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Abstract
The problem ofmatching point clouds is an efficient way of registration, which is significant for many research fields including
computer vision, machine learning, and robotics. There may be linear or non-linear transformation between point clouds, but
determining the affine relation is more challenging among linear cases. Various methods have been presented to overcome
this problem in the literature and one of them is the affine variant of the iterative closest point (ICP) algorithm. However,
traditional affine ICP variants are highly sensitive to effects such as noises, deformations, and outliers; the least-square metric
is substituted with the correntropy criterion to increase the robustness of ICPs to such effects. Correntropy-based robust
affine ICPs available in the literature use point-to-point metric to estimate transformation between point clouds. Conversely,
in this study, a line/surface normal that examines point-to-curve or point-to-plane distances is employed together with the
correntropy criterion for affine point cloud registration problems. First, the maximum correntropy criterion measure is built
for line/surface normal conditions. Then, the closed-form solution that maximizes the similarity between point sets is achieved
for 2D registration and extended for 3D registration. Finally, the application procedure of the developed robust affine ICP
method is given and its registration performance is examined through extensive experiments on 2D and 3D point sets. The
results achieved highlight that our method can align point clouds more robustly and precisely than the state-of-the-art methods
in the literature, while the registration time of the process remains at reasonable levels.

Keywords Linear registration · Affine iterative closest point · Correntropy · 2D and 3D point clouds

Introduction

Today, point set/cloud registration is a noteworthy problem
since it contributes to various fields such as computer vision,
pattern recognition, image processing and classification (see
in [1–4]), medical imaging and diagnosis (see in [5]), 3D
modeling and construction (see in [6–8]), machine learning
(see in [9]) and other engineering fields. The point cloud
registration problem can be defined as finding the spatial
transformation between two point sets by aligning them in
a space. Furthermore, with the proliferation of 3D LIDARs,
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point cloud registration has gained importance for mapping
and localization problems in robotics (see [10–12] studies).

As explained in [13], point cloud registration can be cat-
egorized into optimization-based and learning-based regis-
tration methods. Currently, learning-based registration tech-
niques are very popular, for example, a global registration
method based on deep-learning has been developed in [14],
and a deep outlier eliminationmethod for the correspondence
determination/rejection stage of registration via spatial con-
sistency has also been presented in [15]. In addition, Huang
et al. tried to solve the point cloud registration problem with
low overlap ratio using learning techniques [16], and RGB
color and depth information was also considered in the fea-
ture extraction process of registration by Wan et al. [17].
However, the main drawbacks of such approaches are the
need for large training sets, unexpected performance loss in
unknown scenes, and no guarantees of similar performance
outside the training area [13].

The iterative closest point (ICP) algorithm, which is
one of the most common optimization-based registration
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approaches, can be generalized and guarantee convergence
owing to its powerful mathematical infrastructure. For this
reason, ICP-like approaches are used together with learning-
based approaches during the refinement stage to improve
registration performance. For example, it has been observed
by [14] that the registration accuracy has increased approx-
imately seven times with ICP refinement, which once again
reveals the importance of optimization-based registration
approaches.

From a different perspective [18], the registration prob-
lem can be roughly divided into two main sub-branches in
terms of transformation types; these are linear and non-linear
registration. Rigid registration methods, a subset of linear
approaches, only have satisfactory registration performance
under combinations of rigid motions such as translation,
reflection, and rotation movements. On the other hand, affine
registration methods can both solve rigid registration prob-
lems and overcome the shear mapping and scaling effects.

The rigid ICP, which aligns 3D shapes to estimate the
relation between them in terms of a rotation matrix and a
translation vector, is developed by [19]. Several enhanced
variants of the traditional ICP method have been presented,
including point-to-line ICP by [20], generalized ICP by [21],
globally optimal ICP by [22], and other variants available
in the review study by [23]. To make ICP suitable for linear
but not rigid registration problems, the ICP variants such as
scale ICP by [24,25] and affine ICP by [26,27] have been pro-
posed. However, these ICP variants are not robust to noises,
outliers, and/or deformations (see [28,29] studies) since the
least-square criterion is used to construct objective functions
to be optimized.

It is obvious that such effects (noises, outliers, etc.) are
a fact of real-world applications, and successful and accu-
rate registration under these effects is very important. That
is why, robust ICP algorithms including correntropy-based
robust ICP by [30], bidirectional correntropy-based robust
ICP by [31], probabilistic ICP by [32], robust scale ICP by
[33–35], robust affine ICP by [29] are proposed for linear
registration, on the other hand, a cluster correspondence-
based fast method by [18], expectation-maximization and/or
Gaussian mixture model(GMM)-based robust methods by
[36–38], coherent point drift(CPD)-based robust approaches
by [39,40] are developed for non-linear registration.

In studies where variants of the linear registration problem
such as rigid, scaled rigid, and affine registration are solved
with the use of the correntropy criterion, it is observed that the
robustness andmatching performance are quite well. Corren-
tropy is a similarity measure between two random variables
and by considering model and data sets as random variables,
it is possible to eliminate outliers and/or noises better and to
find the transformation between the point clouds more pre-
cisely.

