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Abstract
Convolution neural network (CNN) has been widely used in the field of remaining useful life (RUL) prediction. However,
the CNN-based RUL prediction methods have some limitations. The receptive field of CNN is limited and easy to happen
gradient vanishing problem when the network is too deep. The contribution differences of different channels and different
time steps to RUL prediction are not considered, and only use deep learning features or handcrafted statistical features for
prediction. These limitations can lead to inaccurate prediction results. To solve these problems, this paper proposes an RUL
prediction method based on multi-layer self-attention (MLSA) and temporal convolution network (TCN). The TCN is used to
extract deep learning features. Dilated convolution and residual connection are adopted in TCN structure. Dilated convolution
is an efficient way to widen receptive field, and the residual structure can avoid the gradient vanishing problem. Besides,
we propose a feature fusion method to fuse deep learning features and statistical features. And the MLSA is designed to
adaptively assign feature weights. Finally, the turbofan engine dataset is used to verify the proposed method. Experimental
results indicate the effectiveness of the proposed method.

Keywords Temporal convolution network · Multi-layer self-attention · Remaining useful life prediction · Feature fusion

Introduction

Condition-based maintenance (CBM) is a maintenance strat-
egy that monitors equipment health conditions in real-time
and makes optimal maintenance decisions based on moni-
toring information [12]. This strategy can avoid unnecessary
maintenance plans and ensure the reliability of equipment
operation. It has been widely used in recent years [8]. Health
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prognostics is one of the major tasks in CBM, it can provide
important guidance for equipment maintenance. Thus, accu-
rate prediction of remaining useful life (RUL) is significant
for preventive maintenance decisions of equipment.

The current RUL prediction methods can be divided into
model-based anddata-drivenmethods [12]. Themodel-based
prediction methods are based on the internal working mech-
anism of the object system and establish the mathematical
model that can reflect the physical laws of degradation. The
mathematicalmodel cangodeep into the essenceof the object
system and obtain accurate prediction results. However, it
is difficult to establish an accurate mathematical model to
reflect the physical laws of degradation in practical appli-
cations. Establishing a model from the internal mechanism
of the system requires a large amount of expert knowledge.
This is often impossible to establish an accuratemathematical
model, especially when the degradation process is compli-
cated and the degradation mechanism is unclear.

In recent years, with the development of big data and
intelligence, data-driven methods have been more and more
widely used [21–23]. Data-driven methods can be further
divided into statistical model-based methods and artificial
intelligence (AI) methods [4]. The statistical model-based
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methods predict the RUL by establishing a statistical model
based on empirical knowledge. The statistical models used
for RUL prediction include autoregressive model [16], ran-
dom coefficient model [12], Wiener process model [29], etc.
In these methods, the RUL prediction model is constructed
by fitting available observations into a random coefficient
model or a random process model under the probabilistic
method, without relying on any physics or principles.

The AI-based methods attempt to use AI algorithms
to learn the mechanical degradation patterns from large
amounts of data. It is usually necessary to extract some
features that are sensitive to degradation from the raw data
through manual methods or deep learning algorithms. Then
realize the mapping between features and RUL through AI
algorithms. With the advent of the big data era, massive
amounts of industrial data have created favorable conditions
for AI-based methods [6]. In this paper, we mainly focus
on AI-based RUL prediction methods. AI-based methods
can be divided into shallow machine learning algorithms
and deep learning algorithms [4]. The shallow models used
for RUL prediction include support vector machine (SVM)
[15, 31], random forest (RF) [33], decision tree (DT) [28],
etc. Since the trend of the raw data is unclear and contains
noise [14], it is necessary to extract features from the raw
data before inputting the model. Zan et al. [31] extracted
statistical features in the time domain, frequency domain,
and time–frequency domain from bearing vibration signals.
Then, multiple features were fused into one fusion feature,
and the particle swarm optimization support vector machine
was used to predict RUL.

Another widely used AI-based RUL prediction method
is the deep learning algorithm. Deep learning methods are
representation learning methods with multiple levels of rep-
resentation, obtained by composing simple but non-linear
modules that each transforms the representation at one level
into a representation at a higher, slightly more abstract level
[11]. Compared with shallow models, deep learning algo-
rithms can automatically extract representative features from
raw data. CNN is one of the most popular deep learning algo-
rithms. Due to its shared parameter convolution kernel, CNN
performs well in spatial feature extraction and has been suc-
cessfully applied to RUL prediction. Babu et al. [1] first used
CNN for turbofan engine RUL prediction. Unlike the CNN
structure used in computer vision, the convolution and pool-
ing operations in this method were performed along the time
dimension of multi-channel data. The results showed that
CNN performed better than shallow models such as MLP.
Li et al. [13] proposed a multi-scale deep convolution neural
network and used raw sensory data as input to the model to
predict RUL. Ren et al. [18] proposed a new feature extrac-
tion method, named the Spectrum-Principal-Energy-Vector,
and input this feature into an eight-layer CNN to predict the
RUL of the bearing. Cheng et al. [5] used the Hilbert–Huang

transform to construct a new health indicator, named the
degradation energy indicator. This indicator was used as the
label to train a seven-layer CNN model and predicted the
bearing RUL through SVM. However, the receptive field
of CNN is limited and easy to happen gradient vanishing
problem when the network is too deep. Due to the limited
receptive field, it is difficult for the network to capture the
features in the long time series and miss some important
degradation information. Another disadvantage is that when
the network is too deep, gradient explosion and gradient dis-
appearance are easy to occur during training, which makes
training more difficult.

