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Abstract
Robotic Mobile Fulfillment System (RMFS) affects the traditional scheduling problems heavily while operating a warehouse.
This paper focuses on storage assignment optimization for Fishbone Robotic Mobile Fulfilment Systems (FRMFS). Based on
analyzing operation characteristics of FRMFS, a storage assignment optimization model is proposed with the objectives of
maximizing operation efficiency and balancing aisle workload. Adaptive Genetic Algorithm (AGA) is designed to solve the
proposed model. To validate the effectiveness of AGA in terms of iteration and optimization rate, this paper designs a variety
of scenarios with different task sizes and storage cells. AGA outperforms other four algorithm in terms of fitness value and
convergence and has better convergence rate and stability. The experimental results also show the advancement of AGA in
large size FRMFS. In conclusion, this paper proposes a storage assignment model for FRMFS to reduce goods movement
and travel distance and improve the order picking efficiency.

Keywords Robotic Mobile Fulfillment System · Fishbone layout · Storage location assignment · Adaptive genetic algorithm

Introduction

Robotic technology has made a significant impact on elec-
tronics, transportation and logistics [1]. Robotic Mobile
Fulfillment System (RMFS), like Amazon Kiva System, is a
robot-based and parts-to-picker system which can improves
warehouse throughput and reduces operating costs [2].
Robots delivery mobile racks that contain required stock
keeping units, SKUs, to the picker or picking stations. The
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worker can complete order picking processes with no need of
tediously lengthy walking, which effectively saves the walk-
ing and finding time of picking operators.

The layout of RMFS is complex and flexible. Different
from the traditional layout, the fishbone layout breaks the
restriction that the aisle must be parallel or vertical, through
two diagonal aisles to reach the best theoretically Euclidean
distance [3]. The robot can not only pass through the ver-
tical and horizontal aisles, but also the oblique aisles. For
fishbone layout, the robot can carry the rack to the work sta-
tion through the oblique aisle, so the time to complete the
rack handling task is different from the time consumed in
the traditional layout, and the expected travel distance under
a single cycle can be reduced by about 20% [4]. Excellent
storage assignment strategy can reduce rack handling time
and robot congestion, improve the efficiency of throughout
and order picking. The current research directions of storage
assignment optimization of RMFS are mainly focused on
storage assignment strategy and model solving algorithm.

For storage assignment strategy ofRMFS,Weidinger et al.
[5] established a model for minimizing robot handling cost
for the storage assignment problem, transformed the stor-
age assignment into a special interval scheduling problem
and introduced a new adaptive programming algorithm to
solve the model. Lamballais et al. [6] established a Semi-
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Open Queueing Network model, focusing on the study of the
number of items stored, the ratio of the number of picking
stations to replenishment stations and the impact of replenish-
ment strategies on order throughput time. The result proved
that when the items are distributed for multiple shelves, the
number of picking stations and replenishing stations are 4
and 2 respectively and the replenishment threshold is set
to 50%, the picking efficiency is higher. By analyzing the
impact of storage partitions and robot allocation strategies on
RMFS throughput, Roy et al. [7] proposed a cross-regional
scheduling strategy based on the shortest queue. Hadi et al.
[8] considered item relevance, picking distance and item pri-
ority to improve system performance. This research adopted
a COI-based classification storage strategy to dynamically
determine the storage location of products. Based on the tra-
ditional human to arrival system, Bahrami et al. [9] proposed
a location allocation strategy combining fixed location and
free location. According to the order information, he moved
the hot SKU to the free location close to the picking station
to improve the picking efficiency. Wu et al. [10] proposed a
delay factor for the automatic picking system to compare the
picking volume of each picking area and achieved a reason-
able allocation of goods with the goal of minimizing the total
delay factor. He et al. [11] aimed at minimizing the picking
distance and the number of rack handling times and estab-
lished a dynamic inventory allocation strategy considering
the turnover rate of items. Xu et al. [12] proposed a location
assignment model based on the Dutch Auction mechanism
to improve the efficiency of the system’s picking.

The intelligent algorithms commonly used to solve the
optimization problem of storage assignment include parti-
cle swarm optimization [15–17], genetic algorithm [17, 18],
ant colony optimization [19] and other neighborhood search
heuristic algorithms [20–22]. There have been many stud-
ies on the improvement of these algorithms. Lee et al. [13]
proposed a dual-objective storage allocation optimization
model that takes picking efficiency and traffic balance into
account and uses a multi-objective evolutionary algorithm
to solve it. Different improved particle swarm optimiza-
tion algorithms and improved genetic algorithms are used to
solve the problem of outbound storage assignment and job
scheduling [14–19]. Ning et al. [20] put forward a method
for optimizing the rack location based on item correlation
and rack relevance in the fishbone layout. According to the
correlation of the items and the order frequency, the item
clusters are divided and a storage allocation model aiming
at minimizing the picking distance is established. For the
target value, a tabu search algorithm based on rack corre-
lation is designed, which effectively reduces the number of
moving by 26.3–39.6% and shortens the picking distance
by 34.2–48.6%. Zou et al. [21] proposed an assignment rule
based on handling speeds ofworkstations and design a neigh-
borhood search algorithm to find a near optimal assignment