In this study, we propose a robust affine registration
method that combines line normals in 2D space, surface nor-
mals in 3D space, and correntropy criterion. The proposed
registration algorithm is novel since other robust ICPs avail-
able in the literature, which employ correntropy criteria for
linear registration problems, utilize point-to-point metrics
to construct objective functions. The closed-form solution
of the presented approach is achieved for both 2D and 3D
registration problems. The extensive experiments show the
superiority of the developed method in terms of accuracy
rate and efficiency over the CPD method by [39], traditional
ICP algorithms developed for affine registration by [26], and
robust affine ICP approach by [29]. Although the perfor-
mance and matching precision increase with the developed
method, the elapsed time for each registration stays at toler-
able levels.

The rest of this study is organized as follows: in the next
section, preliminary information on the linear registration
problem is given in detail. The proposed robust affine regis-
tration method based on line/surface normal and correntropy
criterion is explained in the third section. The experiments are
conducted on registration of 2D and 3D well-known shapes
and the results achieved that validate the accuracy, robust-
ness, and efficiency of the method developed are shown in
the fourth section. The penultimate section includes some
discussions and comments on the method developed and the
results achieved. The concluding remarks and future work
suggestions are stated in the last section.

Overview of linear registration

In the registration problem using feature-based similarity
measure given in [41] as

min
j(i)∈{1,2,...,Nm }

Np∑

i=1

‖T (pi ) − m j(i)‖2, (1)

T (·) term represents the linear or non-linear transforma-
tion between the n-dimensional point clouds to be registered

defined as model set M � {mi}Nm
i=1 and data set P � {pi}Np

i=1.
To construct the objective function, the corresponding point
of pi , the i th element of the data set, in model set m j(i) is
utilized.

Rigid registration

In the simplest form of linear registration, as described in
[30], the expression in (1) turns into

min
R,t, j(i)∈{1,2,...,Nm }

Np∑

i=1

‖(Rpi + t) − m j(i)‖2 (2)
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and this is called as rigid registration. The transformations
between point clouds including only combinations of rigid
motions such as rotation, translation, and reflection can be
determined by utilizing manymethods available in the litera-
ture, but traditional ICP developed by [19] is one of the most
preferred methods. By minimizing the objective function in
(2), traditional ICP computes the transformation between
point clouds in terms of a rotation matrix (R) and a trans-
lation vector (t).

ICP for affine registration

The ICP variant, which aims to express linear but not rigid
transformation between point clouds by an affine relation,
was proposed by [26] as

min
A,t, j(i)∈{1,2,...,Nm }

Np∑

i=1

‖(Api + t) − m j(i)‖2. (3)

Here, affine ICP uses an affinematrix (A) and translation vec-
tor (t) to describe the current transformation between point
clouds and this method can even handle scaling and skew
(shear) effects.

Least-square and correntropy criteria

In general, ICP algorithms consider the point cloud registra-
tion problem as a least-square minimization problem. Using
this idea, the difference between the transformed data set and
the model set is tried to be minimized. Another approach,
utilization of correntropy criterion, aims to find the trans-
formation that maximizes the similarity between point sets.
Correntropy combines correlation term in probability and
entropy term in mechanics and is defined as a similarity
measure between two random variables X and Y . The math-
ematical description of the correntropy is given in [42] as

Vσ (X ,Y) = E [κσ (X − Y)] (4)

whereE [·] denotes expectation in probability and κσ (·) rep-
resents a symmetric positive definite kernel with σ kernel
width. For the Gaussian Kernel, Wu et al. [42] is achieved
the correntropy definition as

Vσ (X ,Y) = E
[

1√
2πσ

exp

(
− (X − Y)2

2σ 2

)]
. (5)

Affine ICP with correntropy criterion

The definition of correntropy criterion in (5)was used by [29]
to generate a robust affine ICP variant. The new objective
function is constructed as

max
det(A) �= 0, t,

j(i) ∈ {1, 2, ..., Nm }

Np∑

i=1

exp

(
−‖(Api + t) − m j(i)‖2

2σ 2

)
(6)

where the transformation between the model and data sets
is computed through maximum correntropy criterion instead
of least-square-based minimization. In the same study (see
[29] study), the researchers showed that ICP variants using
the correntropy criterion perform better than those utilizing
the least-square criterion, especially when the point clouds
contain noises and/or outliers. That is why, the robust affine
point cloud registration method, which we propose in this
study, uses the correntropy criterion.

Affine ICP with line/surface normals and
correntropy criterion

In all methods mentioned so far, the point-to-point metric
is used while deriving the cost function, which takes into
consideration the distance from one point to another (see
in Fig. 1a). With line/surface normals, it is also possible to
derive methods that consider the distance from a point to
the defined line or plane (see in Fig. 1b, c). [20] proposed
a variant of traditional ICP that uses point-to-line metric to
match 2D point sets. However, affine ICP variant using the
correntropy criterion and line/surface normals is not available
in the literature. As a result, this improved version of affine
ICP is introduced in this study to solve the affine registration
problem more robustly for both 2D and 3D point clouds.

The objective function using line/surface normals and cor-
rentropy criterion can be constructed as

J corrPL (A, t) =
Np∑

i=1

exp

(
−

(
nTi · [

(Api + t) − m j(i,1)
])2

2σ 2

)

(7)

where ni is ith normal vector andm j(i,1) first correspondence
of pi in the model set. The superscript ‘corr’ represents the
correntropy criterion and ‘PL’ stands for Point-to-Line or
Point-to-pLane metrics utilized based on dimension of point
clouds to be registered.

