed method, suf-
ficient experiments were conducted on three widely used
cross-modal datasets (MIRFLICKR, NUS-WIDE and
MS COCO), and compared with several representative
advanced cross-modal retrieval methods, SAAH achieved
leading retrieval performance.
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Fig. 2 The framework of the proposed SAAH

Related works

Cross-modal retrieval is achieved by modeling the relation-
ship between different modes. Therefore, the first problem to
be solved by cross-modal retrieval is the heterogeneous prob-
lem caused by the different distribution and structure among
different modality [8,12,18,29,33,34,38].

Non-GAN-based cross-modal retrieval methods

According to whether the supervised information is used in
the training, the cross-modal hashingmethods can be divided
into unsupervisedmethod [4,5,16,17] and supervisedmethod
[18–20]. CVH [16] proposed by Kumar et al. enables data
representing different views of the same objects to have the
same hash codes. LSSH [5] uses sparse coding and matrix
decomposition to capture the latent semantic features of
images and texts. CMFH [4] proposed by Ding et al. uses
collaborative Matrix decomposition to decompose data of
different modalities into basis Matrix and coefficient Matrix,
and uses Matrix decomposition to learn the hidden factors of
different modalities and generate unified hash codes. STMH
[17] models image as potential semantic concepts, models
text as multiple semantic topics, and then learns the relation-
ship between text and image in the potential semantic space.

The supervised methods always perform better because
of the usage of label information. SCM [19] proposed by

Zhang et al. uses non-negative matrix decomposition and a
nearest-neighbor preserving algorithm to maintain semantic
consistency both inter-modal and intra-modal. CMSSH [18]
proposed by Zhu et al. used supervised similarity learning
to map input data from two arbitrary spaces to hamming
space. SePH [20] proposed by Lin et al. approximates the
probability distribution of training data into the hash codes
in hamming space by minimizing the KL entropy, and then
uses the kernel logistic regression to learn the nonlinear hash
function from each view.

Shallow cross-modal hashing methods are mostly unable
to describe complex cross-modal associations. Recent cross-
modal deep hashing methods [21,22,31,35,36] have shown
better performance in preserving similarities between dif-
ferent modalities. DCMH [21] proposed by Jiang et al.
introduced deep learning into the cross-modal hash retrieval
algorithm, this method integrates the feature learning pro-
cess and hash code learning process in the same end-to-end
deep neural network to learn more effective hash codes.
As an improvement, PRDH [22] proposed by Yang et al.
explored Pairwise constraints from inter-modal and intra-
modal to find heterogeneous associations between different
modalities andmaintain the semantic similarity of hash codes
learned. DMFH [40] introduced amulti-scale fusion network
to enable more effective feature extraction when learning
hash codes. SCAHN[47] introduces the attentionmechanism
for common representation enhancement while increasing
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the weight of each hash code to characterize each bit’s
coding ability. DSCA [48] proposed a correlation-aligned
multi-semantic image-text hashing framework. The similar-
ity between the modalities is produced by the semantic label
and the original characteristics of the data. The constructed
covariance matrix achieves more effective cross-modal cor-
relationmodeling through alignment.MS2GAN [49] divides
common representation into modal independent representa-
tion and modal consistent representation, and uses interval
loss based on given semantic annotations to maintain the
structure based on common representation to improve repre-
sentation learning ability.

GAN-based adversarial cross-modal retrieval

At this stage, the cross-modal retrievalmethodbased onGAN
[7,14,24,34,37] has become a new research hotspot. GAN
consists of two parts: Generator (G) and Discriminator (D).
The purpose of G is to learn the distribution close to the real
sample to confuse D, and the function of D is to distinguish
whether the data comes from the real sample or the sample
generated by G. G and D perform a mini-max game. In an
ideal state, G can generate G(z) that is enough to “make
the fake and the real”, but for D, it is difficult to determine
whether the output of G is real or not.

ACMR [24] and SSAH [14] are two typical early research
work, and they first introduce GAN so that they can align the
code distribution in different modalities, reduce the hetero-
geneous gap and improve the performance of cross-modal
retrieval. The GANs improved the performance of cross-
modal retrieval by reducing the heterogeneity gap of different
modalities. ACMR [24] is the first method to apply GANs
framework into cross-modal retrieval. It uses a minimax
strategy to train the network, the feature mapper and the
modality classifier interact with each other, and the process
of minimization and maximization between the two parts
eliminates the difference of feature representation of differ-
ent modalities. The same idea of the adversarial network is
adopted, SSAH [14] further combines adversarial learning
with hash technique, which utilizes two adversarial networks
to maximize the semantic relevance and consistency of the
representations of different modality, and designed a self-
supervised semantic network, supervised the training of the
other two networks. CM-GANs [7] realizes the consistency
of the modal through the intra-modal and inter-modal dis-
criminator, at the same time, the data is reconstructed by
generating adversary, so as to learn more discriminative
common representation features. UCH [34] and CYC-DGH
[37] are GAN-based hashingmethod for unsupervised cross-
modal retrieval. UCH [34] consists of a two-cycle generated
adversarial hashing network. The outer-cycle GAN is used
to learn common representations, while the inner-cycle GAN
is used to generate reliable hash codes.