rule. Gharehgozli et al. [22] studied the order retrieval prob-
lem and developed an adaptive large neighborhood search
heuristic to solve the real size instance. Reference [23] solved
an item assignment problem of RMFS by maximizing the
sum of similarity values of items in each pod and pro-
posed an efficient heuristic algorithm to address it. Many
studies have shown that intelligent algorithm or heuristic
algorithm has great advantages for storage assignment prob-
lems. Some scholars have researched in-depth on the solution
of multi-objective optimization. Reference [24] developed
a framework for automatic production scheduling problems
with genetic programming. Nastasi et al. [25] compared the
statistical significance of Nicked Pareto Genetic Algorithm,
Non-dominated Sorting Genetic Algorithm 2 and Strength
Pareto Genetic Algorithm 2 on the improved model on a
steelmaking industry. And result shown that NSGA2 has the
best performance. He et al. [26] developed a discrete multi-
objective fireworks algorithm to solve multi-objective flow
shop scheduling problem. Opposition-based learning and
clustering analysis are used to improve the algorithm.And the
results show that DMOFWA performs better than four com-
parison algorithms. Qin et al. [27] improved particle swarm
optimization by decomposition with different ideal points.
The improved algorithm has better performance in multi-
objective optimization and high-dimensional optimization
problems. Random immigrant policy is also adopted in [28]
and the improved algorithm outperformed than mutation
MOPSO.

However, due to the large difference between the tra-
ditional RMFS and the FRMFS, the proposed storage
assignment strategy and model for traditional RMFS are not
completely applicable in this system. The existing storage
assignment model needs to be adjusted to adapt to the fish-
bone layout. This research proposed an optimized model of
storage assignment for FRMFS aimed at improving the effi-
ciency of outbound ofwarehouse and balancing theworkload
of each aisle by analyzing the layout structure and calculat-
ing various rack moving distances. The improved genetic
algorithm is used to solve the problem, and the results show
that the proposed model is effective. Through the compari-
son of other algorithms, the optimization efficiency of AGA
is higher than that of other intelligent algorithms.

This paper is organized as follows. “System description”
describes the operations of the FRMFS. "Performance esti-
mation of FRMFS" analyzes the workflow of FRMFS and
a storage assignment model is proposed in "Model of stor-
age assignment in FRMFS". AGA is presented to solve the
storage assignment model in "Model-solving algorithm".
"Simulation experiment" designs experiments of different
algorithm and discusses their results. Lastly, "Conclusion"
provides conclusions and suggests some directions for future
research.

123



Complex & Intelligent Systems (2022) 8:4587–4602 4589

Fig. 1 Fishbone rack layout

System description

Fishbone layout

The rack layout of FRMFS is shown in Fig. 1. The entire
warehouse space comprises four zones, each being a triangle
with equal areas. And between zones there are two diagonal
cross aisles which are vertical to each other. Besides, the
width of aisles between racks is equal among areas.

RMFS operational procedure

Mobile racks move to the picking station in which work-
ers pick required SKUs for each customer order. Utilizing
mobile racks can significantly reduce worker walking time
and improve system efficiency, as shown in Fig. 2.

(1) Depending on real-time workload and customer orders,
match mobile racks with picking stations.

(2) Assign tasks to idle robots near to the targeted racks,
then, determine the optimal travel paths.

(3) Robotsmove the targeted rack alongwith predetermined
travel paths.

(4) Move rack to picking stations sequentially and await
workers to complete order picking. If all required SKUs
from this mobile rack have been picked out, continue
with Step 5.

(5) If a replenishment task has dispatched, move the rack to
replenishment stations. Otherwise, continue with step
6.

(6) Move the rackback to storage location that is determined
in real time.

(7) Back to step 2 until there is no customer order in the
queue.

Fig. 2 System operational procedure
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Table 1 Parameters and descriptions of fishbone rack layout

Parameter Description

a, b Length of bottom and side of triangle rack zone

LF , WF Total length and width of storage zone under fishbone
layout

h p Width of inclined aisle

h Width of middle aisle and local aisle

d Width of rack

i Zone of storage location, i � 1, 2, 3, 4

j Row of storage location

k Column of storage location

ni Row number of racks in zone i

s Number of first row of racks in zone 1 or zone 4

I2 Incremental number of racks between adjacent odd
rows in zone 1 or zone 4

I1 Incremental number of racks between odd rows and the
next row in zone 1 or zone 4

u Vertical distance from the top of zone 1 or zone 4 to the
first row of racks

wi j Number of racks in row j of zone i

Oi jk Location number, which indicates that the location is in
row j, column k, zone i

xi jk , yi jk Abscissa and ordinate of the rack in row j and column k
of zone i

xw Abscissa of workstation

Performance estimation of FRMFS

Assumptions

(1) Random storage strategy is applied. The random storage
strategy is consistent with the actual storage operating
environment.

(2) Picking or replenishment stations are located at the bot-
tom center of the warehouse. According to the fishbone
rack layout, placing the work station at the bottom of the
warehouse can shorten the robotmovement distance and
improve order picking efficiency.

(3) Robot with rack must move along the aisles, but idle
robot can also pass through the bottom of racks. The
robot takes the shortest path.

(4) Travel congestion, turnaround and waiting time at pick-
ing stations are not considered in the model. Complex
conditions such as congestion and steering may compli-
cate the storage assignment model, and these conditions
can be studied in multi-robot path planning problem.

Layout parameters

System parameters of FRMFS are listed in Table 1 and can
be calculated according to Fig. 3, separately.

(a)

(c)

(b)

Fig. 3 Parameters of fishbone layout

According to these definitions, the gray storage location
in Fig. 1 is indicated by O153. The set of all storage locations,
D, can be expressed as

D � {
Oi jk

∣∣1 ≤ i ≤ 4, 1 ≤ j ≤ ni , 1 ≤ k ≤ wi j
}

(1)

Number of storage columnswij

Let the number of storage rows in zone 1 or 4 be η1 � η4 �
η. As zones 1 and 4 are symmetric, this research takes zone
1 as an example. Definition of I1, I2, r1 and r2 can be found
in Fig. 3b. As shown Fig. 3a, warehouse parameter η � 4,
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s � 3, I2 � 3, I1 � 1. The slope of diagonal aisle, K , and
inclination angle, θ , are shown by Eqs. (2) and (3).