Computation of affine transformation

ICP algorithms find closest points iteratively and for the kth

iteration of an ICP variant two steps given as follows are
solved:

1. Finding corresponding points: To define a tangent line
in 2D space, at least two nearest points of pi , first and sec-
ond correspondences (m j(i,1) and m j(i,2)), are required.
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Fig. 1 Visual demonstrations of
(a) point-to-point, (b)
point-to-line, (c) point-to-plane
metrics and (d) not desired
configuration for point-to-line
metric case

Point-to-point 
metric

Nearest Point

Point-to-line 
metric

Model Set

Data Set
Data Set

Model Set

(a)

Point-to-plane 
metric

1
2

3

Nearest Points

Defined 
tangent plane

Model Set
Data Set

Close-up view

(b)

(c)

Nearest Points

Data Set

Model Set

(d)

On the other hand, three corresponding points (m j(i,1),
m j(i,2) and m j(i,3)) are necessary to find the tangent
plane of a surface in 3D space. These correspondences
can be determined using the previous transformation
(Ak−1, tk−1) via many methods available in the litera-
ture such as Delaunay tessellation of [43], k-d trees of
[44], probabilistic correspondencemethod of [5]. In this
study, the k-d trees approach is applied to assign corre-
sponding points of pi in the model set.

2. Computing transformation: The affine transformation
maximizing the similarity between point clouds in kth

iteration, (Ak, tk), can be calculated by maximizing the
objective function given in (7). The derivation-based
solution procedure of this optimization problem will be
explained further.

This iterative process continues until it reaches the predefined
maximum number of iterations, or stops if the difference
between the current and last transformations remains within
a sufficiently small boundary.

Computation procedure for 2D point clouds

In an affine transformation (An×n, tn×1), the subscripts of
matrix A and vector t represent the dimensions of them and
are related to the dimension of point clouds (n). In the 2D
workspace (for n = 2), the unknown parameters in A and
t can be gathered in a vector x = [x1, x2, x3, x4, x5, x6] �[
a11, a12, a21, a22, tx , ty

]
where ai j is the elements ofmatrix

A at the i th row and j th column. With the usage of Pi defi-
nition

Pi =
[
pTi 0 1 0
0 pTi 0 1

]

and vector x, the objective function in (7) can be rewritten as

J (x) =
Np∑

i=1

exp

(
− (Pix − πi )

T Ci (Pix − πi )

2σ 2

)
(8)
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where Ci is equal to ni · nTi , and πi stands for m j(i,1). To
calculate optimal x that maximizes the objective function in
(8), derivation-based maximization methods can be utilized

such that
∂ J (x)

∂x
= 0 → x = x∗. If this derivation is applied

on the extended version of the objective function as follows:

J (x) =
Np∑

i=1

exp

(
−xTPT

i CiPix + πT
i Ciπi − 2πT

i CiPix

2σ 2

)
,

the expression

Np∑

i=1

[
xT

(
P
T
i CiPi +

(
P
T
i CiPi

)T
)

− 2πT
i CiPi

]
�i = 0

(9)

is obtained in a compact form. Here, �i corresponds to
the exponential part of the objective function which is

exp

(
−xTPT

i CiPix + πT
i Ciπi − 2πT

i CiPix

2σ 2

)
. The expres-

sion in (9) can be arranged as

Np∑

i=1

(
xTPT

i CiPi − πT
i CiPi

)
�i = 0 (10)

since Ci is a symmetric matrix. As a result, using H �∑Np
i=1 P

T
i CiPi�i and g �

∑Np
i=1 πT

i CiPi�i definitions, the
optimal x is achieved as

x∗ =
(
g · H−1

)T
. (11)

Here, the necessary terms to construct affine transformation
matrix (A, t) that maximizes the similarity between the point
clouds (model and data sets) are calculated with an assump-
tion that matrix H is an invertible matrix.

The assumption about the non-singularity of matrix H is
valid except for the cases visually demonstrated in Fig. 1d.
This means that the relevant point in the data set is also lying
on the line/plane defined using the model set. The points sat-
isfying this condition should be ignored while constructing
the objective function to eliminate singularity.

On the other hand, it is obvious that the terms g andH used
to derive optimal x also include the term x in the term�, and
this indicates that there is an algebraic loop in the solution.
However, since ICP is an iterative approach the optimal x
vector can be computed. In each iteration, � is computed
using the previous transformation (Ak−1, tk−1) to achieve
(Ak, tk).

Extension to 3D point cloud registration cases

The computation procedure of affine transformation is com-
pletely the same for 2D and 3D registration problems. The
only difference is that the dimensions of the matrices and
vectors such as x,ni ,Pi change with respect to the dimen-
sions of the point clouds to be registered. Similar to the
2D case, unknown parameters vector can be constructed as
x �

[
a11, a12, · · · , a33, tx , ty, tz

]
for 3D space. Instead of a

tangent line of a curve in 2D, ni is defined using the tangent
plane of a surface. The dimension of Pi is also extended such
that

P
3D
i =

⎡

⎣
pTi 0 0 1 0 0
0 pTi 0 0 1 0
0 0 pTi 0 0 1

⎤

⎦

is written as new Pi for 3D space.
In conclusion, the mathematical expression of the pro-

posed affine registration method and a detailed explanation
of the solution procedure are given up to here. In the next sec-
tion, studies on verification of the proposed method in terms
of robustness, success rate, accuracy, etc. will be discussed.