Considering these shortcomings of CNN, Bai et al. [2]
proposed TCN. TCN increases the receptive field by dilated
convolution, so the model can receive more historical infor-
mation. Meanwhile, TCN uses the residual connection to
make the model deeper and extract more abstract features.
However, there are few studies on TCN for RUL prediction.

In the aboveRULpredictionmethods based on deep learn-
ing, different channel signals or features extracted from the
signals are used as input to the model. Then, the deep learn-
ing algorithm is used to extract features (hereafter this text,
the features extracted by the deep learning algorithm will be
abbreviated as deep learning features) from input data and
establish the mapping relationship between deep learning
features and RUL. However, in the network construction pro-
cess, they assumed that the input data obtained by different
channels at different times contributed equally to the output.
But in reality, different channels and different time steps have
different contributions toRULprediction. For example, some
channels may contain more degradation information, while
some contain less. If this difference is not considered, the
model will be affected by irrelevant information, resulting
in low prediction accuracy and poor generalization ability.
The attention mechanism can relate the features at differ-
ent locations and assign weights to these features, thereby
enhancing the contribution of important features to RUL
prediction. Chen et al. [3] introduced the attention mecha-
nism into RUL prediction. They integrated recurrent neural
network and attention mechanism to establish an RUL pre-
diction model. The frequency domain features of bearing
vibration signals were used as the model input. This method
obtained high prediction accuracy.

In this paper, we proposed an RUL prediction method
based on MLSA and TCN. The main contributions of this
research are as follows:

1. The proposed method integrates MLSA and TCN to
extract deep learning features. The proposed method uti-
lizes MLSA for adaptively assigning weights to different
channels and different time steps, thereby enhancing the
contribution of important channels and time steps to RUL
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prediction. And the feature representation of the data is
obtained by TCN.

2. A new feature fusion method for RUL prediction is pro-
posed. Studies have shown thatmanually extracted statis-
tical features also contain rich degradation information
[10]. The proposed model can take both deep learning
features and statistical features into consideration for
RUL prediction. And considering the contribution differ-
ences of different source features to RUL prediction, the
attention mechanism is used to adaptively assign weights
to different source features.

3. To evaluate the proposed method, four experiments are
conducted on the turbofan engine dataset. And we select
a sample to visualize the prediction process to understand
the contribution differences of different features to RUL
prediction.

The content of this paper is arranged as follows: “Method-
ology” introduces details of the proposed method. “Exper-
imental study and analysis” introduces the turbofan engine
dataset and the data preprocessing methods. The effective-
ness of the proposed method is verified by four experiments.
The results are analyzed and discussed in this section. To
understand the contribution differences of different features
to RUL prediction, the attention weights are visualized.
Finally, conclusions are drawn in “Conclusion”.

Methodology

Temporal convolution network

Bai et al. [2] proposed TCN in 2018. TCN is composed of
several residual blocks. Each residual block contains convo-
lution layers, dropout layers, batch normalization layers and
adopts residual connection. The structure of a residual block
in the TCN is shown in Fig. 1.

Unlike CNN, TCN uses dilated causal convolution to
increase the range of receptive field. A dilated causal con-
volution with dilation factors d � 1, 2, 4 is shown in Fig. 2.
The biggest difference between dilated convolution and nor-
mal convolution is that holes are injected into the convolution
kernel. The hyperparameter of the dilated convolution is the
dilation rate d, which indicates the number of holes between
adjacent notes in the convolution kernel. When d � 1, it
means normal convolution operation. When d � 2 denotes
that the inner interval of the convolution kernel is 2. The size
of the dilated convolution kernel k′ and the receptive field L
can be calculated as follows:

k′ � d · (k − 1) + 1, (1)

Dilated causal convolution

ReLU

Drouout

Batch Normalization

Input

Dilated causal convolution

ReLU

Drouout

Batch Normalization

1×1 Convolution
(Optional)

+

Output

Fig. 1 Structure of a residual block in the TCN [2]

Input

Convolution layer

d = 1, k = 3
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Xt-1 XtX0 X1 . . .

Fig. 2 A dilated causal convolution with dilation factors d � 1, 2, 4 [2]

L �
(∑

D

d · (k − 1)

)
+ 1, (2)

where k is the convolution kernel size, D is the dilation rate
array {d1, d2, …, dn}, and n is the number of dilated con-
volution layers. According to Eq. (2), choosing larger kernel
size or increasing the dilation rate can increase the range of
the receptive field.

By using causal convolution, the output at time t only
depends on the values at time t and before in the previous
layer, that is:

yn+1t � f (xn1 , . . . , xnt ), (3)

where n is the layer number, f (·) represents the convolution
operation, yn+1t represents the output of the (n + 1)th layer at
time t. Different from the traditional convolution, the causal
convolution does not use data of future time.

The residual connection is beneficial for model training.
The residual block input and the output of the last layer
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are connected through the residual connection, as shown in
Eq. (4) [2].

O � Activation(X + F(X )), (4)

where X is the input of the residual block, F(X) is the output
of the last layer of the residual block, O is the output of the
residual block, andActivation(·) is the activation function like
sigmoid. By residual connection, the input skips many lay-
ers and connects to the last layer of the residual block, which
protects the integrity of the information to some extent, alle-
viates gradient explosion and gradient vanishing, and enables
the model to extract high dimensional features.