In the last 2 years, some of the latest GAN-based work has
appeared. DAML [41] non-linearly project the data of dif-
ferent modalities to the latent feature space, the purpose is to
learn the representation of the invariance between the modal-
ities. MHTN [44]realizes the transfer of knowledge from
the single-modal source domain to the target source domain,
and learns cross-modal public representation. UGACH [45]
proposed a graph-based generative adversarial hash learn-
ing framework. Given the data in one modal, the generative
model selects data pairs from other modalities based on the
shared learning to challenge the discriminant model. The dis-
criminant model distinguishes the generated data pair from
the actual data pair collected in the relationship graph. The
framework is further extended to handle five-modal data and
perform cross-modal retrieval in a more general sense [46].
CPAH [39] proposed a multi-task consistency-maintaining
adversarial network for image-text hashing. Two modules
were developed, namely the consistency refinement module
(CR) and the multi-task adversarial learning module (MA)
to learn semantic consistency information.

However, the cost of continuously training the discrimi-
nator to approach the optimal discriminator is that the loss
function of the discriminator converges quickly, and the
gradient of the generator cannot be updated continuously,
causing the gradient of the generator to disappear. At the
same time, most of the existing GAN-based cross-modal
retrieval methods mainly use the original GAN loss func-
tion and training strategy, which leads to the instability of
network training and the disappearance of gradients, which
affect the elimination ofmodal differences to a certain extent.

Autoencoder-based cross-modal retrieval

Since autoencoders naturally have the ability to generate
compact binary codes, in recent years, researchers have
proposed a cross-modal retrieval method based on deep
autoencoders. Autoencoder consists of two parts: Encoder
and Decoder. The output data after training are the hidden
feature (encoding feature) of the autoencoder. The encoding
operation is the process of projecting data from the input layer
to the hidden layer, and the corresponding decoding opera-
tion is the reconstruction process of projecting the encoded
features obtained from the hidden layer as the input to the
output layer. Themain feature of the autoencoder is to encode
high-dimensional data to reduce the dimensionality, and then
reconstruct the input data throughdecoding. The cross-modal
retrieval method based on deep autoencoders is mainly to
conduct correlation learning on the hidden features of two
single-modal autoencoders.

Correspondence Autoencoder (Corr-AE) [42] correlates
the implicit representations of two single-modal autoen-
coders, constructs an optimal goal, and minimizes the
correlation learning error between the two modal implicit
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representations of the autoencoder. Multi-modal Semantic
Autoencoder (MMSAE) [43] learns multi-modal mapping
in two stages, projects multi-modal data to obtain low-
dimensional embedding, and uses autoencoder to achieve
cross-modal reconstruction. Existing cross-modal retrieval
methods based on autoencoders mainly adopt a reconstruc-
tion strategy based on mean square error. Compared with the
original input, the decoded output has a certain information
loss, and the original features cannot be better preserved.

Aiming at the above shortcomings, this paper proposes a
novel cross-modal retrieval method based on the Adversarial
Autoencoder (AAE), as shown in Fig. 1. Two types of adver-
sarial autoencoder networks are designed (intra-modal adver-
sarial network and inter-modal adversarial network). The
intra-modal adversarial network improves the intra-modal
reconstruction process of the autoencoder. The discriminator
module tries to distinguish between input features and recon-
struction features. Finally, it is difficult to distinguish the
input features and reconstruction features. The inter-modal
adversarial network is used to reduce the differences between
the modalities, so that samples with the same semantics from
different modalities generate unified semantic features and
binary codes in the common semantic space and the Ham-
ming space. Through the minimax training strategy, in the
end, image modal data and text modal data are difficult to
distinguish. The method in this paper combines two types
of adversarial autoencoder models, which can effectively
eliminate the distribution differences betweenmodalities and
improve retrieval accuracy.

Proposedmethod

Problem definition

Let us start with some of the notations used in this
paper.Given a cross-modal dataset O = {oi }ni=1 , oi ∈
(vi , ti , li ) , where vi ∈ dv is the original image feature rep-
resentation of the i-th sample, and ti ∈ dt is text feature
representation.A semantic label vector li = [li1, . . . , lik] ∈ k

is assigned for oi , where k is the total class number. oi and o j

are associated with similarity label si j , where si j = 1 implies
oi and o j are similar, or otherwise si j = 0. Considering the
samples are multi-label, define si j = 1 if oi and o j share as
least one label, and si j = 0 if oi and o j have no common
label. Our goal is to learn the unified hash code for image
and text modalities: bv,t ∈ {−1, 1}K . The detailed symbols
definition is shown in Table 1.