Experimental results

To verify the algorithm proposed in this study in terms
of accuracy and robustness, its registration performance is
investigated onwell-known 2D and 3D shapes. In the follow-
ing sub-sections, the applied procedure to practice matching
experiments is given and the superiority of the developed
algorithm over other state-of-the-art algorithms is shown in
detail.

AfICP-PL-corr for 2D registration

2D registration experiments are conducted on eight different
2D shapes. In each experiment, the edges of the 2D image are
extracted to generate the model set. A model set extraction
example for the bat experiment is demonstrated in Fig. 2.
The extracted shapes are utilized to construct data set and six
different model sets. An example of data and model sets for
apple experiments is shown in Fig. 3. Here, to achieve the
shape in Fig. 3b, the shape in Fig. 3a which is called the origi-

(a) (b)

Fig. 2 Extract model set fromwell-known images, bat example: (a) bat
image, (b) model set from the image by extracting the edges.
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Fig. 3 Data and model sets
before registration: apple
example, (a) original model set
(MS), (b) data set, (c) cropped
MS, (d) MS with uniform noise,
(e) MS with Gaussian noise, (f)
cropped MS with uniform noise,
and (g) cropped MS with
Gaussian noise

(e)

(a) (b) (c) (d)

(f) (g)

Table 1 The number of points in the 2D shapes, and the upper and
lower boundaries of the 2D shapes registered in this study

Shape Quantity (y, ȳ) (x, x̄)

Apple 1061 (−390, 270) (−250, 270)

Bat 1572 (−180, 190) (−470, 490)

Bunny 982 (−260, 310) (−240, 280)

Butterfly 1000 (−750, 640) (−1000, 950)

Dog 981 (−230, 260) (−350, 270)

Dragon 1178 (−810, 740) (−860, 910)

Fish 1046 (−1260, 1520) (−3040, 3180)

Leaf 1320 (−280, 240) (−240, 230)

nal model set is transformed with an affine relation including
rotation, translation, shearing, and scaling effects. The left
bottom side of the original model set is deleted to exam-
ine the missing data effect on registration and the cropped
model set is achieved as in Fig. 3c. A uniform noise is added
to the original and cropped model sets to reach the model
sets in Fig. 3d, f, respectively. Similarly, the model sets in
Fig. 3e, g are formed by adding a Gaussian noise on original
and cropped model sets, respectively.

Table 1 shows the structural properties of the 2D point
sets generated. The names of the shapes are given in the first
column and the number of points in the original 2D shapes
is placed in the second column. To generate noisy point sets,
20% of the number of points in the original point set is added
based on relevant noise distribution. Similarly, the left bot-
tom of the shapes (about one-eighth) is cropped to construct
model sets having missing data. The upper and lower bound-
aries of the original model set of the shapes are given for y
and x-axes in the third and fourth columns, respectively.

The performance of our algorithm is examined on all
model set variants in Fig. 3. The achieved results are com-
pared to traditional affine ICP (AfICP-PP-ls) by [26] and
affine ICP with point-to-line metric (AfICP-PL-ls) algo-
rithms to see the superiority of our algorithm under noises

and outliers. The experiments are conducted by MATLAB
2019a® on a PC with Intel Core i7 Q740 1.73 GHz CPU and
4 GB RAM.

When themodel set has no outliers, noises, and/ormissing
data (originalmodel set), themodel and data sets arematched
successfully with all algorithms (AfICP-PP-ls, AfICP-PL-ls,
and AfICP-PL-corr). However, when changes such as noise
insertion and/or cropping (to derivemodel set havingmissing
data) are applied on the model set, it is seen that our algo-
rithm developed in this study is much more successful than
AfICP-PP-ls and AfICP-PL-ls in registration. Two separate
experiments showing this for the model sets having missing
data and uniform noise and the model sets having missing
data and Gaussian noise are given in Fig. 4a, b, respectively.

The results obtained so far are sufficient to show the suc-
cess of our algorithm, but we made even greater changes
on the point sets to force our algorithm further. Changes in
point sets are clearly seen in the visuals to be given later on
where matching performances of the algorithms are evalu-
ated, but it may be necessary to mention verbally here too.
Apple_2 and Apple_3 point sets were obtained by adding a
bite to the apple shape and removing the leaf on the apple
shape, respectively. A new butterfly shape (Butterfly_2) was
derived by removing the antennae of the butterfly and by
adding spots on its wings. Similarly, the dog shape with the
tail down is modified to tail up to generate a new dog shape
(Dog_2). A new dragon shape (Dragon_2) was obtained by
softening the neck and chin of the previous dragon shape. On
the other hand, the stem of the leaf shape has been removed
to construct Leaf_2. While making changes to the tail and
ears of the bunny shape to get Bunny Stand_2, half of the
bat shape was clipped for Bat_2. As seen in Fig. 5a, even no
noise insertion and/or part cropping is applied on the model
set, it is seen that other algorithms fail to register the point
sets, but our algorithm successfully matches the model and
data sets despite these modifications.