Self-attentionmechanism

The idea of attention mechanism [7, 26] originates from
human vision. When humans find that a part of a scene often
has something they want to observe, they will learn to focus
on that part when a similar scene appears again and focus
more attention on the useful part. This is a way for humans
to quickly select high-value information from massive infor-
mation using limited processing resources [17]. The attention
mechanism in deep learning simulates this process.When the
neural network finds the key information of the input data, it
will assign a higher weight to the key information to enhance
its contribution to the result.

Self-attention, sometimes called intra-attention is an atten-
tion mechanism relating different positions of a single
sequence in order to compute a representation of the sequence
[25]. It has been successfully applied in different research
fields [27, 30, 32]. The self-attention mechanism assigns
weights to different features based on the dependencies
between features. The purpose is to reduce the dependence on
external information and use the inherent information within
the features to allocate attention as much as possible. The
equations of the self-attention mechanism are Eqs. (5)–(7)
[4]. The calculation process is as follows:

1. The sample is represented as H � {h1, h2, . . . , hi ,
. . . , hn}, hi ∈ Rn, where n is the sequence length of the
feature. First, the ith feature hi is scored according to the
importance of the i-th feature:

where ϕ(·) is the scoring function, such as sigmoid func-
tion and linear function, etc.

si � ϕ(W · hi + b), (5)

2. After obtaining the score si corresponding to hi, the score
can be normalized by softmax function:

where αi is the attention weight assigned by the self-
attention mechanism to hi.

αi � softmax(si ) � exp(si )∑
i exp(si )

, (6)

3. The final output O of the self-attention mechanism is:

O � H ⊗ A � {α1h1,α2h2, . . . ,αnhn}, (7)

where A � {α1, α2, . . . , αn}, ⊗ is the element-wise multi-
plication operation.

Procedure of proposedmethod

This section describes the specific steps of the proposed
method. Figure 3 shows the framework of the proposed
method. In the deep learning features extraction part, first,
the self-attention mechanism is used to adaptively assign
weights to different channels, and then the deep learning fea-
tures are extracted through TCN.After that, the self-attention
mechanism is used to adaptively assign weights to different
time steps. In the statistical feature extraction part, two sta-
tistical features are extracted: the mean value and the trend
coefficient. Subsequently, the fusion module is used to fuse
features from different source and adaptively assign weights
to different source features. Finally, the regression layer is
used to predict RUL.

Deep learning features extraction

Before feeding data into the TCN, the self-attention mech-
anism is used to weight different channels in the chan-
nel attention layer. The data sample is expressed as
x � { x1, x2, . . . , xt, . . . , xtmax} , xt represents the chan-
nel data at time t, tmax is the maximum time step,
xt � { x1, t , x2, t , . . . , xk, t , . . . , xkmax, t} , xk, t represents the
value of the kth channel at time t, and kmax is the number of
channels.

First, the self-attention mechanism is used to weight dif-
ferent channels. The calculation process is as follows:

1. First, scoring of different channels at time t:

st � ϕ(W · xt + b), (8)

where ϕ(•) is the scoring function, such as sig-
moid and linear function, W and b are the weight
matrix and bias vector, respectively. The score of
different channels at time t can be expressed as
st � { s1, t , s2, t , . . . , sk, t , . . . , skmax, tmax} .
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Fig. 3 Framework of the
proposed RUL prediction
method
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2. After obtaining the scores of different channels at time t,
the score sk, t corresponding to xk,t can be normalized by
the softmax function:

αk,t � softmax(sk,t ) � exp(sk,t )∑
k exp(sk,t )

, (9)

where αk, t is the attention weight corresponding to xk,t .
3. Take the average of the weights assigned to the kth chan-

nel at all time steps, the weight αk corresponding to the
kth channel is obtained:

αk � 1

tmax

∑
t

αk,t , (10)

4. Finally, the output of the channel attention layer is:

α ⊗ x � {α1x1,α2x2, . . . ,αk xk , . . . ,αkmaxxkmax}T ,
(11)

where α � {α1, α2, . . . , αkmax}.
By assigning corresponding weights to different chan-

nels, the contribution of channels with richer degradation
information is enhanced, while the contribution of insensi-
tive channels is weakened.

Then, theTCN is used to extract the deep learning features.
The TCN used in this paper contains two residual blocks.

Table 1 Parameters of TCN

Layers Parameters

Residual block 1 1D convolution layer k: 64, kernel size: 5,
stride: 1, d: 1

Activation function ReLU

1D convolution layer k: 64, kernel size: 5,
stride: 1, d: 1

Activation function ReLU

Residual block 2 1D convolution layer k: 64, kernel size: 5,
stride: 1, d: 2

Activation function ReLU

1D convolution layer k: 64, kernel size: 5,
stride: 1, d: 2

Activation function ReLU

Each residual block is composed of two dilated causal convo-
lution layers, and the input of the residual block is connected
with the output of the last layer through the residual connec-
tion. The 1-D dilated causal convolution kernel performs on
the time dimension of multi-channel data to extract temporal
features. The output and input size of the TCN is the same.
Due to its shared parameter convolution kernel, the number
of parameters and the training time can be greatly reduced.
The parameters of TCN used in this paper are experimentally
determined and the details of TCN are shown in Table 1.
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After obtaining the deep learning features extracted by
TCN, the self-attention mechanism is used again to weight
different time steps. The output of TCN is expressed as: x ′ �
{x ′