Like Euclidean distance, Hamming distance is a mea-
sure of distance, which is used to measure the similarity
of binary code. The Hamming distance can be calculated
as the inner product of two hash codes. For two binary
codes bi and b j , their hamming distance disH (bi , b j ) and

Table 1 The notation of the proposed method

Notation Illustration

O The cross-modal dataset

oi ∈ (vi , ti , li ) The i-th sample

vi ; ti ; li The original image feature; the
original text feature; the semantic
label vector

S The label similar matrix (si j ∈ S)

si j si j = 1 implies oi and o j are
similar, or otherwise si j = 0

h Hash code

H The hash code space

B The binary code space

K The code length

θv,t,l The neural network parameter

f li The semantic feature from
Labelnet

f v,t
j The semantic feature generated by

Imagenet and Textnet

F The feature representation space

Dv,l ; Dt,l The image discriminator; the text
discriminator

inner product 〈bi , b j 〉 can be formulated as: disH (bi , b j ) =
1
2 (K − 〈bi , b j 〉) , where K is the length of the binary code,
so the similarity between two binary codes can be quantized
using the inner product. Given S, the probability of S under
condition bi and b j is defined as a likelihood function:

p(si j |bi , b j ) =
{

σ(ϕi j ), si j = 1
1 − σ(ϕi j ), si j = 0,

(1)

where σ(ϕi j ) = 1
1+e−ϕi j

is the sigmoid function, and ϕi j =
1
2bi

Tb j . We can see that the smaller hamming distance
disH (bi , b j ) is, the larger their inner product 〈bi , b j 〉. A
larger condition probability p(1|bi , b j ) implies bi and b j

should be similar; otherwise, a larger condition probability
p(0|bi , b j ) means bi and b j should be dissimilar.

Framework overview

The SAAH framework proposed in this paper is shown in
Fig. 2. The framework consists of two parts: feature genera-
tion part (left) and adversarial learning part (right).

The feature generation part In this part, three neural net-
works are adopted, namely Imagenet, Labelnet, and Textnet,
which are used to extract the features of the original sam-
ples and map them to a common feature space. Imagenet
is used for image modality. It adopts the classic convolu-
tional neural network CNN-F, and its output is generated into
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image feature representation in the common feature space.
The semantic features of Imagenet are finally input into the
autoencoder to generate hash codes, this autoencoder belongs
to the adversarial learning part. Similarly, Textnet is used for
text modal, which contains two fully connected layers and
a multi-scale module. The semantic features extracted by
Textnet are also used as input to the corresponding autoen-
coder to generate corresponding hash codes. However, the
role of Labelnet is different from Imagenet and Textnet. The
labelnet learns semantic features from multi-label informa-
tion, then its most important role is to supervise the features
learning of image and text modal.

The adversarial learning part comprises 3 autoencoders and
2 types of discriminators (4 in total). A kind of discriminators
(2 in total) is used in inter-modal adversary to progressively
reduce the distribution differences of image and text features
by the adversarial learning way. Another discriminators (2 in
total) is used in intra-modal, the aim is to reduce the feature
representation error after the reconstruction of the autoen-
coder.

Supervised semantic generated by Labelnet

As shown in Fig. 2, this paper selected a sample in the
MIRFLICKR-25K dataset, this example is annotated with
multi-labels, such as ‘tree’, ‘people’ and ‘animals’. There-
fore, we can use multi-label annotation as a kind of super-
vised information to establish the semantic relation between
image and text modalities. The established Labelnet adopts
the end-to-end fully connected model, which can be used
to model the semantic association between image and text.
Labelnet extracts semantic features of multi-labels vectors
to monitor the learning process of Imagenet and Textnet. A
triplet (vi , ti , li ) is used to describe the same i-th sample, we
regard li as semantic information for vi and ti .

In common feature space, Labelnet is used to extract rich
semantic associations in label information. The logarithmic
maximum estimated by hash code mapping can be expressed
as:

log p(Hl |S) ∝ log p(S|Hl)p(Hl)

=
∑
si j∈S

log p(si j |hli , hlj )p(hli , hlj ), (2)

where log p(S|Hl) is the likelihood function, and p(Hl) is
the prior distribution. Hl denote the hash codes in a common
hamming space for labels. si j indicates whether sample i
and j contain at least one same label, and if so, Si j = 1 ,
indicating that sample i and j are semantically similar. If
not included, Si j = 0 , indicating that the sample i and j
are not semantically similar. To represent the similarity of
features generated by the labels of sample i and j , the loss

function can be defined as follows according to the negative
log likelihood of pairs of labels:

min
Fl ,θ l

Ll
pairwise = − log p(S|Fl)

= −
n∑

i, j=1

(si j 〈 f li , f lj 〉 − log(1 + e〈 f li , f lj 〉)),

(3)

where 〈 f li , f lj 〉 represents the cosine similarity of the seman-
tic features generated by the label of sample i and j . When

Si j = 1, min Ll
pairwise = −∑n

i, j=1 (log( e
〈 f li , f lj 〉

1+e
〈 f li , f lj 〉

)) =
max〈 f li , f lj 〉 , the loss function maximizes the cosine sim-
ilarity of the semantic feature generated by the label
of sample i and j ; When Si j = 0, min Ll

pairwise =
−∑n

i, j=1 (log( 1

1+e
〈 f li , f lj 〉

)) = min〈 f li , f lj 〉, the loss function
minimizes their cosine similarity. This is entirely consistent
with the goal of maintaining similarity between semantic
features.