The matching performances of algorithms on modified
point sets having missing data and noises are also investi-
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(a) Uniform noise (b) Gaussian noise

Fig. 4 Registration results of 2D shapes for model set having missing data and (a) uniform and (b) Gaussian noise: (i) the shapes before registration,
registration results of (ii) AfICP-PP-ls, (iii) AfICP-PL-ls and (iv) AfICP-PL-corr (our algorithm)

(a) No noise/outliers (b) Uniform noise and missing
data

(c) Gaussian noise and missing
data

Fig. 5 Registration results of 2D shapes for modified model sets: (i) the shapes before registration, registration results of (ii) AfICP-PP-ls, (iii)
AfICP-PL-ls and (iv) AfICP-PL-corr (our algorithm)

gated, and it is seen in Fig. 5b, c that the algorithm developed
in this study registers successfully even under these disturb-
ing effects.

The correntropy criterion-based method developed in this
study (AfICP-PL-corr) so far has only been compared to
conventional least-square criterion-basedmethods.However,
Fig. 6 shows the comparison of AfICP-PP-corr (affine ICP
with point-to-point metric and correntropy criterion) devel-
oped by [42] with our method AfICP-PL-corr in terms of

registration performance. The results obtained demonstrate
that both algorithms are not affected by undesired factors
such as noises, missing data, and/or outliers, and they are
able to match the point sets successfully since their objective
functions are constructed based on the correntropy criterion.
However, in addition to the accuracy of the algorithms find-
ing the transformation between two point sets, if we focus
on how long it takes to find the correct transformation, it
is seen that our algorithm (AfICP-PL-corr) requires much
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Fig. 6 Registration results of 2D shapes: various model set types—(a)
the shapes before registration, registration results of (b) AfICP-PL-corr
(our algorithm), (c) AfICP-PP-corr

fewer iterations to achieve the final transformation. An exam-
ple indicating this is given in Fig. 7. The first column shows
the registration of apple shape having no major changes, and
after a while, all the algorithms have successfully calculated
the correct transformation between the point sets. On the
other hand, the bitten apple shape registration result is given
in the second column and traditional least-squared criterion-
based methods have failed to register. In addition to being
successful, our algorithm does this with much less iteration
than AfICP-PP-corr.

AfICP-PL-corr for 3D registration

Similar to 2D registration tests, well-known 3D shapes are
taken into consideration to evaluate 3Daffine registrationper-
formance of the algorithms. Glira’s 3D point cloud data sets
including Dino, Lion, etc. shapes have been mostly utilized
in our applications (see [45] study).

Since 3D point clouds contain a lot of data, it is aimed
to reduce the number of data in 3D point clouds by down-
sampling them without disturbing the general features of the
3D shapes to make registration faster with algorithms such
as ICP. Down-sampling methods are not in the scope of this
study, but the available 3D down-sampling methods inMAT-
LAB software are directly used to down-sample our 3D point
clouds. An example of down-sampling on the 3D watering-
can shape can be seen in Fig. 8.

The structural properties of the 3D point sets to be used
for evaluating the 3D affine matching performances of the
algorithms are listed in Table 2. The names of the shapes
are given in the first column and the number of points in
the original down-sampled 3D shapes registered is placed in
the second column. To generate noisy point sets, 10% of the
number of points in the original point set is added based on
relevant noise distribution. Similarly, the left-front-bottom of
the shapes (about one-eight) is cropped to construct model
sets having missing data. The upper and lower boundaries of

the originalmodel set of the 3Dshapes are given for z-, y-, and
x-axes in the third, fourth, and fifth columns, respectively.

Similar to 2D cases, for each 3D registration experiment,
the down-sampled 3D shapes are utilized to construct data set
and six different model sets. An example of data and model
sets is shown in Fig. 9. Here, the shape in Fig. 9a is called
the original model set and this is transformed with an affine
relation to achieve the data set in Fig. 9b. The left-front-
bottom side of the original model set is erased to achieve the
croppedmodel set in Fig. 9c) A uniform noise is inserted into
original and cropped model sets to reach the model sets in
Fig. 9d, f, respectively. Similarly, the model sets in Fig. 9e,
g are created by adding a Gaussian noise on original and
cropped model sets, respectively.

In 3D cases, the registration performance of theCPD algo-
rithmwas also considered for comparisons. Thus, it has been
shown that the method proposed in this study is superior
not only to other ICP-based variants but also to different
approaches in the literature. CPD approach is an efficient
registration method for point sets including noises and/or
outliers since it converts the registration problem into proba-
bility density estimation by expressing point clouds in terms
of the GMM.

All algorithms (CPD, AfICP-PP-ls, AfICP-PL-ls and
AfICP-PL-corr) can find the correct transformation between
model and data sets when there are no disturbing effects such
as noise, missing data, etc. on the 3Dmodel set. On the other
hand, it is seen that our algorithm is much more successful in
registration than CPD, AfICP-PP-ls and AfICP-PL-ls when
changes such as noise addition and/or cropping (to generate
a 3Dmodel set having missing data) are applied to the model
set. The affine 3D registration results of the algorithms, for
example, are shown for model sets having missing data and
uniform noise in Fig. 10 and for model sets having missing
data and Gaussian noise in Fig. 11. Parts that are not cor-
rectly matched by CPD, AfICP-PP-ls and AfICP-PL-ls are
indicated with arrows for better visualization and perception.