1, x
′
2, . . . , x ′

k , . . . , x ′
kmax

}T , the data of the kth channel is
expressed as: x ′

k � x ′
k, 1, x

′
k, 2, . . . , x ′

k, t , . . . , x ′
k, tmax

}. The
calculation process is as follows:

1. First, scoring of different time steps:

s′
k � ϕ(W · x ′

k + b), (12)

where s′
k � {s′

k, 1, s
′
k, 2, . . . , s′

k, t , . . . , s′
k, tmax

},s′
k, t is the

score of the kth channel at time t.
2. The score s′

k, t can be normalized to attention weight βk,t
as follows:

βk,t � softmax(s
′
k,t ) � exp(s

′
k,t )∑

t exp(s
′
k,t )

, (13)

3. Take the average of the weights assigned to all channels
at time t, the weight corresponding to the tth time step is
calculated as:

β t � 1

kmax

∑
k

βk,t , (14)

4. The output of the time attention layer is:

β ⊗ x ′ � {β1x
′
1,β2x

′
2, . . . ,β t x

′
i . . . ,β tmax

x
′
tmax

}, (15)

where β � {β1, β2, . . . , β tmax
}.

Through the above steps, the deep learning features rep-
resentation of data is obtained.

Statistical features extraction

Some statistical features contain rich degradation informa-
tion, such as mean value and trend coefficient, which has
been proved to be effective for RUL prediction in [13]. The
mean value shows the magnitude of sensory data, and the
trend coefficient reflects the degradation rate. In this paper,
these two statistical features are extracted and used for RUL
prediction. Figure 4 shows an example of these two features.
It can be seen, the mean value and trend coefficient increase
over time, which well reflects the properties of the raw data.

Feature fusion

After the deep learning features are extracted in the deep
learning features extraction part, the deep learning features
are fused with the manually extracted statistical features for
RUL prediction in the feature fusion module.

The samples for deep learning features are two-
dimensional (2-D) matrices, one dimension is the channel
dimension and the other is the time dimension. The statisti-
cal feature samples are 1-D vectors. The sample shapes of
these two features are different and cannot be directly con-
catenated, so the deep learning features need to be flattened
to 1-D firstly. Subsequently, fully connected layers are used
to extract more abstract features. After that, two different
source features can be concatenated. And the self-attention
mechanism is used to adaptively assign weights to the fea-
tures from different sources.

The process is as follows:

1. Flatten deep learning features by the flatten layer.
After that, two fully connected layers are used to
extract more abstract features, the output is expressed as
D � {d1, d2, . . . , dm}. A fully connected layer is used to
exact abstract features from statistical features, the output
is expressed as H �{h1, h2, . . . , hm}. Concatenate two
different source features into a new feature set F � {D,
H} � {d1, d2, . . . , dm , h1, h2, . . . , hm} � { f1, f2, . . . ,
fn}, where n � 2 m.

2. The self-attention mechanism is used to weight different
source features:

sn � ϕ(W · fn + b), (16)

γn � softmax(sn) � exp(sn)∑
n exp(sn)

, (17)

where ϕ(·) is the scoring function, sn is the score corre-
sponding to the feature f n, and γn is the attention weight
corresponding to the feature f n.

3. The output of the feature fusion module is:

F ⊗ γ � f1γ1, f2γ2, . . . , fnγn , . . . , fnmaxγnmax}, (18)

where γ � {γ1, γ2, . . . , γnmax}.
To prevent over-fitting, dropout is adopted, which is a

common regularization method. During the model training
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Fig. 4 An example of two statistical features
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process, some neurons are randomly hidden, so these neu-
rons will not make an effect. During the testing process, all
neurons are activated. In this paper, the dropout ratio is set
to 0.2. Finally, the mapping relationship between fusion fea-
tures and RUL is established through the regression layer.

Since RUL prediction is a typical regression problem, the
mean square error (MSE) is selected as the loss function. The
Adam optimizer is used to modify the model parameters. To
achieve the best effect, the learning rate decay strategy is
adopted. The initial learning rate is set to 0.001, which is
decayed to 0.0001.

Experimental study and analysis

Dataset, evaluation metrics, experimental results, analysis,
and discussion are described specifically in this section. The
training and testing process is implemented using Keras run-
ning on top of TensorFlow. The computer is configured with
an Intel(R)Xeon(R)Gold 6136 CPU, 16 GB RAM, and win-
dows7 64-bit operating system.

Dataset

The widely used NASA turbofan engine dataset [20] is used
to evaluate the proposed method. The dataset can be found
in [19]. This dataset is generated by C-MAPSS (Commer-
cial Modular Aero-Propulsion System Simulation) software
to simulate the degradation process of turbofan engines. This
dataset describes the degradation process of turbofan engine.
The engine consists of fan, high-pressure turbine (HPT),
high-pressure compressor (HPC), low pressure compressor
(LPC), low pressure turbine (LPT), nozzle, and combustor
as shown in Fig. 5. Twenty-one sensors are deployed at dif-
ferent locations to monitor the condition of the engine. For
detailed information on enginemodules and channel descrip-
tions, please refer to the literature [20].