In addition, this paper use binary regularization to reduce
the error of hash value discretization. The regularization term
is defined as follows:

min
Bl ,θ l

Ll
regular =

∥∥∥Hl − Bl
∥∥∥2
F

, (4)

where Bl is the binary code obtained by the symbol operation
of Hl . Ll

regular is the approximate loss of the binarization of

the hash code, which makes Hl and Bl as close as possible,
so that the elements in the hash vector are as close as possible
{−1, 1} , and the loss is reduced H → B.

Finally, to maintain accurate classification information
when training Labelnet, this paper remapped the hash codes
obtained from the common Hamming space to the origi-
nal label space. L̂l is the prediction labels recovered by
the feature. Therefore, the predicted label can be written as:
L̂l = WT Hl + b , W is the mapping weight. Define the fol-
lowing loss to minimize the distance between the predicted
value L̂ and the ground truth value L :

min
L̂l ,θ l

Ll
predict =

∥∥∥L̂l − L
∥∥∥2
F

, (5)

Ll
predict represents the classification loss of the feature

between the original label and the predicted label, so that
the recovered label is as same as the original label feature
as far as possible. Therefore, the total generation objective
function of Labelnet is as follows:

min
Bl ,θ l ,L̂l

L lab = Ll
pairwise + αLl

regular + βLl
predict
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= −
n∑

i, j=1

(si j 〈 f li , f lj 〉 − log(1 + e〈 f li , f lj 〉))

+α

∥∥∥Hl − Bl
∥∥∥2
F

+ β

∥∥∥L̂l − L
∥∥∥2
F

, (6)

where α, β are hyper-parameters that balance the weight of
Ll
pairwise, L

l
regular and Ll

predict.

Feature learning for image and text modality

In this paper, the feature learning of image and textmodalities
is supervised, the semantic information generated by Label-
net supervises the learning process of these two modalities.

For image modality, the image feature learning network
(Imagenet) established by us adopts CNN-F [23] structure,
which projects images into the common feature space. Image
feature learning is carried out under the supervision of Label-
net, so that Imagenet and Labelnet keep the same semantic
correlation. Similarly, for text modality, this paper relies on
label features generated by Labelnet to monitor the learning
process of Textnet features. This paper uses a multi-scale
model to extract text features.

We hope to define such an objective function to retain
semantic information generated by Labelnet in the Textnet
and Imagenet during the training process, therefore, we hope
the predicted label is similar to the real label. The features
and hash codes of text and image extracted by Imagenet and
Textnet are as same as the features and hash codes gener-
ated by Labelnet. Therefore, when learning the image and
text feature, the supervised information also constrains the
similarity of feature extraction and feature generation.

In the common feature space of Labelnet and Imagenet,
if the sample pair vi and v j are similar, their corresponding
feature representations f v

i and f v
j should also be similar.

Similarly, for text modality, if the sample pairs ti and t j are
similar, their corresponding feature representations f ti and f tj
should also be similar. Under the supervision of the semantic
features of Labelnet, the semantic features Fv of Imagenet
and Labelnet can be described as follows:

min
Fv,θv

Lv
pairwise = − log p(S|Fv)

= −
n∑

i, j=1

(si j 〈 f li , f v
j 〉 − log(1 + e〈 f li , f v

j 〉
)),

(7)

where f li is the semantic features of Labelnet, and f v
j is the

semantic features generated by Imagenet. 〈 f li , f v
j 〉 represents

the cosine similarity between the semantic features generated
by the label of sample i and the semantic features extracted
from the sample input (image).

The goal is to get hv (the extracted hash) as close as possi-
ble to hl (the hash generated by the label). The approximate
loss of learning hash code binarization is defined as follows:

min
Bv,θv

Lv
regular = ∥∥Hv − Bv

∥∥2
F . (8)

Accordingly, the overall objective function of Imagenet is
defined as follows:

min
Bv,θv

L img = Lv
pairwise + αLv

regular + γ Lv
adv_inter

+ηLv
adv_intra + δLv

triplet, (9)

where α, γ, η and δ is the weight parameter of each loss of
Lv
pairwise, L

v
regular, L

v
adv_inter, L

v
adv_intra and Lv

triplet. L
v
adv_inter

and Lv
adv_intra are adversarial loss for inter-modal and intra-

modal, respectively. Lv
triplet is inter-modal invariance triplet

loss, the details are in “Inter-modal triplet loss”. Similarly,
the total generating objective function of text modality is as
follows:

min
Bt ,θ t

L txt = Lt
pairwise + αLt

regular + γ Lt
adv_inter

+ηLt
adv_intra + δLt

triplet. (10)

Inter-modal triplet loss

Modality similarity is maintained by minimizing the dis-
tance between all semantic similar instances representations
from different modalities, meanwhile, maximizing the dis-
tance between dissimilar instance representations. Like the
pairwise loss, the triplet loss is a commonly used objective
function. Inspired by ACMR [24], to reduce the computa-
tional overhead of triplet sampling, samples are taken from
the marked instances in each small batch, rather than from
the entire instance space. The triplet form of image modal
is constructed as follows: (vi , t

+
j , t−k ), text instance t−k is

semantically unrelated to image vi , while t
+
j is the opposite.