To force the algorithms further, we tested the partial reg-
istration performance of them on lion shape-based 3D point
clouds in Fig. 12. As given in Fig. 13, even no noise inser-
tion and/or part cropping is applied on the model set, it is
seen that other algorithms fail to register 3D point clouds,
but our algorithm successfully matches the model and data
sets despite these major changes.

Numerical results for 2D/3D registration
experiments

In addition to visual verification, the error metrics εA =
‖A∗ − A‖2 and εt = ‖t∗ − t‖2 are defined to compare the
registration performance of the algorithms. Here, (A∗, t∗)
represents the true affine transformation between model and
data sets, and (A, t) denotes the affine transformation esti-
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Fig. 7 For the affine registration algorithms, the number of iterations required to match the shapes

Fig. 8 Original point cloud and its down-sampled versions

Table 2 The number of points
in the down-sampled 3D shapes,
and the upper and lower
boundaries of the 3D shapes
registered in this study

Shape Quantity (z, z̄) (y, ȳ) (x, x̄)

Dino 7841/7894 (−50, 50) (−80, 90) (−90, 50)

Dog 6175/6136 (−40, 50) (−50, 50) (−20, 30)

Lion 11961/11946 (−40, 40) (−20, 20) (−50, 80)

Watering Can 7350/7264 (−100, 110) (−210, 130) (−70, 70)

mated by the utilized algorithm. For modified model sets
cases in 2D experiments, all compared numerical results are
drawn in Fig. 14a for matrixA and in Fig. 14b for translation
vector t. The results in the bar plots say that our algorithm
is able to register the shapes in each case with reasonable
error levels. This proves that our affine registration algorithm
is also highly robust to outliers, noise effects, and/or major
changes in the point sets.

The overall 2D and 3D affine registration performances
of the algorithms are listed comparatively in Table 3. Here, it

is demonstrated that our algorithm (AfICP-PL-corr) has the
minimum registration errors in all cases in terms of having
noise and/or missing data. Another important outcome of
this table is that as the similarity ratio between the model set
and the data set decreases, the estimation performance of the
algorithms falls.
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Fig. 9 Data and model sets in 3D before registration: lion example, (a) original MS, (b) data set, (c) cropped MS, (d) MS with uniform noise, (e)
MS with Gaussian noise, (f) cropped MS with uniform noise, and (g) cropped MS with Gaussian noise

Fig. 10 Registration results of 3D dog shape: (a/e-1) original model set vs (a/e-2) model set having missing data and uniform noise - (a) the shapes
before registration, registration results of (b) CPD, (c) AfICP-PP-ls, (d) AfICP-PL-ls and (e) AfICP-PL-corr (our algorithm)

Success rates for 2D/3D registration experiments

Figure 15 shows the overall success rate, the number of
required iterations on average, and the mean elapsed time
per registration for affine registration of 2D and 3D shapes.
Successful registration is defined as finding affine transfor-
mation with an error of less than 10%. On the other hand,
the number of required iterations for a match is defined as

the iterationwhere transformation error falls below1%other-
wise equals themaximumnumber of iterations. The statistics
presented in Figure 15 are generated by performing 576 sep-
arate experiments in 2D space and 108 separate experiments
in 3D space. In affine registration, eight different 2D and
four different 3D shapes having various model sets such as
original, cropped, uniform or Gaussian noise inserted and/or
combinations of them are utilized.
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Fig. 11 Registration results of 3D shapes: model set having missing data and Gaussian noise (a) the shapes before registration, registration results
of (b)CPD, (c) AfICP-PP-ls, (d) AfICP-PL-ls and (e) AfICP-PL-corr (our algorithm)

Fig. 12 The generated model sets based on 3D point cloud based on lion shape to see partial registration performance of our algorithm—(a) original
model set, (b) Partial 1: front section of the lion, (c) Partial 2: top section of the lion, (d) Partial 3: rear section of the lion

It is deduced that our method is the most successful and
highly robust algorithm in 2D and 3D affine registration
among the algorithms compared in this study. In 2D regis-
tration, AfICP-PP-corr and our algorithm (AfICP-PL-corr),
which use the correntropy criterion to construct objective
function, have similar registration performance in terms of
accuracy (the result of our algorithm is slightly better).
However, in 3D registration, the estimation performance of
AfICP-PP-corr decreases and it fails approximately 20% of
the registration experiments (see in Fig. 15a).

AfICP-PL-ls, another algorithm that uses line/surface nor-
mals similar to AfICP-PL-corr, also requires fewer iterations
to match the 2D/3D shapes than approaches using the point-
to-point metric (see in Fig. 15b). Moreover, as seen in
Fig. 15c, it is the fastest algorithm in 3D registration since
the correntropy criterion brings extra computational load for
AfICP-PP-corr and AfICP-PL-corr. However, rather than
being fast, the main thing is the success of the algorithm in

matching and its capability to resist real-world factors such
as noises/outliers. When Fig. 15a is examined, the results
achieved demonstrate that the success rate of AfICP-PL-ls in
2D registration is terrible (around 40% successful matches),
on the other hand, its success rate increases in 3D registration,
but it cannot even reach success level of AfICP-PP-corr.