K � 2d + h

I2d
(2)

θ � arctan K (3)

The increment between an odd row and the next adjacent
row, I1, is integer and determined by the length of r1-r2 in
Fig. 3a and b

I1 �
⌊

d

dK

⌋
�

⌊
1

K

⌋
(4)

The distance between the vertex of zones 1 and 4 and the
first storage row is

u � Ksd (5)

Suppose η is an even number. The side length and bottom
length of zones 1 and 4 are

b � u + dη +
1

2
hη (6)

a � b

K
(7)

The overall length and width of the storage space are

LF � 2a + 2h p sin θ + h (8)

WF � b + h p cos θ (9)

Based on the calculation of I1 and I2, the number of rack
columns in zones 1 and 4 can be easily obtained. The first
row (j � 1) has s rack columns, and the second row (j � 2)
has s + I1 rack columns. In the same way, there are s + I1 +
(I2−I1) rack columns in the third row (j � 3), and there are
s + I1 + (I2−I1) + I1 rack columns in the four row (j � 4)
and so on. According to this, the number of rack columns in
zones 1 or zone 4 can be calculated by Eq. (10).

w1 j � w4 j � s +
I1
4
[2 j + (−1) j − 1]

+
I2 − I1

4
[2 j − (−1) j − 3] (10)

Rack layout in zone 2 or zone 3 follows the next rule: place
as many two-side racks near to the centered aisle as possible
and then place other two-side racks sequentially from the
center to the outer siders on the premise of a vertical aisle.
There is a local aisle between each rack.

w2 j � w3 j �
⌊
K

d

(
a − d j − h

4

(
2 j − (−1) j − 3

))⌋

(11)

To sum up, the number of rack columns in row j of zone
i is

wi j �
⎧
⎨

⎩
s + I1

4 [2 j + (−1) j − 1] + I2−I1
4 [2 j − (−1) j − 3], i � 1, 4

⌊ K
d (a − d j − h

4 (2 j − (−1) j − 3))
⌋
, i � 2, 3

(12)

Horizontal coordinate of storage locationOijk

Suppose the point of left and bottom be the coordinate
origin. The horizontal and vertical coordinates of storage
locationOijk are

xi jk �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
k − 1

2

)
d, i � 1

a + h p sin θ −
(
j − 1

2

)
d − h

4

(
2 j − (−1) j − 3

)
, i � 2

a + h p sin θ + h +

(
j − 1

2

)
d +

h

4

(
2 j − (−1) j − 3

)
, i � 3

a −
(
k − 1

2

)
d, i � 4

(13)

yi jk �
⎧
⎨

⎩

b − u −
(
j − 1

2

)
d − h

4

(
2 j − (−1) j − 3

)
, i � 1, 4

b −
(
k − 1

2

)
d, i � 2, 3

(14)

The coordinate of picking stations is (xw,0), of which xw
is

xw � 1

2
LF (15)

Rack moving time is one of the key factors of order pick-
ing efficiency. High moving efficiency can reduce waiting
time and energy consumption. While the picking SKUs are
known, the main way to improve the rack moving efficiency
is to reduce the moving path length. Therefore, the optimiza-
tion of storage assignment can start from the travel distance
of target rack and picking station.

Travel distance

The operational procedure of the FRMFS can be divided as:

(1) According to the picking task, a robot moves to targeted
rack;

(2) Robot with rack moves to the picking stations for order
fulfilment;

(3) The robot moves the rack back to the storage location.
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The robot moves towards the targeted rack

Suppose the coordinates of idle robot A is (x1, y1) at zone
1 and it will move towards targeted rack B with coordinate
(x2, y2), which has four different cases.

(1) Targeted rack B in zone 1.
The robot arrives at rack B in two manners, depending on
whether it goes pass via diagonal cross aisle. The two travel
distances d1, d2 are

d1 � |x2 − x1| + |y2 − y1| (16)

d2 � b − y1
K

− x1 +
b − y2
K

− x2 +
|y1 − y2|
sin θ

� 2b − (y1 + y2)

K
− (x1 + x2) +

|y1 − y2|
sin θ

(17)

The travel path with shorter distance dAB will be applied
in Eq. (18).

dAB � min(d1, d2) (18)

(2) Targeted rack B in zone 2.
There are three cases in this scenario. If x2 < x1 and y2<y1,
rack B is located at the upper left side of rack A and a robot
needs to move upper first and then approaches the targeted
row via the diagonal cross aisle. The distance dAB is

dAB � x1 − x2
cos θ

+ y2 − y1 − K (x1 − x2) (19)

If x2 > x1 and y2 > y1, rack B is located at the upper
right side of rack A and a robot directly moves through rack
bottom. dAB is

dAB � x2 − x1 + y2 − y1 (20)

If x2 > x1 and y2 < y1, rack B is located at the bot-
tom right side of rack A and the robot moves towards to the
diagonal cross aisle and then to the targeted rack. dAB is

dAB � x2 − x1 − y1 − y2
K

+
y1 − y2
sin θ

(21)

(3) Targeted rack B in zone 3.
There are four cases in this scenario. If y2 < y1, rack B is
located at the bottom right side of rackA and the robot moves
right towards diagonal cross aisle and then to the targeted
rack. dAB is

dAB � y2 − y1
sin θ

+ x2 − x1 − y2 − y1
K

(22)

Let y � y2 and the vertical coordinate of the cross point
with diagonal cross aisle be y3. is

y3 � b − K (a − h p sin θ − x2) (23)

If y1 < y3, rackB is located at the upper side of rackA and
the robot moves right across zones 2 and 3 and approaches
the targeted row via the diagonal cross aisle. dAB is

dAB � y3 − y1
sin θ

+ y2 − y3 + x2 − x1 − y3 − y1
tan θ

(24)

If y1 > y3, rack B is located at the bottom side of rack A
and the robot moves directly towards the targeted rack. dAB
is

dAB � x2 − x1 + y2 − y1 (25)

(4) Targeted rack B in zone 4.
If y2 < y1, the robot moves towards the diagonal cross aisle
and then approaches the targeted rack via zones 2 and 3.
If y2 > y1, the robot moves across zones 2 and 3, and
approaches the targeted rack via the diagonal cross aisle.
dAB is

dAB � x2 − x1 − |y2 − y1|
K

+
|y2 − y1|
sin θ

(26)

The calculation for other scenarios is similar to previous
equations.