This dataset contains four sub-datasets, which are respec-
tively denoted as FD001, FD002, FD003, and FD004. The

Fig. 5 Simplified diagram of engine simulated in C-MAPSS [20]

Table 2 Details of the turbofan engine dataset

C-MAPSS

FD001 FD002 FD003 FD004

Train numbers 100 260 100 249

Test numbers 100 259 100 248

Operation mode 1 6 1 6

Fault mode 1 1 2 2
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Fig. 6 An example of sliding window to split data

operating conditions and failure modes of each sub-dataset
are different. Each sub-dataset consists of three parts: training
set, testing set, and RUL label. Each training set and testing
set contain 26 columns of data. The first two columns are the
engine ID and the number of operating cycles. The next three
columns are the three operating parameters: flight altitude,
Mach number, and throttle resolver angle. The remaining 21
columns are different channel data. The training set has com-
plete run-to-failure data, while the testing set only provides
part of the full life cycle data. The details of the dataset are
shown in Table 2.

Data preprocessing

Samples creation

There are dependencies between different time sequences,
which are crucial to the problem of sequential processing.
To capture this dependence, a sliding window is used to split
data along the time dimension [1]. As shown in Fig. 6, a time
window with length w is used to split data to obtain training
samples. The RUL corresponding to the tth sample is T–w–t,
and T is the total cycle of the engine.

Data normalization

Some channels did not change during the whole cycle, indi-
cating these channels are not related to the degradation of
engines. The smaller the variance value of the channel data,
the less the change. Finally, the channel 1, 5, 6, 10, 16, 18,
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Fig. 7 Piece-wise linear RUL function

and 19 are removed from four sub-datasets.Meanwhile, since
the three operating conditions also changed during the engine
operation, they are also taken as part of the inputs.

The range of each channel is different. To eliminate its
influence on the prediction results, the data of each channel
is normalized to the range of [0,1] by Eq. (19) [24]:

x̂k,t � xk,t − min(xk)

max(xk) − min(xk)
(19)

where max(xk), min(xk) is the maximum and minimum val-
ues of the kth channel, respectively.

Besides, the extracted statistical features are standardized.

RUL label settings

In the healthy stage, the turbofan engine runs stably and
the degradation is not obvious. Therefore, during the health
phase, RUL is set to a constant value. When the fault occurs,
the performance of the engine begins to degrade. As the fault
becomes more serious, the condition worsens until the RUL
drops to 0 and the engine fails completely. In this paper,
referring to the literature [9, 24], the RUL label is set as a
piece-wise linear function, as shown in Fig. 7. The threshold
value is set to 130. The RUL label is set to 130 when the true
RUL is greater than 130. For samples with RUL less than
130, the label is set to the corresponding true RUL.

Evaluationmetrics

To evaluate the performance of the proposed method, two
commonly used evaluationmetrics are adopted: scoring func-
tion [1] and root mean square error (RMSE) [1].

The scoring function is defined as:

Score �

⎧⎪⎪⎨
⎪⎪⎩

N∑
i�1

(e− r̂i−ri
13 − 1), when r̂i < ri

N∑
i�1

(e
r̂i−ri
10 − 1), when r̂i ≥ ri

, (20)
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Fig. 8 Results of the proposed method with different window sizes on
the two sub-datasets

where r̂i is the predicted value, ri is the true value, and Score
is the score value.

The scoring function imposes different levels of penalties
for early and late predictions. For the case of overestimating
RUL (r̂i ≥ ri ), the penalty is higher than the case of under-
estimating RUL (r̂i < ri ). This is because in reality, the
consequences of the late prediction are more severe than the
early prediction. This asymmetric preference is also in line
with the aviation industry’s risk aversion attitude towards
engine failures. However, relying only on the scoring func-
tion sometimes is incomplete, because the appearance of
outliers (the difference between the predicted value and the
true value is too large) will affect the overall evaluation of
the scoring function. Therefore, it needs to be used together
with RMSE for evaluation. RMSE can reflect the global error
between the predicted value and the true value, and it is
defined as:

RMSE �
√√√√ 1

N

N∑
i�1

(r̂i − ri )
2 (21)

The smaller the value of Score and RMSE, the better the
prediction performance of the model.

Experimental implementation and results

Six experiments are conducted to investigate the performance
of the proposedmethod. The first experiment investigates the
impact of different time windows on RUL prediction. The
second experiment investigates the impact of different Rec-
tifiers on RUL prediction. The third experiment investigates
the impact of different source features on RUL prediction.
The fourth experiment investigates the effect of attention
mechanism settings. The fifth experiment compares the per-
formance of the proposed method with other RUL prediction
methods. The sixth experiment compares the complexity of
different methods.

1. The impact of different time windows on RUL pre-
diction: The time window size directly affects the model.
Studies have shown that a longer time window contains
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Table 3 Performance of models
using different Rectifiers Rectifiers RMSE Score Time cost (s)

Mean STD Mean STD

ELU 13.57 0.73 257.26 30.02 33.64

LeakyReLU 13.11 0.44 232.19 14.88 38.33

PReLU 13.25 0.65 237.54 26.71 39.71

ReLU 13.25 0.40 235.52 17.18 31.16

Fig. 9 The loss of models using
different Rectifiers
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more useful information. However, an excessively long
time window will increase the computational complex-
ity and affect the performance of the model. Therefore,
choosing an appropriate time window is very important.
To investigate the impact of the time window sizes on
RUL prediction, different size time windows are used
to create data samples. This experiment is conducted on
sub-datasets FD001andFD002.The experimental results
are shown in Fig. 8. Fig. 8 shows the changes in the per-
formance of themodel under different timewindows.The
x-axis represents different time windows, and the y-axis
is the RMSE and Score obtained by themodel at different
window sizes. It can be seen that when the time window
size is less than 30, as the window size increases, the
performance of the model improves. This is because the
larger window contains richer degradation information.
But when the window size increases to more than 30, the
performance of the model begins to degrade. This means
that when the window size exceeds 30, it will instead
have a negative effect on the RUL prediction. According
to the experimental results, the time window size is set
to 30, and the model performs best.