Our algorithm is also compared with the CPD algorithm,
which is a robust and non-ICP-based registrationmethod, for
3Dpoint set experiments. It is apparent thatAfICP-PL-corr is
better in terms of not only success rate but also computational
requirements. Since theCPD approach utilizes the GMM for
representing the point sets, its registration performance is
higher for randomly down-sampled point clouds than those
down-sampled with grid average technique. However, our
method developed in this study can tolerate both of them.
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Fig. 13 Partial registration performance of the algorithms—3D model
sets with different types: MS having uniform noise and missing data in
column 1, MS having missing data in column 2, original partial MS in

column 3, MS having missing data and down-sampled with random ds
method; (a) before registration, (b) CPD , (c) AfICP-PP-ls, (d) AfICP-
PL-ls, and (e) AfICP-PL-corr (our algorithm) performances

Table 3 The average 2D and 3D affine registration performances of the algorithms (CPD, AfICP-PP-ls, AfICP-PL-ls, and AfICP-PL-corr): the
affine transformation estimation errors of the algorithms are shown in terms of (εA, εt )

Evaluating criteria and model set type 2D

AfICP_PP_ls AfICP_PL_ls AfICP_PL_corr (our algorithm)

(εA, εt ) O (0.046, 5.747) (0.065, 15.097) (0.008, 0.672)

C (0.118, 13.285) (0.295, 32.321) (0.026, 2.244)

U (0.031, 3.964) (0.283, 57.165) (0.010, 0.865)

G (0.050, 6.057) (0.172, 21.071) (0.009, 0.701)

C,U (0.072, 9.424) (0.349, 72.005) (0.029, 3.585)

C,G (0.142, 14.270) (0.418, 51.740) (0.026, 2.143)

Evaluating criteria and model set type 3D

CPD AfICP_PP_ls AfICP_PL_ls AfICP_PL_corr (our algorithm)

(εA, εt ) O (0.232, 2.095) (0.010, 0.029) (≈1e-5, ≈ 1e-4) (≈ 1e-5, ≈ 1e-4)

C (0.309, 17.05) (0.392, 4.119) (0.231, 2.533) (0.034, 0.392)

U (0.241, 2.193) (0.011, 0.029) (≈ 1e-5, ≈ 1e-4) (≈ 1e-5, ≈ 1e-4)

G (0.398, 16.37) (0.012, 6.031) (≈ 1e-5, ≈ 1e-4) (≈ 1e-5, ≈1e-4)

C,U (0.304, 16.88) (0.309, 2.997) (0.171, 1.888) (0.021, 0.359)

C,G (0.436, 14.99) (0.335, 3.446) (0.216, 2.244) (0.035, 0.390)
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Fig. 14 aMatrixA and b translation vector t estimation error on affine
registration of 2D point sets having major changes, A2: Apple 2, A3:
Apple 3, B2: Bat 2, BS2: Bunny Stand 2, BF2: Butterfly 2, D2: Dog 2,

Dr2: Dragon 2, L2: Leaf 2 shapes—the results for (i) original MS, (ii)
cropped MS, MS with (iii) uniform and (iv) Gaussian noise, cropped
MS with (v) uniform and (vi) Gaussian noise
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Fig. 15 For the algorithms used in 2D/3D point cloud registration, (a) the overall success rates of them, (b) the number of iterations required for
each registration on average, and (c) mean elapsed time for each registration

Computational complexity analysis for AfICP-PL-corr

The computational load of the proposed approach is analyzed
in Fig. 15 in terms of the average elapsed time and the num-
ber of iterations required per registration. However, the time
needed to match point sets will vary depending on the prop-
erties of the hardware on which the algorithm is executed.
Therefore, utilizing theO(·) framework, the amount of work
the CPU has to do for executing the AfICP-PL-corr algo-
rithm will be explored based on the size of the input point
set.

Let n be the number of points in the input point cloud, then
the relationship between time elapsed in each iteration and n
has been obtained as in Fig. 16a, b for 2D and 3D matching
cases, respectively. The achieved linear curves in Fig. 16a, b
shows that the computational complexity of the AfICP-PL-
corr algorithm isO(n). On the other hand, it can be deduced
from Fig. 16c that registration takes less time in 2D space
than in 3D space even if the number of points in the sets
is identical. There is a constant ratio between the matching
times since the 2D and 3D registration curves almost overlap
with each other when the time elapsed in 2D is scaled with
the constant scalar sc = 4.57. As O(sc × n) is equivalent
to O(n) according to the properties of the O(·) framework,
the results confirm that the computational complexity of the
developed algorithm is O(n).

Evaluation of AfICP-PL-corr registration
performance for different outlier levels

The superior aspects of the affine ICP approach developed
in this study, which uses the line/surface normals and cor-
rentropy criterion, have been demonstrated by extensive
experiments on 2D and 3D data sets. In this sub-section, it is

aimed to investigate how the outlier elimination performance
changes for different outlier levels. In this context, various
degrees of outliers (10%, 20%, 30%, 50%, and 70%) with
both uniform and Gaussian distributions were injected into
2D and 3D point clouds, and in this case, registration tests
were performed. Some matching results for 2D and 3D point
sets are given in Figs. 17 and 18, respectively. In total, 72
experiments were carried out for 2D and 96 experiments for
3D. It has been observed that the point sets were successfully
matched in both two-dimensional and three-dimensional tri-
als.