Robot moves to picking station

(1) Rack B in zone 1 or 4.
If rack B is at the bottom row in zone 1 or 4, the robot does
not need pass across the diagonal cross aisle. dBO is

dBO � |xw − x2| + h +
1

2
d �

∣∣∣∣
LF

2
− x2

∣∣∣∣ + h +
1

2
d (27)

If rack B is located between the first row and row η − 1,
the robot moves to the picking station via the diagonal cross
aisle. Assume that rack B is located at row j. yl is

yl � y2 +
(−1)η− j

2
(h + d) (28)

dBO is

dBO � 1

2
(h + d) +

yl
sin θ

+ |xw − x2| − yl
K

(29)

(2) Rack B in zone 2 or 3.
If rack B is located at the first row, the robot does not need
across the diagonal cross aisle. dBO is

dBO � 1

2
(h + d) + y2 (30)
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(a) (b)(b)

Fig. 4 Robot movement status

If rack B is located between row 2 and row c, the robot
moves to the picking station via the bottom diagonal cross
aisle. Assume that rack B is located at row j. xl is

xl � x2 +
(−1) j

2
(h + d) (31)

And dBO is

dBO � 1

2
(h + d) +

|xl − xw|
cos θ

+ y2 − K |xl − xw| (32)

Robot returns rack back to storage location

If the rack is delivered back to the original location, the dis-
tance can be gotten from dOB � dBO . Therefore, the entire
travel distance is

d � dAB + 2dBO (33)

Robot travel time between two location

In practice, the robot with mobile rack may turn around
regularly in the fishbone layout, which will inevitably expe-
rience acceleration and deceleration. According to the prin-
ciple of kinematics, for each travel path a robot can reach the
maximum velocity, as shown in Fig. 4b or cannot reach it, as
shown in Fig. 4a. Therefore, travel time between locations
S1 and S2 is

t(S1, S2) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2

√
d(S1, S2)

ac
, d(S1, S2) <

v2m

ac

2vm
ac

+
d(S1, S2) − v2m

ac

vm
, d(S1, S2) >

v2m

ac
(34)

Workload of each local aisle

While too many inbound/outbound tasks of the warehouse in
an aisle need to be processed, robot congestion could occur.
Only one or two robots can perform tasks in the aisle, and the
rest of the robots need to wait in queue, which will seriously
reduce the efficiency of task execution. In order to reduce
queuing, tasks should be scattered in different aisles. While
robots perform tasks in different aisles, the probability of
queuing is reduced and the efficiency of inbound/outbound
of warehouse is improved.

Theworkload of each aisle can be represented by the racks
on both sides of the aisle. The racks contained required SKUs
are expressed as 1, and others are 0.Multiple racksmay leave
the storage location at the same time, so the frequency of
each item corresponding to each rack should be taken into
account. Taking the aisle between the second row and the
third row (j � 2 and j � 3) in zone 1 as an example, the sum
of inbound/outbound ratio of the local aisle is:

pa �
w12∑

k

p12k+
w13∑

k

p13k (35)

In Eq. (35) w12 and w13 represented the number of rack
in row 2 and 3.

Considering the first row in zone 1 and the second row in
zone 2 as the same aisle and the first row in zone 4 and the
third row in zone 3 as the same aisle, the number of local
aisles of the fishbone rack layout is:

Na � η + c + 1 (36)

The average outbound ratio of each aisle could be calcu-
lated by Eq. (37):

p �
∑N

n�1 pn
η + c + 1

(37)

Model of storage assignment in FRMFS

Suppose that N items are stored in the warehouse, and the
outbound frequency of item n is pn. Decision variables is xni jk
which represents item n should be put at the rack of row j and
column k in zone i.M is the maximum number of categories
that can be stored on a movable rack. Other parameters could
be found in Table 1.

Improve outbound efficiency

Placing the goods with high outbound frequency on the racks
closer to the workstation can reduce the inbound/outbound
time of the warehouse and improve the efficiency of goods
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turnover. Suppose that the distance that the robot carries the
rack at the row j and column k of zone i to the workstation
is dijk and the time for the robot to transport the rack to
the workstation is tijk . The objective function of warehouse
throughout efficiency can be calculated as in Eq. (38):

min f1 � min
N∑

n�1

I∑

i�1

ni∑

j�1

wi j∑

k�1

ti jk pnx
n
i jk (38)

Balance the workload of each local aisle

The workload of each local aisle should be considered. The
items with high turnover rate are scattered and stored on
the racks in different zones and different aisles to balance
the workload to avoid the accumulation of inbound and out-
bound tasks and robot congestion. The optimization goal of
balancing the workload of each local aisle is the minimum
sum of square of the difference between the sum of actual
throughout ratio of each local aisle and average throughout
ratio it should take [29], as in Eq. (39).

min f2 �
N∑

n�1

I∑

i�1

ni−1∑

j�2

[( wi j∑

k�1

pnx
n
i jk +

wi( j+1)∑

k�1

pnx
n
i( j + 1)k

)