Similarly, the text modality triplet form (ti , v
+
j , v−

k ). Inter-
modal triplet loss across image and text modalities are as
follows:

L tripletv =
∑
i, j,k

max

(
λ ·

∥∥∥ fvi − ft+j

∥∥∥2
2
−

∥∥∥ fvi − ft−k

∥∥∥2
2
, 0

)
,

(11)

L triplett =
∑
i, j,k

max

(
λ ·

∥∥∥ fti − fv+
j

∥∥∥2
2
−

∥∥∥ fti − fv−
k

∥∥∥2
2
, 0

)
.

(12)

The optimization objective of the loss function (Eq. (11))
is shown in the Fig. 3. Where λ is the margin parameter,
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Fig. 3 A simple demonstration of the optimization goal about the loss
function. Taking the image sample as an example, it pulls the text sam-
ples with the same semantics (represented by the same color) closer,
while pushing the text samples with different semantics farther

( fvi , ft+j
, ft−k

) and ( fti , fv+
j
, fv−

k
) represent their feature rep-

resentations, respectively. Combining Eqs. (11) and (12), the
total inter-modal triplet loss is:

Jtriplet = L tripletv + L triplett . (13)

Adversarial learning and optimization

Semantic associations can be maintained in different ways
under the guidance of Labelnet monitoring information.
However, the goal of generating a uniform hash code
faces some difficulties because the distribution of features
extracted fromdifferentmodalities is quite different.Wewant
the feature representations of instances with the same seman-
tics to be as close as possible.

The common strategy is to take somemethods to eliminate
the gap between modalities and finally improve the retrieval
accuracy. Inspired by ACMR [24], we learn the common
Hamming subspace of different modalities in an adversarial
way. In the common Hamming space, this paper added two
different types of discriminators for image and text modali-
ties, two ofwhich are used to distinguishmodal features from
image (text) features or label semantic features. The other
two discriminators are used to minimize the loss between
the input and output of the image (text) autoencoder.

Adversarial learning for inter-modal

For the image (text) discriminator Dv,l , Dt,l with parame-
ters θD , the input is the image (text) modality hash code
and the hash code generated through Labelnet. The input of
text discriminator is Hv and Hl , and the input of image
discriminator is Ht and Hl . These two discriminators act as
opponents because they are trained in an adversarial manner,
inter-modal adversarial loss is as follows:

min
θ

∗,l
D

L∗,l
adv = −1

n

n∑
i=1

(log D∗,l(hli ; θ
∗,l
D )

+ log(1 − D∗,l(h∗
i ; θ

∗,l
D ))), ∗ ∈ {v, t}, (14)

where hv
i , h

t
i , h

l
i is the hash code of image modality, text

modality and label, respectively, Lv,l
adv is the cross-entropy

loss of image and label modal classification of all instances
oi , i = 1, . . . , n used in each iteration training, and Lt,l

adv is

the cross-entropy loss of text and label modal. Dv,l(hv
i ; θ

v,l
D )

is the image modal probability generated by each item in the
instance oi , and Dt,l(hti ; θ

t,l
D )s is the generated text modality

probability.

Adversarial learning for intra-modal

Although the structure of intra-modal adversarial loss is
similar to formula (14), some details are different and the
optimizationobjectives are also different. For the image (text)
discriminator Dvae , Dtae, the input is the image (text) modal
feature representation and the feature representation after the
reconstruction of the autoencoder. The intra-modal adversar-
ial loss is as follows:

min
θ∗ae
D

L∗ae
adv = −1

n

n∑
i=1

(log D∗ae( f ∗ae_in
i ; θ∗ae

D )

+ log(1 − D∗ae( f ∗ae_out
i ; θ∗ae

D ))), ∗ ∈ {v, t}.
(15)

The objective function of the whole feature generation
part is as follows:

Lgen = L img + L txt + L lab, (16)

L img, L txt, L lab represent the loss of image feature extraction,
text feature extraction and label generation, respectively. The
objective function of the whole adversarial loss part is as
follows:

Ladv = Lv,l
adv + Lt,l

adv + Lvae
adv + Ltae

adv. (17)

This paper train the multi-modal feature extraction net-
work (Imagenet, Textnet, Labelnet) by a way of adversarial
learning. The process of learning the optimal semantic fea-
tures is a joint optimization process, which is carried out
by jointly minimizing the generated losses and maximizing
the adversarial losses. The feature generation loss and the
adversarial loss are shown by Eqs. (16) and (17), respec-
tively. Since the optimization objectives of the two objective
functions are opposite, this is a minimum–maximum game:

(θ̂ v, θ̂ t , θ̂ l) = argmin
θv,θ t ,θ l

(Lgen(θ
v, θ t , θ l) − Ladv(θ̂D))

θ̂D = argmax
θD

(Lgen(θ̂
v, θ̂ t , θ̂ l) − Ladv(θD)). (18)
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Algorithm 1 The algorithm for SAAH.
Input: Image set V= {v1,v2, . . . , vn} ; Text set T = {t1, t2, . . . , tn} ;