2. The impact of different Rectifiers on RUL prediction:
Referring to the literature [4], the proposed method uses
ReLUas the activation function. To evaluate the impact of

different Rectifiers on RUL prediction, the performance
of LeakyReLU, PReLU, ELU, and ReLU is compared on
FD001. Each model is trained 10 times to eliminate ran-
dom errors. The experimental results are shown in Table
3. In the table, Mean represents the mean value of 10
training results, STD represents the standard deviation
of 10 training results. Time cost represents the average
time cost of each iteration. As shown in Table 3, the
performance of the four models using different rectifiers
is similar. The model using ReLU performs better than
the model using ELU and PReLU. Compared with the
model using ReLU, the RMSE of the LeakyReLUmodel
is reduced by 1.05%, and the Score is reduced by 1.41%.
However, the time cost of each iteration is increased by
23.01%. In addition, we visualized the training loss of
models, as shown in Fig. 9. It can be seen from Fig. 9
that the loss of the model using ReLU decreases faster.
Therefore, after consideration, we use ReLU as the acti-
vation function.

3. The impact of features onRULprediction: this paper pro-
poses a feature fusion method. To verify its effectiveness
for RUL prediction, the model is trained using different
features: the model trained using only deep learning fea-
tures, the model trained using only statistical features,
the model trained using two different source features.
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Table 4 Results of models trained using different features

Features FD001 FD002

RMSE Score RMSE Score

Deep learning features

Mean 14.59 269.08 19.79 2609.90

STD 0.54 21.31 1.37 1212.39

Statistical features

Mean 14.81 440.94 23.48 4549.80

STD 0.76 11.57 1.40 1051.49

Both two features

Mean 13.25 235.52 19.57 1655.04

STD 0.40 17.18 1.13 174.80

The parameters are the same except for the features used
for RUL prediction. Each model is trained 10 times to
eliminate random errors. The experimental results are
shown in Table 4. It can be seen from the table that
the model trained using both two features performs bet-
ter, which verifies the effectiveness of the two features.
In other words, the proposed method makes full use of
deep learning features and statistical features to obtain
more degradation information, which helps to improve
the accuracy of RUL prediction.

4. The impact of attentionmechanismsettings: the proposed
method uses the self-attention mechanism to weight dif-
ferent channels, different time steps, and different source
features. This experiment is to verify the effectiveness of
each attention mechanism layer. Four sets of compara-
tive experiments are carried out: no attentionmechanism,
the model with channel attention layer, the model with
channel and time attention layer, the proposed model.
The parameters are the same except for the settings of

the attention mechanism. Eachmodel is trained 10 times.
The experimental results are shown in Table 5. Accord-
ing to the experimental results, the three models that use
the attention mechanism perform better than the model
without the attentionmechanism. It shows that adaptively
assigning feature weights through the attention mecha-
nism can effectively improve accuracy. In addition, with
the increase of attention mechanism layers, the perfor-
mance of the model gradually improves. This is because
by using the attention mechanism weighting different
features, the consideration for the differences of different
features is more comprehensive. The RMSE and Score
of the proposed method are the lowest, achieves the best
prediction performance by weighting different channels,
different time steps, and different source features.

5. Comparison of different methods: The compared mod-
els include shallow models such as SVM, decision tree
regression (DTR), random forest (RF), and deep learn-
ing models such as deep convolution neural network
(DCNN), multi-layer attention convolution neural net-
work (MA-CNN). Among them, MA-CNN is the model
that combines the multi-layer attention mechanism and
CNN. The experiment is conducted on four sub-datasets
FD001, FD002, FD003, and FD004, and each model is
trained 10 times. The experimental results are shown in
Tables 6 and 7. From the table, the average RMSE of
the three deep learning models is 13.94% lower than the
RMSEof shallowmodels, and the averageScore is 70.8%
lower. It can be seen that the deep learning models per-
form better than shallowmodels. And compared with the
average values of RMSE and Score of comparative mod-
els, the proposed method in this paper reduces RMSE
by 14.19% and the Score value by 68.00%, showing its
superiority in RUL prediction.

Table 5 Results of models with
different attention mechanism
settings

Attention settings FD001 FD002

RMSE Score RMSE Score

Without attention mechanism

Mean 14.99 329.55 24.13 4026.62

STD 0.67 40.46 1.86 1030.72

Model with channel attention layer

Mean 13.05 255.44 23.10 3148.57

STD 0.62 25.21 1.23 496.48

Model with channel and time attention layer

Mean 13.17 257.00 20.95 2742.30

STD 0.62 29.44 2.16 1310.78

Proposed model

Mean 13.25 235.52 19.57 1655.04

STD 0.40 17.18 1.13 174.80
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Table 6 RMSE performance of
different methods FD001 FD002 FD003 FD004