− p

]2

+
∑

i�1,4

wiη∑

k�1

N∑

n�1

(
pnx

n
iηk − p

)2

+
N∑

n�1

[(
w11∑

k�1

pnx
n
11k +

w2c∑

k�1

pnx
n
2ck

)

− p

]2

+
N∑

n�1

[(
w21∑

k�1

pnx
n
21k +

w31∑

k�1

pnx
n
31k

)

− p

]2

(39)

xni jk ∈ {0, 1}, ∀n, i, j, k (40)

1 ≤ n ≤ N (41)

1 ≤ i ≤ 4 (42)

1 ≤ j ≤ ni , ∀i (43)

1 ≤ k ≤ wi j , ∀i, j (44)

N∑

n�1

xni jk ≤ M, ∀i, j, k (45)

N∑

n�1

I∑

i�1

ni∑

j�1

wi j∑

k�1

xni jk � N (46)

Equation (40) represents the value range of the decision
variable. When the variable is 1, the item n is stored on the
rack in the row j and column k of the zone i. Equations (41)
to (44) indicate the limit of the item number and rack coor-
dinates. Equation (45) indicates that the number of storage

items at a rack should be less than the maximum number of
items that can be stored. Equation (46) indicates that all the
item to be store into the warehouse have been allocated a
storage location.

Model-solving algorithm

The storage assignment model proposed in this paper is a
NP-hard combinatorial optimization problem [5]. At present,
most researches use heuristic algorithms to solve it. By com-
paring with other algorithms (in the next section), this paper
uses the improved genetic algorithm to solve the model.
Adaptive genetic algorithm (AGA) is an improved algorithm
based on genetic algorithm (GA). This algorithm adopts a
parameter adaptive strategy, that is, in each iteration, the
crossover probability and genetic mutation probability are
adaptively set according to the individual fitness value. This
makes the adaptive genetic algorithm better efficiency and
global optimality [30].

Chromosome coding

In the proposed optimization model, the decision variable
xni jk is related to four dimensions of rack number, rack zone,
rack row and column.Higher dimensions are not beneficial to
process, so storage locations are numbered according to spe-
cial rules to simplify decision variables. Using real number
coding, the numbering is carried out in the order of increas-
ing rows and columns from zone 1 to zone 4. Assuming there
are 10 goods to be put into storage, each chromosome is an
array with 10 elements, which represents a storage allocation
solution. The element is the storage number and the index of
the element is the item number. As shown in Fig. 5, item 1
is allocated to the storage location 6 and item 2 is placed on
location 48.

Fitness

Since the dimensions of the two minimized objective func-
tions are different, weighting factors are introduced in
Eq. (47) according to the importance of the sub-objectives
to form a single-objective optimization problem. And in
Eq. (47), f i* represents the current average value in this iter-
ation and ai represents the weight factors.

min f �
√

α1( f1 − f ∗
1 )

2 + α2( f2 − f ∗
2 )

2 (47)

α1 + α2 � 1 (48)

In the adaptive genetic algorithm, the population fitness
function is required to be maximized and is non-negative.
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Fig. 5 Chromosome example

The two objective functions of the storage assignment opti-
mization model are both minimized, so the inverse number
of the objective function f is taken as the individual fitness
value, as shown in Eq. (49):

g � 1

f
(49)

Crossover andmutation

Togenerate newchromosomes and obtain the crossover chro-
mosomes, select any gene fragments randomly on the parent
chromosomes to interact with each other. The mutation
operation adopts the single-locus mutation method, which
randomly selects a locus for the chromosome to be mutated,
and changes the expression value of the locus.

In the crossover andmutation operation, the adaptive strat-
egy is used to dynamically adjust the parameters. According
to Eqs. (50) and (51), the crossover probability pc and
the mutation probability pm are calculated respectively, so
that the crossover probability and the mutation probability
dynamically change with the fitness value. In this way, the
algorithm can maintain a strong global search ability in the
initial stage and can fully utilize the local search ability in the
later stage to accelerate the convergence to find the optimal
solution.

Pc �

⎧
⎪⎨

⎪⎩

k1
gmax − g′

gmax − g
, g′ ≥ g

k3, g
′ < g

(50)

Pm �

⎧
⎪⎨

⎪⎩

k2
gmax − g′

gmax − g
, g′ ≥ g

k4, g
′ < g

(51)

k1, k2, k3, k4 ≤ 1 (52)

In Eqs. (50) and (51), gmax is themaximumvalue of fitness

for the current generation,
−
g is the average value, and g’ is the

individual fitness value. For the maximum fitness individual,
pc and pm are 0. To prevent pc and pm exceeding 1, lower
limit k3, k4 is set.

The steps of the AGA algorithm are as follows:
Step1: Set parameters and generate the initial population.
Step2: Calculate each objective function f and fitness g.
Step3: Perform selection operation.

Step4: Calculate the crossover probability and mutation
probability according to Eqs. (50) and (51) and perform
crossover and mutation operations.

Step5: When the algorithm reaches the termination con-
dition, stop the search and output the result, otherwise return
to Step2.