Label set L= {l1, l2, . . . , ln} ;
Initialize: Initialize the hyperparameters:α, β, γ, δ, η, λ;
For i = 0; i ≤ t; i + + do

Update Labelnet parameters θ l by descending their gradients:
θ l = θ l − π · ∇θ l

1
n (Lgen − Ladv)

Update Imagenet and Textnet parameters θv,t by descending
their gradients:

θ∗ = θ∗ − π · ∇θ∗ 1
n (Lgen − Ladv), ∗ ∈ {v, t}

Update θ
v,l
D ,θ t,lD , θvae

D , θ taeD , by BP algorithm:

θ
∗,l
D = θ

∗,l
D + π · ∇

θ
∗,l
D

1
n (Lgen − Ladv), ∗ ∈ {v, t}

θ∗ae
D = θ∗ae

D +π · ∇θ∗ae
D

1
n (Lgen − Ladv), ∗ ∈ {v, t}

Endfor
Output: optimal binary hash codes B,

parameters of three generate network and four adversarial
network.

Experiment

This paper conducted adequate experiments on three popular
benchmark datasets MIRFLICKR-25K [26] , NUS-WIDE
[25] and MS COCO [50] to prove its performance. The
deep learning framework used in the experiment was Ten-
sorFlow V1.15.4, and the deep learning acceleration card
was NVIDIA GTX 1080TI GPU.

Datasets

MIRFLICKR-25K [26] contains 25015 images, each of
which has a corresponding text description, so each instance
sample is an image-text pair. There are 24 categories in this
dataset, and each instance sample is marked by at least one
tag. In our experiment, we only kept the tags with more than
20 times of marking, and removed the remaining tags to
obtain 20,015 samples. For each instance sample, each text
sample is represented as a 1386-dimensional BoW vector.

NUS-WIDE [25] contains 269,648 images and a total of
81 labels. Each image corresponds to some text description.
This dataset is a multi-label dataset, that is, each instance
sample is tagged by one or more tags. This paper selected
21 categories with the highest frequency and left 195,834
image-text pairs for the experiment. For each instance sam-
ple, each text sample is represented as a 1000-dimensional
BoW vector.

MS COCO dataset [50], its training set size is 80,000, and
the verification set size is 40,000. This paper randomly select
5000 image-text pairs as the validation set of our experiment,
so a total of 85000 image-text pairs are selected as the training
set of the experiment. Each data item is composed of two
image-text pairs with differentmodalities, and the text adopts
2000-dimensional BoW vector features. In our experiment,
the specific implementation details of the two cross-modal
datasets are shown in Table 2.

Evaluationmetric

In the experiments, this paper uses two kinds of retrieval
tasks for cross-modal retrieval: retrieving text by image query
(image → text) and retrieving image by text query (text →
image). By the way, this paper also compare the effect of
single-modal query in our proposed cross-modal method:
retrieving image by image query (image → image) and
retrieving text by text query (text → text). Three widely
used evaluation metrics are used to evaluate the quality of
retrieval: Mean Average Precision (MAP), precision–recall
curve (PR-curve) and the objective function loss curve (Loss-
curve).

Experiment results

Some representative methods were selected for comparison
to verify the effectiveness of the proposed SAAH method.
The shallow hashing methods including: CVH [16], STMH
[17], CMSSH [18], SCM[19] andSePH [20], and deep cross-
modal hashing methods including: DCMH [21], PRDH [22],
SSAH [14], AGAH [15] and CPAH [39]. For fairness, the
comparison method applies the same Settings as in the orig-
inal work.

Results on MIRFLICKR-25K

Table 3 presents the MAP results of all baselines and our
method on FLICKR-25K, with both Image → T ext task
and T ext → Image task. The best accuracy is indi-
cated in boldface. From the results we can know that deep
cross-modal methods achieve better performance than all the
shallow hashing methods, our proposed SAAH is obviously
superior to all of the comparative method. As the length
of the code increases, more information is retained, so the
length of the code affects the result. In our experiment, per-
formance was best when the code length was 64 bits in the
MIRFLICKR-25K dataset. By comparing the best shallow
hashing method and deep hashing method, the method this
paper proposed achieved the best results. In particular, com-
pared to SePH, our proposed approach achieved a more than
13% lead in both retrieval tasks.Comparedwith the latest rep-
resentative deep methods (CPAH, CPAH* and AGAH), our
MAP results are still the best in the two tasks of image query
text and text query image. Our work is based on CNN-F fea-
tures. However, CPAH is not only based on CNN-F features,
but also uses features based on VGG16. For a comprehensive
comparison, this paper also compared CPAH with VGG16
features, denoted by CPAH*.
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Table 2 Setup of the two
cross-modal datasets

Dataset Total Train Test Labels Image feature Text feature

MIRFLICKR-25K 20,015 10,000 2000 24 4096d CNN-F 1386d BoW

NUS-WIDE 195,834 10,500 2100 21 4096d CNN-F 1000d BoW

MS COCO 85,000 10,000 5000 80 4096d CNN-F 2000d BoW

Table 3 The MAP of two
retrieval tasks on
MIRFlickr-25K dataset, the
baselines are based on CNN-F
features