The achieved numerical results in Fig. 19 demonstrate that
there is no significant relationship between the level of out-
liers and the registration error level of the method proposed
in this study. However, the number of iterations required to
match the point clouds, and thus the matching time, increase
proportionally with the quantity of outliers.

As a result, the ICP variant proposed in this study, AfICP-
PL-corr, is highly successful in affine registration of 2D and
3D point sets. Compared to other algorithms, although it is
slow in terms of the time required for each iteration, the
total registration duration is relatively shorter as it achieves
the result (transformation) with less iteration and its success
rate shows that AfICP-PL-corr is quite robust in point set
registration.

Discussion

An ICP algorithm tries to estimate the transformation
between two point sets by optimizing a cost function iter-
atively. However, except for special cases such as developed
methods by [22,46], ICP algorithms converge to a locally
optimal solution. Therefore, an initial guess is very important
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Fig. 16 The computational complexity of the developed AfICP-PL-corr algorithm: the average elapsed time per iteration vs the number of points
in the point cloud for (a) 2D and (b) 3D registration, the computation time relationship between the 2D and 3D scenarios

for ICP algorithms to ensure that the correct transformation
is going to be found. Before performing the point cloud reg-
istration process, it makes sense to overcome getting stuck in
the local minimum problem by running an initial guess com-
putation algorithm like covariancematrix-based approach by
[47] or adding some constraints to the cost function such
as bounding rotation angle (see [48,49] studies). However,

since the aim of this study is to show the matching perfor-
mance of the proposed registration algorithm under effects
such as noises, deformations, and/or outliers, an initial guess
algorithm was not used in experimental verification tests.
By keeping the amount of rotation between the two-point
sets registered at low levels, the divergence of the algorithms
originating from the initial guess error has been prevented.

Fig. 17 Registration results of 2D shapes for varying outlier levels: the number of outliers is 10%, 20%, 30%, 50%, and 70% of the number of
points in the original model set—(i) the shapes before registration and (ii) registration results of AfICP-PL-corr (our algorithm)
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Fig. 18 Registration results of 3D shapes for varying outlier levels: the number of outliers is 10%, 20%, 30%, 50% and 70% of the number of
points in the original model set—(i) the shapes before registration and (ii) registration results of AfICP-PL-corr (our algorithm)
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Fig. 19 Numerical comparison for varying outlier levels: 2D registration (top-left) and 3D registration (top-right) error rates, variation of the
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In all experimental studies, the identity matrix was selected
as the initial transformation.

For the algorithms utilized for state-of-the-art compar-
isons and our algorithm developed in this study, the average
elapsed time for each registration is given for 2D and 3D
registration cases in Fig. 15c. When these results shown in
the time domain are analyzed, it is seen that the matches take
quite a long time. These periods are much longer, especially
for 3D registrations where the number of points in the point
clouds is high.However, it should benoted that the speeds and
success rates of the algorithmswere evaluated with respect to
each other only. As a result, no optimization has been made
for the algorithms or no attention has not been paid to cod-
ing to make the algorithms faster. Coding was done using
basic functions available in the MATLAB environment such
as matrix multiplication and inverse operations. In addition,
the PC where the tests are performed is insufficient in terms
of computing capacity. Currently, it may be thought that this
algorithm is not suitable for real-time applications, but it is
possible to take some precautions to run the algorithms faster
for real-time works.

Conclusions

In this study, a robust affine ICP variant using the corren-
tropy criterion and line/surface normals is presented to solve
the affine point cloud registration problem. Correntropy-
based affine ICP variants are highly robust to noises, outliers,
and missing data effects, and with our implementation of
line/surface normals in the construction of objective function,
the number of required iterations to find the transforma-
tion between point clouds has been reduced and registration
performance in terms for accuracy has been increased. Opti-
mization of the objective function defined to compute current
transformation is given in detail as a closed-form solution.
Ourmethod (AfICP-PL-corr), some other affine ICP variants
(AfICP-PP-ls, AfICP-PL-ls, AfICP-PP-corr), and CPD are
employed in 2D and 3D point cloud registration experiments
for comparison, 594 separate experiments on 8 different
shapes in 2D and 132 separate experiments on 4 different
shapes in 3D, and it is achieved that our algorithm is bet-
ter in terms of robustness and accuracy rate. As shown, our
algorithm also works well in partial registration problems.

The study, which is given in [12], applied affine ICP for
the indoor precise localization problem of mobile robots.
In future studies, we would like to deploy this affine ICP
variant developed in this study for the localization problem.
Moreover, in the current version of our method, the transfor-
mation between point clouds is found by locally optimizing
the objective function. However, finding a globally optimal
solution set is highly important not to diverge. For that reason,
anymodification and/or enhancement can be deployed on our

method such as bidirectional distance extension approach for
ICP algorithms or global optimization approaches. Similarly,
the initial guess is crucial for the ICP algorithm to make
proper estimations. This pre-process can be attached to the
method proposed in this study since it is essential especially
for successful registration of the point clouds having a high
amount of rotation difference between each other.
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