Simulation experiment

Basic parameter setting

This experiment uses the improved adaptive genetic algo-
rithm to solve the storage assignment model. The program is
compiled by MATLAB (R2017a). First, determine the basic
parameters of the fishbone rack layout. In this experiment,
the width of the rack d and middle and partial aisles h is 1 m.
The width of the diagonal aisle hp is 2 m. The number of
racks in the first row of zone 1 (or zone 4) s is 1, the incre-
ment number of racks between two adjacent odd-numbered
rows in zone 1 (or Zone 4) I2 is 3, and the number of rack
rows in zone 1 (or zone 4) η is 8. Through the above basic
parameters, the number of rack rows in zones 1 to 4 can be
obtained as:

n � [6, 6, 6, 6] (53)

As shown in Fig. 1, the number of racks in each row of
racks in zones 1 to 4 is w,

w �

⎡

⎢⎢
⎣

1 2 4 5 7 8
9 8 6 5 3 2
9 8 6 5 3 2
1 2 4 5 7 8

⎤

⎥⎥
⎦ (54)

According to the value ofw, thewarehouse has 120 storage
locations totally. If each rack can store 4 kinds of items, the
warehouse can store 480 kinds of items. If there are 30 kinds
of goods to beput into thewarehouse, the outbound frequency
and the original storage location coordinates according to the
random storage strategy are shown in Table 2.

Under the initial storage solution, the warehousing
throughout efficiency f 1 is 145.07 and the balance value of
aisle workload f 2 is 4.16. The storage allocation is unreason-
able and may result in an imbalance in local aisle workload
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Table 2 Outbound frequency
and original locations Number Outbound frequency Storage cell Number Outbound frequency Storage cell

1 0.36 (3, 1, 3) 16 0.31 (4, 6, 4)

2 0.18 (1, 6, 6) 17 0.57 (2, 2, 3)

3 0.47 (4, 3, 2) 18 0.51 (3, 3, 4)

4 0.32 (2, 5, 1) 19 0.23 (2, 5, 3)

5 0.55 (3, 2, 5) 20 0.02 (2, 3, 4)

6 0.32 (2, 1, 4) 21 0.24 (2, 2, 7)

7 0.08 (1, 3, 3) 22 0.52 (3,1, 5)

8 0.11 (2, 4, 2) 23 0.14 (3, 6, 1)

9 0.29 (3, 2, 5) 24 0.31 (1, 4, 2)

10 0.32 (3, 2, 8) 25 0.19 (1, 6, 5)

11 0.24 (1, 3, 1) 26 0.37 (4, 4, 3)

12 0.06 (1, 5, 6) 27 0.32 (3, 1, 7)

13 0.12 (3, 2, 1) 28 0.14 (2, 5, 1)

14 0.49 (4, 4, 3) 29 0.13 (3, 4, 4)

15 0.32 (2, 2, 8) 30 0.45 (4, 5, 2)

and low warehousing efficiency. Therefore, to improve the
efficiency of inbound/outbound process and balance the
workload of aisles, the storage locations should be optimized.

Firstly, each objective function is simulated to verify the
effectiveness of single objective function, so the optimal
value of a single objective function is obtained. Then, accord-
ing to Eq. (47), the multi-objective function is transformed
into a single objective function. Set the value of the weight
(α1, α2) to (0.5, 0.5) and the simulation is finally performed.

Optimization based on adaptive genetic algorithm

In the experiment, the maximum number of evolutions T is
set to 200, the population size J is 200, the parameters of
adaptive crossover probability and the mutation probability
can be obtained by k1 � 0.5, k3 � 1, k2 � 0.3, k4 � 0.5.
When only the warehouse outbound efficiency is considered,
the iteration convergence process is shown in Fig. 6a and the
optimized storage location coordinates are shown in Table 3.
When only the balance of aisle workload is considered, the
iteration convergence process is shown in Fig. 6b, and the
optimized storage location coordinates are shown in Table 4.

From Fig. 6a, the objective function converges in 80
iterations and the optimized value of the outbound effi-
ciency is 82.11, which is 43.40% lower than optimization
before. According to the optimization results, the number
of racks occupied by this batch of goods in the warehouse
is significantly reduced. The items are placed close to the
workstations, which indicate that the optimization goal of
improving warehouse outbound efficiency is effective. But
almost all items are arranged at the first row of in zone 2 or

zone 3 and piled up near the workstations, so the workload of
local aisles is unbalanced, which is easy to cause congestion.

From Fig. 6b, the objective function converges in 33 itera-
tions and the optimal target value for balancing the local aisle
workload is 0.53, which is 87.26% lower than optimization
before. According to the results, items has been scattered in
the warehouse zone and the aisle. It shows that the optimiza-
tion goal of balancing local aisle workload is effective, but
most of the goods are far away from the workstation, which
is against to improving the efficiency of the warehouse.

Based on the sub-objective simulation, substitute the
above optimal value into Eq. (47) to eliminate the influ-
ence of different dimensions. A new function is obtained as
the objective function for optimization. The iteration conver-
gence process is shown in Fig. 7, and the optimized location
coordinates are shown in Table 5.

After 4.67 s the AGA algorithm terminates. The objec-
tive function is converged in 84 iterations, and the optimized
objective value f is 2.79. In this case, the objective value
f 1 and f 2 are 115.17 and 1.64, respectively. Compared with
the random storage assignment solution, the two optimized
values of the AGA algorithm are both smaller. The goods
are placed in an orderly manner according to the outbound
frequency and distance and they are evenly distributed in all
zones and aisles, which indicates that both the outbound effi-
ciency and the workload of the balanced aisles have been
improved. The optimization rates have reached 20.61% and
60.57%, respectively.

Sensitivity analysis

The AGA algorithm has four key parameters, k1, k2, k3, k4.
All the four parameters are associated to the crossover and
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(a) Objective function 1 iterative process

(b) Objective function 2 iterative process
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Fig. 6 Result of single objective optimization of AGA

mutation probability for each child, which should be calcu-
lated dynamically in AGA. Unsuitable initial value or default
probability will lead to premature convergence or local opti-
mum. The experimental data of four parameters is analyzed,
as shown in Fig. 8. It can be seen that the value of k3 fluctu-
ates greatly, followed by k1, k2 and k4. According to Fig. 8
and algorithm tuning experience, the parameter of adaptive
crossover and the mutation probability could be set as fol-
lows, k1 � 0.5, k3 � 1, k2 � 0.3, k4 � 0.5.