Methods Image-query-text Text-query-image

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

CVH [16] 0.557 0.554 0.554 0.557 0.554 0.554

STMH [17] 0.602 0.608 0.605 0.600 0.606 0.608

CMSSH [18] 0.585 0.584 0.572 0.567 0.569 0.561

SCM [19] 0.671 0.682 0.685 0.697 0.707 0.713

SePH [20] 0.657 0.66 0.661 0.648 0.652 0.654

DCMH [21] 0.735 0.737 0.75 0.763 0.764 0.775

PRDH [22] 0.722 0.740 0.755 0.755 0.764 0.777

SSAH [14] 0.771 0.784 0.792 0.768 0.774 0.784

AGAH [15] 0.792 0.795 0.807 0.788 0.79 0.805

CPAH [39] 0.775 0.791 0.787 0.777 0.787 0.789

CPAH* [39] 0.789 0.796 0.795 0.778 0.786 0.785

OURS 0.792 0.796 0.815 0.795 0.803 0.806

CPAH* means based on VGG16 features

Table 4 The MAP of two
retrieval tasks on NUS-WIDE
dataset, the baselines are based
on CNN-F features

Methods Image-query-text Text-query-image

16 bits 32 bits 64 bits 80 bit 16 bits 32 bits 64 bits 80 bit

CVH [16] 0.4 0.392 0.386 – 0.372 0.366 0.363 –

STMH [17] 0.522 0.529 0.537 – 0.496 0.529 0.532 –

CMSSH [18] 0.511 0.506 0.493 – 0.449 0.389 0.38 –

SCM [19] 0.533 0.548 0.557 – 0.463 0.462 0.471 –

SePH [20] 0.478 0.487 0.489 – 0.449 0.454 0.458 –

DCMH [21] 0.566 0.601 0.600 – 0.534 0.587 0.592 –

PRDH [22] 0.593 0.633 0.624 – 0.594 0.610 0.601 –

SSAH [14] 0.602 0.622 0.646 – 0.612 0.637 0.640 –

AGAH [15] 0.646 0.66 0.651 – 0.631 0.642 0.634 –

CPAH [39] 0.607 0.627 0.634 – 0.642 0.662 0.665 –

CPAH* [39] 0.613 0.629 0.630 – 0.649 0.669 0.668 –

OURS 0.628 0.646 0.656 0.67 0.651 0.663 0.659 0.672

CPAH* means based on VGG16 features

Table 5 The MAP of two
retrieval tasks on MS-COCO
dataset, the baselines are based
on CNN-F features

Methods Image-query-text Text-query-image

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

CVH [16] 0.412 0.401 0.400 0.367 0.359 0.357

STMH [17] 0.422 0.459 0.475 0.431 0.461 0.476

CMSSH [18] 0.512 0.495 0.482 0.429 0.408 0.398

SePH [20] 0.463 0.487 0.501 0.449 0.474 0.499

DCMH [21] 0.511 0.513 0.527 0.501 0.503 0.505

SSAH [14] 0.550 0.558 0.557 0.537 0.538 0.529

OURS 0.573 0.576 0.571 0.558 0.551 0.537

123



Complex & Intelligent Systems (2022) 8:1603–1617 1613

Fig. 4 The precision–recall curves on MIRFLICKR25K with 16bit hash codes

Fig. 5 The precision–recall curves on NUS-WIDE with 16-bit hash codes

Results on NUS-WIDE

Table 4 lists the MAP results of all methods on NUS-WIDE.
Compared with MIRFLICKR-25K ,which has more sam-
ples and more complex contents. Our approach still leads,
but by a smaller margin than MIRFLICKR-25K. compared
with CPAH, CPAH* and AGAH, in the image query text
task, our MAP achieved the best results when the hash code
length is 64 bits, 80 bits. AGAH has the best result when the
hash code length is 16, 32. In the text query image task, our
MAP achieved the best results when the hash code lengthwas
16 bits, 32 bits, and 80 bits. CPAH* has the best result when
the hash code length is 32 bits and 64 bits. As can be seen
from the P–R curve, the precision of our method shows an

upward trend as the code length increases.We found that both
image-query-text and text-query-image tasks produced the
best results at 80 bits. This shows that our proposed method
is better when the length of the hash code is longer.

Results on MS COCO

The MAP of two retrieval tasks on MS-COCO dataset as
shown in Table 5. In thetwo tasks of image query text and
text query image, the method proposed in this paper achieves
the best MAP value. This paper did not test the MAP value
of the comparison methods on the MS-COCO dataset, the
MAP value of the comparison method is directly obtained
from the original paper. Since somemethods (PRDH,AGAH
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Table 6 The MAP scores of our
method on two datasets with
single-modality retrieval tasks

Task Flickr-25K NUS-WIDE

16 bits 32 bits 64 bits 16 bits 32 bits 64bits 80bits

Image–image 0.828 0.829 0.844 0.698 0.706 0.712 0.723

Text–text 0.764 0.767 0.773 0.595 0.613 0.606 0.614

Fig. 6 Convergence of four kinds of loss

and CPAH) were not tested on the MS-COCO dataset in
the original paper, this paper did not include them in the
comparison.