Mean STD Mean STD Mean STD Mean STD

SVR 14.48 – 18.66 – 14.57 – 21.74 –

DTR 18.49 0.56 31.50 0.56 20.55 0.60 35.40 0.49

RF 12.89 0.13 22.18 0.15 14.28 0.14 26.42 0.19

DCNN 14.09 0.59 24.29 1.17 14.85 0.69 26.85 1.25

MA-CNN 13.26 0.61 19.53 1.02 12.97 0.41 22.65 1.82

Proposed 13.25 0.40 19.57 1.13 13.43 0.86 21.69 1.27

Table 7 Score performance of
different methods FD001 FD002 FD003 FD004

Mean STD Mean STD Mean STD Mean STD

SVR 363.43 – 1579.69 – 470.89 – 3690.72 –

DTR 966.07 301.84 32,411.90 4967.96 1771.17 133.55 41,920.40 4192.43

RF 268.42 10.89 4071.24 179.25 346.04 9.44 16,272.46 1608.33

DCNN 270.23 12.82 3496.08 513.60 367.21 53.23 5968.61 1451.64

MA-CNN 261.55 17.48 2056.38 443.28 297.60 21.92 3228.87 717.70

Proposed 235.52 17.18 1655.04 174.80 239.02 24.33 2414.69 359.75

Table 8 The complexity comparison

Model FLOPs Parameters Time cost (s) Time complexity

Model 1 3,319,511 80,307 23.35
O

(
C∑
c�1

LcKcNc−1Nc +
F∑
f �1

S f −1S f +
R∑

r�1
LrCr

)

Model 2 3,338,711 80,579 26.38
O

(
C∑
c�1

LcKcNc−1Nc +
F∑
f �1

S f −1S f +
R∑

r�1
LrCr + N 2

ch Lch

)

Model 3 3,371,351 81,509 29.20
O

(
C∑
c�1

LcKcNc−1Nc +
F∑
f �1

S f −1S f +
R∑

r�1
LrCr + N 2

ch Lch + L2
t Nt

)

Model 4 1,280,729 58,715 20.57
O

(
C∑
c�1

LcKcNc−1Nc +
F∑
f �1

S f −1S f

)

Model 5 1,307,609 62,199 26.93
O

(
C∑
c�1

LcKcNc−1Nc +
F∑
f �1

S f −1S f + N 2
ch Lch + L2

t Nt

)

Model 6 3,372,291 81,929 31.16
O

(
C∑
c�1

LcKcNc−1Nc +
F∑
f �1

S f −1S f +
R∑

r�1
LrCr + N 2

ch Lch + L2
t Nt + N 2

f

)

6. Complexity comparison of different methods: This paper
proposes a new RUL prediction method based on MLSA
and TCN. To evaluate the complexity of the proposed
method. This paper uses FLOPs (i.e. the number of
floating-point multiplication-adds), parameter size and
time cost to evaluate the complexity of the model.
Comparison models include TCN (Model1), TCN with
channel attention layer (Model 2), TCNwith channel and
time attention layer (Model 3), DCNN (Model 4), MA-
CNN (Model5), and the proposedmethod (Model 6). The
experimental results are shown in Table 8 and Fig. 10.

Table 8 shows the complexity comparison of different
methods. The time complexity of DCNN mainly comes
from the 1D convolution layer and the fully connected
layer. The time complexity of the convolution layer is
O(

∑C
c�1 LcKcNc−1Nc), where C is the number of con-

volution layers, Lc is the output feature length of the cth
convolution layer,Kc is the kernel size of the cth convolu-
tion layer, Nc−1 is the number of output channels of the
(c-1)-th convolution layer, and Nc is the number of output
channels of the cth convolution layer. The time complexity
of the fully connected layer is O(

∑F
f �1 S f −1S f ), where F

is the number of fully connected layers,S f −1 is the output
size of the (f − 1)th fully connected layer,S f is the output
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size of the f th fully connected layer. So, the time complex-
ity of DCNN is O(

∑C
c�1 LcKcNc−1Nc +

∑F
f �1 S f −1S f ).

Besides the 1D convolution layer and the fully connected
layer, TCN also uses residual connection. The time complex-
ity of the residual connection is O(

∑R
r�1 Lr Nr ), where R is

the number of residual blocks,Lr is the output feature length
of the rth residual block,Nr is the number of output channels
of the r-th residual block. So, the time complexity of TCN
is O(

∑C
c�1 LcKcNc−1Nc +

∑F
f �1 S f −1S f +

∑R
r�1 Lr Nr ).

The proposed method integrates TCN and MLSA to predict
RUL. The time complexity of the channel attention layer is
O(N 2

chLch), where Nch is the number of output channels of
the channel attention layer,Lch is the output feature length
of the channel attention layer. The time complexity of the
time attention layer is O(L2

t Nt ), where Lt is the output
feature length of the time attention layer,Nt is the num-
ber of output channels of the time attention layer. The time
complexity of the feature attention layer is O(N 2

f ), where
N f is the output feature number of the feature attention
layer. Therefore, the time complexity of the proposedmethod
is O(

∑C
c�1 LcKcNc−1Nc +

∑F
f �1 S f −1S f +

∑R
r�1 LrCr +

N 2
ch Lch + L2

t Nt + N 2
f ). The time complexity of Model 2,

Model 3, and Model 5 are described in Table 8. To further
evaluate the computational complexity of different methods,
this paper also uses multiple metrics to evaluate the mod-
els. The complexity of models under different metrics is
described in Table 8. The detailed results of time cost of dif-
ferent methods are shown in Fig. 10. By comparing Model
1, Model 2, Model 3, and Model 6, it can be found that
after using the channel attention layer, the required FLOPs
increase by 0.58%. After using the time attention layer, the
required FLOPs increase by 0.98%. After using the feature
attention layer, the required FLOPs increased by 0.03%. It
can be seen that with the use of the attention layer, the com-
putational complexity of themodel increases. In addition, the
proposed method requires 3.37 MFLOPs, 81.92 k parame-
ters, and takes 31.16 s for each iteration. Compared with
MA-CNN and DCNN, the proposed method requires more
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Fig. 11 Results on FD001 and FD002

complexity and training time. However, with the rapid devel-
opment of computers, the cost gap of this method is narrow.