Table 3 The result of objective function 1

Number Storage cell Number Storage cell

22 (1, 6, 8) 12 (2, 2, 8)

7 (2, 1, 3) 29 (3, 1, 8)

4, 21 (2, 1, 4) 25 (3, 1, 9)

11, 13 (2, 1, 5) 8 (3, 2, 4)

5, 19, 28 (2, 1, 6) 2 (3, 2, 7)

6, 9, 15, 23 (2, 1, 7) 10 (3, 2, 8)

1, 3, 18, 30 (2, 1, 8) 24 (4, 5, 7)

14, 16, 17, 26 (2, 1, 9) 27 (4, 6, 7)

20 (2, 2, 4)

Table 4 The result of objective function 2

Number Storage cell Number Storage cell

24 (1, 1, 1) 15 (3, 1, 7)

12 (1, 2, 2) 30 (3, 1, 8)

22 (1, 3, 2) 19 (3, 2, 6)

8 (1, 3, 3) 13 (3, 2, 7)

21 (1, 4, 1) 7 (3, 2, 8)

10 (1, 4, 4) 9 (3, 3, 1)

23 (1, 5, 4) 1 (3, 4, 1)

29 (1, 6, 5) 20 (3, 4, 3)

5 (1, 6, 7) 6 (3, 5, 2)

3 (2, 2, 3) 2 (4, 2, 1)

11 (2, 2, 4) 17 (4, 3, 1)

25 (2, 4, 2) 14 (4, 4, 4)

28 (2, 4, 3) 26 (4, 5, 1)

27 (2, 4, 5) 16 (4, 6, 3)

18 (2, 6, 1) 4 (4, 6, 8)

Algorithm adaptability analysis

This combinatorial optimization problem proposed in this
paper can be solved by most intelligent algorithms, such as
ant colony optimization (ACO) [31], artificial bee colony
(ABC) [32], particle swarm optimization (PSO) [33], ele-
phant herding optimization (EHO) [34]. In order to further
verify the applicability of the improved algorithm in this
research for storage assignment problem on the fishbone
layout, it is necessary to compare the differences between
the improved algorithm and other algorithms to illustrate the
effectiveness of the improved strategy. Therefore, simulation
experiments are carried out using different size of examples.

In this section, GA,ACO,ABC, and PSO are used to solve
the optimizationmodel of storage assignment problem on the
fishbone rack layout. AGA and the simulated annealing par-
ticle swarm optimization (SAPSO) are used for comparison.
In the experiments, the initial parameters of the similar algo-
rithms (such as the PSO and SAPSO) are set to be the same
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Fig. 7 Results of multi-objective optimization of AGA

Table 5 AGA-based optimization solution for storage assignment

Number Storage cell Number Storage cell

21 (1, 3, 3) 20 (2, 6, 1)

9 (1, 3, 4) 12, 26 (2, 6, 2)

22 (1, 5, 7) 23 (3, 2, 7)

14 (1, 6, 7) 25, 30, 10 (3, 2, 8)

11, 15, 29 (1, 6, 8) 5 (3, 4, 4)

4 (2, 1, 8) 13 (4, 2, 2)

3, 18 (2, 1, 9) 2 (4, 3, 4)

8, 19, 27, 24 (2, 2, 8) 17 (4, 5, 7)

1, 28 (2, 4, 5) 16 (4, 6, 3)

7 (2, 5, 2) 6 (4, 6, 4)

Fig. 8 The trend of four paramters of AGA

which is convenient to compare the performance of different
algorithm. The results of GA, ACO, ABC, PSO, and SAPSO
are shown in Fig. 9.

Table 6 Mean convergent iterations under different scales

N/C GA ABC ACO PSO AGA SAPSO

10/120 136.6 165.8 125 71 29.6 74.4

30/120 163.7 215.6 148.6 117 74.2 105.4

60/208 168.9 255.6 193.5 139.8 103.7 134.1

100/456 263.4 305.4 279.3 248.1 154.1 228.3

As shown in Figs. 7 and 9, the objective function val-
ues obtained by the six algorithms of GA, ACO, ABC,
PSO, AGA, and SAPSO are 3.5, 3.91, 3.58, 3.34, 2.79,
2.78, respectively. And the convergence iterations are 148,
122, 158, 129, 84, and 169. As for the performance of the
four traditional algorithms of this model, the optimization
value of PSO is the smallest, but GA can better avoid the
local extremum. Compared with the former two algorithms,
ABC and ACO converges slowly. And the objective value
is slightly larger, so the performance of the algorithms for
this model is poor. Therefore, PSO algorithm with simu-
lated annealing strategy and AGA are compared to solve the
model. In this scale of examples, SAPSO has the smallest
optimization result, followed by AGA, and the difference is
0.01. However, AGA has fast convergence speed and better
stability. Both improved algorithms are better than the basic
algorithms.

In order to further measure the performance of different
algorithms, the optimization problem under different scales
(N is task number, C is storage location number) is designed.
The value of the outgoing efficiency f 1, the value of the bal-
anced aisle workload f 2 and the mean convergence iterations
G are selected as the algorithm performance analysis indi-
cators. In order to avoid the contingency of the experiment,
the experimental results of the examples in this paper are the
average of 10 times of operation. The results are shown in
Tables 6, 7, 8, 9.

According to Table 6, with the expansion of the prob-
lem scale, the convergence speed of AGA and SAPSO is
obviously faster than the basic algorithm. As a whole, the
convergent iterations of ABC and ACO are bigger than
others. This result verifies that the improved strategy can
improve the local optimization ability at the end stage of the
algorithm and accelerate the convergence. The convergence
speed of AGA has obvious advantages over SAPSO. And its
solution has less fluctuation and stronger stability.