PR curves analysis

The precision–recall (PR) curves are used to measure the
accuracy of the results returned within a certain Hamming
radius. We plotted the P-R curves for all the methods in
Figs. 4 and 5 at 16 bit code length. The x-coordinate rep-
resents the recall rate, and the y-coordinate represents the
precision value. The left figure is the PR curve of searching
text by the image query, and the right figure is the PR curve of
searching image by the text query. The results of eachmethod
are represented by lines with different nodes and colors. We
can also see from the curve that the performance of the deep
hashingmethod is significantly better than that of the shallow
hashing method in both types of retrieval tasks. The SAAH
proposed by us achieves the optimal performance, this is fur-
ther proof of the superiority of our method.

The proposed cross-modal method is also suitable for
single-modality retrieval, and has better retrieval precision
than the existing single-modality retrieval methods. The
single-modality retrieval MAP of our method is shown in
Table 6.

Convergence analysis

Figure 6 shows the training loss changes with the epoch,
the convergence curve is drawn according to Eq. (16) and
(17). We can see that in the training process, the loss of each
epoch is monotonously decreasing, and with the training, the

Table 7 The MAP results at 64 bits for ablation analysis on
MIRFLICKR-25K

Method Configuration I2T T2I

SAAH Lgen + Ladv 0.815 0.806

SAAH-1 SAAH − (Lv,l
adv + Lt,l

adv) 0.778 0.769

SAAH-2 SAAH − (Lvae
adv + Ltae

adv) 0.801 0.797

SAAH-3 SAAH − L triplet 0.807 0.796

loss becomes small and stable. Figure 6a, b shows that the
total losses of the feature generation module become small
and stable with fewer epoch numbers. Therefore, this shows
that the feature generation module is effective and accurately
maintains the cross-modal correlation. Figure 6c shows the
total adversarial losses change with the epoch, and the total
adversarial losses rapidly converge and stabilize. This shows
that our proposed cross-modal adversarialmethod is effective
and can accurately maintain cross-media correlation.

Ablation study

To further demonstrate the effectiveness of each part in
SAAH,We design several variants to evaluate the impacts of
different modules and demonstrate the superiority of SAAH.
The three variants are listed as follows:

(1) SAAH-1 is the variant without inter-modal adversarial
loss;

(2) SAAH-2 is the variant without intra-modal adversarial
loss;

(3) SAAH-3 is the variant without inter-modal triplet loss.
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Fig. 7 Parameter sensitivity analysis of α, β and η on MIRFlickr25K

Table 7 shows the results on MIRFlickr25K datasets with
64 bits. As can be observed, each module plays a certain role
in SAAH. Specifically, the results of SAAH-1 indicate that
the inter-modal adversarial module is a crucial component,
which can eliminate the difference in feature distribution
between different modalities, thus further improving the
MAP results on different datasets. The performance of
SAAH-2 shows that the intra-modal adversarial loss can
reduce the feature representation error after the reconstruc-
tion of the autoencoder. Besides the performance of SAAH-3
shows that the inter-modal triplet loss will improve the MAP
results, so the inter-modal triplet loss is also an important
component. However, it is less important than SAAH-1.

Parameter sensitivity

Finally, this paper further analyzed the impact of the trade-
off parameters α, β, γ, η and δ, and discussed the sensitivity
of our method to different hyper-parameter values. Figure 7
shows the effect of these three hyper-parameters on MIR-
Flickr25K dataset with hash code lengths of 64, the MAP
scores include the value of image-query-text and text-query-
image results. When one hyper-parameter is evaluated, the
others are fixed. From the results in Fig. 7a, our approach is
not sensitive to the choice of α in the range [1, 1.2], in our
experiments, we set α as 1. Similarly, in Fig. 7b, c, β is not
sensitive in the range [10, 14], and η in the range [90, 110].
In addition, from the figure, the best results can be achieved
when α = 1, β = 10, and η = 100. Similarly, after cross-
validation, we set γ = δ = 1. For simplicity, we used the
same parameter settings in both datasets (MIRFlickr25K and
NUS-WIDE).

Conclusion

This paper proposed a semantic-guided adversarial hashing
method, the adversarial learning based on semantic infor-

mation supervision not only eliminates the modal gap, but
also keeps the invariance among the modalities. Two kinds
of adversarial autoencoder networks are designed to maxi-
mize the semantic correlation of similar instances, and the
adversarial learning process of adversarial modules is con-
ducted under the supervision of semantic information, and
modal relations can be maintained. In addition, to maintain
the inter-modal correlation of all similar pairs, we use two
types of loss functions tomaintain the similarity. To verify the
effectiveness of our proposedmethod, sufficient experiments
were conducted on three widely used cross-modal datasets
(NUS-WIDE, MIRFLICKR and MS COCO), and compared
with several representative advanced cross-media retrieval
methods, SAAH achieved leading retrieval performance.
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