Analysis

The comparison between the true RUL and the predicted
RUL is shown in Figs. 11, 12, 13. It can be seen that the
predicted RUL is very close to the real RUL, which proves
the feasibility of the proposed method for RUL prediction.
FD001 and FD003 have the same sample numbers, but the
RMSE and Score of the model on FD001 are lower than on
FD003. The main reason is that FD003 contains 6 modes of
operation, while FD001 has only one mode, which makes
prediction more difficult. FD002 and FD004 have similar
sample numbers, but the RMSE and Score of the model on
FD002 are lower than on FD004. The main reason is that
there are two failure modes in FD004, while there is only
one failure mode in FD002, so the former is more difficult to
predict.

To understand the contribution differences of different fea-
tures to RUL prediction, a sample of FD001 is selected to
visualize the process of prediction. Figure 14a presents the
raw data. Figure 14b shows the weights assigned to the dif-
ferent channels by the self-attention mechanism. It can be
seen that the weight assigned to the 12th channel is the high-
est, indicating that the degradation information in the 12th
channel is the most important for RUL prediction.

Figure 15a presents the output of the channel atten-
tion layer, which is calculated by multiplying the weights
assigned to the different channels with the raw data. The out-
put of this layer is used as the input of TCN. Figure 15b shows
the output of TCN. It can be seen that the features extracted
by TCN are smoother compared to the input data.

Figure 16a presents the weights of different time steps
assigned by the self-attention mechanism. From the figure,
the weight assigned to the last time step is the highest. This is
because there is more degradation information embedded in
the later period, so a higher weight is assigned to the last time
step to enhance its contribution toRULprediction. Figure 16b
shows the output of the channel attention layer. It is calculated
by multiplying the weights assigned to the different time
steps with the output of the TCN.

Complex & Intelligent Systems (2022) 8:1409–14241420

123



Fig. 12 Results on FD003
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Figure 17 shows the weights assigned to the different
source features by the self-attentionmechanism. The red bars
are the weights assigned to the deep learning features, and

the blue bars are the weights assigned to the statistical fea-
tures. Both deep learning features and statistical features are
assigned high weights, which indicates these two features
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Fig. 16 Weights of different
time steps and output of channel
attention layer
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Fig. 17 Weights of different source features

both play an important role in RUL prediction. The weights
assigned to each feature are different, indicating that differ-
ent features contribute differently to the RUL prediction. The
larger the weight, the greater its contribution to RUL predic-
tion.

Discussion

In summary, compared with other prediction methods, the
proposedmethod can achieve higher prediction accuracy and
stable performance. This paper uses RMSE and the Scoring
function as evaluation metrics. We calculate the mean and
standard deviation of the twometrics to analyze the accuracy
and stability of differentmethods. Experiment (i) investigates
the impact of different time windows on RUL prediction.
The results show that a shorter time window contains less
useful information, and a too long time window contains
redundant information, which will have a negative impact
on the result. Experiment (ii) investigates the impact of dif-
ferent Rectifiers on RUL prediction. The results show that
the ReLU model performs better on RUL prediction, and the
training loss decreases faster. Experiment (iii) investigates
the impact of features on RUL prediction. The results show

that the proposed method can effectively fuse deep learning
features and statistical features. The degradation information
is more comprehensive, which helps to improve the accu-
racy of RUL prediction. Experiment (iv) investigates the
impact of attention mechanism settings. The results show
that the MLSA can effectively improve prediction perfor-
mance. Experiment (v) compares the proposed method with
othermethods commonly used inRULprediction andverifies
the superiority of the proposed. Experiment (vi) compares
the complexity of different methods. The results show that
the proposed method requires more complexity than other
methods. And the proposedmethod hasmore parameters and
requires longer training time. Meanwhile, the model predic-
tion process is visualized, which further explains the internal
mechanism of the proposedmethod. The above experimental
results show that the proposed method can extract high-
quality degradation features, thereby achieving accurateRUL
prediction. However, the proposed method requires more
complexity than the existing models.

Conclusion

This paper proposes a method for RUL prediction based
on multi-layer self-attention (MLSA) and temporal convo-
lution network (TCN). First, the self-attention mechanism
is used to adaptively assign weights to different channels
to enhance the contribution of important channels to RUL
prediction. Then we use TCN to extract deep learning fea-
tures. To weight the contributions of different time steps, the
self-attention mechanism is used again to adaptively assign
weights to different time steps. Subsequently, we extract the
two statistical features, mean and trend coefficient, and con-
catenate them with the deep learning features. Consider the
contribution differences of different source features to RUL
prediction, the self-attention mechanism is used again to
weight different source features. Finally, the RUL is obtained
through the regression layer. To evaluate the performance
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of the proposed method, four comparative experiments are
conducted on the turbofan dataset. The impacts of time win-
dow size, features, and attentionmechanism settings on RUL
predictions are investigated. And compared with the average
value of RMSE and Score of comparative models, the pro-
posedmethod reduces RMSE by 14.19% and the Score value
by 68.00%, which verifies the superiority of the proposed
method. In future research, we will focus on reducing the
complexity of the proposed method.
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