As for optimization value, in most cases the optimization
results of AGA and SAPSO are better than the basic algo-
rithm. The larger the scale of the problem, the smaller the
objective function value of the solution obtained by AGA
and SAPSO compared with the basic algorithm. Although
the optimization performance of the algorithmdecreaseswith
the increase of the problem scale, all the algorithms still have
a large improvement compared with the random allocation
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Fig. 9 Convergence of different algorithms

123



4600 Complex & Intelligent Systems (2022) 8:4587–4602

Table 7 The function value 1
under different scales N/C GA ABC ACO PSO AGA SAPSO

f 1 f 1min f 1 f 1min f 1 f 1min f 1 f 1min f 1 f 1min f 1 f 1min

10/120 32.5 30.9 32.5 30.8 32.7 30.9 32.1 30.5 31.9 30.9 31.9 30.2

30/120 120.9 118.6 121.3 118.7 120.7 116.3 116.5 114.3 115.2 112.4 114.8 112.9

60/208 286.2 281.6 283.5 275.3 279.1 262.3 275.8 267.1 268.2 254.6 271.8 267.9

100/456 571.2 562.2 573.4 553.9 563.8 547.2 558.8 542.9 533.6 521 543.4 530.6

Table 8 The function value 2
under different scales N/C GA ABC ACO PSO AGA SAPSO

f 2 f 2min f 2 f 2min f 2 f 2min f 2 f 2min f 2 f 2min f 2 f 2min

10/120 1.25 1.06 1.34 1.05 1.30 0.98 1.33 1.14 1.23 0.88 1.25 0.93

30/120 1.89 1.65 1.87 1.68 1.93 1.62 1.81 1.44 1.72 1.48 1.8 1.15

60/208 3.99 3.15 4.07 3.27 3.95 3.46 3.62 3.01 3.74 3.2 3.34 2.47

100/456 6.96 6.16 7.34 6.68 7.54 6.35 7.78 6.35 6.7 6.35 6.69 5.87

Table 9 Optimization rates
under different scales (%) N/C GA ABC ACO PSO AGA SAPSO

E1 E2 E1 E2 E1 E2 E1 E2 E1 E2 E1 E2

10/120 42 19.9 42 14.1 41.6 16.7 42.7 14.7 43 21.2 43.1 19.9

30/120 16.7 54.6 16.4 55.1 17.8 53.6 19.7 56.5 20.6 58.7 20.9 56.7

60/208 16.4 41.7 17.2 40.5 18.5 42.3 19.4 47.1 21.6 45.3 20.6 51.2

100/456 13.7 35.5 13.4 32.0 14.8 30.1 15.6 27.9 19.4 37.9 17.9 38

Fig. 10 The average CPU times of different algorithms

strategy. The optimal values of GA, PSO, ACO, ABC are
almost the same, but there is a big gap between the results
of the improved algorithm and them. Considering the con-
vergence speed and optimal value, GA and PSO are more
suitable for solving the model. The CPU time of GA, AGA,
PSO, SAPSO is shown in Fig. 10.

Figure 10 shows the execution times of the four algo-
rithms related to the number of tasks. With the number of
tasks increasing, the CPU time of all algorithms are growing
smoothly. The computing time of AGA and GA algorithms

is about the same, because the difference between the two
algorithms is whether the probability of crossover and muta-
tion needs to be calculated dynamically. The gap between the
CPU time of PSO related algorithm andGA related algorithm
is increasing gradually because of the large amount of calcu-
lation for PSO potentially. GA algorithm uses less CPU time
and takes up less computer resources.As shown inTables 7, 8,
9, a comparison and analysis of AGA and SAPSO algorithm
shows that when the problem size is small, the optimal gap
between the two algorithms is acceptable. However, when
the problem size is large, the overall optimization ability of
AGA is more advantageous. The calculation speed for AGA
is faster than SAPSO algorithm and has better solutions.
SAPSOalgorithm can sometimes obtain solutions better than
AGA, but due to the randomness of initial solution generation
and the limitation of artificial selection of algorithm parame-
ters, the obtained objective function value fluctuates greatly,
and there is a gap in stability comparedwithAGA. Therefore,
the AGA algorithm is more suitable for solving large-scale
storage assignment optimization problems.

Conclusions

This paper takes the robot mobile fulfillment system with
fishbone rack layout as the research object to establish a
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storage assignment optimization model with the goal of
improving the efficiency of warehouse inbound/outbound
and balancing the workload of local aisles. Different intel-
ligent algorithms can give their own better solutions. Com-
paredwith other algorithms, genetic algorithm has the lowest
probability of falling into local optimization and has a higher
degree of optimization. Therefore, the improved adaptive
genetic algorithm is used to solve the storage assignment
model.

By a series of simulation experiment, the accuracy of the
mathematical model and the effectiveness of the algorithm
are verified. In order to further illustrate the applicability and
superiority of the improved algorithm on fishbone storage
assignment problems, the optimization effect and optimiza-
tion efficiency of the adaptive genetic algorithm, improved
particle swarm optimization based on simulated annealing,
ant colony optimization, genetic algorithm, particle swarm
optimization, and artificial bee colony are compared on the
instances of different scales. Result shows that AGA is more
suitable for solving large-scale storage assignment optimiza-
tion problems.

The optimization model proposed in this research only
considers the working distance and aisle balance. The influ-
ence of the correlation between orders on storage assignment
needs focus on further study. And the adaptability of intelli-
gent algorithms for other problems in FRMFS is also worthy
for further research.
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